from __future__ import annotations import dataclasses import enum as builtin_enum import json import math import struct import sys import typing import warnings from abc import ABC from base64 import ( b64decode, b64encode, ) from copy import deepcopy from datetime import ( datetime, timedelta, timezone, ) from io import BytesIO from itertools import count from typing import ( TYPE_CHECKING, Any, Callable, ClassVar, Dict, Generator, Iterable, Mapping, Optional, Set, Tuple, Type, Union, get_type_hints, ) from dateutil.parser import isoparse from typing_extensions import Self from ._types import T from ._version import __version__ from .casing import ( camel_case, safe_snake_case, snake_case, ) from .enum import Enum as Enum from .grpc.grpclib_client import ServiceStub as ServiceStub from .utils import ( classproperty, hybridmethod, ) if TYPE_CHECKING: from _typeshed import ( SupportsRead, SupportsWrite, ) # Proto 3 data types TYPE_ENUM = "enum" TYPE_BOOL = "bool" TYPE_INT32 = "int32" TYPE_INT64 = "int64" TYPE_UINT32 = "uint32" TYPE_UINT64 = "uint64" TYPE_SINT32 = "sint32" TYPE_SINT64 = "sint64" TYPE_FLOAT = "float" TYPE_DOUBLE = "double" TYPE_FIXED32 = "fixed32" TYPE_SFIXED32 = "sfixed32" TYPE_FIXED64 = "fixed64" TYPE_SFIXED64 = "sfixed64" TYPE_STRING = "string" TYPE_BYTES = "bytes" TYPE_MESSAGE = "message" TYPE_MAP = "map" # Fields that use a fixed amount of space (4 or 8 bytes) FIXED_TYPES = [ TYPE_FLOAT, TYPE_DOUBLE, TYPE_FIXED32, TYPE_SFIXED32, TYPE_FIXED64, TYPE_SFIXED64, ] # Fields that are numerical 64-bit types INT_64_TYPES = [TYPE_INT64, TYPE_UINT64, TYPE_SINT64, TYPE_FIXED64, TYPE_SFIXED64] # Fields that are efficiently packed when PACKED_TYPES = [ TYPE_ENUM, TYPE_BOOL, TYPE_INT32, TYPE_INT64, TYPE_UINT32, TYPE_UINT64, TYPE_SINT32, TYPE_SINT64, TYPE_FLOAT, TYPE_DOUBLE, TYPE_FIXED32, TYPE_SFIXED32, TYPE_FIXED64, TYPE_SFIXED64, ] # Wire types # https://developers.google.com/protocol-buffers/docs/encoding#structure WIRE_VARINT = 0 WIRE_FIXED_64 = 1 WIRE_LEN_DELIM = 2 WIRE_FIXED_32 = 5 # Mappings of which Proto 3 types correspond to which wire types. WIRE_VARINT_TYPES = [ TYPE_ENUM, TYPE_BOOL, TYPE_INT32, TYPE_INT64, TYPE_UINT32, TYPE_UINT64, TYPE_SINT32, TYPE_SINT64, ] WIRE_FIXED_32_TYPES = [TYPE_FLOAT, TYPE_FIXED32, TYPE_SFIXED32] WIRE_FIXED_64_TYPES = [TYPE_DOUBLE, TYPE_FIXED64, TYPE_SFIXED64] WIRE_LEN_DELIM_TYPES = [TYPE_STRING, TYPE_BYTES, TYPE_MESSAGE, TYPE_MAP] # Indicator of message delimitation in streams SIZE_DELIMITED = -1 class _DateTime(datetime): """Subclass of datetime with an attribute to store the original nanos value from a Timestamp field""" __slots__ = "_nanos" @property def nanos(self): return self._nanos # Protobuf datetimes start at the Unix Epoch in 1970 in UTC. def datetime_default_gen() -> _DateTime: return _DateTime(1970, 1, 1, tzinfo=timezone.utc) DATETIME_ZERO = datetime_default_gen() # Special protobuf json doubles INFINITY = "Infinity" NEG_INFINITY = "-Infinity" NAN = "NaN" class Casing(builtin_enum.Enum): """Casing constants for serialization.""" CAMEL = camel_case #: A camelCase sterilization function. SNAKE = snake_case #: A snake_case sterilization function. PLACEHOLDER: Any = object() @dataclasses.dataclass(frozen=True) class FieldMetadata: """Stores internal metadata used for parsing & serialization.""" # Protobuf field number number: int # Protobuf type name proto_type: str # Map information if the proto_type is a map map_types: Optional[Tuple[str, str]] = None # Groups several "one-of" fields together group: Optional[str] = None # Describes the wrapped type (e.g. when using google.protobuf.BoolValue) wraps: Optional[str] = None # Is the field optional optional: Optional[bool] = False @staticmethod def get(field: dataclasses.Field) -> "FieldMetadata": """Returns the field metadata for a dataclass field.""" return field.metadata["aristaproto"] def dataclass_field( number: int, proto_type: str, *, map_types: Optional[Tuple[str, str]] = None, group: Optional[str] = None, wraps: Optional[str] = None, optional: bool = False, ) -> dataclasses.Field: """Creates a dataclass field with attached protobuf metadata.""" return dataclasses.field( default=None if optional else PLACEHOLDER, metadata={ "aristaproto": FieldMetadata( number, proto_type, map_types, group, wraps, optional ) }, ) # Note: the fields below return `Any` to prevent type errors in the generated # data classes since the types won't match with `Field` and they get swapped # out at runtime. The generated dataclass variables are still typed correctly. def enum_field(number: int, group: Optional[str] = None, optional: bool = False) -> Any: return dataclass_field(number, TYPE_ENUM, group=group, optional=optional) def bool_field(number: int, group: Optional[str] = None, optional: bool = False) -> Any: return dataclass_field(number, TYPE_BOOL, group=group, optional=optional) def int32_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_INT32, group=group, optional=optional) def int64_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_INT64, group=group, optional=optional) def uint32_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_UINT32, group=group, optional=optional) def uint64_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_UINT64, group=group, optional=optional) def sint32_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_SINT32, group=group, optional=optional) def sint64_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_SINT64, group=group, optional=optional) def float_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_FLOAT, group=group, optional=optional) def double_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_DOUBLE, group=group, optional=optional) def fixed32_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_FIXED32, group=group, optional=optional) def fixed64_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_FIXED64, group=group, optional=optional) def sfixed32_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_SFIXED32, group=group, optional=optional) def sfixed64_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_SFIXED64, group=group, optional=optional) def string_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_STRING, group=group, optional=optional) def bytes_field( number: int, group: Optional[str] = None, optional: bool = False ) -> Any: return dataclass_field(number, TYPE_BYTES, group=group, optional=optional) def message_field( number: int, group: Optional[str] = None, wraps: Optional[str] = None, optional: bool = False, ) -> Any: return dataclass_field( number, TYPE_MESSAGE, group=group, wraps=wraps, optional=optional ) def map_field( number: int, key_type: str, value_type: str, group: Optional[str] = None ) -> Any: return dataclass_field( number, TYPE_MAP, map_types=(key_type, value_type), group=group ) def _pack_fmt(proto_type: str) -> str: """Returns a little-endian format string for reading/writing binary.""" return { TYPE_DOUBLE: " None: """Encodes a single varint and dumps it into the provided stream.""" if value < -(1 << 63): raise ValueError( "Negative value is not representable as a 64-bit integer - unable to encode a varint within 10 bytes." ) elif value < 0: value += 1 << 64 bits = value & 0x7F value >>= 7 while value: stream.write((0x80 | bits).to_bytes(1, "little")) bits = value & 0x7F value >>= 7 stream.write(bits.to_bytes(1, "little")) def encode_varint(value: int) -> bytes: """Encodes a single varint value for serialization.""" with BytesIO() as stream: dump_varint(value, stream) return stream.getvalue() def size_varint(value: int) -> int: """Calculates the size in bytes that a value would take as a varint.""" if value < -(1 << 63): raise ValueError( "Negative value is not representable as a 64-bit integer - unable to encode a varint within 10 bytes." ) elif value < 0: return 10 elif value == 0: return 1 else: return math.ceil(value.bit_length() / 7) def _preprocess_single(proto_type: str, wraps: str, value: Any) -> bytes: """Adjusts values before serialization.""" if proto_type in ( TYPE_ENUM, TYPE_BOOL, TYPE_INT32, TYPE_INT64, TYPE_UINT32, TYPE_UINT64, ): return encode_varint(value) elif proto_type in (TYPE_SINT32, TYPE_SINT64): # Handle zig-zag encoding. return encode_varint(value << 1 if value >= 0 else (value << 1) ^ (~0)) elif proto_type in FIXED_TYPES: return struct.pack(_pack_fmt(proto_type), value) elif proto_type == TYPE_STRING: return value.encode("utf-8") elif proto_type == TYPE_MESSAGE: if isinstance(value, datetime): # Convert the `datetime` to a timestamp message. value = _Timestamp.from_datetime(value) elif isinstance(value, timedelta): # Convert the `timedelta` to a duration message. value = _Duration.from_timedelta(value) elif wraps: if value is None: return b"" value = _get_wrapper(wraps)(value=value) return bytes(value) return value def _len_preprocessed_single(proto_type: str, wraps: str, value: Any) -> int: """Calculate the size of adjusted values for serialization without fully serializing them.""" if proto_type in ( TYPE_ENUM, TYPE_BOOL, TYPE_INT32, TYPE_INT64, TYPE_UINT32, TYPE_UINT64, ): return size_varint(value) elif proto_type in (TYPE_SINT32, TYPE_SINT64): # Handle zig-zag encoding. return size_varint(value << 1 if value >= 0 else (value << 1) ^ (~0)) elif proto_type in FIXED_TYPES: return len(struct.pack(_pack_fmt(proto_type), value)) elif proto_type == TYPE_STRING: return len(value.encode("utf-8")) elif proto_type == TYPE_MESSAGE: if isinstance(value, datetime): # Convert the `datetime` to a timestamp message. value = _Timestamp.from_datetime(value) elif isinstance(value, timedelta): # Convert the `timedelta` to a duration message. value = _Duration.from_timedelta(value) elif wraps: if value is None: return 0 value = _get_wrapper(wraps)(value=value) return len(bytes(value)) return len(value) def _serialize_single( field_number: int, proto_type: str, value: Any, *, serialize_empty: bool = False, wraps: str = "", ) -> bytes: """Serializes a single field and value.""" value = _preprocess_single(proto_type, wraps, value) output = bytearray() if proto_type in WIRE_VARINT_TYPES: key = encode_varint(field_number << 3) output += key + value elif proto_type in WIRE_FIXED_32_TYPES: key = encode_varint((field_number << 3) | 5) output += key + value elif proto_type in WIRE_FIXED_64_TYPES: key = encode_varint((field_number << 3) | 1) output += key + value elif proto_type in WIRE_LEN_DELIM_TYPES: if len(value) or serialize_empty or wraps: key = encode_varint((field_number << 3) | 2) output += key + encode_varint(len(value)) + value else: raise NotImplementedError(proto_type) return bytes(output) def _len_single( field_number: int, proto_type: str, value: Any, *, serialize_empty: bool = False, wraps: str = "", ) -> int: """Calculates the size of a serialized single field and value.""" size = _len_preprocessed_single(proto_type, wraps, value) if proto_type in WIRE_VARINT_TYPES: size += size_varint(field_number << 3) elif proto_type in WIRE_FIXED_32_TYPES: size += size_varint((field_number << 3) | 5) elif proto_type in WIRE_FIXED_64_TYPES: size += size_varint((field_number << 3) | 1) elif proto_type in WIRE_LEN_DELIM_TYPES: if size or serialize_empty or wraps: size += size_varint((field_number << 3) | 2) + size_varint(size) else: raise NotImplementedError(proto_type) return size def _parse_float(value: Any) -> float: """Parse the given value to a float Parameters ---------- value: Any Value to parse Returns ------- float Parsed value """ if value == INFINITY: return float("inf") if value == NEG_INFINITY: return -float("inf") if value == NAN: return float("nan") return float(value) def _dump_float(value: float) -> Union[float, str]: """Dump the given float to JSON Parameters ---------- value: float Value to dump Returns ------- Union[float, str] Dumped value, either a float or the strings """ if value == float("inf"): return INFINITY if value == -float("inf"): return NEG_INFINITY if isinstance(value, float) and math.isnan(value): return NAN return value def load_varint(stream: "SupportsRead[bytes]") -> Tuple[int, bytes]: """ Load a single varint value from a stream. Returns the value and the raw bytes read. """ result = 0 raw = b"" for shift in count(0, 7): if shift >= 64: raise ValueError("Too many bytes when decoding varint.") b = stream.read(1) if not b: raise EOFError("Stream ended unexpectedly while attempting to load varint.") raw += b b_int = int.from_bytes(b, byteorder="little") result |= (b_int & 0x7F) << shift if not (b_int & 0x80): return result, raw def decode_varint(buffer: bytes, pos: int) -> Tuple[int, int]: """ Decode a single varint value from a byte buffer. Returns the value and the new position in the buffer. """ with BytesIO(buffer) as stream: stream.seek(pos) value, raw = load_varint(stream) return value, pos + len(raw) @dataclasses.dataclass(frozen=True) class ParsedField: number: int wire_type: int value: Any raw: bytes def load_fields(stream: "SupportsRead[bytes]") -> Generator[ParsedField, None, None]: while True: try: num_wire, raw = load_varint(stream) except EOFError: return number = num_wire >> 3 wire_type = num_wire & 0x7 decoded: Any = None if wire_type == WIRE_VARINT: decoded, r = load_varint(stream) raw += r elif wire_type == WIRE_FIXED_64: decoded = stream.read(8) raw += decoded elif wire_type == WIRE_LEN_DELIM: length, r = load_varint(stream) decoded = stream.read(length) raw += r raw += decoded elif wire_type == WIRE_FIXED_32: decoded = stream.read(4) raw += decoded yield ParsedField(number=number, wire_type=wire_type, value=decoded, raw=raw) def parse_fields(value: bytes) -> Generator[ParsedField, None, None]: i = 0 while i < len(value): start = i num_wire, i = decode_varint(value, i) number = num_wire >> 3 wire_type = num_wire & 0x7 decoded: Any = None if wire_type == WIRE_VARINT: decoded, i = decode_varint(value, i) elif wire_type == WIRE_FIXED_64: decoded, i = value[i : i + 8], i + 8 elif wire_type == WIRE_LEN_DELIM: length, i = decode_varint(value, i) decoded = value[i : i + length] i += length elif wire_type == WIRE_FIXED_32: decoded, i = value[i : i + 4], i + 4 yield ParsedField( number=number, wire_type=wire_type, value=decoded, raw=value[start:i] ) class ProtoClassMetadata: __slots__ = ( "oneof_group_by_field", "oneof_field_by_group", "default_gen", "cls_by_field", "field_name_by_number", "meta_by_field_name", "sorted_field_names", ) oneof_group_by_field: Dict[str, str] oneof_field_by_group: Dict[str, Set[dataclasses.Field]] field_name_by_number: Dict[int, str] meta_by_field_name: Dict[str, FieldMetadata] sorted_field_names: Tuple[str, ...] default_gen: Dict[str, Callable[[], Any]] cls_by_field: Dict[str, Type] def __init__(self, cls: Type["Message"]): by_field = {} by_group: Dict[str, Set] = {} by_field_name = {} by_field_number = {} fields = dataclasses.fields(cls) for field in fields: meta = FieldMetadata.get(field) if meta.group: # This is part of a one-of group. by_field[field.name] = meta.group by_group.setdefault(meta.group, set()).add(field) by_field_name[field.name] = meta by_field_number[meta.number] = field.name self.oneof_group_by_field = by_field self.oneof_field_by_group = by_group self.field_name_by_number = by_field_number self.meta_by_field_name = by_field_name self.sorted_field_names = tuple( by_field_number[number] for number in sorted(by_field_number) ) self.default_gen = self._get_default_gen(cls, fields) self.cls_by_field = self._get_cls_by_field(cls, fields) @staticmethod def _get_default_gen( cls: Type["Message"], fields: Iterable[dataclasses.Field] ) -> Dict[str, Callable[[], Any]]: return {field.name: cls._get_field_default_gen(field) for field in fields} @staticmethod def _get_cls_by_field( cls: Type["Message"], fields: Iterable[dataclasses.Field] ) -> Dict[str, Type]: field_cls = {} for field in fields: meta = FieldMetadata.get(field) if meta.proto_type == TYPE_MAP: assert meta.map_types kt = cls._cls_for(field, index=0) vt = cls._cls_for(field, index=1) field_cls[field.name] = dataclasses.make_dataclass( "Entry", [ ("key", kt, dataclass_field(1, meta.map_types[0])), ("value", vt, dataclass_field(2, meta.map_types[1])), ], bases=(Message,), ) field_cls[f"{field.name}.value"] = vt else: field_cls[field.name] = cls._cls_for(field) return field_cls class Message(ABC): """ The base class for protobuf messages, all generated messages will inherit from this. This class registers the message fields which are used by the serializers and parsers to go between the Python, binary and JSON representations of the message. .. container:: operations .. describe:: bytes(x) Calls :meth:`__bytes__`. .. describe:: bool(x) Calls :meth:`__bool__`. """ _serialized_on_wire: bool _unknown_fields: bytes _group_current: Dict[str, str] _aristaproto_meta: ClassVar[ProtoClassMetadata] def __post_init__(self) -> None: # Keep track of whether every field was default all_sentinel = True # Set current field of each group after `__init__` has already been run. group_current: Dict[str, Optional[str]] = {} for field_name, meta in self._aristaproto.meta_by_field_name.items(): if meta.group: group_current.setdefault(meta.group) value = self.__raw_get(field_name) if value is not PLACEHOLDER and not (meta.optional and value is None): # Found a non-sentinel value all_sentinel = False if meta.group: # This was set, so make it the selected value of the one-of. group_current[meta.group] = field_name # Now that all the defaults are set, reset it! self.__dict__["_serialized_on_wire"] = not all_sentinel self.__dict__["_unknown_fields"] = b"" self.__dict__["_group_current"] = group_current def __raw_get(self, name: str) -> Any: return super().__getattribute__(name) def __eq__(self, other) -> bool: if type(self) is not type(other): return NotImplemented for field_name in self._aristaproto.meta_by_field_name: self_val = self.__raw_get(field_name) other_val = other.__raw_get(field_name) if self_val is PLACEHOLDER: if other_val is PLACEHOLDER: continue self_val = self._get_field_default(field_name) elif other_val is PLACEHOLDER: other_val = other._get_field_default(field_name) if self_val != other_val: # We consider two nan values to be the same for the # purposes of comparing messages (otherwise a message # is not equal to itself) if ( isinstance(self_val, float) and isinstance(other_val, float) and math.isnan(self_val) and math.isnan(other_val) ): continue else: return False return True def __repr__(self) -> str: parts = [ f"{field_name}={value!r}" for field_name in self._aristaproto.sorted_field_names for value in (self.__raw_get(field_name),) if value is not PLACEHOLDER ] return f"{self.__class__.__name__}({', '.join(parts)})" def __rich_repr__(self) -> Iterable[Tuple[str, Any, Any]]: for field_name in self._aristaproto.sorted_field_names: yield field_name, self.__raw_get(field_name), PLACEHOLDER if not TYPE_CHECKING: def __getattribute__(self, name: str) -> Any: """ Lazily initialize default values to avoid infinite recursion for recursive message types. Raise :class:`AttributeError` on attempts to access unset ``oneof`` fields. """ try: group_current = super().__getattribute__("_group_current") except AttributeError: pass else: if name not in {"__class__", "_aristaproto"}: group = self._aristaproto.oneof_group_by_field.get(name) if group is not None and group_current[group] != name: if sys.version_info < (3, 10): raise AttributeError( f"{group!r} is set to {group_current[group]!r}, not {name!r}" ) else: raise AttributeError( f"{group!r} is set to {group_current[group]!r}, not {name!r}", name=name, obj=self, ) value = super().__getattribute__(name) if value is not PLACEHOLDER: return value value = self._get_field_default(name) super().__setattr__(name, value) return value def __setattr__(self, attr: str, value: Any) -> None: if ( isinstance(value, Message) and hasattr(value, "_aristaproto") and not value._aristaproto.meta_by_field_name ): value._serialized_on_wire = True if attr != "_serialized_on_wire": # Track when a field has been set. self.__dict__["_serialized_on_wire"] = True if hasattr(self, "_group_current"): # __post_init__ had already run if attr in self._aristaproto.oneof_group_by_field: group = self._aristaproto.oneof_group_by_field[attr] for field in self._aristaproto.oneof_field_by_group[group]: if field.name == attr: self._group_current[group] = field.name else: super().__setattr__(field.name, PLACEHOLDER) super().__setattr__(attr, value) def __bool__(self) -> bool: """True if the Message has any fields with non-default values.""" return any( self.__raw_get(field_name) not in (PLACEHOLDER, self._get_field_default(field_name)) for field_name in self._aristaproto.meta_by_field_name ) def __deepcopy__(self: T, _: Any = {}) -> T: kwargs = {} for name in self._aristaproto.sorted_field_names: value = self.__raw_get(name) if value is not PLACEHOLDER: kwargs[name] = deepcopy(value) return self.__class__(**kwargs) # type: ignore def __copy__(self: T, _: Any = {}) -> T: kwargs = {} for name in self._aristaproto.sorted_field_names: value = self.__raw_get(name) if value is not PLACEHOLDER: kwargs[name] = value return self.__class__(**kwargs) # type: ignore @classproperty def _aristaproto(cls: type[Self]) -> ProtoClassMetadata: # type: ignore """ Lazy initialize metadata for each protobuf class. It may be initialized multiple times in a multi-threaded environment, but that won't affect the correctness. """ try: return cls._aristaproto_meta except AttributeError: cls._aristaproto_meta = meta = ProtoClassMetadata(cls) return meta def dump(self, stream: "SupportsWrite[bytes]", delimit: bool = False) -> None: """ Dumps the binary encoded Protobuf message to the stream. Parameters ----------- stream: :class:`BinaryIO` The stream to dump the message to. delimit: Whether to prefix the message with a varint declaring its size. """ if delimit == SIZE_DELIMITED: dump_varint(len(self), stream) for field_name, meta in self._aristaproto.meta_by_field_name.items(): try: value = getattr(self, field_name) except AttributeError: continue if value is None: # Optional items should be skipped. This is used for the Google # wrapper types and proto3 field presence/optional fields. continue # Being selected in a a group means this field is the one that is # currently set in a `oneof` group, so it must be serialized even # if the value is the default zero value. # # Note that proto3 field presence/optional fields are put in a # synthetic single-item oneof by protoc, which helps us ensure we # send the value even if the value is the default zero value. selected_in_group = bool(meta.group) or meta.optional # Empty messages can still be sent on the wire if they were # set (or received empty). serialize_empty = isinstance(value, Message) and value._serialized_on_wire include_default_value_for_oneof = self._include_default_value_for_oneof( field_name=field_name, meta=meta ) if value == self._get_field_default(field_name) and not ( selected_in_group or serialize_empty or include_default_value_for_oneof ): # Default (zero) values are not serialized. Two exceptions are # if this is the selected oneof item or if we know we have to # serialize an empty message (i.e. zero value was explicitly # set by the user). continue if isinstance(value, list): if meta.proto_type in PACKED_TYPES: # Packed lists look like a length-delimited field. First, # preprocess/encode each value into a buffer and then # treat it like a field of raw bytes. buf = bytearray() for item in value: buf += _preprocess_single(meta.proto_type, "", item) stream.write(_serialize_single(meta.number, TYPE_BYTES, buf)) else: for item in value: stream.write( _serialize_single( meta.number, meta.proto_type, item, wraps=meta.wraps or "", serialize_empty=True, ) # if it's an empty message it still needs to be represented # as an item in the repeated list or b"\n\x00" ) elif isinstance(value, dict): for k, v in value.items(): assert meta.map_types sk = _serialize_single(1, meta.map_types[0], k) sv = _serialize_single(2, meta.map_types[1], v) stream.write( _serialize_single(meta.number, meta.proto_type, sk + sv) ) else: # If we have an empty string and we're including the default value for # a oneof, make sure we serialize it. This ensures that the byte string # output isn't simply an empty string. This also ensures that round trip # serialization will keep `which_one_of` calls consistent. if ( isinstance(value, str) and value == "" and include_default_value_for_oneof ): serialize_empty = True stream.write( _serialize_single( meta.number, meta.proto_type, value, serialize_empty=serialize_empty or bool(selected_in_group), wraps=meta.wraps or "", ) ) stream.write(self._unknown_fields) def __bytes__(self) -> bytes: """ Get the binary encoded Protobuf representation of this message instance. """ with BytesIO() as stream: self.dump(stream) return stream.getvalue() def __len__(self) -> int: """ Get the size of the encoded Protobuf representation of this message instance. """ size = 0 for field_name, meta in self._aristaproto.meta_by_field_name.items(): try: value = getattr(self, field_name) except AttributeError: continue if value is None: # Optional items should be skipped. This is used for the Google # wrapper types and proto3 field presence/optional fields. continue # Being selected in a group means this field is the one that is # currently set in a `oneof` group, so it must be serialized even # if the value is the default zero value. # # Note that proto3 field presence/optional fields are put in a # synthetic single-item oneof by protoc, which helps us ensure we # send the value even if the value is the default zero value. selected_in_group = bool(meta.group) # Empty messages can still be sent on the wire if they were # set (or received empty). serialize_empty = isinstance(value, Message) and value._serialized_on_wire include_default_value_for_oneof = self._include_default_value_for_oneof( field_name=field_name, meta=meta ) if value == self._get_field_default(field_name) and not ( selected_in_group or serialize_empty or include_default_value_for_oneof ): # Default (zero) values are not serialized. Two exceptions are # if this is the selected oneof item or if we know we have to # serialize an empty message (i.e. zero value was explicitly # set by the user). continue if isinstance(value, list): if meta.proto_type in PACKED_TYPES: # Packed lists look like a length-delimited field. First, # preprocess/encode each value into a buffer and then # treat it like a field of raw bytes. buf = bytearray() for item in value: buf += _preprocess_single(meta.proto_type, "", item) size += _len_single(meta.number, TYPE_BYTES, buf) else: for item in value: size += ( _len_single( meta.number, meta.proto_type, item, wraps=meta.wraps or "", serialize_empty=True, ) # if it's an empty message it still needs to be represented # as an item in the repeated list or 2 ) elif isinstance(value, dict): for k, v in value.items(): assert meta.map_types sk = _serialize_single(1, meta.map_types[0], k) sv = _serialize_single(2, meta.map_types[1], v) size += _len_single(meta.number, meta.proto_type, sk + sv) else: # If we have an empty string and we're including the default value for # a oneof, make sure we serialize it. This ensures that the byte string # output isn't simply an empty string. This also ensures that round trip # serialization will keep `which_one_of` calls consistent. if ( isinstance(value, str) and value == "" and include_default_value_for_oneof ): serialize_empty = True size += _len_single( meta.number, meta.proto_type, value, serialize_empty=serialize_empty or bool(selected_in_group), wraps=meta.wraps or "", ) size += len(self._unknown_fields) return size # For compatibility with other libraries def SerializeToString(self: T) -> bytes: """ Get the binary encoded Protobuf representation of this message instance. .. note:: This is a method for compatibility with other libraries, you should really use ``bytes(x)``. Returns -------- :class:`bytes` The binary encoded Protobuf representation of this message instance """ return bytes(self) def __getstate__(self) -> bytes: return bytes(self) def __setstate__(self: T, pickled_bytes: bytes) -> T: return self.parse(pickled_bytes) def __reduce__(self) -> Tuple[Any, ...]: return (self.__class__.FromString, (bytes(self),)) @classmethod def _type_hint(cls, field_name: str) -> Type: return cls._type_hints()[field_name] @classmethod def _type_hints(cls) -> Dict[str, Type]: module = sys.modules[cls.__module__] return get_type_hints(cls, module.__dict__, {}) @classmethod def _cls_for(cls, field: dataclasses.Field, index: int = 0) -> Type: """Get the message class for a field from the type hints.""" field_cls = cls._type_hint(field.name) if hasattr(field_cls, "__args__") and index >= 0: if field_cls.__args__ is not None: field_cls = field_cls.__args__[index] return field_cls def _get_field_default(self, field_name: str) -> Any: with warnings.catch_warnings(): # ignore warnings when initialising deprecated field defaults warnings.filterwarnings("ignore", category=DeprecationWarning) return self._aristaproto.default_gen[field_name]() @classmethod def _get_field_default_gen(cls, field: dataclasses.Field) -> Any: t = cls._type_hint(field.name) if hasattr(t, "__origin__"): if t.__origin__ is dict: # This is some kind of map (dict in Python). return dict elif t.__origin__ is list: # This is some kind of list (repeated) field. return list elif t.__origin__ is Union and t.__args__[1] is type(None): # This is an optional field (either wrapped, or using proto3 # field presence). For setting the default we really don't care # what kind of field it is. return type(None) else: return t elif issubclass(t, Enum): # Enums always default to zero. return t.try_value elif t is datetime: # Offsets are relative to 1970-01-01T00:00:00Z return datetime_default_gen else: # This is either a primitive scalar or another message type. Calling # it should result in its zero value. return t def _postprocess_single( self, wire_type: int, meta: FieldMetadata, field_name: str, value: Any ) -> Any: """Adjusts values after parsing.""" if wire_type == WIRE_VARINT: if meta.proto_type in (TYPE_INT32, TYPE_INT64): bits = int(meta.proto_type[3:]) value = value & ((1 << bits) - 1) signbit = 1 << (bits - 1) value = int((value ^ signbit) - signbit) elif meta.proto_type in (TYPE_SINT32, TYPE_SINT64): # Undo zig-zag encoding value = (value >> 1) ^ (-(value & 1)) elif meta.proto_type == TYPE_BOOL: # Booleans use a varint encoding, so convert it to true/false. value = value > 0 elif meta.proto_type == TYPE_ENUM: # Convert enum ints to python enum instances value = self._aristaproto.cls_by_field[field_name].try_value(value) elif wire_type in (WIRE_FIXED_32, WIRE_FIXED_64): fmt = _pack_fmt(meta.proto_type) value = struct.unpack(fmt, value)[0] elif wire_type == WIRE_LEN_DELIM: if meta.proto_type == TYPE_STRING: value = str(value, "utf-8") elif meta.proto_type == TYPE_MESSAGE: cls = self._aristaproto.cls_by_field[field_name] if cls == datetime: value = _Timestamp().parse(value).to_datetime() elif cls == timedelta: value = _Duration().parse(value).to_timedelta() elif meta.wraps: # This is a Google wrapper value message around a single # scalar type. value = _get_wrapper(meta.wraps)().parse(value).value else: value = cls().parse(value) value._serialized_on_wire = True elif meta.proto_type == TYPE_MAP: value = self._aristaproto.cls_by_field[field_name]().parse(value) return value def _include_default_value_for_oneof( self, field_name: str, meta: FieldMetadata ) -> bool: return ( meta.group is not None and self._group_current.get(meta.group) == field_name ) def load( self: T, stream: "SupportsRead[bytes]", size: Optional[int] = None, ) -> T: """ Load the binary encoded Protobuf from a stream into this message instance. This returns the instance itself and is therefore assignable and chainable. Parameters ----------- stream: :class:`bytes` The stream to load the message from. size: :class:`Optional[int]` The size of the message in the stream. Reads stream until EOF if ``None`` is given. Reads based on a size delimiter prefix varint if SIZE_DELIMITED is given. Returns -------- :class:`Message` The initialized message. """ # If the message is delimited, parse the message delimiter if size == SIZE_DELIMITED: size, _ = load_varint(stream) # Got some data over the wire self._serialized_on_wire = True proto_meta = self._aristaproto read = 0 for parsed in load_fields(stream): field_name = proto_meta.field_name_by_number.get(parsed.number) if not field_name: self._unknown_fields += parsed.raw continue meta = proto_meta.meta_by_field_name[field_name] value: Any if parsed.wire_type == WIRE_LEN_DELIM and meta.proto_type in PACKED_TYPES: # This is a packed repeated field. pos = 0 value = [] while pos < len(parsed.value): if meta.proto_type in (TYPE_FLOAT, TYPE_FIXED32, TYPE_SFIXED32): decoded, pos = parsed.value[pos : pos + 4], pos + 4 wire_type = WIRE_FIXED_32 elif meta.proto_type in (TYPE_DOUBLE, TYPE_FIXED64, TYPE_SFIXED64): decoded, pos = parsed.value[pos : pos + 8], pos + 8 wire_type = WIRE_FIXED_64 else: decoded, pos = decode_varint(parsed.value, pos) wire_type = WIRE_VARINT decoded = self._postprocess_single( wire_type, meta, field_name, decoded ) value.append(decoded) else: value = self._postprocess_single( parsed.wire_type, meta, field_name, parsed.value ) try: current = getattr(self, field_name) except AttributeError: current = self._get_field_default(field_name) setattr(self, field_name, current) if meta.proto_type == TYPE_MAP: # Value represents a single key/value pair entry in the map. current[value.key] = value.value elif isinstance(current, list) and not isinstance(value, list): current.append(value) else: setattr(self, field_name, value) # If we have now loaded the expected length of the message, stop if size is not None: prev = read read += len(parsed.raw) if read == size: break elif read > size: raise ValueError( f"Expected message of size {size}, can only read " f"either {prev} or {read} bytes - there is no " "message of the expected size in the stream." ) if size is not None and read < size: raise ValueError( f"Expected message of size {size}, but was only able to " f"read {read} bytes - the stream may have ended too soon," " or the expected size may have been incorrect." ) return self def parse(self: T, data: bytes) -> T: """ Parse the binary encoded Protobuf into this message instance. This returns the instance itself and is therefore assignable and chainable. Parameters ----------- data: :class:`bytes` The data to parse the message from. Returns -------- :class:`Message` The initialized message. """ with BytesIO(data) as stream: return self.load(stream) # For compatibility with other libraries. @classmethod def FromString(cls: Type[T], data: bytes) -> T: """ Parse the binary encoded Protobuf into this message instance. This returns the instance itself and is therefore assignable and chainable. .. note:: This is a method for compatibility with other libraries, you should really use :meth:`parse`. Parameters ----------- data: :class:`bytes` The data to parse the protobuf from. Returns -------- :class:`Message` The initialized message. """ return cls().parse(data) def to_dict( self, casing: Casing = Casing.CAMEL, include_default_values: bool = False ) -> Dict[str, Any]: """ Returns a JSON serializable dict representation of this object. Parameters ----------- casing: :class:`Casing` The casing to use for key values. Default is :attr:`Casing.CAMEL` for compatibility purposes. include_default_values: :class:`bool` If ``True`` will include the default values of fields. Default is ``False``. E.g. an ``int32`` field will be included with a value of ``0`` if this is set to ``True``, otherwise this would be ignored. Returns -------- Dict[:class:`str`, Any] The JSON serializable dict representation of this object. """ output: Dict[str, Any] = {} field_types = self._type_hints() defaults = self._aristaproto.default_gen for field_name, meta in self._aristaproto.meta_by_field_name.items(): field_is_repeated = defaults[field_name] is list try: value = getattr(self, field_name) except AttributeError: value = self._get_field_default(field_name) cased_name = casing(field_name).rstrip("_") # type: ignore if meta.proto_type == TYPE_MESSAGE: if isinstance(value, datetime): if ( value != DATETIME_ZERO or include_default_values or self._include_default_value_for_oneof( field_name=field_name, meta=meta ) ): output[cased_name] = _Timestamp.timestamp_to_json(value) elif isinstance(value, timedelta): if ( value != timedelta(0) or include_default_values or self._include_default_value_for_oneof( field_name=field_name, meta=meta ) ): output[cased_name] = _Duration.delta_to_json(value) elif meta.wraps: if value is not None or include_default_values: output[cased_name] = value elif field_is_repeated: # Convert each item. cls = self._aristaproto.cls_by_field[field_name] if cls == datetime: value = [_Timestamp.timestamp_to_json(i) for i in value] elif cls == timedelta: value = [_Duration.delta_to_json(i) for i in value] else: value = [ i.to_dict(casing, include_default_values) for i in value ] if value or include_default_values: output[cased_name] = value elif value is None: if include_default_values: output[cased_name] = value elif ( value._serialized_on_wire or include_default_values or self._include_default_value_for_oneof( field_name=field_name, meta=meta ) ): output[cased_name] = value.to_dict(casing, include_default_values) elif meta.proto_type == TYPE_MAP: output_map = {**value} for k in value: if hasattr(value[k], "to_dict"): output_map[k] = value[k].to_dict(casing, include_default_values) if value or include_default_values: output[cased_name] = output_map elif ( value != self._get_field_default(field_name) or include_default_values or self._include_default_value_for_oneof( field_name=field_name, meta=meta ) ): if meta.proto_type in INT_64_TYPES: if field_is_repeated: output[cased_name] = [str(n) for n in value] elif value is None: if include_default_values: output[cased_name] = value else: output[cased_name] = str(value) elif meta.proto_type == TYPE_BYTES: if field_is_repeated: output[cased_name] = [ b64encode(b).decode("utf8") for b in value ] elif value is None and include_default_values: output[cased_name] = value else: output[cased_name] = b64encode(value).decode("utf8") elif meta.proto_type == TYPE_ENUM: if field_is_repeated: enum_class = field_types[field_name].__args__[0] if isinstance(value, typing.Iterable) and not isinstance( value, str ): output[cased_name] = [enum_class(el).name for el in value] else: # transparently upgrade single value to repeated output[cased_name] = [enum_class(value).name] elif value is None: if include_default_values: output[cased_name] = value elif meta.optional: enum_class = field_types[field_name].__args__[0] output[cased_name] = enum_class(value).name else: enum_class = field_types[field_name] # noqa output[cased_name] = enum_class(value).name elif meta.proto_type in (TYPE_FLOAT, TYPE_DOUBLE): if field_is_repeated: output[cased_name] = [_dump_float(n) for n in value] else: output[cased_name] = _dump_float(value) else: output[cased_name] = value return output @classmethod def _from_dict_init(cls, mapping: Mapping[str, Any]) -> Mapping[str, Any]: init_kwargs: Dict[str, Any] = {} for key, value in mapping.items(): field_name = safe_snake_case(key) try: meta = cls._aristaproto.meta_by_field_name[field_name] except KeyError: continue if value is None: continue if meta.proto_type == TYPE_MESSAGE: sub_cls = cls._aristaproto.cls_by_field[field_name] if sub_cls == datetime: value = ( [isoparse(item) for item in value] if isinstance(value, list) else isoparse(value) ) elif sub_cls == timedelta: value = ( [timedelta(seconds=float(item[:-1])) for item in value] if isinstance(value, list) else timedelta(seconds=float(value[:-1])) ) elif not meta.wraps: value = ( [sub_cls.from_dict(item) for item in value] if isinstance(value, list) else sub_cls.from_dict(value) ) elif meta.map_types and meta.map_types[1] == TYPE_MESSAGE: sub_cls = cls._aristaproto.cls_by_field[f"{field_name}.value"] value = {k: sub_cls.from_dict(v) for k, v in value.items()} else: if meta.proto_type in INT_64_TYPES: value = ( [int(n) for n in value] if isinstance(value, list) else int(value) ) elif meta.proto_type == TYPE_BYTES: value = ( [b64decode(n) for n in value] if isinstance(value, list) else b64decode(value) ) elif meta.proto_type == TYPE_ENUM: enum_cls = cls._aristaproto.cls_by_field[field_name] if isinstance(value, list): value = [enum_cls.from_string(e) for e in value] elif isinstance(value, str): value = enum_cls.from_string(value) elif meta.proto_type in (TYPE_FLOAT, TYPE_DOUBLE): value = ( [_parse_float(n) for n in value] if isinstance(value, list) else _parse_float(value) ) init_kwargs[field_name] = value return init_kwargs @hybridmethod def from_dict(cls: type[Self], value: Mapping[str, Any]) -> Self: # type: ignore """ Parse the key/value pairs into the a new message instance. Parameters ----------- value: Dict[:class:`str`, Any] The dictionary to parse from. Returns -------- :class:`Message` The initialized message. """ self = cls(**cls._from_dict_init(value)) self._serialized_on_wire = True return self @from_dict.instancemethod def from_dict(self, value: Mapping[str, Any]) -> Self: """ Parse the key/value pairs into the current message instance. This returns the instance itself and is therefore assignable and chainable. Parameters ----------- value: Dict[:class:`str`, Any] The dictionary to parse from. Returns -------- :class:`Message` The initialized message. """ self._serialized_on_wire = True for field, value in self._from_dict_init(value).items(): setattr(self, field, value) return self def to_json( self, indent: Union[None, int, str] = None, include_default_values: bool = False, casing: Casing = Casing.CAMEL, ) -> str: """A helper function to parse the message instance into its JSON representation. This is equivalent to:: json.dumps(message.to_dict(), indent=indent) Parameters ----------- indent: Optional[Union[:class:`int`, :class:`str`]] The indent to pass to :func:`json.dumps`. include_default_values: :class:`bool` If ``True`` will include the default values of fields. Default is ``False``. E.g. an ``int32`` field will be included with a value of ``0`` if this is set to ``True``, otherwise this would be ignored. casing: :class:`Casing` The casing to use for key values. Default is :attr:`Casing.CAMEL` for compatibility purposes. Returns -------- :class:`str` The JSON representation of the message. """ return json.dumps( self.to_dict(include_default_values=include_default_values, casing=casing), indent=indent, ) def from_json(self: T, value: Union[str, bytes]) -> T: """A helper function to return the message instance from its JSON representation. This returns the instance itself and is therefore assignable and chainable. This is equivalent to:: return message.from_dict(json.loads(value)) Parameters ----------- value: Union[:class:`str`, :class:`bytes`] The value to pass to :func:`json.loads`. Returns -------- :class:`Message` The initialized message. """ return self.from_dict(json.loads(value)) def to_pydict( self, casing: Casing = Casing.CAMEL, include_default_values: bool = False ) -> Dict[str, Any]: """ Returns a python dict representation of this object. Parameters ----------- casing: :class:`Casing` The casing to use for key values. Default is :attr:`Casing.CAMEL` for compatibility purposes. include_default_values: :class:`bool` If ``True`` will include the default values of fields. Default is ``False``. E.g. an ``int32`` field will be included with a value of ``0`` if this is set to ``True``, otherwise this would be ignored. Returns -------- Dict[:class:`str`, Any] The python dict representation of this object. """ output: Dict[str, Any] = {} defaults = self._aristaproto.default_gen for field_name, meta in self._aristaproto.meta_by_field_name.items(): field_is_repeated = defaults[field_name] is list value = getattr(self, field_name) cased_name = casing(field_name).rstrip("_") # type: ignore if meta.proto_type == TYPE_MESSAGE: if isinstance(value, datetime): if ( value != DATETIME_ZERO or include_default_values or self._include_default_value_for_oneof( field_name=field_name, meta=meta ) ): output[cased_name] = value elif isinstance(value, timedelta): if ( value != timedelta(0) or include_default_values or self._include_default_value_for_oneof( field_name=field_name, meta=meta ) ): output[cased_name] = value elif meta.wraps: if value is not None or include_default_values: output[cased_name] = value elif field_is_repeated: # Convert each item. value = [i.to_pydict(casing, include_default_values) for i in value] if value or include_default_values: output[cased_name] = value elif value is None: if include_default_values: output[cased_name] = None elif ( value._serialized_on_wire or include_default_values or self._include_default_value_for_oneof( field_name=field_name, meta=meta ) ): output[cased_name] = value.to_pydict(casing, include_default_values) elif meta.proto_type == TYPE_MAP: for k in value: if hasattr(value[k], "to_pydict"): value[k] = value[k].to_pydict(casing, include_default_values) if value or include_default_values: output[cased_name] = value elif ( value != self._get_field_default(field_name) or include_default_values or self._include_default_value_for_oneof( field_name=field_name, meta=meta ) ): output[cased_name] = value return output def from_pydict(self: T, value: Mapping[str, Any]) -> T: """ Parse the key/value pairs into the current message instance. This returns the instance itself and is therefore assignable and chainable. Parameters ----------- value: Dict[:class:`str`, Any] The dictionary to parse from. Returns -------- :class:`Message` The initialized message. """ self._serialized_on_wire = True for key in value: field_name = safe_snake_case(key) meta = self._aristaproto.meta_by_field_name.get(field_name) if not meta: continue if value[key] is not None: if meta.proto_type == TYPE_MESSAGE: v = getattr(self, field_name) if isinstance(v, list): cls = self._aristaproto.cls_by_field[field_name] for item in value[key]: v.append(cls().from_pydict(item)) elif isinstance(v, datetime): v = value[key] elif isinstance(v, timedelta): v = value[key] elif meta.wraps: v = value[key] else: # NOTE: `from_pydict` mutates the underlying message, so no # assignment here is necessary. v.from_pydict(value[key]) elif meta.map_types and meta.map_types[1] == TYPE_MESSAGE: v = getattr(self, field_name) cls = self._aristaproto.cls_by_field[f"{field_name}.value"] for k in value[key]: v[k] = cls().from_pydict(value[key][k]) else: v = value[key] if v is not None: setattr(self, field_name, v) return self def is_set(self, name: str) -> bool: """ Check if field with the given name has been set. Parameters ----------- name: :class:`str` The name of the field to check for. Returns -------- :class:`bool` `True` if field has been set, otherwise `False`. """ default = ( PLACEHOLDER if not self._aristaproto.meta_by_field_name[name].optional else None ) return self.__raw_get(name) is not default @classmethod def _validate_field_groups(cls, values): group_to_one_ofs = cls._aristaproto.oneof_field_by_group field_name_to_meta = cls._aristaproto.meta_by_field_name for group, field_set in group_to_one_ofs.items(): if len(field_set) == 1: (field,) = field_set field_name = field.name meta = field_name_to_meta[field_name] # This is a synthetic oneof; we should ignore it's presence and not consider it as a oneof. if meta.optional: continue set_fields = [ field.name for field in field_set if values[field.name] is not None ] if not set_fields: raise ValueError(f"Group {group} has no value; all fields are None") elif len(set_fields) > 1: set_fields_str = ", ".join(set_fields) raise ValueError( f"Group {group} has more than one value; fields {set_fields_str} are not None" ) return values Message.__annotations__ = {} # HACK to avoid typing.get_type_hints breaking :) # monkey patch (de-)serialization functions of class `Message` # with functions from `betterproto-rust-codec` if available try: import betterproto_rust_codec def __parse_patch(self: T, data: bytes) -> T: betterproto_rust_codec.deserialize(self, data) return self def __bytes_patch(self) -> bytes: return betterproto_rust_codec.serialize(self) Message.parse = __parse_patch Message.__bytes__ = __bytes_patch except ModuleNotFoundError: pass def serialized_on_wire(message: Message) -> bool: """ If this message was or should be serialized on the wire. This can be used to detect presence (e.g. optional wrapper message) and is used internally during parsing/serialization. Returns -------- :class:`bool` Whether this message was or should be serialized on the wire. """ return message._serialized_on_wire def which_one_of(message: Message, group_name: str) -> Tuple[str, Optional[Any]]: """ Return the name and value of a message's one-of field group. Returns -------- Tuple[:class:`str`, Any] The field name and the value for that field. """ field_name = message._group_current.get(group_name) if not field_name: return "", None return field_name, getattr(message, field_name) # Circular import workaround: google.protobuf depends on base classes defined above. from .lib.google.protobuf import ( # noqa BoolValue, BytesValue, DoubleValue, Duration, EnumValue, FloatValue, Int32Value, Int64Value, StringValue, Timestamp, UInt32Value, UInt64Value, ) class _Duration(Duration): @classmethod def from_timedelta( cls, delta: timedelta, *, _1_microsecond: timedelta = timedelta(microseconds=1) ) -> "_Duration": total_ms = delta // _1_microsecond seconds = int(total_ms / 1e6) nanos = int((total_ms % 1e6) * 1e3) return cls(seconds, nanos) def to_timedelta(self) -> timedelta: return timedelta(seconds=self.seconds, microseconds=self.nanos / 1e3) @staticmethod def delta_to_json(delta: timedelta) -> str: parts = str(delta.total_seconds()).split(".") if len(parts) > 1: while len(parts[1]) not in (3, 6, 9): parts[1] = f"{parts[1]}0" return f"{'.'.join(parts)}s" class _Timestamp(Timestamp): @classmethod def from_datetime(cls, dt: datetime) -> "_Timestamp": # manual epoch offset calulation to avoid rounding errors, # to support negative timestamps (before 1970) and skirt # around datetime bugs (apparently 0 isn't a year in [0, 9999]??) offset = dt - DATETIME_ZERO # below is the same as timedelta.total_seconds() but without dividing by 1e6 # so we end up with microseconds as integers instead of seconds as float offset_us = ( offset.days * 24 * 60 * 60 + offset.seconds ) * 10**6 + offset.microseconds seconds, us = divmod(offset_us, 10**6) # If ths given datetime is our subclass containing nanos from the original Timestamp # We will prefer those nanos over the datetime micros. if isinstance(dt, _DateTime) and dt.nanos: return cls(seconds, dt.nanos) return cls(seconds, us * 1000) def to_datetime(self) -> _DateTime: # datetime.fromtimestamp() expects a timestamp in seconds, not microseconds # if we pass it as a floating point number, we will run into rounding errors # see also #407 offset = timedelta(seconds=self.seconds, microseconds=self.nanos // 1000) dt = DATETIME_ZERO + offset # Store the original nanos in our subclass of datetime. setattr(dt, "_nanos", self.nanos) return dt @staticmethod def timestamp_to_json(dt: datetime) -> str: # If ths given datetime is our subclass containing nanos from the original Timestamp # We will prefer those nanos over the datetime micros. if isinstance(dt, _DateTime) and dt.nanos: nanos = dt.nanos else: nanos = dt.microsecond * 1e3 if dt.tzinfo is not None: # change timezone aware datetime objects to utc dt = dt.astimezone(timezone.utc) copy = dt.replace(microsecond=0, tzinfo=None) result = copy.isoformat() if (nanos % 1e9) == 0: # If there are 0 fractional digits, the fractional # point '.' should be omitted when serializing. return f"{result}Z" if (nanos % 1e6) == 0: # Serialize 3 fractional digits. return f"{result}.{int(nanos // 1e6) :03d}Z" if (nanos % 1e3) == 0: # Serialize 6 fractional digits. return f"{result}.{int(nanos // 1e3) :06d}Z" # Serialize 9 fractional digits. return f"{result}.{nanos:09d}" def _get_wrapper(proto_type: str) -> Type: """Get the wrapper message class for a wrapped type.""" # TODO: include ListValue and NullValue? return { TYPE_BOOL: BoolValue, TYPE_BYTES: BytesValue, TYPE_DOUBLE: DoubleValue, TYPE_FLOAT: FloatValue, TYPE_ENUM: EnumValue, TYPE_INT32: Int32Value, TYPE_INT64: Int64Value, TYPE_STRING: StringValue, TYPE_UINT32: UInt32Value, TYPE_UINT64: UInt64Value, }[proto_type]