Edit on GitHub

Expressions

Every AST node in SQLGlot is represented by a subclass of Expression.

This module contains the implementation of all supported Expression types. Additionally, it exposes a number of helper functions, which are mainly used to programmatically build SQL expressions, such as sqlglot.expressions.select.


   1"""
   2## Expressions
   3
   4Every AST node in SQLGlot is represented by a subclass of `Expression`.
   5
   6This module contains the implementation of all supported `Expression` types. Additionally,
   7it exposes a number of helper functions, which are mainly used to programmatically build
   8SQL expressions, such as `sqlglot.expressions.select`.
   9
  10----
  11"""
  12
  13from __future__ import annotations
  14import datetime
  15import math
  16import numbers
  17import re
  18import textwrap
  19import typing as t
  20from collections import deque
  21from copy import deepcopy
  22from decimal import Decimal
  23from enum import auto
  24from functools import reduce
  25
  26from sqlglot.errors import ErrorLevel, ParseError
  27from sqlglot.helper import (
  28    AutoName,
  29    camel_to_snake_case,
  30    ensure_collection,
  31    ensure_list,
  32    seq_get,
  33    subclasses,
  34)
  35from sqlglot.tokens import Token, TokenError
  36
  37if t.TYPE_CHECKING:
  38    from typing_extensions import Self
  39    from sqlglot._typing import E, Lit
  40    from sqlglot.dialects.dialect import DialectType
  41
  42    Q = t.TypeVar("Q", bound="Query")
  43    S = t.TypeVar("S", bound="SetOperation")
  44
  45
  46class _Expression(type):
  47    def __new__(cls, clsname, bases, attrs):
  48        klass = super().__new__(cls, clsname, bases, attrs)
  49
  50        # When an Expression class is created, its key is automatically set to be
  51        # the lowercase version of the class' name.
  52        klass.key = clsname.lower()
  53
  54        # This is so that docstrings are not inherited in pdoc
  55        klass.__doc__ = klass.__doc__ or ""
  56
  57        return klass
  58
  59
  60SQLGLOT_META = "sqlglot.meta"
  61TABLE_PARTS = ("this", "db", "catalog")
  62COLUMN_PARTS = ("this", "table", "db", "catalog")
  63
  64
  65class Expression(metaclass=_Expression):
  66    """
  67    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
  68    context, such as its child expressions, their names (arg keys), and whether a given child expression
  69    is optional or not.
  70
  71    Attributes:
  72        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
  73            and representing expressions as strings.
  74        arg_types: determines the arguments (child nodes) supported by an expression. It maps
  75            arg keys to booleans that indicate whether the corresponding args are optional.
  76        parent: a reference to the parent expression (or None, in case of root expressions).
  77        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
  78            uses to refer to it.
  79        index: the index of an expression if it is inside of a list argument in its parent.
  80        comments: a list of comments that are associated with a given expression. This is used in
  81            order to preserve comments when transpiling SQL code.
  82        type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
  83            optimizer, in order to enable some transformations that require type information.
  84        meta: a dictionary that can be used to store useful metadata for a given expression.
  85
  86    Example:
  87        >>> class Foo(Expression):
  88        ...     arg_types = {"this": True, "expression": False}
  89
  90        The above definition informs us that Foo is an Expression that requires an argument called
  91        "this" and may also optionally receive an argument called "expression".
  92
  93    Args:
  94        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
  95    """
  96
  97    key = "expression"
  98    arg_types = {"this": True}
  99    __slots__ = ("args", "parent", "arg_key", "index", "comments", "_type", "_meta", "_hash")
 100
 101    def __init__(self, **args: t.Any):
 102        self.args: t.Dict[str, t.Any] = args
 103        self.parent: t.Optional[Expression] = None
 104        self.arg_key: t.Optional[str] = None
 105        self.index: t.Optional[int] = None
 106        self.comments: t.Optional[t.List[str]] = None
 107        self._type: t.Optional[DataType] = None
 108        self._meta: t.Optional[t.Dict[str, t.Any]] = None
 109        self._hash: t.Optional[int] = None
 110
 111        for arg_key, value in self.args.items():
 112            self._set_parent(arg_key, value)
 113
 114    def __eq__(self, other) -> bool:
 115        return type(self) is type(other) and hash(self) == hash(other)
 116
 117    @property
 118    def hashable_args(self) -> t.Any:
 119        return frozenset(
 120            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
 121            for k, v in self.args.items()
 122            if not (v is None or v is False or (type(v) is list and not v))
 123        )
 124
 125    def __hash__(self) -> int:
 126        if self._hash is not None:
 127            return self._hash
 128
 129        return hash((self.__class__, self.hashable_args))
 130
 131    @property
 132    def this(self) -> t.Any:
 133        """
 134        Retrieves the argument with key "this".
 135        """
 136        return self.args.get("this")
 137
 138    @property
 139    def expression(self) -> t.Any:
 140        """
 141        Retrieves the argument with key "expression".
 142        """
 143        return self.args.get("expression")
 144
 145    @property
 146    def expressions(self) -> t.List[t.Any]:
 147        """
 148        Retrieves the argument with key "expressions".
 149        """
 150        return self.args.get("expressions") or []
 151
 152    def text(self, key) -> str:
 153        """
 154        Returns a textual representation of the argument corresponding to "key". This can only be used
 155        for args that are strings or leaf Expression instances, such as identifiers and literals.
 156        """
 157        field = self.args.get(key)
 158        if isinstance(field, str):
 159            return field
 160        if isinstance(field, (Identifier, Literal, Var)):
 161            return field.this
 162        if isinstance(field, (Star, Null)):
 163            return field.name
 164        return ""
 165
 166    @property
 167    def is_string(self) -> bool:
 168        """
 169        Checks whether a Literal expression is a string.
 170        """
 171        return isinstance(self, Literal) and self.args["is_string"]
 172
 173    @property
 174    def is_number(self) -> bool:
 175        """
 176        Checks whether a Literal expression is a number.
 177        """
 178        return (isinstance(self, Literal) and not self.args["is_string"]) or (
 179            isinstance(self, Neg) and self.this.is_number
 180        )
 181
 182    def to_py(self) -> t.Any:
 183        """
 184        Returns a Python object equivalent of the SQL node.
 185        """
 186        raise ValueError(f"{self} cannot be converted to a Python object.")
 187
 188    @property
 189    def is_int(self) -> bool:
 190        """
 191        Checks whether an expression is an integer.
 192        """
 193        return self.is_number and isinstance(self.to_py(), int)
 194
 195    @property
 196    def is_star(self) -> bool:
 197        """Checks whether an expression is a star."""
 198        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
 199
 200    @property
 201    def alias(self) -> str:
 202        """
 203        Returns the alias of the expression, or an empty string if it's not aliased.
 204        """
 205        if isinstance(self.args.get("alias"), TableAlias):
 206            return self.args["alias"].name
 207        return self.text("alias")
 208
 209    @property
 210    def alias_column_names(self) -> t.List[str]:
 211        table_alias = self.args.get("alias")
 212        if not table_alias:
 213            return []
 214        return [c.name for c in table_alias.args.get("columns") or []]
 215
 216    @property
 217    def name(self) -> str:
 218        return self.text("this")
 219
 220    @property
 221    def alias_or_name(self) -> str:
 222        return self.alias or self.name
 223
 224    @property
 225    def output_name(self) -> str:
 226        """
 227        Name of the output column if this expression is a selection.
 228
 229        If the Expression has no output name, an empty string is returned.
 230
 231        Example:
 232            >>> from sqlglot import parse_one
 233            >>> parse_one("SELECT a").expressions[0].output_name
 234            'a'
 235            >>> parse_one("SELECT b AS c").expressions[0].output_name
 236            'c'
 237            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
 238            ''
 239        """
 240        return ""
 241
 242    @property
 243    def type(self) -> t.Optional[DataType]:
 244        return self._type
 245
 246    @type.setter
 247    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
 248        if dtype and not isinstance(dtype, DataType):
 249            dtype = DataType.build(dtype)
 250        self._type = dtype  # type: ignore
 251
 252    def is_type(self, *dtypes) -> bool:
 253        return self.type is not None and self.type.is_type(*dtypes)
 254
 255    def is_leaf(self) -> bool:
 256        return not any(isinstance(v, (Expression, list)) for v in self.args.values())
 257
 258    @property
 259    def meta(self) -> t.Dict[str, t.Any]:
 260        if self._meta is None:
 261            self._meta = {}
 262        return self._meta
 263
 264    def __deepcopy__(self, memo):
 265        root = self.__class__()
 266        stack = [(self, root)]
 267
 268        while stack:
 269            node, copy = stack.pop()
 270
 271            if node.comments is not None:
 272                copy.comments = deepcopy(node.comments)
 273            if node._type is not None:
 274                copy._type = deepcopy(node._type)
 275            if node._meta is not None:
 276                copy._meta = deepcopy(node._meta)
 277            if node._hash is not None:
 278                copy._hash = node._hash
 279
 280            for k, vs in node.args.items():
 281                if hasattr(vs, "parent"):
 282                    stack.append((vs, vs.__class__()))
 283                    copy.set(k, stack[-1][-1])
 284                elif type(vs) is list:
 285                    copy.args[k] = []
 286
 287                    for v in vs:
 288                        if hasattr(v, "parent"):
 289                            stack.append((v, v.__class__()))
 290                            copy.append(k, stack[-1][-1])
 291                        else:
 292                            copy.append(k, v)
 293                else:
 294                    copy.args[k] = vs
 295
 296        return root
 297
 298    def copy(self):
 299        """
 300        Returns a deep copy of the expression.
 301        """
 302        return deepcopy(self)
 303
 304    def add_comments(self, comments: t.Optional[t.List[str]] = None) -> None:
 305        if self.comments is None:
 306            self.comments = []
 307
 308        if comments:
 309            for comment in comments:
 310                _, *meta = comment.split(SQLGLOT_META)
 311                if meta:
 312                    for kv in "".join(meta).split(","):
 313                        k, *v = kv.split("=")
 314                        value = v[0].strip() if v else True
 315                        self.meta[k.strip()] = value
 316                self.comments.append(comment)
 317
 318    def pop_comments(self) -> t.List[str]:
 319        comments = self.comments or []
 320        self.comments = None
 321        return comments
 322
 323    def append(self, arg_key: str, value: t.Any) -> None:
 324        """
 325        Appends value to arg_key if it's a list or sets it as a new list.
 326
 327        Args:
 328            arg_key (str): name of the list expression arg
 329            value (Any): value to append to the list
 330        """
 331        if type(self.args.get(arg_key)) is not list:
 332            self.args[arg_key] = []
 333        self._set_parent(arg_key, value)
 334        values = self.args[arg_key]
 335        if hasattr(value, "parent"):
 336            value.index = len(values)
 337        values.append(value)
 338
 339    def set(
 340        self,
 341        arg_key: str,
 342        value: t.Any,
 343        index: t.Optional[int] = None,
 344        overwrite: bool = True,
 345    ) -> None:
 346        """
 347        Sets arg_key to value.
 348
 349        Args:
 350            arg_key: name of the expression arg.
 351            value: value to set the arg to.
 352            index: if the arg is a list, this specifies what position to add the value in it.
 353            overwrite: assuming an index is given, this determines whether to overwrite the
 354                list entry instead of only inserting a new value (i.e., like list.insert).
 355        """
 356        if index is not None:
 357            expressions = self.args.get(arg_key) or []
 358
 359            if seq_get(expressions, index) is None:
 360                return
 361            if value is None:
 362                expressions.pop(index)
 363                for v in expressions[index:]:
 364                    v.index = v.index - 1
 365                return
 366
 367            if isinstance(value, list):
 368                expressions.pop(index)
 369                expressions[index:index] = value
 370            elif overwrite:
 371                expressions[index] = value
 372            else:
 373                expressions.insert(index, value)
 374
 375            value = expressions
 376        elif value is None:
 377            self.args.pop(arg_key, None)
 378            return
 379
 380        self.args[arg_key] = value
 381        self._set_parent(arg_key, value, index)
 382
 383    def _set_parent(self, arg_key: str, value: t.Any, index: t.Optional[int] = None) -> None:
 384        if hasattr(value, "parent"):
 385            value.parent = self
 386            value.arg_key = arg_key
 387            value.index = index
 388        elif type(value) is list:
 389            for index, v in enumerate(value):
 390                if hasattr(v, "parent"):
 391                    v.parent = self
 392                    v.arg_key = arg_key
 393                    v.index = index
 394
 395    @property
 396    def depth(self) -> int:
 397        """
 398        Returns the depth of this tree.
 399        """
 400        if self.parent:
 401            return self.parent.depth + 1
 402        return 0
 403
 404    def iter_expressions(self, reverse: bool = False) -> t.Iterator[Expression]:
 405        """Yields the key and expression for all arguments, exploding list args."""
 406        # remove tuple when python 3.7 is deprecated
 407        for vs in reversed(tuple(self.args.values())) if reverse else self.args.values():  # type: ignore
 408            if type(vs) is list:
 409                for v in reversed(vs) if reverse else vs:  # type: ignore
 410                    if hasattr(v, "parent"):
 411                        yield v
 412            else:
 413                if hasattr(vs, "parent"):
 414                    yield vs
 415
 416    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
 417        """
 418        Returns the first node in this tree which matches at least one of
 419        the specified types.
 420
 421        Args:
 422            expression_types: the expression type(s) to match.
 423            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 424
 425        Returns:
 426            The node which matches the criteria or None if no such node was found.
 427        """
 428        return next(self.find_all(*expression_types, bfs=bfs), None)
 429
 430    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
 431        """
 432        Returns a generator object which visits all nodes in this tree and only
 433        yields those that match at least one of the specified expression types.
 434
 435        Args:
 436            expression_types: the expression type(s) to match.
 437            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 438
 439        Returns:
 440            The generator object.
 441        """
 442        for expression in self.walk(bfs=bfs):
 443            if isinstance(expression, expression_types):
 444                yield expression
 445
 446    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
 447        """
 448        Returns a nearest parent matching expression_types.
 449
 450        Args:
 451            expression_types: the expression type(s) to match.
 452
 453        Returns:
 454            The parent node.
 455        """
 456        ancestor = self.parent
 457        while ancestor and not isinstance(ancestor, expression_types):
 458            ancestor = ancestor.parent
 459        return ancestor  # type: ignore
 460
 461    @property
 462    def parent_select(self) -> t.Optional[Select]:
 463        """
 464        Returns the parent select statement.
 465        """
 466        return self.find_ancestor(Select)
 467
 468    @property
 469    def same_parent(self) -> bool:
 470        """Returns if the parent is the same class as itself."""
 471        return type(self.parent) is self.__class__
 472
 473    def root(self) -> Expression:
 474        """
 475        Returns the root expression of this tree.
 476        """
 477        expression = self
 478        while expression.parent:
 479            expression = expression.parent
 480        return expression
 481
 482    def walk(
 483        self, bfs: bool = True, prune: t.Optional[t.Callable[[Expression], bool]] = None
 484    ) -> t.Iterator[Expression]:
 485        """
 486        Returns a generator object which visits all nodes in this tree.
 487
 488        Args:
 489            bfs: if set to True the BFS traversal order will be applied,
 490                otherwise the DFS traversal will be used instead.
 491            prune: callable that returns True if the generator should stop traversing
 492                this branch of the tree.
 493
 494        Returns:
 495            the generator object.
 496        """
 497        if bfs:
 498            yield from self.bfs(prune=prune)
 499        else:
 500            yield from self.dfs(prune=prune)
 501
 502    def dfs(
 503        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
 504    ) -> t.Iterator[Expression]:
 505        """
 506        Returns a generator object which visits all nodes in this tree in
 507        the DFS (Depth-first) order.
 508
 509        Returns:
 510            The generator object.
 511        """
 512        stack = [self]
 513
 514        while stack:
 515            node = stack.pop()
 516
 517            yield node
 518
 519            if prune and prune(node):
 520                continue
 521
 522            for v in node.iter_expressions(reverse=True):
 523                stack.append(v)
 524
 525    def bfs(
 526        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
 527    ) -> t.Iterator[Expression]:
 528        """
 529        Returns a generator object which visits all nodes in this tree in
 530        the BFS (Breadth-first) order.
 531
 532        Returns:
 533            The generator object.
 534        """
 535        queue = deque([self])
 536
 537        while queue:
 538            node = queue.popleft()
 539
 540            yield node
 541
 542            if prune and prune(node):
 543                continue
 544
 545            for v in node.iter_expressions():
 546                queue.append(v)
 547
 548    def unnest(self):
 549        """
 550        Returns the first non parenthesis child or self.
 551        """
 552        expression = self
 553        while type(expression) is Paren:
 554            expression = expression.this
 555        return expression
 556
 557    def unalias(self):
 558        """
 559        Returns the inner expression if this is an Alias.
 560        """
 561        if isinstance(self, Alias):
 562            return self.this
 563        return self
 564
 565    def unnest_operands(self):
 566        """
 567        Returns unnested operands as a tuple.
 568        """
 569        return tuple(arg.unnest() for arg in self.iter_expressions())
 570
 571    def flatten(self, unnest=True):
 572        """
 573        Returns a generator which yields child nodes whose parents are the same class.
 574
 575        A AND B AND C -> [A, B, C]
 576        """
 577        for node in self.dfs(prune=lambda n: n.parent and type(n) is not self.__class__):
 578            if type(node) is not self.__class__:
 579                yield node.unnest() if unnest and not isinstance(node, Subquery) else node
 580
 581    def __str__(self) -> str:
 582        return self.sql()
 583
 584    def __repr__(self) -> str:
 585        return _to_s(self)
 586
 587    def to_s(self) -> str:
 588        """
 589        Same as __repr__, but includes additional information which can be useful
 590        for debugging, like empty or missing args and the AST nodes' object IDs.
 591        """
 592        return _to_s(self, verbose=True)
 593
 594    def sql(self, dialect: DialectType = None, **opts) -> str:
 595        """
 596        Returns SQL string representation of this tree.
 597
 598        Args:
 599            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
 600            opts: other `sqlglot.generator.Generator` options.
 601
 602        Returns:
 603            The SQL string.
 604        """
 605        from sqlglot.dialects import Dialect
 606
 607        return Dialect.get_or_raise(dialect).generate(self, **opts)
 608
 609    def transform(self, fun: t.Callable, *args: t.Any, copy: bool = True, **kwargs) -> Expression:
 610        """
 611        Visits all tree nodes (excluding already transformed ones)
 612        and applies the given transformation function to each node.
 613
 614        Args:
 615            fun: a function which takes a node as an argument and returns a
 616                new transformed node or the same node without modifications. If the function
 617                returns None, then the corresponding node will be removed from the syntax tree.
 618            copy: if set to True a new tree instance is constructed, otherwise the tree is
 619                modified in place.
 620
 621        Returns:
 622            The transformed tree.
 623        """
 624        root = None
 625        new_node = None
 626
 627        for node in (self.copy() if copy else self).dfs(prune=lambda n: n is not new_node):
 628            parent, arg_key, index = node.parent, node.arg_key, node.index
 629            new_node = fun(node, *args, **kwargs)
 630
 631            if not root:
 632                root = new_node
 633            elif new_node is not node:
 634                parent.set(arg_key, new_node, index)
 635
 636        assert root
 637        return root.assert_is(Expression)
 638
 639    @t.overload
 640    def replace(self, expression: E) -> E: ...
 641
 642    @t.overload
 643    def replace(self, expression: None) -> None: ...
 644
 645    def replace(self, expression):
 646        """
 647        Swap out this expression with a new expression.
 648
 649        For example::
 650
 651            >>> tree = Select().select("x").from_("tbl")
 652            >>> tree.find(Column).replace(column("y"))
 653            Column(
 654              this=Identifier(this=y, quoted=False))
 655            >>> tree.sql()
 656            'SELECT y FROM tbl'
 657
 658        Args:
 659            expression: new node
 660
 661        Returns:
 662            The new expression or expressions.
 663        """
 664        parent = self.parent
 665
 666        if not parent or parent is expression:
 667            return expression
 668
 669        key = self.arg_key
 670        value = parent.args.get(key)
 671
 672        if type(expression) is list and isinstance(value, Expression):
 673            # We are trying to replace an Expression with a list, so it's assumed that
 674            # the intention was to really replace the parent of this expression.
 675            value.parent.replace(expression)
 676        else:
 677            parent.set(key, expression, self.index)
 678
 679        if expression is not self:
 680            self.parent = None
 681            self.arg_key = None
 682            self.index = None
 683
 684        return expression
 685
 686    def pop(self: E) -> E:
 687        """
 688        Remove this expression from its AST.
 689
 690        Returns:
 691            The popped expression.
 692        """
 693        self.replace(None)
 694        return self
 695
 696    def assert_is(self, type_: t.Type[E]) -> E:
 697        """
 698        Assert that this `Expression` is an instance of `type_`.
 699
 700        If it is NOT an instance of `type_`, this raises an assertion error.
 701        Otherwise, this returns this expression.
 702
 703        Examples:
 704            This is useful for type security in chained expressions:
 705
 706            >>> import sqlglot
 707            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
 708            'SELECT x, z FROM y'
 709        """
 710        if not isinstance(self, type_):
 711            raise AssertionError(f"{self} is not {type_}.")
 712        return self
 713
 714    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
 715        """
 716        Checks if this expression is valid (e.g. all mandatory args are set).
 717
 718        Args:
 719            args: a sequence of values that were used to instantiate a Func expression. This is used
 720                to check that the provided arguments don't exceed the function argument limit.
 721
 722        Returns:
 723            A list of error messages for all possible errors that were found.
 724        """
 725        errors: t.List[str] = []
 726
 727        for k in self.args:
 728            if k not in self.arg_types:
 729                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
 730        for k, mandatory in self.arg_types.items():
 731            v = self.args.get(k)
 732            if mandatory and (v is None or (isinstance(v, list) and not v)):
 733                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
 734
 735        if (
 736            args
 737            and isinstance(self, Func)
 738            and len(args) > len(self.arg_types)
 739            and not self.is_var_len_args
 740        ):
 741            errors.append(
 742                f"The number of provided arguments ({len(args)}) is greater than "
 743                f"the maximum number of supported arguments ({len(self.arg_types)})"
 744            )
 745
 746        return errors
 747
 748    def dump(self):
 749        """
 750        Dump this Expression to a JSON-serializable dict.
 751        """
 752        from sqlglot.serde import dump
 753
 754        return dump(self)
 755
 756    @classmethod
 757    def load(cls, obj):
 758        """
 759        Load a dict (as returned by `Expression.dump`) into an Expression instance.
 760        """
 761        from sqlglot.serde import load
 762
 763        return load(obj)
 764
 765    def and_(
 766        self,
 767        *expressions: t.Optional[ExpOrStr],
 768        dialect: DialectType = None,
 769        copy: bool = True,
 770        **opts,
 771    ) -> Condition:
 772        """
 773        AND this condition with one or multiple expressions.
 774
 775        Example:
 776            >>> condition("x=1").and_("y=1").sql()
 777            'x = 1 AND y = 1'
 778
 779        Args:
 780            *expressions: the SQL code strings to parse.
 781                If an `Expression` instance is passed, it will be used as-is.
 782            dialect: the dialect used to parse the input expression.
 783            copy: whether to copy the involved expressions (only applies to Expressions).
 784            opts: other options to use to parse the input expressions.
 785
 786        Returns:
 787            The new And condition.
 788        """
 789        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
 790
 791    def or_(
 792        self,
 793        *expressions: t.Optional[ExpOrStr],
 794        dialect: DialectType = None,
 795        copy: bool = True,
 796        **opts,
 797    ) -> Condition:
 798        """
 799        OR this condition with one or multiple expressions.
 800
 801        Example:
 802            >>> condition("x=1").or_("y=1").sql()
 803            'x = 1 OR y = 1'
 804
 805        Args:
 806            *expressions: the SQL code strings to parse.
 807                If an `Expression` instance is passed, it will be used as-is.
 808            dialect: the dialect used to parse the input expression.
 809            copy: whether to copy the involved expressions (only applies to Expressions).
 810            opts: other options to use to parse the input expressions.
 811
 812        Returns:
 813            The new Or condition.
 814        """
 815        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
 816
 817    def not_(self, copy: bool = True):
 818        """
 819        Wrap this condition with NOT.
 820
 821        Example:
 822            >>> condition("x=1").not_().sql()
 823            'NOT x = 1'
 824
 825        Args:
 826            copy: whether to copy this object.
 827
 828        Returns:
 829            The new Not instance.
 830        """
 831        return not_(self, copy=copy)
 832
 833    def as_(
 834        self,
 835        alias: str | Identifier,
 836        quoted: t.Optional[bool] = None,
 837        dialect: DialectType = None,
 838        copy: bool = True,
 839        **opts,
 840    ) -> Alias:
 841        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
 842
 843    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
 844        this = self.copy()
 845        other = convert(other, copy=True)
 846        if not isinstance(this, klass) and not isinstance(other, klass):
 847            this = _wrap(this, Binary)
 848            other = _wrap(other, Binary)
 849        if reverse:
 850            return klass(this=other, expression=this)
 851        return klass(this=this, expression=other)
 852
 853    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]) -> Bracket:
 854        return Bracket(
 855            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
 856        )
 857
 858    def __iter__(self) -> t.Iterator:
 859        if "expressions" in self.arg_types:
 860            return iter(self.args.get("expressions") or [])
 861        # We define this because __getitem__ converts Expression into an iterable, which is
 862        # problematic because one can hit infinite loops if they do "for x in some_expr: ..."
 863        # See: https://peps.python.org/pep-0234/
 864        raise TypeError(f"'{self.__class__.__name__}' object is not iterable")
 865
 866    def isin(
 867        self,
 868        *expressions: t.Any,
 869        query: t.Optional[ExpOrStr] = None,
 870        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
 871        copy: bool = True,
 872        **opts,
 873    ) -> In:
 874        subquery = maybe_parse(query, copy=copy, **opts) if query else None
 875        if subquery and not isinstance(subquery, Subquery):
 876            subquery = subquery.subquery(copy=False)
 877
 878        return In(
 879            this=maybe_copy(self, copy),
 880            expressions=[convert(e, copy=copy) for e in expressions],
 881            query=subquery,
 882            unnest=(
 883                Unnest(
 884                    expressions=[
 885                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
 886                        for e in ensure_list(unnest)
 887                    ]
 888                )
 889                if unnest
 890                else None
 891            ),
 892        )
 893
 894    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
 895        return Between(
 896            this=maybe_copy(self, copy),
 897            low=convert(low, copy=copy, **opts),
 898            high=convert(high, copy=copy, **opts),
 899        )
 900
 901    def is_(self, other: ExpOrStr) -> Is:
 902        return self._binop(Is, other)
 903
 904    def like(self, other: ExpOrStr) -> Like:
 905        return self._binop(Like, other)
 906
 907    def ilike(self, other: ExpOrStr) -> ILike:
 908        return self._binop(ILike, other)
 909
 910    def eq(self, other: t.Any) -> EQ:
 911        return self._binop(EQ, other)
 912
 913    def neq(self, other: t.Any) -> NEQ:
 914        return self._binop(NEQ, other)
 915
 916    def rlike(self, other: ExpOrStr) -> RegexpLike:
 917        return self._binop(RegexpLike, other)
 918
 919    def div(self, other: ExpOrStr, typed: bool = False, safe: bool = False) -> Div:
 920        div = self._binop(Div, other)
 921        div.args["typed"] = typed
 922        div.args["safe"] = safe
 923        return div
 924
 925    def asc(self, nulls_first: bool = True) -> Ordered:
 926        return Ordered(this=self.copy(), nulls_first=nulls_first)
 927
 928    def desc(self, nulls_first: bool = False) -> Ordered:
 929        return Ordered(this=self.copy(), desc=True, nulls_first=nulls_first)
 930
 931    def __lt__(self, other: t.Any) -> LT:
 932        return self._binop(LT, other)
 933
 934    def __le__(self, other: t.Any) -> LTE:
 935        return self._binop(LTE, other)
 936
 937    def __gt__(self, other: t.Any) -> GT:
 938        return self._binop(GT, other)
 939
 940    def __ge__(self, other: t.Any) -> GTE:
 941        return self._binop(GTE, other)
 942
 943    def __add__(self, other: t.Any) -> Add:
 944        return self._binop(Add, other)
 945
 946    def __radd__(self, other: t.Any) -> Add:
 947        return self._binop(Add, other, reverse=True)
 948
 949    def __sub__(self, other: t.Any) -> Sub:
 950        return self._binop(Sub, other)
 951
 952    def __rsub__(self, other: t.Any) -> Sub:
 953        return self._binop(Sub, other, reverse=True)
 954
 955    def __mul__(self, other: t.Any) -> Mul:
 956        return self._binop(Mul, other)
 957
 958    def __rmul__(self, other: t.Any) -> Mul:
 959        return self._binop(Mul, other, reverse=True)
 960
 961    def __truediv__(self, other: t.Any) -> Div:
 962        return self._binop(Div, other)
 963
 964    def __rtruediv__(self, other: t.Any) -> Div:
 965        return self._binop(Div, other, reverse=True)
 966
 967    def __floordiv__(self, other: t.Any) -> IntDiv:
 968        return self._binop(IntDiv, other)
 969
 970    def __rfloordiv__(self, other: t.Any) -> IntDiv:
 971        return self._binop(IntDiv, other, reverse=True)
 972
 973    def __mod__(self, other: t.Any) -> Mod:
 974        return self._binop(Mod, other)
 975
 976    def __rmod__(self, other: t.Any) -> Mod:
 977        return self._binop(Mod, other, reverse=True)
 978
 979    def __pow__(self, other: t.Any) -> Pow:
 980        return self._binop(Pow, other)
 981
 982    def __rpow__(self, other: t.Any) -> Pow:
 983        return self._binop(Pow, other, reverse=True)
 984
 985    def __and__(self, other: t.Any) -> And:
 986        return self._binop(And, other)
 987
 988    def __rand__(self, other: t.Any) -> And:
 989        return self._binop(And, other, reverse=True)
 990
 991    def __or__(self, other: t.Any) -> Or:
 992        return self._binop(Or, other)
 993
 994    def __ror__(self, other: t.Any) -> Or:
 995        return self._binop(Or, other, reverse=True)
 996
 997    def __neg__(self) -> Neg:
 998        return Neg(this=_wrap(self.copy(), Binary))
 999
1000    def __invert__(self) -> Not:
1001        return not_(self.copy())
1002
1003
1004IntoType = t.Union[
1005    str,
1006    t.Type[Expression],
1007    t.Collection[t.Union[str, t.Type[Expression]]],
1008]
1009ExpOrStr = t.Union[str, Expression]
1010
1011
1012class Condition(Expression):
1013    """Logical conditions like x AND y, or simply x"""
1014
1015
1016class Predicate(Condition):
1017    """Relationships like x = y, x > 1, x >= y."""
1018
1019
1020class DerivedTable(Expression):
1021    @property
1022    def selects(self) -> t.List[Expression]:
1023        return self.this.selects if isinstance(self.this, Query) else []
1024
1025    @property
1026    def named_selects(self) -> t.List[str]:
1027        return [select.output_name for select in self.selects]
1028
1029
1030class Query(Expression):
1031    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
1032        """
1033        Returns a `Subquery` that wraps around this query.
1034
1035        Example:
1036            >>> subquery = Select().select("x").from_("tbl").subquery()
1037            >>> Select().select("x").from_(subquery).sql()
1038            'SELECT x FROM (SELECT x FROM tbl)'
1039
1040        Args:
1041            alias: an optional alias for the subquery.
1042            copy: if `False`, modify this expression instance in-place.
1043        """
1044        instance = maybe_copy(self, copy)
1045        if not isinstance(alias, Expression):
1046            alias = TableAlias(this=to_identifier(alias)) if alias else None
1047
1048        return Subquery(this=instance, alias=alias)
1049
1050    def limit(
1051        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1052    ) -> Q:
1053        """
1054        Adds a LIMIT clause to this query.
1055
1056        Example:
1057            >>> select("1").union(select("1")).limit(1).sql()
1058            'SELECT 1 UNION SELECT 1 LIMIT 1'
1059
1060        Args:
1061            expression: the SQL code string to parse.
1062                This can also be an integer.
1063                If a `Limit` instance is passed, it will be used as-is.
1064                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
1065            dialect: the dialect used to parse the input expression.
1066            copy: if `False`, modify this expression instance in-place.
1067            opts: other options to use to parse the input expressions.
1068
1069        Returns:
1070            A limited Select expression.
1071        """
1072        return _apply_builder(
1073            expression=expression,
1074            instance=self,
1075            arg="limit",
1076            into=Limit,
1077            prefix="LIMIT",
1078            dialect=dialect,
1079            copy=copy,
1080            into_arg="expression",
1081            **opts,
1082        )
1083
1084    def offset(
1085        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1086    ) -> Q:
1087        """
1088        Set the OFFSET expression.
1089
1090        Example:
1091            >>> Select().from_("tbl").select("x").offset(10).sql()
1092            'SELECT x FROM tbl OFFSET 10'
1093
1094        Args:
1095            expression: the SQL code string to parse.
1096                This can also be an integer.
1097                If a `Offset` instance is passed, this is used as-is.
1098                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
1099            dialect: the dialect used to parse the input expression.
1100            copy: if `False`, modify this expression instance in-place.
1101            opts: other options to use to parse the input expressions.
1102
1103        Returns:
1104            The modified Select expression.
1105        """
1106        return _apply_builder(
1107            expression=expression,
1108            instance=self,
1109            arg="offset",
1110            into=Offset,
1111            prefix="OFFSET",
1112            dialect=dialect,
1113            copy=copy,
1114            into_arg="expression",
1115            **opts,
1116        )
1117
1118    def order_by(
1119        self: Q,
1120        *expressions: t.Optional[ExpOrStr],
1121        append: bool = True,
1122        dialect: DialectType = None,
1123        copy: bool = True,
1124        **opts,
1125    ) -> Q:
1126        """
1127        Set the ORDER BY expression.
1128
1129        Example:
1130            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
1131            'SELECT x FROM tbl ORDER BY x DESC'
1132
1133        Args:
1134            *expressions: the SQL code strings to parse.
1135                If a `Group` instance is passed, this is used as-is.
1136                If another `Expression` instance is passed, it will be wrapped in a `Order`.
1137            append: if `True`, add to any existing expressions.
1138                Otherwise, this flattens all the `Order` expression into a single expression.
1139            dialect: the dialect used to parse the input expression.
1140            copy: if `False`, modify this expression instance in-place.
1141            opts: other options to use to parse the input expressions.
1142
1143        Returns:
1144            The modified Select expression.
1145        """
1146        return _apply_child_list_builder(
1147            *expressions,
1148            instance=self,
1149            arg="order",
1150            append=append,
1151            copy=copy,
1152            prefix="ORDER BY",
1153            into=Order,
1154            dialect=dialect,
1155            **opts,
1156        )
1157
1158    @property
1159    def ctes(self) -> t.List[CTE]:
1160        """Returns a list of all the CTEs attached to this query."""
1161        with_ = self.args.get("with")
1162        return with_.expressions if with_ else []
1163
1164    @property
1165    def selects(self) -> t.List[Expression]:
1166        """Returns the query's projections."""
1167        raise NotImplementedError("Query objects must implement `selects`")
1168
1169    @property
1170    def named_selects(self) -> t.List[str]:
1171        """Returns the output names of the query's projections."""
1172        raise NotImplementedError("Query objects must implement `named_selects`")
1173
1174    def select(
1175        self: Q,
1176        *expressions: t.Optional[ExpOrStr],
1177        append: bool = True,
1178        dialect: DialectType = None,
1179        copy: bool = True,
1180        **opts,
1181    ) -> Q:
1182        """
1183        Append to or set the SELECT expressions.
1184
1185        Example:
1186            >>> Select().select("x", "y").sql()
1187            'SELECT x, y'
1188
1189        Args:
1190            *expressions: the SQL code strings to parse.
1191                If an `Expression` instance is passed, it will be used as-is.
1192            append: if `True`, add to any existing expressions.
1193                Otherwise, this resets the expressions.
1194            dialect: the dialect used to parse the input expressions.
1195            copy: if `False`, modify this expression instance in-place.
1196            opts: other options to use to parse the input expressions.
1197
1198        Returns:
1199            The modified Query expression.
1200        """
1201        raise NotImplementedError("Query objects must implement `select`")
1202
1203    def with_(
1204        self: Q,
1205        alias: ExpOrStr,
1206        as_: ExpOrStr,
1207        recursive: t.Optional[bool] = None,
1208        materialized: t.Optional[bool] = None,
1209        append: bool = True,
1210        dialect: DialectType = None,
1211        copy: bool = True,
1212        **opts,
1213    ) -> Q:
1214        """
1215        Append to or set the common table expressions.
1216
1217        Example:
1218            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
1219            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
1220
1221        Args:
1222            alias: the SQL code string to parse as the table name.
1223                If an `Expression` instance is passed, this is used as-is.
1224            as_: the SQL code string to parse as the table expression.
1225                If an `Expression` instance is passed, it will be used as-is.
1226            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1227            materialized: set the MATERIALIZED part of the expression.
1228            append: if `True`, add to any existing expressions.
1229                Otherwise, this resets the expressions.
1230            dialect: the dialect used to parse the input expression.
1231            copy: if `False`, modify this expression instance in-place.
1232            opts: other options to use to parse the input expressions.
1233
1234        Returns:
1235            The modified expression.
1236        """
1237        return _apply_cte_builder(
1238            self,
1239            alias,
1240            as_,
1241            recursive=recursive,
1242            materialized=materialized,
1243            append=append,
1244            dialect=dialect,
1245            copy=copy,
1246            **opts,
1247        )
1248
1249    def union(
1250        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1251    ) -> Union:
1252        """
1253        Builds a UNION expression.
1254
1255        Example:
1256            >>> import sqlglot
1257            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
1258            'SELECT * FROM foo UNION SELECT * FROM bla'
1259
1260        Args:
1261            expressions: the SQL code strings.
1262                If `Expression` instances are passed, they will be used as-is.
1263            distinct: set the DISTINCT flag if and only if this is true.
1264            dialect: the dialect used to parse the input expression.
1265            opts: other options to use to parse the input expressions.
1266
1267        Returns:
1268            The new Union expression.
1269        """
1270        return union(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1271
1272    def intersect(
1273        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1274    ) -> Intersect:
1275        """
1276        Builds an INTERSECT expression.
1277
1278        Example:
1279            >>> import sqlglot
1280            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
1281            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
1282
1283        Args:
1284            expressions: the SQL code strings.
1285                If `Expression` instances are passed, they will be used as-is.
1286            distinct: set the DISTINCT flag if and only if this is true.
1287            dialect: the dialect used to parse the input expression.
1288            opts: other options to use to parse the input expressions.
1289
1290        Returns:
1291            The new Intersect expression.
1292        """
1293        return intersect(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1294
1295    def except_(
1296        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1297    ) -> Except:
1298        """
1299        Builds an EXCEPT expression.
1300
1301        Example:
1302            >>> import sqlglot
1303            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
1304            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
1305
1306        Args:
1307            expressions: the SQL code strings.
1308                If `Expression` instance are passed, they will be used as-is.
1309            distinct: set the DISTINCT flag if and only if this is true.
1310            dialect: the dialect used to parse the input expression.
1311            opts: other options to use to parse the input expressions.
1312
1313        Returns:
1314            The new Except expression.
1315        """
1316        return except_(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1317
1318
1319class UDTF(DerivedTable):
1320    @property
1321    def selects(self) -> t.List[Expression]:
1322        alias = self.args.get("alias")
1323        return alias.columns if alias else []
1324
1325
1326class Cache(Expression):
1327    arg_types = {
1328        "this": True,
1329        "lazy": False,
1330        "options": False,
1331        "expression": False,
1332    }
1333
1334
1335class Uncache(Expression):
1336    arg_types = {"this": True, "exists": False}
1337
1338
1339class Refresh(Expression):
1340    pass
1341
1342
1343class DDL(Expression):
1344    @property
1345    def ctes(self) -> t.List[CTE]:
1346        """Returns a list of all the CTEs attached to this statement."""
1347        with_ = self.args.get("with")
1348        return with_.expressions if with_ else []
1349
1350    @property
1351    def selects(self) -> t.List[Expression]:
1352        """If this statement contains a query (e.g. a CTAS), this returns the query's projections."""
1353        return self.expression.selects if isinstance(self.expression, Query) else []
1354
1355    @property
1356    def named_selects(self) -> t.List[str]:
1357        """
1358        If this statement contains a query (e.g. a CTAS), this returns the output
1359        names of the query's projections.
1360        """
1361        return self.expression.named_selects if isinstance(self.expression, Query) else []
1362
1363
1364class DML(Expression):
1365    def returning(
1366        self,
1367        expression: ExpOrStr,
1368        dialect: DialectType = None,
1369        copy: bool = True,
1370        **opts,
1371    ) -> "Self":
1372        """
1373        Set the RETURNING expression. Not supported by all dialects.
1374
1375        Example:
1376            >>> delete("tbl").returning("*", dialect="postgres").sql()
1377            'DELETE FROM tbl RETURNING *'
1378
1379        Args:
1380            expression: the SQL code strings to parse.
1381                If an `Expression` instance is passed, it will be used as-is.
1382            dialect: the dialect used to parse the input expressions.
1383            copy: if `False`, modify this expression instance in-place.
1384            opts: other options to use to parse the input expressions.
1385
1386        Returns:
1387            Delete: the modified expression.
1388        """
1389        return _apply_builder(
1390            expression=expression,
1391            instance=self,
1392            arg="returning",
1393            prefix="RETURNING",
1394            dialect=dialect,
1395            copy=copy,
1396            into=Returning,
1397            **opts,
1398        )
1399
1400
1401class Create(DDL):
1402    arg_types = {
1403        "with": False,
1404        "this": True,
1405        "kind": True,
1406        "expression": False,
1407        "exists": False,
1408        "properties": False,
1409        "replace": False,
1410        "refresh": False,
1411        "unique": False,
1412        "indexes": False,
1413        "no_schema_binding": False,
1414        "begin": False,
1415        "end": False,
1416        "clone": False,
1417        "concurrently": False,
1418        "clustered": False,
1419    }
1420
1421    @property
1422    def kind(self) -> t.Optional[str]:
1423        kind = self.args.get("kind")
1424        return kind and kind.upper()
1425
1426
1427class SequenceProperties(Expression):
1428    arg_types = {
1429        "increment": False,
1430        "minvalue": False,
1431        "maxvalue": False,
1432        "cache": False,
1433        "start": False,
1434        "owned": False,
1435        "options": False,
1436    }
1437
1438
1439class TruncateTable(Expression):
1440    arg_types = {
1441        "expressions": True,
1442        "is_database": False,
1443        "exists": False,
1444        "only": False,
1445        "cluster": False,
1446        "identity": False,
1447        "option": False,
1448        "partition": False,
1449    }
1450
1451
1452# https://docs.snowflake.com/en/sql-reference/sql/create-clone
1453# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_table_clone_statement
1454# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_table_copy
1455class Clone(Expression):
1456    arg_types = {"this": True, "shallow": False, "copy": False}
1457
1458
1459class Describe(Expression):
1460    arg_types = {
1461        "this": True,
1462        "style": False,
1463        "kind": False,
1464        "expressions": False,
1465        "partition": False,
1466    }
1467
1468
1469# https://duckdb.org/docs/guides/meta/summarize.html
1470class Summarize(Expression):
1471    arg_types = {"this": True, "table": False}
1472
1473
1474class Kill(Expression):
1475    arg_types = {"this": True, "kind": False}
1476
1477
1478class Pragma(Expression):
1479    pass
1480
1481
1482class Declare(Expression):
1483    arg_types = {"expressions": True}
1484
1485
1486class DeclareItem(Expression):
1487    arg_types = {"this": True, "kind": True, "default": False}
1488
1489
1490class Set(Expression):
1491    arg_types = {"expressions": False, "unset": False, "tag": False}
1492
1493
1494class Heredoc(Expression):
1495    arg_types = {"this": True, "tag": False}
1496
1497
1498class SetItem(Expression):
1499    arg_types = {
1500        "this": False,
1501        "expressions": False,
1502        "kind": False,
1503        "collate": False,  # MySQL SET NAMES statement
1504        "global": False,
1505    }
1506
1507
1508class Show(Expression):
1509    arg_types = {
1510        "this": True,
1511        "history": False,
1512        "terse": False,
1513        "target": False,
1514        "offset": False,
1515        "starts_with": False,
1516        "limit": False,
1517        "from": False,
1518        "like": False,
1519        "where": False,
1520        "db": False,
1521        "scope": False,
1522        "scope_kind": False,
1523        "full": False,
1524        "mutex": False,
1525        "query": False,
1526        "channel": False,
1527        "global": False,
1528        "log": False,
1529        "position": False,
1530        "types": False,
1531    }
1532
1533
1534class UserDefinedFunction(Expression):
1535    arg_types = {"this": True, "expressions": False, "wrapped": False}
1536
1537
1538class CharacterSet(Expression):
1539    arg_types = {"this": True, "default": False}
1540
1541
1542class With(Expression):
1543    arg_types = {"expressions": True, "recursive": False}
1544
1545    @property
1546    def recursive(self) -> bool:
1547        return bool(self.args.get("recursive"))
1548
1549
1550class WithinGroup(Expression):
1551    arg_types = {"this": True, "expression": False}
1552
1553
1554# clickhouse supports scalar ctes
1555# https://clickhouse.com/docs/en/sql-reference/statements/select/with
1556class CTE(DerivedTable):
1557    arg_types = {
1558        "this": True,
1559        "alias": True,
1560        "scalar": False,
1561        "materialized": False,
1562    }
1563
1564
1565class ProjectionDef(Expression):
1566    arg_types = {"this": True, "expression": True}
1567
1568
1569class TableAlias(Expression):
1570    arg_types = {"this": False, "columns": False}
1571
1572    @property
1573    def columns(self):
1574        return self.args.get("columns") or []
1575
1576
1577class BitString(Condition):
1578    pass
1579
1580
1581class HexString(Condition):
1582    pass
1583
1584
1585class ByteString(Condition):
1586    pass
1587
1588
1589class RawString(Condition):
1590    pass
1591
1592
1593class UnicodeString(Condition):
1594    arg_types = {"this": True, "escape": False}
1595
1596
1597class Column(Condition):
1598    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1599
1600    @property
1601    def table(self) -> str:
1602        return self.text("table")
1603
1604    @property
1605    def db(self) -> str:
1606        return self.text("db")
1607
1608    @property
1609    def catalog(self) -> str:
1610        return self.text("catalog")
1611
1612    @property
1613    def output_name(self) -> str:
1614        return self.name
1615
1616    @property
1617    def parts(self) -> t.List[Identifier]:
1618        """Return the parts of a column in order catalog, db, table, name."""
1619        return [
1620            t.cast(Identifier, self.args[part])
1621            for part in ("catalog", "db", "table", "this")
1622            if self.args.get(part)
1623        ]
1624
1625    def to_dot(self) -> Dot | Identifier:
1626        """Converts the column into a dot expression."""
1627        parts = self.parts
1628        parent = self.parent
1629
1630        while parent:
1631            if isinstance(parent, Dot):
1632                parts.append(parent.expression)
1633            parent = parent.parent
1634
1635        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]
1636
1637
1638class ColumnPosition(Expression):
1639    arg_types = {"this": False, "position": True}
1640
1641
1642class ColumnDef(Expression):
1643    arg_types = {
1644        "this": True,
1645        "kind": False,
1646        "constraints": False,
1647        "exists": False,
1648        "position": False,
1649    }
1650
1651    @property
1652    def constraints(self) -> t.List[ColumnConstraint]:
1653        return self.args.get("constraints") or []
1654
1655    @property
1656    def kind(self) -> t.Optional[DataType]:
1657        return self.args.get("kind")
1658
1659
1660class AlterColumn(Expression):
1661    arg_types = {
1662        "this": True,
1663        "dtype": False,
1664        "collate": False,
1665        "using": False,
1666        "default": False,
1667        "drop": False,
1668        "comment": False,
1669        "allow_null": False,
1670    }
1671
1672
1673# https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
1674class AlterDistStyle(Expression):
1675    pass
1676
1677
1678class AlterSortKey(Expression):
1679    arg_types = {"this": False, "expressions": False, "compound": False}
1680
1681
1682class AlterSet(Expression):
1683    arg_types = {
1684        "expressions": False,
1685        "option": False,
1686        "tablespace": False,
1687        "access_method": False,
1688        "file_format": False,
1689        "copy_options": False,
1690        "tag": False,
1691        "location": False,
1692        "serde": False,
1693    }
1694
1695
1696class RenameColumn(Expression):
1697    arg_types = {"this": True, "to": True, "exists": False}
1698
1699
1700class AlterRename(Expression):
1701    pass
1702
1703
1704class SwapTable(Expression):
1705    pass
1706
1707
1708class Comment(Expression):
1709    arg_types = {
1710        "this": True,
1711        "kind": True,
1712        "expression": True,
1713        "exists": False,
1714        "materialized": False,
1715    }
1716
1717
1718class Comprehension(Expression):
1719    arg_types = {"this": True, "expression": True, "iterator": True, "condition": False}
1720
1721
1722# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1723class MergeTreeTTLAction(Expression):
1724    arg_types = {
1725        "this": True,
1726        "delete": False,
1727        "recompress": False,
1728        "to_disk": False,
1729        "to_volume": False,
1730    }
1731
1732
1733# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1734class MergeTreeTTL(Expression):
1735    arg_types = {
1736        "expressions": True,
1737        "where": False,
1738        "group": False,
1739        "aggregates": False,
1740    }
1741
1742
1743# https://dev.mysql.com/doc/refman/8.0/en/create-table.html
1744class IndexConstraintOption(Expression):
1745    arg_types = {
1746        "key_block_size": False,
1747        "using": False,
1748        "parser": False,
1749        "comment": False,
1750        "visible": False,
1751        "engine_attr": False,
1752        "secondary_engine_attr": False,
1753    }
1754
1755
1756class ColumnConstraint(Expression):
1757    arg_types = {"this": False, "kind": True}
1758
1759    @property
1760    def kind(self) -> ColumnConstraintKind:
1761        return self.args["kind"]
1762
1763
1764class ColumnConstraintKind(Expression):
1765    pass
1766
1767
1768class AutoIncrementColumnConstraint(ColumnConstraintKind):
1769    pass
1770
1771
1772class PeriodForSystemTimeConstraint(ColumnConstraintKind):
1773    arg_types = {"this": True, "expression": True}
1774
1775
1776class CaseSpecificColumnConstraint(ColumnConstraintKind):
1777    arg_types = {"not_": True}
1778
1779
1780class CharacterSetColumnConstraint(ColumnConstraintKind):
1781    arg_types = {"this": True}
1782
1783
1784class CheckColumnConstraint(ColumnConstraintKind):
1785    arg_types = {"this": True, "enforced": False}
1786
1787
1788class ClusteredColumnConstraint(ColumnConstraintKind):
1789    pass
1790
1791
1792class CollateColumnConstraint(ColumnConstraintKind):
1793    pass
1794
1795
1796class CommentColumnConstraint(ColumnConstraintKind):
1797    pass
1798
1799
1800class CompressColumnConstraint(ColumnConstraintKind):
1801    arg_types = {"this": False}
1802
1803
1804class DateFormatColumnConstraint(ColumnConstraintKind):
1805    arg_types = {"this": True}
1806
1807
1808class DefaultColumnConstraint(ColumnConstraintKind):
1809    pass
1810
1811
1812class EncodeColumnConstraint(ColumnConstraintKind):
1813    pass
1814
1815
1816# https://www.postgresql.org/docs/current/sql-createtable.html#SQL-CREATETABLE-EXCLUDE
1817class ExcludeColumnConstraint(ColumnConstraintKind):
1818    pass
1819
1820
1821class EphemeralColumnConstraint(ColumnConstraintKind):
1822    arg_types = {"this": False}
1823
1824
1825class WithOperator(Expression):
1826    arg_types = {"this": True, "op": True}
1827
1828
1829class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1830    # this: True -> ALWAYS, this: False -> BY DEFAULT
1831    arg_types = {
1832        "this": False,
1833        "expression": False,
1834        "on_null": False,
1835        "start": False,
1836        "increment": False,
1837        "minvalue": False,
1838        "maxvalue": False,
1839        "cycle": False,
1840    }
1841
1842
1843class GeneratedAsRowColumnConstraint(ColumnConstraintKind):
1844    arg_types = {"start": False, "hidden": False}
1845
1846
1847# https://dev.mysql.com/doc/refman/8.0/en/create-table.html
1848# https://github.com/ClickHouse/ClickHouse/blob/master/src/Parsers/ParserCreateQuery.h#L646
1849class IndexColumnConstraint(ColumnConstraintKind):
1850    arg_types = {
1851        "this": False,
1852        "expressions": False,
1853        "kind": False,
1854        "index_type": False,
1855        "options": False,
1856        "expression": False,  # Clickhouse
1857        "granularity": False,
1858    }
1859
1860
1861class InlineLengthColumnConstraint(ColumnConstraintKind):
1862    pass
1863
1864
1865class NonClusteredColumnConstraint(ColumnConstraintKind):
1866    pass
1867
1868
1869class NotForReplicationColumnConstraint(ColumnConstraintKind):
1870    arg_types = {}
1871
1872
1873# https://docs.snowflake.com/en/sql-reference/sql/create-table
1874class MaskingPolicyColumnConstraint(ColumnConstraintKind):
1875    arg_types = {"this": True, "expressions": False}
1876
1877
1878class NotNullColumnConstraint(ColumnConstraintKind):
1879    arg_types = {"allow_null": False}
1880
1881
1882# https://dev.mysql.com/doc/refman/5.7/en/timestamp-initialization.html
1883class OnUpdateColumnConstraint(ColumnConstraintKind):
1884    pass
1885
1886
1887# https://docs.snowflake.com/en/sql-reference/sql/create-table
1888class TagColumnConstraint(ColumnConstraintKind):
1889    arg_types = {"expressions": True}
1890
1891
1892# https://docs.snowflake.com/en/sql-reference/sql/create-external-table#optional-parameters
1893class TransformColumnConstraint(ColumnConstraintKind):
1894    pass
1895
1896
1897class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1898    arg_types = {"desc": False}
1899
1900
1901class TitleColumnConstraint(ColumnConstraintKind):
1902    pass
1903
1904
1905class UniqueColumnConstraint(ColumnConstraintKind):
1906    arg_types = {"this": False, "index_type": False, "on_conflict": False, "nulls": False}
1907
1908
1909class UppercaseColumnConstraint(ColumnConstraintKind):
1910    arg_types: t.Dict[str, t.Any] = {}
1911
1912
1913class PathColumnConstraint(ColumnConstraintKind):
1914    pass
1915
1916
1917# https://docs.snowflake.com/en/sql-reference/sql/create-table
1918class ProjectionPolicyColumnConstraint(ColumnConstraintKind):
1919    pass
1920
1921
1922# computed column expression
1923# https://learn.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver16
1924class ComputedColumnConstraint(ColumnConstraintKind):
1925    arg_types = {"this": True, "persisted": False, "not_null": False}
1926
1927
1928class Constraint(Expression):
1929    arg_types = {"this": True, "expressions": True}
1930
1931
1932class Delete(DML):
1933    arg_types = {
1934        "with": False,
1935        "this": False,
1936        "using": False,
1937        "where": False,
1938        "returning": False,
1939        "limit": False,
1940        "tables": False,  # Multiple-Table Syntax (MySQL)
1941        "cluster": False,  # Clickhouse
1942    }
1943
1944    def delete(
1945        self,
1946        table: ExpOrStr,
1947        dialect: DialectType = None,
1948        copy: bool = True,
1949        **opts,
1950    ) -> Delete:
1951        """
1952        Create a DELETE expression or replace the table on an existing DELETE expression.
1953
1954        Example:
1955            >>> delete("tbl").sql()
1956            'DELETE FROM tbl'
1957
1958        Args:
1959            table: the table from which to delete.
1960            dialect: the dialect used to parse the input expression.
1961            copy: if `False`, modify this expression instance in-place.
1962            opts: other options to use to parse the input expressions.
1963
1964        Returns:
1965            Delete: the modified expression.
1966        """
1967        return _apply_builder(
1968            expression=table,
1969            instance=self,
1970            arg="this",
1971            dialect=dialect,
1972            into=Table,
1973            copy=copy,
1974            **opts,
1975        )
1976
1977    def where(
1978        self,
1979        *expressions: t.Optional[ExpOrStr],
1980        append: bool = True,
1981        dialect: DialectType = None,
1982        copy: bool = True,
1983        **opts,
1984    ) -> Delete:
1985        """
1986        Append to or set the WHERE expressions.
1987
1988        Example:
1989            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1990            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1991
1992        Args:
1993            *expressions: the SQL code strings to parse.
1994                If an `Expression` instance is passed, it will be used as-is.
1995                Multiple expressions are combined with an AND operator.
1996            append: if `True`, AND the new expressions to any existing expression.
1997                Otherwise, this resets the expression.
1998            dialect: the dialect used to parse the input expressions.
1999            copy: if `False`, modify this expression instance in-place.
2000            opts: other options to use to parse the input expressions.
2001
2002        Returns:
2003            Delete: the modified expression.
2004        """
2005        return _apply_conjunction_builder(
2006            *expressions,
2007            instance=self,
2008            arg="where",
2009            append=append,
2010            into=Where,
2011            dialect=dialect,
2012            copy=copy,
2013            **opts,
2014        )
2015
2016
2017class Drop(Expression):
2018    arg_types = {
2019        "this": False,
2020        "kind": False,
2021        "expressions": False,
2022        "exists": False,
2023        "temporary": False,
2024        "materialized": False,
2025        "cascade": False,
2026        "constraints": False,
2027        "purge": False,
2028        "cluster": False,
2029        "concurrently": False,
2030    }
2031
2032    @property
2033    def kind(self) -> t.Optional[str]:
2034        kind = self.args.get("kind")
2035        return kind and kind.upper()
2036
2037
2038class Filter(Expression):
2039    arg_types = {"this": True, "expression": True}
2040
2041
2042class Check(Expression):
2043    pass
2044
2045
2046class Changes(Expression):
2047    arg_types = {"information": True, "at_before": False, "end": False}
2048
2049
2050# https://docs.snowflake.com/en/sql-reference/constructs/connect-by
2051class Connect(Expression):
2052    arg_types = {"start": False, "connect": True, "nocycle": False}
2053
2054
2055class CopyParameter(Expression):
2056    arg_types = {"this": True, "expression": False, "expressions": False}
2057
2058
2059class Copy(DML):
2060    arg_types = {
2061        "this": True,
2062        "kind": True,
2063        "files": True,
2064        "credentials": False,
2065        "format": False,
2066        "params": False,
2067    }
2068
2069
2070class Credentials(Expression):
2071    arg_types = {
2072        "credentials": False,
2073        "encryption": False,
2074        "storage": False,
2075        "iam_role": False,
2076        "region": False,
2077    }
2078
2079
2080class Prior(Expression):
2081    pass
2082
2083
2084class Directory(Expression):
2085    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
2086    arg_types = {"this": True, "local": False, "row_format": False}
2087
2088
2089class ForeignKey(Expression):
2090    arg_types = {
2091        "expressions": True,
2092        "reference": False,
2093        "delete": False,
2094        "update": False,
2095    }
2096
2097
2098class ColumnPrefix(Expression):
2099    arg_types = {"this": True, "expression": True}
2100
2101
2102class PrimaryKey(Expression):
2103    arg_types = {"expressions": True, "options": False}
2104
2105
2106# https://www.postgresql.org/docs/9.1/sql-selectinto.html
2107# https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_INTO.html#r_SELECT_INTO-examples
2108class Into(Expression):
2109    arg_types = {
2110        "this": False,
2111        "temporary": False,
2112        "unlogged": False,
2113        "bulk_collect": False,
2114        "expressions": False,
2115    }
2116
2117
2118class From(Expression):
2119    @property
2120    def name(self) -> str:
2121        return self.this.name
2122
2123    @property
2124    def alias_or_name(self) -> str:
2125        return self.this.alias_or_name
2126
2127
2128class Having(Expression):
2129    pass
2130
2131
2132class Hint(Expression):
2133    arg_types = {"expressions": True}
2134
2135
2136class JoinHint(Expression):
2137    arg_types = {"this": True, "expressions": True}
2138
2139
2140class Identifier(Expression):
2141    arg_types = {"this": True, "quoted": False, "global": False, "temporary": False}
2142
2143    @property
2144    def quoted(self) -> bool:
2145        return bool(self.args.get("quoted"))
2146
2147    @property
2148    def hashable_args(self) -> t.Any:
2149        return (self.this, self.quoted)
2150
2151    @property
2152    def output_name(self) -> str:
2153        return self.name
2154
2155
2156# https://www.postgresql.org/docs/current/indexes-opclass.html
2157class Opclass(Expression):
2158    arg_types = {"this": True, "expression": True}
2159
2160
2161class Index(Expression):
2162    arg_types = {
2163        "this": False,
2164        "table": False,
2165        "unique": False,
2166        "primary": False,
2167        "amp": False,  # teradata
2168        "params": False,
2169    }
2170
2171
2172class IndexParameters(Expression):
2173    arg_types = {
2174        "using": False,
2175        "include": False,
2176        "columns": False,
2177        "with_storage": False,
2178        "partition_by": False,
2179        "tablespace": False,
2180        "where": False,
2181        "on": False,
2182    }
2183
2184
2185class Insert(DDL, DML):
2186    arg_types = {
2187        "hint": False,
2188        "with": False,
2189        "is_function": False,
2190        "this": False,
2191        "expression": False,
2192        "conflict": False,
2193        "returning": False,
2194        "overwrite": False,
2195        "exists": False,
2196        "alternative": False,
2197        "where": False,
2198        "ignore": False,
2199        "by_name": False,
2200        "stored": False,
2201        "partition": False,
2202        "settings": False,
2203        "source": False,
2204    }
2205
2206    def with_(
2207        self,
2208        alias: ExpOrStr,
2209        as_: ExpOrStr,
2210        recursive: t.Optional[bool] = None,
2211        materialized: t.Optional[bool] = None,
2212        append: bool = True,
2213        dialect: DialectType = None,
2214        copy: bool = True,
2215        **opts,
2216    ) -> Insert:
2217        """
2218        Append to or set the common table expressions.
2219
2220        Example:
2221            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
2222            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
2223
2224        Args:
2225            alias: the SQL code string to parse as the table name.
2226                If an `Expression` instance is passed, this is used as-is.
2227            as_: the SQL code string to parse as the table expression.
2228                If an `Expression` instance is passed, it will be used as-is.
2229            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2230            materialized: set the MATERIALIZED part of the expression.
2231            append: if `True`, add to any existing expressions.
2232                Otherwise, this resets the expressions.
2233            dialect: the dialect used to parse the input expression.
2234            copy: if `False`, modify this expression instance in-place.
2235            opts: other options to use to parse the input expressions.
2236
2237        Returns:
2238            The modified expression.
2239        """
2240        return _apply_cte_builder(
2241            self,
2242            alias,
2243            as_,
2244            recursive=recursive,
2245            materialized=materialized,
2246            append=append,
2247            dialect=dialect,
2248            copy=copy,
2249            **opts,
2250        )
2251
2252
2253class ConditionalInsert(Expression):
2254    arg_types = {"this": True, "expression": False, "else_": False}
2255
2256
2257class MultitableInserts(Expression):
2258    arg_types = {"expressions": True, "kind": True, "source": True}
2259
2260
2261class OnConflict(Expression):
2262    arg_types = {
2263        "duplicate": False,
2264        "expressions": False,
2265        "action": False,
2266        "conflict_keys": False,
2267        "constraint": False,
2268    }
2269
2270
2271class OnCondition(Expression):
2272    arg_types = {"error": False, "empty": False, "null": False}
2273
2274
2275class Returning(Expression):
2276    arg_types = {"expressions": True, "into": False}
2277
2278
2279# https://dev.mysql.com/doc/refman/8.0/en/charset-introducer.html
2280class Introducer(Expression):
2281    arg_types = {"this": True, "expression": True}
2282
2283
2284# national char, like n'utf8'
2285class National(Expression):
2286    pass
2287
2288
2289class LoadData(Expression):
2290    arg_types = {
2291        "this": True,
2292        "local": False,
2293        "overwrite": False,
2294        "inpath": True,
2295        "partition": False,
2296        "input_format": False,
2297        "serde": False,
2298    }
2299
2300
2301class Partition(Expression):
2302    arg_types = {"expressions": True}
2303
2304
2305class PartitionRange(Expression):
2306    arg_types = {"this": True, "expression": True}
2307
2308
2309# https://clickhouse.com/docs/en/sql-reference/statements/alter/partition#how-to-set-partition-expression
2310class PartitionId(Expression):
2311    pass
2312
2313
2314class Fetch(Expression):
2315    arg_types = {
2316        "direction": False,
2317        "count": False,
2318        "percent": False,
2319        "with_ties": False,
2320    }
2321
2322
2323class Grant(Expression):
2324    arg_types = {
2325        "privileges": True,
2326        "kind": False,
2327        "securable": True,
2328        "principals": True,
2329        "grant_option": False,
2330    }
2331
2332
2333class Group(Expression):
2334    arg_types = {
2335        "expressions": False,
2336        "grouping_sets": False,
2337        "cube": False,
2338        "rollup": False,
2339        "totals": False,
2340        "all": False,
2341    }
2342
2343
2344class Cube(Expression):
2345    arg_types = {"expressions": False}
2346
2347
2348class Rollup(Expression):
2349    arg_types = {"expressions": False}
2350
2351
2352class GroupingSets(Expression):
2353    arg_types = {"expressions": True}
2354
2355
2356class Lambda(Expression):
2357    arg_types = {"this": True, "expressions": True}
2358
2359
2360class Limit(Expression):
2361    arg_types = {"this": False, "expression": True, "offset": False, "expressions": False}
2362
2363
2364class Literal(Condition):
2365    arg_types = {"this": True, "is_string": True}
2366
2367    @property
2368    def hashable_args(self) -> t.Any:
2369        return (self.this, self.args.get("is_string"))
2370
2371    @classmethod
2372    def number(cls, number) -> Literal:
2373        return cls(this=str(number), is_string=False)
2374
2375    @classmethod
2376    def string(cls, string) -> Literal:
2377        return cls(this=str(string), is_string=True)
2378
2379    @property
2380    def output_name(self) -> str:
2381        return self.name
2382
2383    def to_py(self) -> int | str | Decimal:
2384        if self.is_number:
2385            try:
2386                return int(self.this)
2387            except ValueError:
2388                return Decimal(self.this)
2389        return self.this
2390
2391
2392class Join(Expression):
2393    arg_types = {
2394        "this": True,
2395        "on": False,
2396        "side": False,
2397        "kind": False,
2398        "using": False,
2399        "method": False,
2400        "global": False,
2401        "hint": False,
2402        "match_condition": False,  # Snowflake
2403        "expressions": False,
2404    }
2405
2406    @property
2407    def method(self) -> str:
2408        return self.text("method").upper()
2409
2410    @property
2411    def kind(self) -> str:
2412        return self.text("kind").upper()
2413
2414    @property
2415    def side(self) -> str:
2416        return self.text("side").upper()
2417
2418    @property
2419    def hint(self) -> str:
2420        return self.text("hint").upper()
2421
2422    @property
2423    def alias_or_name(self) -> str:
2424        return self.this.alias_or_name
2425
2426    def on(
2427        self,
2428        *expressions: t.Optional[ExpOrStr],
2429        append: bool = True,
2430        dialect: DialectType = None,
2431        copy: bool = True,
2432        **opts,
2433    ) -> Join:
2434        """
2435        Append to or set the ON expressions.
2436
2437        Example:
2438            >>> import sqlglot
2439            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
2440            'JOIN x ON y = 1'
2441
2442        Args:
2443            *expressions: the SQL code strings to parse.
2444                If an `Expression` instance is passed, it will be used as-is.
2445                Multiple expressions are combined with an AND operator.
2446            append: if `True`, AND the new expressions to any existing expression.
2447                Otherwise, this resets the expression.
2448            dialect: the dialect used to parse the input expressions.
2449            copy: if `False`, modify this expression instance in-place.
2450            opts: other options to use to parse the input expressions.
2451
2452        Returns:
2453            The modified Join expression.
2454        """
2455        join = _apply_conjunction_builder(
2456            *expressions,
2457            instance=self,
2458            arg="on",
2459            append=append,
2460            dialect=dialect,
2461            copy=copy,
2462            **opts,
2463        )
2464
2465        if join.kind == "CROSS":
2466            join.set("kind", None)
2467
2468        return join
2469
2470    def using(
2471        self,
2472        *expressions: t.Optional[ExpOrStr],
2473        append: bool = True,
2474        dialect: DialectType = None,
2475        copy: bool = True,
2476        **opts,
2477    ) -> Join:
2478        """
2479        Append to or set the USING expressions.
2480
2481        Example:
2482            >>> import sqlglot
2483            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
2484            'JOIN x USING (foo, bla)'
2485
2486        Args:
2487            *expressions: the SQL code strings to parse.
2488                If an `Expression` instance is passed, it will be used as-is.
2489            append: if `True`, concatenate the new expressions to the existing "using" list.
2490                Otherwise, this resets the expression.
2491            dialect: the dialect used to parse the input expressions.
2492            copy: if `False`, modify this expression instance in-place.
2493            opts: other options to use to parse the input expressions.
2494
2495        Returns:
2496            The modified Join expression.
2497        """
2498        join = _apply_list_builder(
2499            *expressions,
2500            instance=self,
2501            arg="using",
2502            append=append,
2503            dialect=dialect,
2504            copy=copy,
2505            **opts,
2506        )
2507
2508        if join.kind == "CROSS":
2509            join.set("kind", None)
2510
2511        return join
2512
2513
2514class Lateral(UDTF):
2515    arg_types = {
2516        "this": True,
2517        "view": False,
2518        "outer": False,
2519        "alias": False,
2520        "cross_apply": False,  # True -> CROSS APPLY, False -> OUTER APPLY
2521    }
2522
2523
2524class MatchRecognizeMeasure(Expression):
2525    arg_types = {
2526        "this": True,
2527        "window_frame": False,
2528    }
2529
2530
2531class MatchRecognize(Expression):
2532    arg_types = {
2533        "partition_by": False,
2534        "order": False,
2535        "measures": False,
2536        "rows": False,
2537        "after": False,
2538        "pattern": False,
2539        "define": False,
2540        "alias": False,
2541    }
2542
2543
2544# Clickhouse FROM FINAL modifier
2545# https://clickhouse.com/docs/en/sql-reference/statements/select/from/#final-modifier
2546class Final(Expression):
2547    pass
2548
2549
2550class Offset(Expression):
2551    arg_types = {"this": False, "expression": True, "expressions": False}
2552
2553
2554class Order(Expression):
2555    arg_types = {"this": False, "expressions": True, "siblings": False}
2556
2557
2558# https://clickhouse.com/docs/en/sql-reference/statements/select/order-by#order-by-expr-with-fill-modifier
2559class WithFill(Expression):
2560    arg_types = {
2561        "from": False,
2562        "to": False,
2563        "step": False,
2564        "interpolate": False,
2565    }
2566
2567
2568# hive specific sorts
2569# https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SortBy
2570class Cluster(Order):
2571    pass
2572
2573
2574class Distribute(Order):
2575    pass
2576
2577
2578class Sort(Order):
2579    pass
2580
2581
2582class Ordered(Expression):
2583    arg_types = {"this": True, "desc": False, "nulls_first": True, "with_fill": False}
2584
2585
2586class Property(Expression):
2587    arg_types = {"this": True, "value": True}
2588
2589
2590class GrantPrivilege(Expression):
2591    arg_types = {"this": True, "expressions": False}
2592
2593
2594class GrantPrincipal(Expression):
2595    arg_types = {"this": True, "kind": False}
2596
2597
2598class AllowedValuesProperty(Expression):
2599    arg_types = {"expressions": True}
2600
2601
2602class AlgorithmProperty(Property):
2603    arg_types = {"this": True}
2604
2605
2606class AutoIncrementProperty(Property):
2607    arg_types = {"this": True}
2608
2609
2610# https://docs.aws.amazon.com/prescriptive-guidance/latest/materialized-views-redshift/refreshing-materialized-views.html
2611class AutoRefreshProperty(Property):
2612    arg_types = {"this": True}
2613
2614
2615class BackupProperty(Property):
2616    arg_types = {"this": True}
2617
2618
2619class BlockCompressionProperty(Property):
2620    arg_types = {
2621        "autotemp": False,
2622        "always": False,
2623        "default": False,
2624        "manual": False,
2625        "never": False,
2626    }
2627
2628
2629class CharacterSetProperty(Property):
2630    arg_types = {"this": True, "default": True}
2631
2632
2633class ChecksumProperty(Property):
2634    arg_types = {"on": False, "default": False}
2635
2636
2637class CollateProperty(Property):
2638    arg_types = {"this": True, "default": False}
2639
2640
2641class CopyGrantsProperty(Property):
2642    arg_types = {}
2643
2644
2645class DataBlocksizeProperty(Property):
2646    arg_types = {
2647        "size": False,
2648        "units": False,
2649        "minimum": False,
2650        "maximum": False,
2651        "default": False,
2652    }
2653
2654
2655class DataDeletionProperty(Property):
2656    arg_types = {"on": True, "filter_col": False, "retention_period": False}
2657
2658
2659class DefinerProperty(Property):
2660    arg_types = {"this": True}
2661
2662
2663class DistKeyProperty(Property):
2664    arg_types = {"this": True}
2665
2666
2667# https://docs.starrocks.io/docs/sql-reference/sql-statements/data-definition/CREATE_TABLE/#distribution_desc
2668# https://doris.apache.org/docs/sql-manual/sql-statements/Data-Definition-Statements/Create/CREATE-TABLE?_highlight=create&_highlight=table#distribution_desc
2669class DistributedByProperty(Property):
2670    arg_types = {"expressions": False, "kind": True, "buckets": False, "order": False}
2671
2672
2673class DistStyleProperty(Property):
2674    arg_types = {"this": True}
2675
2676
2677class DuplicateKeyProperty(Property):
2678    arg_types = {"expressions": True}
2679
2680
2681class EngineProperty(Property):
2682    arg_types = {"this": True}
2683
2684
2685class HeapProperty(Property):
2686    arg_types = {}
2687
2688
2689class ToTableProperty(Property):
2690    arg_types = {"this": True}
2691
2692
2693class ExecuteAsProperty(Property):
2694    arg_types = {"this": True}
2695
2696
2697class ExternalProperty(Property):
2698    arg_types = {"this": False}
2699
2700
2701class FallbackProperty(Property):
2702    arg_types = {"no": True, "protection": False}
2703
2704
2705class FileFormatProperty(Property):
2706    arg_types = {"this": True}
2707
2708
2709class FreespaceProperty(Property):
2710    arg_types = {"this": True, "percent": False}
2711
2712
2713class GlobalProperty(Property):
2714    arg_types = {}
2715
2716
2717class IcebergProperty(Property):
2718    arg_types = {}
2719
2720
2721class InheritsProperty(Property):
2722    arg_types = {"expressions": True}
2723
2724
2725class InputModelProperty(Property):
2726    arg_types = {"this": True}
2727
2728
2729class OutputModelProperty(Property):
2730    arg_types = {"this": True}
2731
2732
2733class IsolatedLoadingProperty(Property):
2734    arg_types = {"no": False, "concurrent": False, "target": False}
2735
2736
2737class JournalProperty(Property):
2738    arg_types = {
2739        "no": False,
2740        "dual": False,
2741        "before": False,
2742        "local": False,
2743        "after": False,
2744    }
2745
2746
2747class LanguageProperty(Property):
2748    arg_types = {"this": True}
2749
2750
2751# spark ddl
2752class ClusteredByProperty(Property):
2753    arg_types = {"expressions": True, "sorted_by": False, "buckets": True}
2754
2755
2756class DictProperty(Property):
2757    arg_types = {"this": True, "kind": True, "settings": False}
2758
2759
2760class DictSubProperty(Property):
2761    pass
2762
2763
2764class DictRange(Property):
2765    arg_types = {"this": True, "min": True, "max": True}
2766
2767
2768class DynamicProperty(Property):
2769    arg_types = {}
2770
2771
2772# Clickhouse CREATE ... ON CLUSTER modifier
2773# https://clickhouse.com/docs/en/sql-reference/distributed-ddl
2774class OnCluster(Property):
2775    arg_types = {"this": True}
2776
2777
2778# Clickhouse EMPTY table "property"
2779class EmptyProperty(Property):
2780    arg_types = {}
2781
2782
2783class LikeProperty(Property):
2784    arg_types = {"this": True, "expressions": False}
2785
2786
2787class LocationProperty(Property):
2788    arg_types = {"this": True}
2789
2790
2791class LockProperty(Property):
2792    arg_types = {"this": True}
2793
2794
2795class LockingProperty(Property):
2796    arg_types = {
2797        "this": False,
2798        "kind": True,
2799        "for_or_in": False,
2800        "lock_type": True,
2801        "override": False,
2802    }
2803
2804
2805class LogProperty(Property):
2806    arg_types = {"no": True}
2807
2808
2809class MaterializedProperty(Property):
2810    arg_types = {"this": False}
2811
2812
2813class MergeBlockRatioProperty(Property):
2814    arg_types = {"this": False, "no": False, "default": False, "percent": False}
2815
2816
2817class NoPrimaryIndexProperty(Property):
2818    arg_types = {}
2819
2820
2821class OnProperty(Property):
2822    arg_types = {"this": True}
2823
2824
2825class OnCommitProperty(Property):
2826    arg_types = {"delete": False}
2827
2828
2829class PartitionedByProperty(Property):
2830    arg_types = {"this": True}
2831
2832
2833# https://www.postgresql.org/docs/current/sql-createtable.html
2834class PartitionBoundSpec(Expression):
2835    # this -> IN / MODULUS, expression -> REMAINDER, from_expressions -> FROM (...), to_expressions -> TO (...)
2836    arg_types = {
2837        "this": False,
2838        "expression": False,
2839        "from_expressions": False,
2840        "to_expressions": False,
2841    }
2842
2843
2844class PartitionedOfProperty(Property):
2845    # this -> parent_table (schema), expression -> FOR VALUES ... / DEFAULT
2846    arg_types = {"this": True, "expression": True}
2847
2848
2849class StreamingTableProperty(Property):
2850    arg_types = {}
2851
2852
2853class RemoteWithConnectionModelProperty(Property):
2854    arg_types = {"this": True}
2855
2856
2857class ReturnsProperty(Property):
2858    arg_types = {"this": False, "is_table": False, "table": False, "null": False}
2859
2860
2861class StrictProperty(Property):
2862    arg_types = {}
2863
2864
2865class RowFormatProperty(Property):
2866    arg_types = {"this": True}
2867
2868
2869class RowFormatDelimitedProperty(Property):
2870    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
2871    arg_types = {
2872        "fields": False,
2873        "escaped": False,
2874        "collection_items": False,
2875        "map_keys": False,
2876        "lines": False,
2877        "null": False,
2878        "serde": False,
2879    }
2880
2881
2882class RowFormatSerdeProperty(Property):
2883    arg_types = {"this": True, "serde_properties": False}
2884
2885
2886# https://spark.apache.org/docs/3.1.2/sql-ref-syntax-qry-select-transform.html
2887class QueryTransform(Expression):
2888    arg_types = {
2889        "expressions": True,
2890        "command_script": True,
2891        "schema": False,
2892        "row_format_before": False,
2893        "record_writer": False,
2894        "row_format_after": False,
2895        "record_reader": False,
2896    }
2897
2898
2899class SampleProperty(Property):
2900    arg_types = {"this": True}
2901
2902
2903# https://prestodb.io/docs/current/sql/create-view.html#synopsis
2904class SecurityProperty(Property):
2905    arg_types = {"this": True}
2906
2907
2908class SchemaCommentProperty(Property):
2909    arg_types = {"this": True}
2910
2911
2912class SerdeProperties(Property):
2913    arg_types = {"expressions": True, "with": False}
2914
2915
2916class SetProperty(Property):
2917    arg_types = {"multi": True}
2918
2919
2920class SharingProperty(Property):
2921    arg_types = {"this": False}
2922
2923
2924class SetConfigProperty(Property):
2925    arg_types = {"this": True}
2926
2927
2928class SettingsProperty(Property):
2929    arg_types = {"expressions": True}
2930
2931
2932class SortKeyProperty(Property):
2933    arg_types = {"this": True, "compound": False}
2934
2935
2936class SqlReadWriteProperty(Property):
2937    arg_types = {"this": True}
2938
2939
2940class SqlSecurityProperty(Property):
2941    arg_types = {"definer": True}
2942
2943
2944class StabilityProperty(Property):
2945    arg_types = {"this": True}
2946
2947
2948class TemporaryProperty(Property):
2949    arg_types = {"this": False}
2950
2951
2952class SecureProperty(Property):
2953    arg_types = {}
2954
2955
2956class TransformModelProperty(Property):
2957    arg_types = {"expressions": True}
2958
2959
2960class TransientProperty(Property):
2961    arg_types = {"this": False}
2962
2963
2964class UnloggedProperty(Property):
2965    arg_types = {}
2966
2967
2968# https://learn.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql?view=sql-server-ver16
2969class ViewAttributeProperty(Property):
2970    arg_types = {"this": True}
2971
2972
2973class VolatileProperty(Property):
2974    arg_types = {"this": False}
2975
2976
2977class WithDataProperty(Property):
2978    arg_types = {"no": True, "statistics": False}
2979
2980
2981class WithJournalTableProperty(Property):
2982    arg_types = {"this": True}
2983
2984
2985class WithSchemaBindingProperty(Property):
2986    arg_types = {"this": True}
2987
2988
2989class WithSystemVersioningProperty(Property):
2990    arg_types = {
2991        "on": False,
2992        "this": False,
2993        "data_consistency": False,
2994        "retention_period": False,
2995        "with": True,
2996    }
2997
2998
2999class WithProcedureOptions(Property):
3000    arg_types = {"expressions": True}
3001
3002
3003class Properties(Expression):
3004    arg_types = {"expressions": True}
3005
3006    NAME_TO_PROPERTY = {
3007        "ALGORITHM": AlgorithmProperty,
3008        "AUTO_INCREMENT": AutoIncrementProperty,
3009        "CHARACTER SET": CharacterSetProperty,
3010        "CLUSTERED_BY": ClusteredByProperty,
3011        "COLLATE": CollateProperty,
3012        "COMMENT": SchemaCommentProperty,
3013        "DEFINER": DefinerProperty,
3014        "DISTKEY": DistKeyProperty,
3015        "DISTRIBUTED_BY": DistributedByProperty,
3016        "DISTSTYLE": DistStyleProperty,
3017        "ENGINE": EngineProperty,
3018        "EXECUTE AS": ExecuteAsProperty,
3019        "FORMAT": FileFormatProperty,
3020        "LANGUAGE": LanguageProperty,
3021        "LOCATION": LocationProperty,
3022        "LOCK": LockProperty,
3023        "PARTITIONED_BY": PartitionedByProperty,
3024        "RETURNS": ReturnsProperty,
3025        "ROW_FORMAT": RowFormatProperty,
3026        "SORTKEY": SortKeyProperty,
3027    }
3028
3029    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
3030
3031    # CREATE property locations
3032    # Form: schema specified
3033    #   create [POST_CREATE]
3034    #     table a [POST_NAME]
3035    #     (b int) [POST_SCHEMA]
3036    #     with ([POST_WITH])
3037    #     index (b) [POST_INDEX]
3038    #
3039    # Form: alias selection
3040    #   create [POST_CREATE]
3041    #     table a [POST_NAME]
3042    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
3043    #     index (c) [POST_INDEX]
3044    class Location(AutoName):
3045        POST_CREATE = auto()
3046        POST_NAME = auto()
3047        POST_SCHEMA = auto()
3048        POST_WITH = auto()
3049        POST_ALIAS = auto()
3050        POST_EXPRESSION = auto()
3051        POST_INDEX = auto()
3052        UNSUPPORTED = auto()
3053
3054    @classmethod
3055    def from_dict(cls, properties_dict: t.Dict) -> Properties:
3056        expressions = []
3057        for key, value in properties_dict.items():
3058            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
3059            if property_cls:
3060                expressions.append(property_cls(this=convert(value)))
3061            else:
3062                expressions.append(Property(this=Literal.string(key), value=convert(value)))
3063
3064        return cls(expressions=expressions)
3065
3066
3067class Qualify(Expression):
3068    pass
3069
3070
3071class InputOutputFormat(Expression):
3072    arg_types = {"input_format": False, "output_format": False}
3073
3074
3075# https://www.ibm.com/docs/en/ias?topic=procedures-return-statement-in-sql
3076class Return(Expression):
3077    pass
3078
3079
3080class Reference(Expression):
3081    arg_types = {"this": True, "expressions": False, "options": False}
3082
3083
3084class Tuple(Expression):
3085    arg_types = {"expressions": False}
3086
3087    def isin(
3088        self,
3089        *expressions: t.Any,
3090        query: t.Optional[ExpOrStr] = None,
3091        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
3092        copy: bool = True,
3093        **opts,
3094    ) -> In:
3095        return In(
3096            this=maybe_copy(self, copy),
3097            expressions=[convert(e, copy=copy) for e in expressions],
3098            query=maybe_parse(query, copy=copy, **opts) if query else None,
3099            unnest=(
3100                Unnest(
3101                    expressions=[
3102                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
3103                        for e in ensure_list(unnest)
3104                    ]
3105                )
3106                if unnest
3107                else None
3108            ),
3109        )
3110
3111
3112QUERY_MODIFIERS = {
3113    "match": False,
3114    "laterals": False,
3115    "joins": False,
3116    "connect": False,
3117    "pivots": False,
3118    "prewhere": False,
3119    "where": False,
3120    "group": False,
3121    "having": False,
3122    "qualify": False,
3123    "windows": False,
3124    "distribute": False,
3125    "sort": False,
3126    "cluster": False,
3127    "order": False,
3128    "limit": False,
3129    "offset": False,
3130    "locks": False,
3131    "sample": False,
3132    "settings": False,
3133    "format": False,
3134    "options": False,
3135}
3136
3137
3138# https://learn.microsoft.com/en-us/sql/t-sql/queries/option-clause-transact-sql?view=sql-server-ver16
3139# https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
3140class QueryOption(Expression):
3141    arg_types = {"this": True, "expression": False}
3142
3143
3144# https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
3145class WithTableHint(Expression):
3146    arg_types = {"expressions": True}
3147
3148
3149# https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
3150class IndexTableHint(Expression):
3151    arg_types = {"this": True, "expressions": False, "target": False}
3152
3153
3154# https://docs.snowflake.com/en/sql-reference/constructs/at-before
3155class HistoricalData(Expression):
3156    arg_types = {"this": True, "kind": True, "expression": True}
3157
3158
3159class Table(Expression):
3160    arg_types = {
3161        "this": False,
3162        "alias": False,
3163        "db": False,
3164        "catalog": False,
3165        "laterals": False,
3166        "joins": False,
3167        "pivots": False,
3168        "hints": False,
3169        "system_time": False,
3170        "version": False,
3171        "format": False,
3172        "pattern": False,
3173        "ordinality": False,
3174        "when": False,
3175        "only": False,
3176        "partition": False,
3177        "changes": False,
3178        "rows_from": False,
3179        "sample": False,
3180    }
3181
3182    @property
3183    def name(self) -> str:
3184        if isinstance(self.this, Func):
3185            return ""
3186        return self.this.name
3187
3188    @property
3189    def db(self) -> str:
3190        return self.text("db")
3191
3192    @property
3193    def catalog(self) -> str:
3194        return self.text("catalog")
3195
3196    @property
3197    def selects(self) -> t.List[Expression]:
3198        return []
3199
3200    @property
3201    def named_selects(self) -> t.List[str]:
3202        return []
3203
3204    @property
3205    def parts(self) -> t.List[Expression]:
3206        """Return the parts of a table in order catalog, db, table."""
3207        parts: t.List[Expression] = []
3208
3209        for arg in ("catalog", "db", "this"):
3210            part = self.args.get(arg)
3211
3212            if isinstance(part, Dot):
3213                parts.extend(part.flatten())
3214            elif isinstance(part, Expression):
3215                parts.append(part)
3216
3217        return parts
3218
3219    def to_column(self, copy: bool = True) -> Alias | Column | Dot:
3220        parts = self.parts
3221        last_part = parts[-1]
3222
3223        if isinstance(last_part, Identifier):
3224            col = column(*reversed(parts[0:4]), fields=parts[4:], copy=copy)  # type: ignore
3225        else:
3226            # This branch will be reached if a function or array is wrapped in a `Table`
3227            col = last_part
3228
3229        alias = self.args.get("alias")
3230        if alias:
3231            col = alias_(col, alias.this, copy=copy)
3232
3233        return col
3234
3235
3236class SetOperation(Query):
3237    arg_types = {
3238        "with": False,
3239        "this": True,
3240        "expression": True,
3241        "distinct": False,
3242        "by_name": False,
3243        **QUERY_MODIFIERS,
3244    }
3245
3246    def select(
3247        self: S,
3248        *expressions: t.Optional[ExpOrStr],
3249        append: bool = True,
3250        dialect: DialectType = None,
3251        copy: bool = True,
3252        **opts,
3253    ) -> S:
3254        this = maybe_copy(self, copy)
3255        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
3256        this.expression.unnest().select(
3257            *expressions, append=append, dialect=dialect, copy=False, **opts
3258        )
3259        return this
3260
3261    @property
3262    def named_selects(self) -> t.List[str]:
3263        return self.this.unnest().named_selects
3264
3265    @property
3266    def is_star(self) -> bool:
3267        return self.this.is_star or self.expression.is_star
3268
3269    @property
3270    def selects(self) -> t.List[Expression]:
3271        return self.this.unnest().selects
3272
3273    @property
3274    def left(self) -> Query:
3275        return self.this
3276
3277    @property
3278    def right(self) -> Query:
3279        return self.expression
3280
3281
3282class Union(SetOperation):
3283    pass
3284
3285
3286class Except(SetOperation):
3287    pass
3288
3289
3290class Intersect(SetOperation):
3291    pass
3292
3293
3294class Update(DML):
3295    arg_types = {
3296        "with": False,
3297        "this": False,
3298        "expressions": True,
3299        "from": False,
3300        "where": False,
3301        "returning": False,
3302        "order": False,
3303        "limit": False,
3304    }
3305
3306    def table(
3307        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3308    ) -> Update:
3309        """
3310        Set the table to update.
3311
3312        Example:
3313            >>> Update().table("my_table").set_("x = 1").sql()
3314            'UPDATE my_table SET x = 1'
3315
3316        Args:
3317            expression : the SQL code strings to parse.
3318                If a `Table` instance is passed, this is used as-is.
3319                If another `Expression` instance is passed, it will be wrapped in a `Table`.
3320            dialect: the dialect used to parse the input expression.
3321            copy: if `False`, modify this expression instance in-place.
3322            opts: other options to use to parse the input expressions.
3323
3324        Returns:
3325            The modified Update expression.
3326        """
3327        return _apply_builder(
3328            expression=expression,
3329            instance=self,
3330            arg="this",
3331            into=Table,
3332            prefix=None,
3333            dialect=dialect,
3334            copy=copy,
3335            **opts,
3336        )
3337
3338    def set_(
3339        self,
3340        *expressions: ExpOrStr,
3341        append: bool = True,
3342        dialect: DialectType = None,
3343        copy: bool = True,
3344        **opts,
3345    ) -> Update:
3346        """
3347        Append to or set the SET expressions.
3348
3349        Example:
3350            >>> Update().table("my_table").set_("x = 1").sql()
3351            'UPDATE my_table SET x = 1'
3352
3353        Args:
3354            *expressions: the SQL code strings to parse.
3355                If `Expression` instance(s) are passed, they will be used as-is.
3356                Multiple expressions are combined with a comma.
3357            append: if `True`, add the new expressions to any existing SET expressions.
3358                Otherwise, this resets the expressions.
3359            dialect: the dialect used to parse the input expressions.
3360            copy: if `False`, modify this expression instance in-place.
3361            opts: other options to use to parse the input expressions.
3362        """
3363        return _apply_list_builder(
3364            *expressions,
3365            instance=self,
3366            arg="expressions",
3367            append=append,
3368            into=Expression,
3369            prefix=None,
3370            dialect=dialect,
3371            copy=copy,
3372            **opts,
3373        )
3374
3375    def where(
3376        self,
3377        *expressions: t.Optional[ExpOrStr],
3378        append: bool = True,
3379        dialect: DialectType = None,
3380        copy: bool = True,
3381        **opts,
3382    ) -> Select:
3383        """
3384        Append to or set the WHERE expressions.
3385
3386        Example:
3387            >>> Update().table("tbl").set_("x = 1").where("x = 'a' OR x < 'b'").sql()
3388            "UPDATE tbl SET x = 1 WHERE x = 'a' OR x < 'b'"
3389
3390        Args:
3391            *expressions: the SQL code strings to parse.
3392                If an `Expression` instance is passed, it will be used as-is.
3393                Multiple expressions are combined with an AND operator.
3394            append: if `True`, AND the new expressions to any existing expression.
3395                Otherwise, this resets the expression.
3396            dialect: the dialect used to parse the input expressions.
3397            copy: if `False`, modify this expression instance in-place.
3398            opts: other options to use to parse the input expressions.
3399
3400        Returns:
3401            Select: the modified expression.
3402        """
3403        return _apply_conjunction_builder(
3404            *expressions,
3405            instance=self,
3406            arg="where",
3407            append=append,
3408            into=Where,
3409            dialect=dialect,
3410            copy=copy,
3411            **opts,
3412        )
3413
3414    def from_(
3415        self,
3416        expression: t.Optional[ExpOrStr] = None,
3417        dialect: DialectType = None,
3418        copy: bool = True,
3419        **opts,
3420    ) -> Update:
3421        """
3422        Set the FROM expression.
3423
3424        Example:
3425            >>> Update().table("my_table").set_("x = 1").from_("baz").sql()
3426            'UPDATE my_table SET x = 1 FROM baz'
3427
3428        Args:
3429            expression : the SQL code strings to parse.
3430                If a `From` instance is passed, this is used as-is.
3431                If another `Expression` instance is passed, it will be wrapped in a `From`.
3432                If nothing is passed in then a from is not applied to the expression
3433            dialect: the dialect used to parse the input expression.
3434            copy: if `False`, modify this expression instance in-place.
3435            opts: other options to use to parse the input expressions.
3436
3437        Returns:
3438            The modified Update expression.
3439        """
3440        if not expression:
3441            return maybe_copy(self, copy)
3442
3443        return _apply_builder(
3444            expression=expression,
3445            instance=self,
3446            arg="from",
3447            into=From,
3448            prefix="FROM",
3449            dialect=dialect,
3450            copy=copy,
3451            **opts,
3452        )
3453
3454    def with_(
3455        self,
3456        alias: ExpOrStr,
3457        as_: ExpOrStr,
3458        recursive: t.Optional[bool] = None,
3459        materialized: t.Optional[bool] = None,
3460        append: bool = True,
3461        dialect: DialectType = None,
3462        copy: bool = True,
3463        **opts,
3464    ) -> Update:
3465        """
3466        Append to or set the common table expressions.
3467
3468        Example:
3469            >>> Update().table("my_table").set_("x = 1").from_("baz").with_("baz", "SELECT id FROM foo").sql()
3470            'WITH baz AS (SELECT id FROM foo) UPDATE my_table SET x = 1 FROM baz'
3471
3472        Args:
3473            alias: the SQL code string to parse as the table name.
3474                If an `Expression` instance is passed, this is used as-is.
3475            as_: the SQL code string to parse as the table expression.
3476                If an `Expression` instance is passed, it will be used as-is.
3477            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
3478            materialized: set the MATERIALIZED part of the expression.
3479            append: if `True`, add to any existing expressions.
3480                Otherwise, this resets the expressions.
3481            dialect: the dialect used to parse the input expression.
3482            copy: if `False`, modify this expression instance in-place.
3483            opts: other options to use to parse the input expressions.
3484
3485        Returns:
3486            The modified expression.
3487        """
3488        return _apply_cte_builder(
3489            self,
3490            alias,
3491            as_,
3492            recursive=recursive,
3493            materialized=materialized,
3494            append=append,
3495            dialect=dialect,
3496            copy=copy,
3497            **opts,
3498        )
3499
3500
3501class Values(UDTF):
3502    arg_types = {"expressions": True, "alias": False}
3503
3504
3505class Var(Expression):
3506    pass
3507
3508
3509class Version(Expression):
3510    """
3511    Time travel, iceberg, bigquery etc
3512    https://trino.io/docs/current/connector/iceberg.html?highlight=snapshot#using-snapshots
3513    https://www.databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
3514    https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#for_system_time_as_of
3515    https://learn.microsoft.com/en-us/sql/relational-databases/tables/querying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
3516    this is either TIMESTAMP or VERSION
3517    kind is ("AS OF", "BETWEEN")
3518    """
3519
3520    arg_types = {"this": True, "kind": True, "expression": False}
3521
3522
3523class Schema(Expression):
3524    arg_types = {"this": False, "expressions": False}
3525
3526
3527# https://dev.mysql.com/doc/refman/8.0/en/select.html
3528# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/SELECT.html
3529class Lock(Expression):
3530    arg_types = {"update": True, "expressions": False, "wait": False}
3531
3532
3533class Select(Query):
3534    arg_types = {
3535        "with": False,
3536        "kind": False,
3537        "expressions": False,
3538        "hint": False,
3539        "distinct": False,
3540        "into": False,
3541        "from": False,
3542        "operation_modifiers": False,
3543        **QUERY_MODIFIERS,
3544    }
3545
3546    def from_(
3547        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3548    ) -> Select:
3549        """
3550        Set the FROM expression.
3551
3552        Example:
3553            >>> Select().from_("tbl").select("x").sql()
3554            'SELECT x FROM tbl'
3555
3556        Args:
3557            expression : the SQL code strings to parse.
3558                If a `From` instance is passed, this is used as-is.
3559                If another `Expression` instance is passed, it will be wrapped in a `From`.
3560            dialect: the dialect used to parse the input expression.
3561            copy: if `False`, modify this expression instance in-place.
3562            opts: other options to use to parse the input expressions.
3563
3564        Returns:
3565            The modified Select expression.
3566        """
3567        return _apply_builder(
3568            expression=expression,
3569            instance=self,
3570            arg="from",
3571            into=From,
3572            prefix="FROM",
3573            dialect=dialect,
3574            copy=copy,
3575            **opts,
3576        )
3577
3578    def group_by(
3579        self,
3580        *expressions: t.Optional[ExpOrStr],
3581        append: bool = True,
3582        dialect: DialectType = None,
3583        copy: bool = True,
3584        **opts,
3585    ) -> Select:
3586        """
3587        Set the GROUP BY expression.
3588
3589        Example:
3590            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
3591            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
3592
3593        Args:
3594            *expressions: the SQL code strings to parse.
3595                If a `Group` instance is passed, this is used as-is.
3596                If another `Expression` instance is passed, it will be wrapped in a `Group`.
3597                If nothing is passed in then a group by is not applied to the expression
3598            append: if `True`, add to any existing expressions.
3599                Otherwise, this flattens all the `Group` expression into a single expression.
3600            dialect: the dialect used to parse the input expression.
3601            copy: if `False`, modify this expression instance in-place.
3602            opts: other options to use to parse the input expressions.
3603
3604        Returns:
3605            The modified Select expression.
3606        """
3607        if not expressions:
3608            return self if not copy else self.copy()
3609
3610        return _apply_child_list_builder(
3611            *expressions,
3612            instance=self,
3613            arg="group",
3614            append=append,
3615            copy=copy,
3616            prefix="GROUP BY",
3617            into=Group,
3618            dialect=dialect,
3619            **opts,
3620        )
3621
3622    def sort_by(
3623        self,
3624        *expressions: t.Optional[ExpOrStr],
3625        append: bool = True,
3626        dialect: DialectType = None,
3627        copy: bool = True,
3628        **opts,
3629    ) -> Select:
3630        """
3631        Set the SORT BY expression.
3632
3633        Example:
3634            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
3635            'SELECT x FROM tbl SORT BY x DESC'
3636
3637        Args:
3638            *expressions: the SQL code strings to parse.
3639                If a `Group` instance is passed, this is used as-is.
3640                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
3641            append: if `True`, add to any existing expressions.
3642                Otherwise, this flattens all the `Order` expression into a single expression.
3643            dialect: the dialect used to parse the input expression.
3644            copy: if `False`, modify this expression instance in-place.
3645            opts: other options to use to parse the input expressions.
3646
3647        Returns:
3648            The modified Select expression.
3649        """
3650        return _apply_child_list_builder(
3651            *expressions,
3652            instance=self,
3653            arg="sort",
3654            append=append,
3655            copy=copy,
3656            prefix="SORT BY",
3657            into=Sort,
3658            dialect=dialect,
3659            **opts,
3660        )
3661
3662    def cluster_by(
3663        self,
3664        *expressions: t.Optional[ExpOrStr],
3665        append: bool = True,
3666        dialect: DialectType = None,
3667        copy: bool = True,
3668        **opts,
3669    ) -> Select:
3670        """
3671        Set the CLUSTER BY expression.
3672
3673        Example:
3674            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
3675            'SELECT x FROM tbl CLUSTER BY x DESC'
3676
3677        Args:
3678            *expressions: the SQL code strings to parse.
3679                If a `Group` instance is passed, this is used as-is.
3680                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
3681            append: if `True`, add to any existing expressions.
3682                Otherwise, this flattens all the `Order` expression into a single expression.
3683            dialect: the dialect used to parse the input expression.
3684            copy: if `False`, modify this expression instance in-place.
3685            opts: other options to use to parse the input expressions.
3686
3687        Returns:
3688            The modified Select expression.
3689        """
3690        return _apply_child_list_builder(
3691            *expressions,
3692            instance=self,
3693            arg="cluster",
3694            append=append,
3695            copy=copy,
3696            prefix="CLUSTER BY",
3697            into=Cluster,
3698            dialect=dialect,
3699            **opts,
3700        )
3701
3702    def select(
3703        self,
3704        *expressions: t.Optional[ExpOrStr],
3705        append: bool = True,
3706        dialect: DialectType = None,
3707        copy: bool = True,
3708        **opts,
3709    ) -> Select:
3710        return _apply_list_builder(
3711            *expressions,
3712            instance=self,
3713            arg="expressions",
3714            append=append,
3715            dialect=dialect,
3716            into=Expression,
3717            copy=copy,
3718            **opts,
3719        )
3720
3721    def lateral(
3722        self,
3723        *expressions: t.Optional[ExpOrStr],
3724        append: bool = True,
3725        dialect: DialectType = None,
3726        copy: bool = True,
3727        **opts,
3728    ) -> Select:
3729        """
3730        Append to or set the LATERAL expressions.
3731
3732        Example:
3733            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3734            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3735
3736        Args:
3737            *expressions: the SQL code strings to parse.
3738                If an `Expression` instance is passed, it will be used as-is.
3739            append: if `True`, add to any existing expressions.
3740                Otherwise, this resets the expressions.
3741            dialect: the dialect used to parse the input expressions.
3742            copy: if `False`, modify this expression instance in-place.
3743            opts: other options to use to parse the input expressions.
3744
3745        Returns:
3746            The modified Select expression.
3747        """
3748        return _apply_list_builder(
3749            *expressions,
3750            instance=self,
3751            arg="laterals",
3752            append=append,
3753            into=Lateral,
3754            prefix="LATERAL VIEW",
3755            dialect=dialect,
3756            copy=copy,
3757            **opts,
3758        )
3759
3760    def join(
3761        self,
3762        expression: ExpOrStr,
3763        on: t.Optional[ExpOrStr] = None,
3764        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
3765        append: bool = True,
3766        join_type: t.Optional[str] = None,
3767        join_alias: t.Optional[Identifier | str] = None,
3768        dialect: DialectType = None,
3769        copy: bool = True,
3770        **opts,
3771    ) -> Select:
3772        """
3773        Append to or set the JOIN expressions.
3774
3775        Example:
3776            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
3777            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
3778
3779            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
3780            'SELECT 1 FROM a JOIN b USING (x, y, z)'
3781
3782            Use `join_type` to change the type of join:
3783
3784            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
3785            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
3786
3787        Args:
3788            expression: the SQL code string to parse.
3789                If an `Expression` instance is passed, it will be used as-is.
3790            on: optionally specify the join "on" criteria as a SQL string.
3791                If an `Expression` instance is passed, it will be used as-is.
3792            using: optionally specify the join "using" criteria as a SQL string.
3793                If an `Expression` instance is passed, it will be used as-is.
3794            append: if `True`, add to any existing expressions.
3795                Otherwise, this resets the expressions.
3796            join_type: if set, alter the parsed join type.
3797            join_alias: an optional alias for the joined source.
3798            dialect: the dialect used to parse the input expressions.
3799            copy: if `False`, modify this expression instance in-place.
3800            opts: other options to use to parse the input expressions.
3801
3802        Returns:
3803            Select: the modified expression.
3804        """
3805        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
3806
3807        try:
3808            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
3809        except ParseError:
3810            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
3811
3812        join = expression if isinstance(expression, Join) else Join(this=expression)
3813
3814        if isinstance(join.this, Select):
3815            join.this.replace(join.this.subquery())
3816
3817        if join_type:
3818            method: t.Optional[Token]
3819            side: t.Optional[Token]
3820            kind: t.Optional[Token]
3821
3822            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
3823
3824            if method:
3825                join.set("method", method.text)
3826            if side:
3827                join.set("side", side.text)
3828            if kind:
3829                join.set("kind", kind.text)
3830
3831        if on:
3832            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
3833            join.set("on", on)
3834
3835        if using:
3836            join = _apply_list_builder(
3837                *ensure_list(using),
3838                instance=join,
3839                arg="using",
3840                append=append,
3841                copy=copy,
3842                into=Identifier,
3843                **opts,
3844            )
3845
3846        if join_alias:
3847            join.set("this", alias_(join.this, join_alias, table=True))
3848
3849        return _apply_list_builder(
3850            join,
3851            instance=self,
3852            arg="joins",
3853            append=append,
3854            copy=copy,
3855            **opts,
3856        )
3857
3858    def where(
3859        self,
3860        *expressions: t.Optional[ExpOrStr],
3861        append: bool = True,
3862        dialect: DialectType = None,
3863        copy: bool = True,
3864        **opts,
3865    ) -> Select:
3866        """
3867        Append to or set the WHERE expressions.
3868
3869        Example:
3870            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
3871            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
3872
3873        Args:
3874            *expressions: the SQL code strings to parse.
3875                If an `Expression` instance is passed, it will be used as-is.
3876                Multiple expressions are combined with an AND operator.
3877            append: if `True`, AND the new expressions to any existing expression.
3878                Otherwise, this resets the expression.
3879            dialect: the dialect used to parse the input expressions.
3880            copy: if `False`, modify this expression instance in-place.
3881            opts: other options to use to parse the input expressions.
3882
3883        Returns:
3884            Select: the modified expression.
3885        """
3886        return _apply_conjunction_builder(
3887            *expressions,
3888            instance=self,
3889            arg="where",
3890            append=append,
3891            into=Where,
3892            dialect=dialect,
3893            copy=copy,
3894            **opts,
3895        )
3896
3897    def having(
3898        self,
3899        *expressions: t.Optional[ExpOrStr],
3900        append: bool = True,
3901        dialect: DialectType = None,
3902        copy: bool = True,
3903        **opts,
3904    ) -> Select:
3905        """
3906        Append to or set the HAVING expressions.
3907
3908        Example:
3909            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
3910            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
3911
3912        Args:
3913            *expressions: the SQL code strings to parse.
3914                If an `Expression` instance is passed, it will be used as-is.
3915                Multiple expressions are combined with an AND operator.
3916            append: if `True`, AND the new expressions to any existing expression.
3917                Otherwise, this resets the expression.
3918            dialect: the dialect used to parse the input expressions.
3919            copy: if `False`, modify this expression instance in-place.
3920            opts: other options to use to parse the input expressions.
3921
3922        Returns:
3923            The modified Select expression.
3924        """
3925        return _apply_conjunction_builder(
3926            *expressions,
3927            instance=self,
3928            arg="having",
3929            append=append,
3930            into=Having,
3931            dialect=dialect,
3932            copy=copy,
3933            **opts,
3934        )
3935
3936    def window(
3937        self,
3938        *expressions: t.Optional[ExpOrStr],
3939        append: bool = True,
3940        dialect: DialectType = None,
3941        copy: bool = True,
3942        **opts,
3943    ) -> Select:
3944        return _apply_list_builder(
3945            *expressions,
3946            instance=self,
3947            arg="windows",
3948            append=append,
3949            into=Window,
3950            dialect=dialect,
3951            copy=copy,
3952            **opts,
3953        )
3954
3955    def qualify(
3956        self,
3957        *expressions: t.Optional[ExpOrStr],
3958        append: bool = True,
3959        dialect: DialectType = None,
3960        copy: bool = True,
3961        **opts,
3962    ) -> Select:
3963        return _apply_conjunction_builder(
3964            *expressions,
3965            instance=self,
3966            arg="qualify",
3967            append=append,
3968            into=Qualify,
3969            dialect=dialect,
3970            copy=copy,
3971            **opts,
3972        )
3973
3974    def distinct(
3975        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
3976    ) -> Select:
3977        """
3978        Set the OFFSET expression.
3979
3980        Example:
3981            >>> Select().from_("tbl").select("x").distinct().sql()
3982            'SELECT DISTINCT x FROM tbl'
3983
3984        Args:
3985            ons: the expressions to distinct on
3986            distinct: whether the Select should be distinct
3987            copy: if `False`, modify this expression instance in-place.
3988
3989        Returns:
3990            Select: the modified expression.
3991        """
3992        instance = maybe_copy(self, copy)
3993        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3994        instance.set("distinct", Distinct(on=on) if distinct else None)
3995        return instance
3996
3997    def ctas(
3998        self,
3999        table: ExpOrStr,
4000        properties: t.Optional[t.Dict] = None,
4001        dialect: DialectType = None,
4002        copy: bool = True,
4003        **opts,
4004    ) -> Create:
4005        """
4006        Convert this expression to a CREATE TABLE AS statement.
4007
4008        Example:
4009            >>> Select().select("*").from_("tbl").ctas("x").sql()
4010            'CREATE TABLE x AS SELECT * FROM tbl'
4011
4012        Args:
4013            table: the SQL code string to parse as the table name.
4014                If another `Expression` instance is passed, it will be used as-is.
4015            properties: an optional mapping of table properties
4016            dialect: the dialect used to parse the input table.
4017            copy: if `False`, modify this expression instance in-place.
4018            opts: other options to use to parse the input table.
4019
4020        Returns:
4021            The new Create expression.
4022        """
4023        instance = maybe_copy(self, copy)
4024        table_expression = maybe_parse(table, into=Table, dialect=dialect, **opts)
4025
4026        properties_expression = None
4027        if properties:
4028            properties_expression = Properties.from_dict(properties)
4029
4030        return Create(
4031            this=table_expression,
4032            kind="TABLE",
4033            expression=instance,
4034            properties=properties_expression,
4035        )
4036
4037    def lock(self, update: bool = True, copy: bool = True) -> Select:
4038        """
4039        Set the locking read mode for this expression.
4040
4041        Examples:
4042            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
4043            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
4044
4045            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
4046            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
4047
4048        Args:
4049            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
4050            copy: if `False`, modify this expression instance in-place.
4051
4052        Returns:
4053            The modified expression.
4054        """
4055        inst = maybe_copy(self, copy)
4056        inst.set("locks", [Lock(update=update)])
4057
4058        return inst
4059
4060    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
4061        """
4062        Set hints for this expression.
4063
4064        Examples:
4065            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
4066            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
4067
4068        Args:
4069            hints: The SQL code strings to parse as the hints.
4070                If an `Expression` instance is passed, it will be used as-is.
4071            dialect: The dialect used to parse the hints.
4072            copy: If `False`, modify this expression instance in-place.
4073
4074        Returns:
4075            The modified expression.
4076        """
4077        inst = maybe_copy(self, copy)
4078        inst.set(
4079            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
4080        )
4081
4082        return inst
4083
4084    @property
4085    def named_selects(self) -> t.List[str]:
4086        return [e.output_name for e in self.expressions if e.alias_or_name]
4087
4088    @property
4089    def is_star(self) -> bool:
4090        return any(expression.is_star for expression in self.expressions)
4091
4092    @property
4093    def selects(self) -> t.List[Expression]:
4094        return self.expressions
4095
4096
4097UNWRAPPED_QUERIES = (Select, SetOperation)
4098
4099
4100class Subquery(DerivedTable, Query):
4101    arg_types = {
4102        "this": True,
4103        "alias": False,
4104        "with": False,
4105        **QUERY_MODIFIERS,
4106    }
4107
4108    def unnest(self):
4109        """Returns the first non subquery."""
4110        expression = self
4111        while isinstance(expression, Subquery):
4112            expression = expression.this
4113        return expression
4114
4115    def unwrap(self) -> Subquery:
4116        expression = self
4117        while expression.same_parent and expression.is_wrapper:
4118            expression = t.cast(Subquery, expression.parent)
4119        return expression
4120
4121    def select(
4122        self,
4123        *expressions: t.Optional[ExpOrStr],
4124        append: bool = True,
4125        dialect: DialectType = None,
4126        copy: bool = True,
4127        **opts,
4128    ) -> Subquery:
4129        this = maybe_copy(self, copy)
4130        this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
4131        return this
4132
4133    @property
4134    def is_wrapper(self) -> bool:
4135        """
4136        Whether this Subquery acts as a simple wrapper around another expression.
4137
4138        SELECT * FROM (((SELECT * FROM t)))
4139                      ^
4140                      This corresponds to a "wrapper" Subquery node
4141        """
4142        return all(v is None for k, v in self.args.items() if k != "this")
4143
4144    @property
4145    def is_star(self) -> bool:
4146        return self.this.is_star
4147
4148    @property
4149    def output_name(self) -> str:
4150        return self.alias
4151
4152
4153class TableSample(Expression):
4154    arg_types = {
4155        "expressions": False,
4156        "method": False,
4157        "bucket_numerator": False,
4158        "bucket_denominator": False,
4159        "bucket_field": False,
4160        "percent": False,
4161        "rows": False,
4162        "size": False,
4163        "seed": False,
4164    }
4165
4166
4167class Tag(Expression):
4168    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
4169
4170    arg_types = {
4171        "this": False,
4172        "prefix": False,
4173        "postfix": False,
4174    }
4175
4176
4177# Represents both the standard SQL PIVOT operator and DuckDB's "simplified" PIVOT syntax
4178# https://duckdb.org/docs/sql/statements/pivot
4179class Pivot(Expression):
4180    arg_types = {
4181        "this": False,
4182        "alias": False,
4183        "expressions": False,
4184        "field": False,
4185        "unpivot": False,
4186        "using": False,
4187        "group": False,
4188        "columns": False,
4189        "include_nulls": False,
4190        "default_on_null": False,
4191    }
4192
4193    @property
4194    def unpivot(self) -> bool:
4195        return bool(self.args.get("unpivot"))
4196
4197
4198class Window(Condition):
4199    arg_types = {
4200        "this": True,
4201        "partition_by": False,
4202        "order": False,
4203        "spec": False,
4204        "alias": False,
4205        "over": False,
4206        "first": False,
4207    }
4208
4209
4210class WindowSpec(Expression):
4211    arg_types = {
4212        "kind": False,
4213        "start": False,
4214        "start_side": False,
4215        "end": False,
4216        "end_side": False,
4217    }
4218
4219
4220class PreWhere(Expression):
4221    pass
4222
4223
4224class Where(Expression):
4225    pass
4226
4227
4228class Star(Expression):
4229    arg_types = {"except": False, "replace": False, "rename": False}
4230
4231    @property
4232    def name(self) -> str:
4233        return "*"
4234
4235    @property
4236    def output_name(self) -> str:
4237        return self.name
4238
4239
4240class Parameter(Condition):
4241    arg_types = {"this": True, "expression": False}
4242
4243
4244class SessionParameter(Condition):
4245    arg_types = {"this": True, "kind": False}
4246
4247
4248class Placeholder(Condition):
4249    arg_types = {"this": False, "kind": False}
4250
4251    @property
4252    def name(self) -> str:
4253        return self.this or "?"
4254
4255
4256class Null(Condition):
4257    arg_types: t.Dict[str, t.Any] = {}
4258
4259    @property
4260    def name(self) -> str:
4261        return "NULL"
4262
4263    def to_py(self) -> Lit[None]:
4264        return None
4265
4266
4267class Boolean(Condition):
4268    def to_py(self) -> bool:
4269        return self.this
4270
4271
4272class DataTypeParam(Expression):
4273    arg_types = {"this": True, "expression": False}
4274
4275    @property
4276    def name(self) -> str:
4277        return self.this.name
4278
4279
4280# The `nullable` arg is helpful when transpiling types from other dialects to ClickHouse, which
4281# assumes non-nullable types by default. Values `None` and `True` mean the type is nullable.
4282class DataType(Expression):
4283    arg_types = {
4284        "this": True,
4285        "expressions": False,
4286        "nested": False,
4287        "values": False,
4288        "prefix": False,
4289        "kind": False,
4290        "nullable": False,
4291    }
4292
4293    class Type(AutoName):
4294        ARRAY = auto()
4295        AGGREGATEFUNCTION = auto()
4296        SIMPLEAGGREGATEFUNCTION = auto()
4297        BIGDECIMAL = auto()
4298        BIGINT = auto()
4299        BIGSERIAL = auto()
4300        BINARY = auto()
4301        BIT = auto()
4302        BOOLEAN = auto()
4303        BPCHAR = auto()
4304        CHAR = auto()
4305        DATE = auto()
4306        DATE32 = auto()
4307        DATEMULTIRANGE = auto()
4308        DATERANGE = auto()
4309        DATETIME = auto()
4310        DATETIME64 = auto()
4311        DECIMAL = auto()
4312        DECIMAL32 = auto()
4313        DECIMAL64 = auto()
4314        DECIMAL128 = auto()
4315        DECIMAL256 = auto()
4316        DOUBLE = auto()
4317        ENUM = auto()
4318        ENUM8 = auto()
4319        ENUM16 = auto()
4320        FIXEDSTRING = auto()
4321        FLOAT = auto()
4322        GEOGRAPHY = auto()
4323        GEOMETRY = auto()
4324        POINT = auto()
4325        RING = auto()
4326        LINESTRING = auto()
4327        MULTILINESTRING = auto()
4328        POLYGON = auto()
4329        MULTIPOLYGON = auto()
4330        HLLSKETCH = auto()
4331        HSTORE = auto()
4332        IMAGE = auto()
4333        INET = auto()
4334        INT = auto()
4335        INT128 = auto()
4336        INT256 = auto()
4337        INT4MULTIRANGE = auto()
4338        INT4RANGE = auto()
4339        INT8MULTIRANGE = auto()
4340        INT8RANGE = auto()
4341        INTERVAL = auto()
4342        IPADDRESS = auto()
4343        IPPREFIX = auto()
4344        IPV4 = auto()
4345        IPV6 = auto()
4346        JSON = auto()
4347        JSONB = auto()
4348        LIST = auto()
4349        LONGBLOB = auto()
4350        LONGTEXT = auto()
4351        LOWCARDINALITY = auto()
4352        MAP = auto()
4353        MEDIUMBLOB = auto()
4354        MEDIUMINT = auto()
4355        MEDIUMTEXT = auto()
4356        MONEY = auto()
4357        NAME = auto()
4358        NCHAR = auto()
4359        NESTED = auto()
4360        NULL = auto()
4361        NUMMULTIRANGE = auto()
4362        NUMRANGE = auto()
4363        NVARCHAR = auto()
4364        OBJECT = auto()
4365        RANGE = auto()
4366        ROWVERSION = auto()
4367        SERIAL = auto()
4368        SET = auto()
4369        SMALLINT = auto()
4370        SMALLMONEY = auto()
4371        SMALLSERIAL = auto()
4372        STRUCT = auto()
4373        SUPER = auto()
4374        TEXT = auto()
4375        TINYBLOB = auto()
4376        TINYTEXT = auto()
4377        TIME = auto()
4378        TIMETZ = auto()
4379        TIMESTAMP = auto()
4380        TIMESTAMPNTZ = auto()
4381        TIMESTAMPLTZ = auto()
4382        TIMESTAMPTZ = auto()
4383        TIMESTAMP_S = auto()
4384        TIMESTAMP_MS = auto()
4385        TIMESTAMP_NS = auto()
4386        TINYINT = auto()
4387        TSMULTIRANGE = auto()
4388        TSRANGE = auto()
4389        TSTZMULTIRANGE = auto()
4390        TSTZRANGE = auto()
4391        UBIGINT = auto()
4392        UINT = auto()
4393        UINT128 = auto()
4394        UINT256 = auto()
4395        UMEDIUMINT = auto()
4396        UDECIMAL = auto()
4397        UNION = auto()
4398        UNIQUEIDENTIFIER = auto()
4399        UNKNOWN = auto()  # Sentinel value, useful for type annotation
4400        USERDEFINED = "USER-DEFINED"
4401        USMALLINT = auto()
4402        UTINYINT = auto()
4403        UUID = auto()
4404        VARBINARY = auto()
4405        VARCHAR = auto()
4406        VARIANT = auto()
4407        VECTOR = auto()
4408        XML = auto()
4409        YEAR = auto()
4410        TDIGEST = auto()
4411
4412    STRUCT_TYPES = {
4413        Type.NESTED,
4414        Type.OBJECT,
4415        Type.STRUCT,
4416        Type.UNION,
4417    }
4418
4419    ARRAY_TYPES = {
4420        Type.ARRAY,
4421        Type.LIST,
4422    }
4423
4424    NESTED_TYPES = {
4425        *STRUCT_TYPES,
4426        *ARRAY_TYPES,
4427        Type.MAP,
4428    }
4429
4430    TEXT_TYPES = {
4431        Type.CHAR,
4432        Type.NCHAR,
4433        Type.NVARCHAR,
4434        Type.TEXT,
4435        Type.VARCHAR,
4436        Type.NAME,
4437    }
4438
4439    SIGNED_INTEGER_TYPES = {
4440        Type.BIGINT,
4441        Type.INT,
4442        Type.INT128,
4443        Type.INT256,
4444        Type.MEDIUMINT,
4445        Type.SMALLINT,
4446        Type.TINYINT,
4447    }
4448
4449    UNSIGNED_INTEGER_TYPES = {
4450        Type.UBIGINT,
4451        Type.UINT,
4452        Type.UINT128,
4453        Type.UINT256,
4454        Type.UMEDIUMINT,
4455        Type.USMALLINT,
4456        Type.UTINYINT,
4457    }
4458
4459    INTEGER_TYPES = {
4460        *SIGNED_INTEGER_TYPES,
4461        *UNSIGNED_INTEGER_TYPES,
4462        Type.BIT,
4463    }
4464
4465    FLOAT_TYPES = {
4466        Type.DOUBLE,
4467        Type.FLOAT,
4468    }
4469
4470    REAL_TYPES = {
4471        *FLOAT_TYPES,
4472        Type.BIGDECIMAL,
4473        Type.DECIMAL,
4474        Type.DECIMAL32,
4475        Type.DECIMAL64,
4476        Type.DECIMAL128,
4477        Type.DECIMAL256,
4478        Type.MONEY,
4479        Type.SMALLMONEY,
4480        Type.UDECIMAL,
4481    }
4482
4483    NUMERIC_TYPES = {
4484        *INTEGER_TYPES,
4485        *REAL_TYPES,
4486    }
4487
4488    TEMPORAL_TYPES = {
4489        Type.DATE,
4490        Type.DATE32,
4491        Type.DATETIME,
4492        Type.DATETIME64,
4493        Type.TIME,
4494        Type.TIMESTAMP,
4495        Type.TIMESTAMPNTZ,
4496        Type.TIMESTAMPLTZ,
4497        Type.TIMESTAMPTZ,
4498        Type.TIMESTAMP_MS,
4499        Type.TIMESTAMP_NS,
4500        Type.TIMESTAMP_S,
4501        Type.TIMETZ,
4502    }
4503
4504    @classmethod
4505    def build(
4506        cls,
4507        dtype: DATA_TYPE,
4508        dialect: DialectType = None,
4509        udt: bool = False,
4510        copy: bool = True,
4511        **kwargs,
4512    ) -> DataType:
4513        """
4514        Constructs a DataType object.
4515
4516        Args:
4517            dtype: the data type of interest.
4518            dialect: the dialect to use for parsing `dtype`, in case it's a string.
4519            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
4520                DataType, thus creating a user-defined type.
4521            copy: whether to copy the data type.
4522            kwargs: additional arguments to pass in the constructor of DataType.
4523
4524        Returns:
4525            The constructed DataType object.
4526        """
4527        from sqlglot import parse_one
4528
4529        if isinstance(dtype, str):
4530            if dtype.upper() == "UNKNOWN":
4531                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
4532
4533            try:
4534                data_type_exp = parse_one(
4535                    dtype, read=dialect, into=DataType, error_level=ErrorLevel.IGNORE
4536                )
4537            except ParseError:
4538                if udt:
4539                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
4540                raise
4541        elif isinstance(dtype, DataType.Type):
4542            data_type_exp = DataType(this=dtype)
4543        elif isinstance(dtype, DataType):
4544            return maybe_copy(dtype, copy)
4545        else:
4546            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
4547
4548        return DataType(**{**data_type_exp.args, **kwargs})
4549
4550    def is_type(self, *dtypes: DATA_TYPE, check_nullable: bool = False) -> bool:
4551        """
4552        Checks whether this DataType matches one of the provided data types. Nested types or precision
4553        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
4554
4555        Args:
4556            dtypes: the data types to compare this DataType to.
4557            check_nullable: whether to take the NULLABLE type constructor into account for the comparison.
4558                If false, it means that NULLABLE<INT> is equivalent to INT.
4559
4560        Returns:
4561            True, if and only if there is a type in `dtypes` which is equal to this DataType.
4562        """
4563        self_is_nullable = self.args.get("nullable")
4564        for dtype in dtypes:
4565            other_type = DataType.build(dtype, copy=False, udt=True)
4566            other_is_nullable = other_type.args.get("nullable")
4567            if (
4568                other_type.expressions
4569                or (check_nullable and (self_is_nullable or other_is_nullable))
4570                or self.this == DataType.Type.USERDEFINED
4571                or other_type.this == DataType.Type.USERDEFINED
4572            ):
4573                matches = self == other_type
4574            else:
4575                matches = self.this == other_type.this
4576
4577            if matches:
4578                return True
4579        return False
4580
4581
4582DATA_TYPE = t.Union[str, DataType, DataType.Type]
4583
4584
4585# https://www.postgresql.org/docs/15/datatype-pseudo.html
4586class PseudoType(DataType):
4587    arg_types = {"this": True}
4588
4589
4590# https://www.postgresql.org/docs/15/datatype-oid.html
4591class ObjectIdentifier(DataType):
4592    arg_types = {"this": True}
4593
4594
4595# WHERE x <OP> EXISTS|ALL|ANY|SOME(SELECT ...)
4596class SubqueryPredicate(Predicate):
4597    pass
4598
4599
4600class All(SubqueryPredicate):
4601    pass
4602
4603
4604class Any(SubqueryPredicate):
4605    pass
4606
4607
4608class Exists(SubqueryPredicate):
4609    pass
4610
4611
4612# Commands to interact with the databases or engines. For most of the command
4613# expressions we parse whatever comes after the command's name as a string.
4614class Command(Expression):
4615    arg_types = {"this": True, "expression": False}
4616
4617
4618class Transaction(Expression):
4619    arg_types = {"this": False, "modes": False, "mark": False}
4620
4621
4622class Commit(Expression):
4623    arg_types = {"chain": False, "this": False, "durability": False}
4624
4625
4626class Rollback(Expression):
4627    arg_types = {"savepoint": False, "this": False}
4628
4629
4630class Alter(Expression):
4631    arg_types = {
4632        "this": True,
4633        "kind": True,
4634        "actions": True,
4635        "exists": False,
4636        "only": False,
4637        "options": False,
4638        "cluster": False,
4639        "not_valid": False,
4640    }
4641
4642    @property
4643    def kind(self) -> t.Optional[str]:
4644        kind = self.args.get("kind")
4645        return kind and kind.upper()
4646
4647    @property
4648    def actions(self) -> t.List[Expression]:
4649        return self.args.get("actions") or []
4650
4651
4652class AddConstraint(Expression):
4653    arg_types = {"expressions": True}
4654
4655
4656class DropPartition(Expression):
4657    arg_types = {"expressions": True, "exists": False}
4658
4659
4660# https://clickhouse.com/docs/en/sql-reference/statements/alter/partition#replace-partition
4661class ReplacePartition(Expression):
4662    arg_types = {"expression": True, "source": True}
4663
4664
4665# Binary expressions like (ADD a b)
4666class Binary(Condition):
4667    arg_types = {"this": True, "expression": True}
4668
4669    @property
4670    def left(self) -> Expression:
4671        return self.this
4672
4673    @property
4674    def right(self) -> Expression:
4675        return self.expression
4676
4677
4678class Add(Binary):
4679    pass
4680
4681
4682class Connector(Binary):
4683    pass
4684
4685
4686class And(Connector):
4687    pass
4688
4689
4690class Or(Connector):
4691    pass
4692
4693
4694class BitwiseAnd(Binary):
4695    pass
4696
4697
4698class BitwiseLeftShift(Binary):
4699    pass
4700
4701
4702class BitwiseOr(Binary):
4703    pass
4704
4705
4706class BitwiseRightShift(Binary):
4707    pass
4708
4709
4710class BitwiseXor(Binary):
4711    pass
4712
4713
4714class Div(Binary):
4715    arg_types = {"this": True, "expression": True, "typed": False, "safe": False}
4716
4717
4718class Overlaps(Binary):
4719    pass
4720
4721
4722class Dot(Binary):
4723    @property
4724    def is_star(self) -> bool:
4725        return self.expression.is_star
4726
4727    @property
4728    def name(self) -> str:
4729        return self.expression.name
4730
4731    @property
4732    def output_name(self) -> str:
4733        return self.name
4734
4735    @classmethod
4736    def build(self, expressions: t.Sequence[Expression]) -> Dot:
4737        """Build a Dot object with a sequence of expressions."""
4738        if len(expressions) < 2:
4739            raise ValueError("Dot requires >= 2 expressions.")
4740
4741        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))
4742
4743    @property
4744    def parts(self) -> t.List[Expression]:
4745        """Return the parts of a table / column in order catalog, db, table."""
4746        this, *parts = self.flatten()
4747
4748        parts.reverse()
4749
4750        for arg in COLUMN_PARTS:
4751            part = this.args.get(arg)
4752
4753            if isinstance(part, Expression):
4754                parts.append(part)
4755
4756        parts.reverse()
4757        return parts
4758
4759
4760class DPipe(Binary):
4761    arg_types = {"this": True, "expression": True, "safe": False}
4762
4763
4764class EQ(Binary, Predicate):
4765    pass
4766
4767
4768class NullSafeEQ(Binary, Predicate):
4769    pass
4770
4771
4772class NullSafeNEQ(Binary, Predicate):
4773    pass
4774
4775
4776# Represents e.g. := in DuckDB which is mostly used for setting parameters
4777class PropertyEQ(Binary):
4778    pass
4779
4780
4781class Distance(Binary):
4782    pass
4783
4784
4785class Escape(Binary):
4786    pass
4787
4788
4789class Glob(Binary, Predicate):
4790    pass
4791
4792
4793class GT(Binary, Predicate):
4794    pass
4795
4796
4797class GTE(Binary, Predicate):
4798    pass
4799
4800
4801class ILike(Binary, Predicate):
4802    pass
4803
4804
4805class ILikeAny(Binary, Predicate):
4806    pass
4807
4808
4809class IntDiv(Binary):
4810    pass
4811
4812
4813class Is(Binary, Predicate):
4814    pass
4815
4816
4817class Kwarg(Binary):
4818    """Kwarg in special functions like func(kwarg => y)."""
4819
4820
4821class Like(Binary, Predicate):
4822    pass
4823
4824
4825class LikeAny(Binary, Predicate):
4826    pass
4827
4828
4829class LT(Binary, Predicate):
4830    pass
4831
4832
4833class LTE(Binary, Predicate):
4834    pass
4835
4836
4837class Mod(Binary):
4838    pass
4839
4840
4841class Mul(Binary):
4842    pass
4843
4844
4845class NEQ(Binary, Predicate):
4846    pass
4847
4848
4849# https://www.postgresql.org/docs/current/ddl-schemas.html#DDL-SCHEMAS-PATH
4850class Operator(Binary):
4851    arg_types = {"this": True, "operator": True, "expression": True}
4852
4853
4854class SimilarTo(Binary, Predicate):
4855    pass
4856
4857
4858class Slice(Binary):
4859    arg_types = {"this": False, "expression": False}
4860
4861
4862class Sub(Binary):
4863    pass
4864
4865
4866# Unary Expressions
4867# (NOT a)
4868class Unary(Condition):
4869    pass
4870
4871
4872class BitwiseNot(Unary):
4873    pass
4874
4875
4876class Not(Unary):
4877    pass
4878
4879
4880class Paren(Unary):
4881    @property
4882    def output_name(self) -> str:
4883        return self.this.name
4884
4885
4886class Neg(Unary):
4887    def to_py(self) -> int | Decimal:
4888        if self.is_number:
4889            return self.this.to_py() * -1
4890        return super().to_py()
4891
4892
4893class Alias(Expression):
4894    arg_types = {"this": True, "alias": False}
4895
4896    @property
4897    def output_name(self) -> str:
4898        return self.alias
4899
4900
4901# BigQuery requires the UNPIVOT column list aliases to be either strings or ints, but
4902# other dialects require identifiers. This enables us to transpile between them easily.
4903class PivotAlias(Alias):
4904    pass
4905
4906
4907# Represents Snowflake's ANY [ ORDER BY ... ] syntax
4908# https://docs.snowflake.com/en/sql-reference/constructs/pivot
4909class PivotAny(Expression):
4910    arg_types = {"this": False}
4911
4912
4913class Aliases(Expression):
4914    arg_types = {"this": True, "expressions": True}
4915
4916    @property
4917    def aliases(self):
4918        return self.expressions
4919
4920
4921# https://docs.aws.amazon.com/redshift/latest/dg/query-super.html
4922class AtIndex(Expression):
4923    arg_types = {"this": True, "expression": True}
4924
4925
4926class AtTimeZone(Expression):
4927    arg_types = {"this": True, "zone": True}
4928
4929
4930class FromTimeZone(Expression):
4931    arg_types = {"this": True, "zone": True}
4932
4933
4934class Between(Predicate):
4935    arg_types = {"this": True, "low": True, "high": True}
4936
4937
4938class Bracket(Condition):
4939    # https://cloud.google.com/bigquery/docs/reference/standard-sql/operators#array_subscript_operator
4940    arg_types = {
4941        "this": True,
4942        "expressions": True,
4943        "offset": False,
4944        "safe": False,
4945        "returns_list_for_maps": False,
4946    }
4947
4948    @property
4949    def output_name(self) -> str:
4950        if len(self.expressions) == 1:
4951            return self.expressions[0].output_name
4952
4953        return super().output_name
4954
4955
4956class Distinct(Expression):
4957    arg_types = {"expressions": False, "on": False}
4958
4959
4960class In(Predicate):
4961    arg_types = {
4962        "this": True,
4963        "expressions": False,
4964        "query": False,
4965        "unnest": False,
4966        "field": False,
4967        "is_global": False,
4968    }
4969
4970
4971# https://cloud.google.com/bigquery/docs/reference/standard-sql/procedural-language#for-in
4972class ForIn(Expression):
4973    arg_types = {"this": True, "expression": True}
4974
4975
4976class TimeUnit(Expression):
4977    """Automatically converts unit arg into a var."""
4978
4979    arg_types = {"unit": False}
4980
4981    UNABBREVIATED_UNIT_NAME = {
4982        "D": "DAY",
4983        "H": "HOUR",
4984        "M": "MINUTE",
4985        "MS": "MILLISECOND",
4986        "NS": "NANOSECOND",
4987        "Q": "QUARTER",
4988        "S": "SECOND",
4989        "US": "MICROSECOND",
4990        "W": "WEEK",
4991        "Y": "YEAR",
4992    }
4993
4994    VAR_LIKE = (Column, Literal, Var)
4995
4996    def __init__(self, **args):
4997        unit = args.get("unit")
4998        if isinstance(unit, self.VAR_LIKE):
4999            args["unit"] = Var(
5000                this=(self.UNABBREVIATED_UNIT_NAME.get(unit.name) or unit.name).upper()
5001            )
5002        elif isinstance(unit, Week):
5003            unit.set("this", Var(this=unit.this.name.upper()))
5004
5005        super().__init__(**args)
5006
5007    @property
5008    def unit(self) -> t.Optional[Var | IntervalSpan]:
5009        return self.args.get("unit")
5010
5011
5012class IntervalOp(TimeUnit):
5013    arg_types = {"unit": False, "expression": True}
5014
5015    def interval(self):
5016        return Interval(
5017            this=self.expression.copy(),
5018            unit=self.unit.copy() if self.unit else None,
5019        )
5020
5021
5022# https://www.oracletutorial.com/oracle-basics/oracle-interval/
5023# https://trino.io/docs/current/language/types.html#interval-day-to-second
5024# https://docs.databricks.com/en/sql/language-manual/data-types/interval-type.html
5025class IntervalSpan(DataType):
5026    arg_types = {"this": True, "expression": True}
5027
5028
5029class Interval(TimeUnit):
5030    arg_types = {"this": False, "unit": False}
5031
5032
5033class IgnoreNulls(Expression):
5034    pass
5035
5036
5037class RespectNulls(Expression):
5038    pass
5039
5040
5041# https://cloud.google.com/bigquery/docs/reference/standard-sql/aggregate-function-calls#max_min_clause
5042class HavingMax(Expression):
5043    arg_types = {"this": True, "expression": True, "max": True}
5044
5045
5046# Functions
5047class Func(Condition):
5048    """
5049    The base class for all function expressions.
5050
5051    Attributes:
5052        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
5053            treated as a variable length argument and the argument's value will be stored as a list.
5054        _sql_names (list): the SQL name (1st item in the list) and aliases (subsequent items) for this
5055            function expression. These values are used to map this node to a name during parsing as
5056            well as to provide the function's name during SQL string generation. By default the SQL
5057            name is set to the expression's class name transformed to snake case.
5058    """
5059
5060    is_var_len_args = False
5061
5062    @classmethod
5063    def from_arg_list(cls, args):
5064        if cls.is_var_len_args:
5065            all_arg_keys = list(cls.arg_types)
5066            # If this function supports variable length argument treat the last argument as such.
5067            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
5068            num_non_var = len(non_var_len_arg_keys)
5069
5070            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
5071            args_dict[all_arg_keys[-1]] = args[num_non_var:]
5072        else:
5073            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
5074
5075        return cls(**args_dict)
5076
5077    @classmethod
5078    def sql_names(cls):
5079        if cls is Func:
5080            raise NotImplementedError(
5081                "SQL name is only supported by concrete function implementations"
5082            )
5083        if "_sql_names" not in cls.__dict__:
5084            cls._sql_names = [camel_to_snake_case(cls.__name__)]
5085        return cls._sql_names
5086
5087    @classmethod
5088    def sql_name(cls):
5089        return cls.sql_names()[0]
5090
5091    @classmethod
5092    def default_parser_mappings(cls):
5093        return {name: cls.from_arg_list for name in cls.sql_names()}
5094
5095
5096class AggFunc(Func):
5097    pass
5098
5099
5100class ParameterizedAgg(AggFunc):
5101    arg_types = {"this": True, "expressions": True, "params": True}
5102
5103
5104class Abs(Func):
5105    pass
5106
5107
5108class ArgMax(AggFunc):
5109    arg_types = {"this": True, "expression": True, "count": False}
5110    _sql_names = ["ARG_MAX", "ARGMAX", "MAX_BY"]
5111
5112
5113class ArgMin(AggFunc):
5114    arg_types = {"this": True, "expression": True, "count": False}
5115    _sql_names = ["ARG_MIN", "ARGMIN", "MIN_BY"]
5116
5117
5118class ApproxTopK(AggFunc):
5119    arg_types = {"this": True, "expression": False, "counters": False}
5120
5121
5122class Flatten(Func):
5123    pass
5124
5125
5126# https://spark.apache.org/docs/latest/api/sql/index.html#transform
5127class Transform(Func):
5128    arg_types = {"this": True, "expression": True}
5129
5130
5131class Anonymous(Func):
5132    arg_types = {"this": True, "expressions": False}
5133    is_var_len_args = True
5134
5135    @property
5136    def name(self) -> str:
5137        return self.this if isinstance(self.this, str) else self.this.name
5138
5139
5140class AnonymousAggFunc(AggFunc):
5141    arg_types = {"this": True, "expressions": False}
5142    is_var_len_args = True
5143
5144
5145# https://clickhouse.com/docs/en/sql-reference/aggregate-functions/combinators
5146class CombinedAggFunc(AnonymousAggFunc):
5147    arg_types = {"this": True, "expressions": False, "parts": True}
5148
5149
5150class CombinedParameterizedAgg(ParameterizedAgg):
5151    arg_types = {"this": True, "expressions": True, "params": True, "parts": True}
5152
5153
5154# https://docs.snowflake.com/en/sql-reference/functions/hll
5155# https://docs.aws.amazon.com/redshift/latest/dg/r_HLL_function.html
5156class Hll(AggFunc):
5157    arg_types = {"this": True, "expressions": False}
5158    is_var_len_args = True
5159
5160
5161class ApproxDistinct(AggFunc):
5162    arg_types = {"this": True, "accuracy": False}
5163    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
5164
5165
5166class Apply(Func):
5167    arg_types = {"this": True, "expression": True}
5168
5169
5170class Array(Func):
5171    arg_types = {"expressions": False, "bracket_notation": False}
5172    is_var_len_args = True
5173
5174
5175# https://docs.snowflake.com/en/sql-reference/functions/to_array
5176class ToArray(Func):
5177    pass
5178
5179
5180# https://materialize.com/docs/sql/types/list/
5181class List(Func):
5182    arg_types = {"expressions": False}
5183    is_var_len_args = True
5184
5185
5186# String pad, kind True -> LPAD, False -> RPAD
5187class Pad(Func):
5188    arg_types = {"this": True, "expression": True, "fill_pattern": False, "is_left": True}
5189
5190
5191# https://docs.snowflake.com/en/sql-reference/functions/to_char
5192# https://docs.oracle.com/en/database/oracle/oracle-database/23/sqlrf/TO_CHAR-number.html
5193class ToChar(Func):
5194    arg_types = {"this": True, "format": False, "nlsparam": False}
5195
5196
5197# https://docs.snowflake.com/en/sql-reference/functions/to_decimal
5198# https://docs.oracle.com/en/database/oracle/oracle-database/23/sqlrf/TO_NUMBER.html
5199class ToNumber(Func):
5200    arg_types = {
5201        "this": True,
5202        "format": False,
5203        "nlsparam": False,
5204        "precision": False,
5205        "scale": False,
5206    }
5207
5208
5209# https://docs.snowflake.com/en/sql-reference/functions/to_double
5210class ToDouble(Func):
5211    arg_types = {
5212        "this": True,
5213        "format": False,
5214    }
5215
5216
5217class Columns(Func):
5218    arg_types = {"this": True, "unpack": False}
5219
5220
5221# https://learn.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver16#syntax
5222class Convert(Func):
5223    arg_types = {"this": True, "expression": True, "style": False}
5224
5225
5226class ConvertTimezone(Func):
5227    arg_types = {"source_tz": False, "target_tz": True, "timestamp": True}
5228
5229
5230class GenerateSeries(Func):
5231    arg_types = {"start": True, "end": True, "step": False, "is_end_exclusive": False}
5232
5233
5234# Postgres' GENERATE_SERIES function returns a row set, i.e. it implicitly explodes when it's
5235# used in a projection, so this expression is a helper that facilitates transpilation to other
5236# dialects. For example, we'd generate UNNEST(GENERATE_SERIES(...)) in DuckDB
5237class ExplodingGenerateSeries(GenerateSeries):
5238    pass
5239
5240
5241class ArrayAgg(AggFunc):
5242    arg_types = {"this": True, "nulls_excluded": False}
5243
5244
5245class ArrayUniqueAgg(AggFunc):
5246    pass
5247
5248
5249class ArrayAll(Func):
5250    arg_types = {"this": True, "expression": True}
5251
5252
5253# Represents Python's `any(f(x) for x in array)`, where `array` is `this` and `f` is `expression`
5254class ArrayAny(Func):
5255    arg_types = {"this": True, "expression": True}
5256
5257
5258class ArrayConcat(Func):
5259    _sql_names = ["ARRAY_CONCAT", "ARRAY_CAT"]
5260    arg_types = {"this": True, "expressions": False}
5261    is_var_len_args = True
5262
5263
5264class ArrayConstructCompact(Func):
5265    arg_types = {"expressions": True}
5266    is_var_len_args = True
5267
5268
5269class ArrayContains(Binary, Func):
5270    _sql_names = ["ARRAY_CONTAINS", "ARRAY_HAS"]
5271
5272
5273class ArrayContainsAll(Binary, Func):
5274    _sql_names = ["ARRAY_CONTAINS_ALL", "ARRAY_HAS_ALL"]
5275
5276
5277class ArrayFilter(Func):
5278    arg_types = {"this": True, "expression": True}
5279    _sql_names = ["FILTER", "ARRAY_FILTER"]
5280
5281
5282class ArrayToString(Func):
5283    arg_types = {"this": True, "expression": True, "null": False}
5284    _sql_names = ["ARRAY_TO_STRING", "ARRAY_JOIN"]
5285
5286
5287# https://cloud.google.com/bigquery/docs/reference/standard-sql/timestamp_functions#string
5288class String(Func):
5289    arg_types = {"this": True, "zone": False}
5290
5291
5292class StringToArray(Func):
5293    arg_types = {"this": True, "expression": True, "null": False}
5294    _sql_names = ["STRING_TO_ARRAY", "SPLIT_BY_STRING"]
5295
5296
5297class ArrayOverlaps(Binary, Func):
5298    pass
5299
5300
5301class ArraySize(Func):
5302    arg_types = {"this": True, "expression": False}
5303    _sql_names = ["ARRAY_SIZE", "ARRAY_LENGTH"]
5304
5305
5306class ArraySort(Func):
5307    arg_types = {"this": True, "expression": False}
5308
5309
5310class ArraySum(Func):
5311    arg_types = {"this": True, "expression": False}
5312
5313
5314class ArrayUnionAgg(AggFunc):
5315    pass
5316
5317
5318class Avg(AggFunc):
5319    pass
5320
5321
5322class AnyValue(AggFunc):
5323    pass
5324
5325
5326class Lag(AggFunc):
5327    arg_types = {"this": True, "offset": False, "default": False}
5328
5329
5330class Lead(AggFunc):
5331    arg_types = {"this": True, "offset": False, "default": False}
5332
5333
5334# some dialects have a distinction between first and first_value, usually first is an aggregate func
5335# and first_value is a window func
5336class First(AggFunc):
5337    pass
5338
5339
5340class Last(AggFunc):
5341    pass
5342
5343
5344class FirstValue(AggFunc):
5345    pass
5346
5347
5348class LastValue(AggFunc):
5349    pass
5350
5351
5352class NthValue(AggFunc):
5353    arg_types = {"this": True, "offset": True}
5354
5355
5356class Case(Func):
5357    arg_types = {"this": False, "ifs": True, "default": False}
5358
5359    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
5360        instance = maybe_copy(self, copy)
5361        instance.append(
5362            "ifs",
5363            If(
5364                this=maybe_parse(condition, copy=copy, **opts),
5365                true=maybe_parse(then, copy=copy, **opts),
5366            ),
5367        )
5368        return instance
5369
5370    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
5371        instance = maybe_copy(self, copy)
5372        instance.set("default", maybe_parse(condition, copy=copy, **opts))
5373        return instance
5374
5375
5376class Cast(Func):
5377    arg_types = {
5378        "this": True,
5379        "to": True,
5380        "format": False,
5381        "safe": False,
5382        "action": False,
5383    }
5384
5385    @property
5386    def name(self) -> str:
5387        return self.this.name
5388
5389    @property
5390    def to(self) -> DataType:
5391        return self.args["to"]
5392
5393    @property
5394    def output_name(self) -> str:
5395        return self.name
5396
5397    def is_type(self, *dtypes: DATA_TYPE) -> bool:
5398        """
5399        Checks whether this Cast's DataType matches one of the provided data types. Nested types
5400        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
5401        array<int> != array<float>.
5402
5403        Args:
5404            dtypes: the data types to compare this Cast's DataType to.
5405
5406        Returns:
5407            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
5408        """
5409        return self.to.is_type(*dtypes)
5410
5411
5412class TryCast(Cast):
5413    pass
5414
5415
5416class Try(Func):
5417    pass
5418
5419
5420class CastToStrType(Func):
5421    arg_types = {"this": True, "to": True}
5422
5423
5424class Collate(Binary, Func):
5425    pass
5426
5427
5428class Ceil(Func):
5429    arg_types = {"this": True, "decimals": False}
5430    _sql_names = ["CEIL", "CEILING"]
5431
5432
5433class Coalesce(Func):
5434    arg_types = {"this": True, "expressions": False, "is_nvl": False}
5435    is_var_len_args = True
5436    _sql_names = ["COALESCE", "IFNULL", "NVL"]
5437
5438
5439class Chr(Func):
5440    arg_types = {"expressions": True, "charset": False}
5441    is_var_len_args = True
5442    _sql_names = ["CHR", "CHAR"]
5443
5444
5445class Concat(Func):
5446    arg_types = {"expressions": True, "safe": False, "coalesce": False}
5447    is_var_len_args = True
5448
5449
5450class ConcatWs(Concat):
5451    _sql_names = ["CONCAT_WS"]
5452
5453
5454# https://docs.oracle.com/cd/B13789_01/server.101/b10759/operators004.htm#i1035022
5455class ConnectByRoot(Func):
5456    pass
5457
5458
5459class Count(AggFunc):
5460    arg_types = {"this": False, "expressions": False, "big_int": False}
5461    is_var_len_args = True
5462
5463
5464class CountIf(AggFunc):
5465    _sql_names = ["COUNT_IF", "COUNTIF"]
5466
5467
5468# cube root
5469class Cbrt(Func):
5470    pass
5471
5472
5473class CurrentDate(Func):
5474    arg_types = {"this": False}
5475
5476
5477class CurrentDatetime(Func):
5478    arg_types = {"this": False}
5479
5480
5481class CurrentTime(Func):
5482    arg_types = {"this": False}
5483
5484
5485class CurrentTimestamp(Func):
5486    arg_types = {"this": False, "sysdate": False}
5487
5488
5489class CurrentUser(Func):
5490    arg_types = {"this": False}
5491
5492
5493class DateAdd(Func, IntervalOp):
5494    arg_types = {"this": True, "expression": True, "unit": False}
5495
5496
5497class DateSub(Func, IntervalOp):
5498    arg_types = {"this": True, "expression": True, "unit": False}
5499
5500
5501class DateDiff(Func, TimeUnit):
5502    _sql_names = ["DATEDIFF", "DATE_DIFF"]
5503    arg_types = {"this": True, "expression": True, "unit": False}
5504
5505
5506class DateTrunc(Func):
5507    arg_types = {"unit": True, "this": True, "zone": False}
5508
5509    def __init__(self, **args):
5510        unit = args.get("unit")
5511        if isinstance(unit, TimeUnit.VAR_LIKE):
5512            args["unit"] = Literal.string(
5513                (TimeUnit.UNABBREVIATED_UNIT_NAME.get(unit.name) or unit.name).upper()
5514            )
5515        elif isinstance(unit, Week):
5516            unit.set("this", Literal.string(unit.this.name.upper()))
5517
5518        super().__init__(**args)
5519
5520    @property
5521    def unit(self) -> Expression:
5522        return self.args["unit"]
5523
5524
5525# https://cloud.google.com/bigquery/docs/reference/standard-sql/datetime_functions#datetime
5526# expression can either be time_expr or time_zone
5527class Datetime(Func):
5528    arg_types = {"this": True, "expression": False}
5529
5530
5531class DatetimeAdd(Func, IntervalOp):
5532    arg_types = {"this": True, "expression": True, "unit": False}
5533
5534
5535class DatetimeSub(Func, IntervalOp):
5536    arg_types = {"this": True, "expression": True, "unit": False}
5537
5538
5539class DatetimeDiff(Func, TimeUnit):
5540    arg_types = {"this": True, "expression": True, "unit": False}
5541
5542
5543class DatetimeTrunc(Func, TimeUnit):
5544    arg_types = {"this": True, "unit": True, "zone": False}
5545
5546
5547class DayOfWeek(Func):
5548    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
5549
5550
5551# https://duckdb.org/docs/sql/functions/datepart.html#part-specifiers-only-usable-as-date-part-specifiers
5552# ISO day of week function in duckdb is ISODOW
5553class DayOfWeekIso(Func):
5554    _sql_names = ["DAYOFWEEK_ISO", "ISODOW"]
5555
5556
5557class DayOfMonth(Func):
5558    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
5559
5560
5561class DayOfYear(Func):
5562    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
5563
5564
5565class ToDays(Func):
5566    pass
5567
5568
5569class WeekOfYear(Func):
5570    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
5571
5572
5573class MonthsBetween(Func):
5574    arg_types = {"this": True, "expression": True, "roundoff": False}
5575
5576
5577class LastDay(Func, TimeUnit):
5578    _sql_names = ["LAST_DAY", "LAST_DAY_OF_MONTH"]
5579    arg_types = {"this": True, "unit": False}
5580
5581
5582class Extract(Func):
5583    arg_types = {"this": True, "expression": True}
5584
5585
5586class Timestamp(Func):
5587    arg_types = {"this": False, "zone": False, "with_tz": False}
5588
5589
5590class TimestampAdd(Func, TimeUnit):
5591    arg_types = {"this": True, "expression": True, "unit": False}
5592
5593
5594class TimestampSub(Func, TimeUnit):
5595    arg_types = {"this": True, "expression": True, "unit": False}
5596
5597
5598class TimestampDiff(Func, TimeUnit):
5599    _sql_names = ["TIMESTAMPDIFF", "TIMESTAMP_DIFF"]
5600    arg_types = {"this": True, "expression": True, "unit": False}
5601
5602
5603class TimestampTrunc(Func, TimeUnit):
5604    arg_types = {"this": True, "unit": True, "zone": False}
5605
5606
5607class TimeAdd(Func, TimeUnit):
5608    arg_types = {"this": True, "expression": True, "unit": False}
5609
5610
5611class TimeSub(Func, TimeUnit):
5612    arg_types = {"this": True, "expression": True, "unit": False}
5613
5614
5615class TimeDiff(Func, TimeUnit):
5616    arg_types = {"this": True, "expression": True, "unit": False}
5617
5618
5619class TimeTrunc(Func, TimeUnit):
5620    arg_types = {"this": True, "unit": True, "zone": False}
5621
5622
5623class DateFromParts(Func):
5624    _sql_names = ["DATE_FROM_PARTS", "DATEFROMPARTS"]
5625    arg_types = {"year": True, "month": True, "day": True}
5626
5627
5628class TimeFromParts(Func):
5629    _sql_names = ["TIME_FROM_PARTS", "TIMEFROMPARTS"]
5630    arg_types = {
5631        "hour": True,
5632        "min": True,
5633        "sec": True,
5634        "nano": False,
5635        "fractions": False,
5636        "precision": False,
5637    }
5638
5639
5640class DateStrToDate(Func):
5641    pass
5642
5643
5644class DateToDateStr(Func):
5645    pass
5646
5647
5648class DateToDi(Func):
5649    pass
5650
5651
5652# https://cloud.google.com/bigquery/docs/reference/standard-sql/date_functions#date
5653class Date(Func):
5654    arg_types = {"this": False, "zone": False, "expressions": False}
5655    is_var_len_args = True
5656
5657
5658class Day(Func):
5659    pass
5660
5661
5662class Decode(Func):
5663    arg_types = {"this": True, "charset": True, "replace": False}
5664
5665
5666class DiToDate(Func):
5667    pass
5668
5669
5670class Encode(Func):
5671    arg_types = {"this": True, "charset": True}
5672
5673
5674class Exp(Func):
5675    pass
5676
5677
5678# https://docs.snowflake.com/en/sql-reference/functions/flatten
5679class Explode(Func, UDTF):
5680    arg_types = {"this": True, "expressions": False}
5681    is_var_len_args = True
5682
5683
5684# https://spark.apache.org/docs/latest/api/sql/#inline
5685class Inline(Func):
5686    pass
5687
5688
5689class ExplodeOuter(Explode):
5690    pass
5691
5692
5693class Posexplode(Explode):
5694    pass
5695
5696
5697class PosexplodeOuter(Posexplode, ExplodeOuter):
5698    pass
5699
5700
5701class Unnest(Func, UDTF):
5702    arg_types = {
5703        "expressions": True,
5704        "alias": False,
5705        "offset": False,
5706        "explode_array": False,
5707    }
5708
5709    @property
5710    def selects(self) -> t.List[Expression]:
5711        columns = super().selects
5712        offset = self.args.get("offset")
5713        if offset:
5714            columns = columns + [to_identifier("offset") if offset is True else offset]
5715        return columns
5716
5717
5718class Floor(Func):
5719    arg_types = {"this": True, "decimals": False}
5720
5721
5722class FromBase64(Func):
5723    pass
5724
5725
5726class ToBase64(Func):
5727    pass
5728
5729
5730# https://trino.io/docs/current/functions/datetime.html#from_iso8601_timestamp
5731class FromISO8601Timestamp(Func):
5732    _sql_names = ["FROM_ISO8601_TIMESTAMP"]
5733
5734
5735class GapFill(Func):
5736    arg_types = {
5737        "this": True,
5738        "ts_column": True,
5739        "bucket_width": True,
5740        "partitioning_columns": False,
5741        "value_columns": False,
5742        "origin": False,
5743        "ignore_nulls": False,
5744    }
5745
5746
5747# https://cloud.google.com/bigquery/docs/reference/standard-sql/array_functions#generate_date_array
5748class GenerateDateArray(Func):
5749    arg_types = {"start": True, "end": True, "step": False}
5750
5751
5752# https://cloud.google.com/bigquery/docs/reference/standard-sql/array_functions#generate_timestamp_array
5753class GenerateTimestampArray(Func):
5754    arg_types = {"start": True, "end": True, "step": True}
5755
5756
5757class Greatest(Func):
5758    arg_types = {"this": True, "expressions": False}
5759    is_var_len_args = True
5760
5761
5762class GroupConcat(AggFunc):
5763    arg_types = {"this": True, "separator": False}
5764
5765
5766class Hex(Func):
5767    pass
5768
5769
5770class LowerHex(Hex):
5771    pass
5772
5773
5774class Xor(Connector, Func):
5775    arg_types = {"this": False, "expression": False, "expressions": False}
5776
5777
5778class If(Func):
5779    arg_types = {"this": True, "true": True, "false": False}
5780    _sql_names = ["IF", "IIF"]
5781
5782
5783class Nullif(Func):
5784    arg_types = {"this": True, "expression": True}
5785
5786
5787class Initcap(Func):
5788    arg_types = {"this": True, "expression": False}
5789
5790
5791class IsNan(Func):
5792    _sql_names = ["IS_NAN", "ISNAN"]
5793
5794
5795class IsInf(Func):
5796    _sql_names = ["IS_INF", "ISINF"]
5797
5798
5799# https://www.postgresql.org/docs/current/functions-json.html
5800class JSON(Expression):
5801    arg_types = {"this": False, "with": False, "unique": False}
5802
5803
5804class JSONPath(Expression):
5805    arg_types = {"expressions": True, "escape": False}
5806
5807    @property
5808    def output_name(self) -> str:
5809        last_segment = self.expressions[-1].this
5810        return last_segment if isinstance(last_segment, str) else ""
5811
5812
5813class JSONPathPart(Expression):
5814    arg_types = {}
5815
5816
5817class JSONPathFilter(JSONPathPart):
5818    arg_types = {"this": True}
5819
5820
5821class JSONPathKey(JSONPathPart):
5822    arg_types = {"this": True}
5823
5824
5825class JSONPathRecursive(JSONPathPart):
5826    arg_types = {"this": False}
5827
5828
5829class JSONPathRoot(JSONPathPart):
5830    pass
5831
5832
5833class JSONPathScript(JSONPathPart):
5834    arg_types = {"this": True}
5835
5836
5837class JSONPathSlice(JSONPathPart):
5838    arg_types = {"start": False, "end": False, "step": False}
5839
5840
5841class JSONPathSelector(JSONPathPart):
5842    arg_types = {"this": True}
5843
5844
5845class JSONPathSubscript(JSONPathPart):
5846    arg_types = {"this": True}
5847
5848
5849class JSONPathUnion(JSONPathPart):
5850    arg_types = {"expressions": True}
5851
5852
5853class JSONPathWildcard(JSONPathPart):
5854    pass
5855
5856
5857class FormatJson(Expression):
5858    pass
5859
5860
5861class JSONKeyValue(Expression):
5862    arg_types = {"this": True, "expression": True}
5863
5864
5865class JSONObject(Func):
5866    arg_types = {
5867        "expressions": False,
5868        "null_handling": False,
5869        "unique_keys": False,
5870        "return_type": False,
5871        "encoding": False,
5872    }
5873
5874
5875class JSONObjectAgg(AggFunc):
5876    arg_types = {
5877        "expressions": False,
5878        "null_handling": False,
5879        "unique_keys": False,
5880        "return_type": False,
5881        "encoding": False,
5882    }
5883
5884
5885# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_ARRAY.html
5886class JSONArray(Func):
5887    arg_types = {
5888        "expressions": True,
5889        "null_handling": False,
5890        "return_type": False,
5891        "strict": False,
5892    }
5893
5894
5895# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_ARRAYAGG.html
5896class JSONArrayAgg(Func):
5897    arg_types = {
5898        "this": True,
5899        "order": False,
5900        "null_handling": False,
5901        "return_type": False,
5902        "strict": False,
5903    }
5904
5905
5906class JSONExists(Func):
5907    arg_types = {"this": True, "path": True, "passing": False, "on_condition": False}
5908
5909
5910# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_TABLE.html
5911# Note: parsing of JSON column definitions is currently incomplete.
5912class JSONColumnDef(Expression):
5913    arg_types = {"this": False, "kind": False, "path": False, "nested_schema": False}
5914
5915
5916class JSONSchema(Expression):
5917    arg_types = {"expressions": True}
5918
5919
5920# https://dev.mysql.com/doc/refman/8.4/en/json-search-functions.html#function_json-value
5921class JSONValue(Expression):
5922    arg_types = {
5923        "this": True,
5924        "path": True,
5925        "returning": False,
5926        "on_condition": False,
5927    }
5928
5929
5930# # https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_TABLE.html
5931class JSONTable(Func):
5932    arg_types = {
5933        "this": True,
5934        "schema": True,
5935        "path": False,
5936        "error_handling": False,
5937        "empty_handling": False,
5938    }
5939
5940
5941# https://docs.snowflake.com/en/sql-reference/functions/object_insert
5942class ObjectInsert(Func):
5943    arg_types = {
5944        "this": True,
5945        "key": True,
5946        "value": True,
5947        "update_flag": False,
5948    }
5949
5950
5951class OpenJSONColumnDef(Expression):
5952    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
5953
5954
5955class OpenJSON(Func):
5956    arg_types = {"this": True, "path": False, "expressions": False}
5957
5958
5959class JSONBContains(Binary, Func):
5960    _sql_names = ["JSONB_CONTAINS"]
5961
5962
5963class JSONExtract(Binary, Func):
5964    arg_types = {
5965        "this": True,
5966        "expression": True,
5967        "only_json_types": False,
5968        "expressions": False,
5969        "variant_extract": False,
5970        "json_query": False,
5971        "option": False,
5972    }
5973    _sql_names = ["JSON_EXTRACT"]
5974    is_var_len_args = True
5975
5976    @property
5977    def output_name(self) -> str:
5978        return self.expression.output_name if not self.expressions else ""
5979
5980
5981class JSONExtractScalar(Binary, Func):
5982    arg_types = {"this": True, "expression": True, "only_json_types": False, "expressions": False}
5983    _sql_names = ["JSON_EXTRACT_SCALAR"]
5984    is_var_len_args = True
5985
5986    @property
5987    def output_name(self) -> str:
5988        return self.expression.output_name
5989
5990
5991class JSONBExtract(Binary, Func):
5992    _sql_names = ["JSONB_EXTRACT"]
5993
5994
5995class JSONBExtractScalar(Binary, Func):
5996    _sql_names = ["JSONB_EXTRACT_SCALAR"]
5997
5998
5999class JSONFormat(Func):
6000    arg_types = {"this": False, "options": False}
6001    _sql_names = ["JSON_FORMAT"]
6002
6003
6004# https://dev.mysql.com/doc/refman/8.0/en/json-search-functions.html#operator_member-of
6005class JSONArrayContains(Binary, Predicate, Func):
6006    _sql_names = ["JSON_ARRAY_CONTAINS"]
6007
6008
6009class ParseJSON(Func):
6010    # BigQuery, Snowflake have PARSE_JSON, Presto has JSON_PARSE
6011    # Snowflake also has TRY_PARSE_JSON, which is represented using `safe`
6012    _sql_names = ["PARSE_JSON", "JSON_PARSE"]
6013    arg_types = {"this": True, "expression": False, "safe": False}
6014
6015
6016class Least(Func):
6017    arg_types = {"this": True, "expressions": False}
6018    is_var_len_args = True
6019
6020
6021class Left(Func):
6022    arg_types = {"this": True, "expression": True}
6023
6024
6025class Right(Func):
6026    arg_types = {"this": True, "expression": True}
6027
6028
6029class Length(Func):
6030    arg_types = {"this": True, "binary": False}
6031    _sql_names = ["LENGTH", "LEN"]
6032
6033
6034class Levenshtein(Func):
6035    arg_types = {
6036        "this": True,
6037        "expression": False,
6038        "ins_cost": False,
6039        "del_cost": False,
6040        "sub_cost": False,
6041        "max_dist": False,
6042    }
6043
6044
6045class Ln(Func):
6046    pass
6047
6048
6049class Log(Func):
6050    arg_types = {"this": True, "expression": False}
6051
6052
6053class LogicalOr(AggFunc):
6054    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
6055
6056
6057class LogicalAnd(AggFunc):
6058    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
6059
6060
6061class Lower(Func):
6062    _sql_names = ["LOWER", "LCASE"]
6063
6064
6065class Map(Func):
6066    arg_types = {"keys": False, "values": False}
6067
6068    @property
6069    def keys(self) -> t.List[Expression]:
6070        keys = self.args.get("keys")
6071        return keys.expressions if keys else []
6072
6073    @property
6074    def values(self) -> t.List[Expression]:
6075        values = self.args.get("values")
6076        return values.expressions if values else []
6077
6078
6079# Represents the MAP {...} syntax in DuckDB - basically convert a struct to a MAP
6080class ToMap(Func):
6081    pass
6082
6083
6084class MapFromEntries(Func):
6085    pass
6086
6087
6088# https://learn.microsoft.com/en-us/sql/t-sql/language-elements/scope-resolution-operator-transact-sql?view=sql-server-ver16
6089class ScopeResolution(Expression):
6090    arg_types = {"this": False, "expression": True}
6091
6092
6093class Stream(Expression):
6094    pass
6095
6096
6097class StarMap(Func):
6098    pass
6099
6100
6101class VarMap(Func):
6102    arg_types = {"keys": True, "values": True}
6103    is_var_len_args = True
6104
6105    @property
6106    def keys(self) -> t.List[Expression]:
6107        return self.args["keys"].expressions
6108
6109    @property
6110    def values(self) -> t.List[Expression]:
6111        return self.args["values"].expressions
6112
6113
6114# https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
6115class MatchAgainst(Func):
6116    arg_types = {"this": True, "expressions": True, "modifier": False}
6117
6118
6119class Max(AggFunc):
6120    arg_types = {"this": True, "expressions": False}
6121    is_var_len_args = True
6122
6123
6124class MD5(Func):
6125    _sql_names = ["MD5"]
6126
6127
6128# Represents the variant of the MD5 function that returns a binary value
6129class MD5Digest(Func):
6130    _sql_names = ["MD5_DIGEST"]
6131
6132
6133class Min(AggFunc):
6134    arg_types = {"this": True, "expressions": False}
6135    is_var_len_args = True
6136
6137
6138class Month(Func):
6139    pass
6140
6141
6142class AddMonths(Func):
6143    arg_types = {"this": True, "expression": True}
6144
6145
6146class Nvl2(Func):
6147    arg_types = {"this": True, "true": True, "false": False}
6148
6149
6150class Normalize(Func):
6151    arg_types = {"this": True, "form": False}
6152
6153
6154class Overlay(Func):
6155    arg_types = {"this": True, "expression": True, "from": True, "for": False}
6156
6157
6158# https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict#mlpredict_function
6159class Predict(Func):
6160    arg_types = {"this": True, "expression": True, "params_struct": False}
6161
6162
6163class Pow(Binary, Func):
6164    _sql_names = ["POWER", "POW"]
6165
6166
6167class PercentileCont(AggFunc):
6168    arg_types = {"this": True, "expression": False}
6169
6170
6171class PercentileDisc(AggFunc):
6172    arg_types = {"this": True, "expression": False}
6173
6174
6175class Quantile(AggFunc):
6176    arg_types = {"this": True, "quantile": True}
6177
6178
6179class ApproxQuantile(Quantile):
6180    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
6181
6182
6183class Quarter(Func):
6184    pass
6185
6186
6187# https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/SQL-Functions-Expressions-and-Predicates/Arithmetic-Trigonometric-Hyperbolic-Operators/Functions/RANDOM/RANDOM-Function-Syntax
6188# teradata lower and upper bounds
6189class Rand(Func):
6190    _sql_names = ["RAND", "RANDOM"]
6191    arg_types = {"this": False, "lower": False, "upper": False}
6192
6193
6194class Randn(Func):
6195    arg_types = {"this": False}
6196
6197
6198class RangeN(Func):
6199    arg_types = {"this": True, "expressions": True, "each": False}
6200
6201
6202class ReadCSV(Func):
6203    _sql_names = ["READ_CSV"]
6204    is_var_len_args = True
6205    arg_types = {"this": True, "expressions": False}
6206
6207
6208class Reduce(Func):
6209    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
6210
6211
6212class RegexpExtract(Func):
6213    arg_types = {
6214        "this": True,
6215        "expression": True,
6216        "position": False,
6217        "occurrence": False,
6218        "parameters": False,
6219        "group": False,
6220    }
6221
6222
6223class RegexpReplace(Func):
6224    arg_types = {
6225        "this": True,
6226        "expression": True,
6227        "replacement": False,
6228        "position": False,
6229        "occurrence": False,
6230        "modifiers": False,
6231    }
6232
6233
6234class RegexpLike(Binary, Func):
6235    arg_types = {"this": True, "expression": True, "flag": False}
6236
6237
6238class RegexpILike(Binary, Func):
6239    arg_types = {"this": True, "expression": True, "flag": False}
6240
6241
6242# https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.split.html
6243# limit is the number of times a pattern is applied
6244class RegexpSplit(Func):
6245    arg_types = {"this": True, "expression": True, "limit": False}
6246
6247
6248class Repeat(Func):
6249    arg_types = {"this": True, "times": True}
6250
6251
6252# https://learn.microsoft.com/en-us/sql/t-sql/functions/round-transact-sql?view=sql-server-ver16
6253# tsql third argument function == trunctaion if not 0
6254class Round(Func):
6255    arg_types = {"this": True, "decimals": False, "truncate": False}
6256
6257
6258class RowNumber(Func):
6259    arg_types: t.Dict[str, t.Any] = {}
6260
6261
6262class SafeDivide(Func):
6263    arg_types = {"this": True, "expression": True}
6264
6265
6266class SHA(Func):
6267    _sql_names = ["SHA", "SHA1"]
6268
6269
6270class SHA2(Func):
6271    _sql_names = ["SHA2"]
6272    arg_types = {"this": True, "length": False}
6273
6274
6275class Sign(Func):
6276    _sql_names = ["SIGN", "SIGNUM"]
6277
6278
6279class SortArray(Func):
6280    arg_types = {"this": True, "asc": False}
6281
6282
6283class Split(Func):
6284    arg_types = {"this": True, "expression": True, "limit": False}
6285
6286
6287# https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.split_part.html
6288class SplitPart(Func):
6289    arg_types = {"this": True, "delimiter": True, "part_index": True}
6290
6291
6292# Start may be omitted in the case of postgres
6293# https://www.postgresql.org/docs/9.1/functions-string.html @ Table 9-6
6294class Substring(Func):
6295    _sql_names = ["SUBSTRING", "SUBSTR"]
6296    arg_types = {"this": True, "start": False, "length": False}
6297
6298
6299class StandardHash(Func):
6300    arg_types = {"this": True, "expression": False}
6301
6302
6303class StartsWith(Func):
6304    _sql_names = ["STARTS_WITH", "STARTSWITH"]
6305    arg_types = {"this": True, "expression": True}
6306
6307
6308class StrPosition(Func):
6309    arg_types = {
6310        "this": True,
6311        "substr": True,
6312        "position": False,
6313        "instance": False,
6314    }
6315
6316
6317class StrToDate(Func):
6318    arg_types = {"this": True, "format": False, "safe": False}
6319
6320
6321class StrToTime(Func):
6322    arg_types = {"this": True, "format": True, "zone": False, "safe": False}
6323
6324
6325# Spark allows unix_timestamp()
6326# https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.unix_timestamp.html
6327class StrToUnix(Func):
6328    arg_types = {"this": False, "format": False}
6329
6330
6331# https://prestodb.io/docs/current/functions/string.html
6332# https://spark.apache.org/docs/latest/api/sql/index.html#str_to_map
6333class StrToMap(Func):
6334    arg_types = {
6335        "this": True,
6336        "pair_delim": False,
6337        "key_value_delim": False,
6338        "duplicate_resolution_callback": False,
6339    }
6340
6341
6342class NumberToStr(Func):
6343    arg_types = {"this": True, "format": True, "culture": False}
6344
6345
6346class FromBase(Func):
6347    arg_types = {"this": True, "expression": True}
6348
6349
6350class Struct(Func):
6351    arg_types = {"expressions": False}
6352    is_var_len_args = True
6353
6354
6355class StructExtract(Func):
6356    arg_types = {"this": True, "expression": True}
6357
6358
6359# https://learn.microsoft.com/en-us/sql/t-sql/functions/stuff-transact-sql?view=sql-server-ver16
6360# https://docs.snowflake.com/en/sql-reference/functions/insert
6361class Stuff(Func):
6362    _sql_names = ["STUFF", "INSERT"]
6363    arg_types = {"this": True, "start": True, "length": True, "expression": True}
6364
6365
6366class Sum(AggFunc):
6367    pass
6368
6369
6370class Sqrt(Func):
6371    pass
6372
6373
6374class Stddev(AggFunc):
6375    _sql_names = ["STDDEV", "STDEV"]
6376
6377
6378class StddevPop(AggFunc):
6379    pass
6380
6381
6382class StddevSamp(AggFunc):
6383    pass
6384
6385
6386# https://cloud.google.com/bigquery/docs/reference/standard-sql/time_functions#time
6387class Time(Func):
6388    arg_types = {"this": False, "zone": False}
6389
6390
6391class TimeToStr(Func):
6392    arg_types = {"this": True, "format": True, "culture": False, "zone": False}
6393
6394
6395class TimeToTimeStr(Func):
6396    pass
6397
6398
6399class TimeToUnix(Func):
6400    pass
6401
6402
6403class TimeStrToDate(Func):
6404    pass
6405
6406
6407class TimeStrToTime(Func):
6408    arg_types = {"this": True, "zone": False}
6409
6410
6411class TimeStrToUnix(Func):
6412    pass
6413
6414
6415class Trim(Func):
6416    arg_types = {
6417        "this": True,
6418        "expression": False,
6419        "position": False,
6420        "collation": False,
6421    }
6422
6423
6424class TsOrDsAdd(Func, TimeUnit):
6425    # return_type is used to correctly cast the arguments of this expression when transpiling it
6426    arg_types = {"this": True, "expression": True, "unit": False, "return_type": False}
6427
6428    @property
6429    def return_type(self) -> DataType:
6430        return DataType.build(self.args.get("return_type") or DataType.Type.DATE)
6431
6432
6433class TsOrDsDiff(Func, TimeUnit):
6434    arg_types = {"this": True, "expression": True, "unit": False}
6435
6436
6437class TsOrDsToDateStr(Func):
6438    pass
6439
6440
6441class TsOrDsToDate(Func):
6442    arg_types = {"this": True, "format": False, "safe": False}
6443
6444
6445class TsOrDsToTime(Func):
6446    pass
6447
6448
6449class TsOrDsToTimestamp(Func):
6450    pass
6451
6452
6453class TsOrDiToDi(Func):
6454    pass
6455
6456
6457class Unhex(Func):
6458    pass
6459
6460
6461# https://cloud.google.com/bigquery/docs/reference/standard-sql/date_functions#unix_date
6462class UnixDate(Func):
6463    pass
6464
6465
6466class UnixToStr(Func):
6467    arg_types = {"this": True, "format": False}
6468
6469
6470# https://prestodb.io/docs/current/functions/datetime.html
6471# presto has weird zone/hours/minutes
6472class UnixToTime(Func):
6473    arg_types = {
6474        "this": True,
6475        "scale": False,
6476        "zone": False,
6477        "hours": False,
6478        "minutes": False,
6479        "format": False,
6480    }
6481
6482    SECONDS = Literal.number(0)
6483    DECIS = Literal.number(1)
6484    CENTIS = Literal.number(2)
6485    MILLIS = Literal.number(3)
6486    DECIMILLIS = Literal.number(4)
6487    CENTIMILLIS = Literal.number(5)
6488    MICROS = Literal.number(6)
6489    DECIMICROS = Literal.number(7)
6490    CENTIMICROS = Literal.number(8)
6491    NANOS = Literal.number(9)
6492
6493
6494class UnixToTimeStr(Func):
6495    pass
6496
6497
6498class Uuid(Func):
6499    _sql_names = ["UUID", "GEN_RANDOM_UUID", "GENERATE_UUID", "UUID_STRING"]
6500
6501    arg_types = {"this": False, "name": False}
6502
6503
6504class TimestampFromParts(Func):
6505    _sql_names = ["TIMESTAMP_FROM_PARTS", "TIMESTAMPFROMPARTS"]
6506    arg_types = {
6507        "year": True,
6508        "month": True,
6509        "day": True,
6510        "hour": True,
6511        "min": True,
6512        "sec": True,
6513        "nano": False,
6514        "zone": False,
6515        "milli": False,
6516    }
6517
6518
6519class Upper(Func):
6520    _sql_names = ["UPPER", "UCASE"]
6521
6522
6523class Corr(Binary, AggFunc):
6524    pass
6525
6526
6527class Variance(AggFunc):
6528    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
6529
6530
6531class VariancePop(AggFunc):
6532    _sql_names = ["VARIANCE_POP", "VAR_POP"]
6533
6534
6535class CovarSamp(Binary, AggFunc):
6536    pass
6537
6538
6539class CovarPop(Binary, AggFunc):
6540    pass
6541
6542
6543class Week(Func):
6544    arg_types = {"this": True, "mode": False}
6545
6546
6547class XMLTable(Func):
6548    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
6549
6550
6551class Year(Func):
6552    pass
6553
6554
6555class Use(Expression):
6556    arg_types = {"this": True, "kind": False}
6557
6558
6559class Merge(DML):
6560    arg_types = {
6561        "this": True,
6562        "using": True,
6563        "on": True,
6564        "expressions": True,
6565        "with": False,
6566        "returning": False,
6567    }
6568
6569
6570class When(Func):
6571    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
6572
6573
6574# https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqljnextvaluefor.html
6575# https://learn.microsoft.com/en-us/sql/t-sql/functions/next-value-for-transact-sql?view=sql-server-ver16
6576class NextValueFor(Func):
6577    arg_types = {"this": True, "order": False}
6578
6579
6580# Refers to a trailing semi-colon. This is only used to preserve trailing comments
6581# select 1; -- my comment
6582class Semicolon(Expression):
6583    arg_types = {}
6584
6585
6586def _norm_arg(arg):
6587    return arg.lower() if type(arg) is str else arg
6588
6589
6590ALL_FUNCTIONS = subclasses(__name__, Func, (AggFunc, Anonymous, Func))
6591FUNCTION_BY_NAME = {name: func for func in ALL_FUNCTIONS for name in func.sql_names()}
6592
6593JSON_PATH_PARTS = subclasses(__name__, JSONPathPart, (JSONPathPart,))
6594
6595PERCENTILES = (PercentileCont, PercentileDisc)
6596
6597
6598# Helpers
6599@t.overload
6600def maybe_parse(
6601    sql_or_expression: ExpOrStr,
6602    *,
6603    into: t.Type[E],
6604    dialect: DialectType = None,
6605    prefix: t.Optional[str] = None,
6606    copy: bool = False,
6607    **opts,
6608) -> E: ...
6609
6610
6611@t.overload
6612def maybe_parse(
6613    sql_or_expression: str | E,
6614    *,
6615    into: t.Optional[IntoType] = None,
6616    dialect: DialectType = None,
6617    prefix: t.Optional[str] = None,
6618    copy: bool = False,
6619    **opts,
6620) -> E: ...
6621
6622
6623def maybe_parse(
6624    sql_or_expression: ExpOrStr,
6625    *,
6626    into: t.Optional[IntoType] = None,
6627    dialect: DialectType = None,
6628    prefix: t.Optional[str] = None,
6629    copy: bool = False,
6630    **opts,
6631) -> Expression:
6632    """Gracefully handle a possible string or expression.
6633
6634    Example:
6635        >>> maybe_parse("1")
6636        Literal(this=1, is_string=False)
6637        >>> maybe_parse(to_identifier("x"))
6638        Identifier(this=x, quoted=False)
6639
6640    Args:
6641        sql_or_expression: the SQL code string or an expression
6642        into: the SQLGlot Expression to parse into
6643        dialect: the dialect used to parse the input expressions (in the case that an
6644            input expression is a SQL string).
6645        prefix: a string to prefix the sql with before it gets parsed
6646            (automatically includes a space)
6647        copy: whether to copy the expression.
6648        **opts: other options to use to parse the input expressions (again, in the case
6649            that an input expression is a SQL string).
6650
6651    Returns:
6652        Expression: the parsed or given expression.
6653    """
6654    if isinstance(sql_or_expression, Expression):
6655        if copy:
6656            return sql_or_expression.copy()
6657        return sql_or_expression
6658
6659    if sql_or_expression is None:
6660        raise ParseError("SQL cannot be None")
6661
6662    import sqlglot
6663
6664    sql = str(sql_or_expression)
6665    if prefix:
6666        sql = f"{prefix} {sql}"
6667
6668    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)
6669
6670
6671@t.overload
6672def maybe_copy(instance: None, copy: bool = True) -> None: ...
6673
6674
6675@t.overload
6676def maybe_copy(instance: E, copy: bool = True) -> E: ...
6677
6678
6679def maybe_copy(instance, copy=True):
6680    return instance.copy() if copy and instance else instance
6681
6682
6683def _to_s(node: t.Any, verbose: bool = False, level: int = 0) -> str:
6684    """Generate a textual representation of an Expression tree"""
6685    indent = "\n" + ("  " * (level + 1))
6686    delim = f",{indent}"
6687
6688    if isinstance(node, Expression):
6689        args = {k: v for k, v in node.args.items() if (v is not None and v != []) or verbose}
6690
6691        if (node.type or verbose) and not isinstance(node, DataType):
6692            args["_type"] = node.type
6693        if node.comments or verbose:
6694            args["_comments"] = node.comments
6695
6696        if verbose:
6697            args["_id"] = id(node)
6698
6699        # Inline leaves for a more compact representation
6700        if node.is_leaf():
6701            indent = ""
6702            delim = ", "
6703
6704        items = delim.join([f"{k}={_to_s(v, verbose, level + 1)}" for k, v in args.items()])
6705        return f"{node.__class__.__name__}({indent}{items})"
6706
6707    if isinstance(node, list):
6708        items = delim.join(_to_s(i, verbose, level + 1) for i in node)
6709        items = f"{indent}{items}" if items else ""
6710        return f"[{items}]"
6711
6712    # Indent multiline strings to match the current level
6713    return indent.join(textwrap.dedent(str(node).strip("\n")).splitlines())
6714
6715
6716def _is_wrong_expression(expression, into):
6717    return isinstance(expression, Expression) and not isinstance(expression, into)
6718
6719
6720def _apply_builder(
6721    expression,
6722    instance,
6723    arg,
6724    copy=True,
6725    prefix=None,
6726    into=None,
6727    dialect=None,
6728    into_arg="this",
6729    **opts,
6730):
6731    if _is_wrong_expression(expression, into):
6732        expression = into(**{into_arg: expression})
6733    instance = maybe_copy(instance, copy)
6734    expression = maybe_parse(
6735        sql_or_expression=expression,
6736        prefix=prefix,
6737        into=into,
6738        dialect=dialect,
6739        **opts,
6740    )
6741    instance.set(arg, expression)
6742    return instance
6743
6744
6745def _apply_child_list_builder(
6746    *expressions,
6747    instance,
6748    arg,
6749    append=True,
6750    copy=True,
6751    prefix=None,
6752    into=None,
6753    dialect=None,
6754    properties=None,
6755    **opts,
6756):
6757    instance = maybe_copy(instance, copy)
6758    parsed = []
6759    properties = {} if properties is None else properties
6760
6761    for expression in expressions:
6762        if expression is not None:
6763            if _is_wrong_expression(expression, into):
6764                expression = into(expressions=[expression])
6765
6766            expression = maybe_parse(
6767                expression,
6768                into=into,
6769                dialect=dialect,
6770                prefix=prefix,
6771                **opts,
6772            )
6773            for k, v in expression.args.items():
6774                if k == "expressions":
6775                    parsed.extend(v)
6776                else:
6777                    properties[k] = v
6778
6779    existing = instance.args.get(arg)
6780    if append and existing:
6781        parsed = existing.expressions + parsed
6782
6783    child = into(expressions=parsed)
6784    for k, v in properties.items():
6785        child.set(k, v)
6786    instance.set(arg, child)
6787
6788    return instance
6789
6790
6791def _apply_list_builder(
6792    *expressions,
6793    instance,
6794    arg,
6795    append=True,
6796    copy=True,
6797    prefix=None,
6798    into=None,
6799    dialect=None,
6800    **opts,
6801):
6802    inst = maybe_copy(instance, copy)
6803
6804    expressions = [
6805        maybe_parse(
6806            sql_or_expression=expression,
6807            into=into,
6808            prefix=prefix,
6809            dialect=dialect,
6810            **opts,
6811        )
6812        for expression in expressions
6813        if expression is not None
6814    ]
6815
6816    existing_expressions = inst.args.get(arg)
6817    if append and existing_expressions:
6818        expressions = existing_expressions + expressions
6819
6820    inst.set(arg, expressions)
6821    return inst
6822
6823
6824def _apply_conjunction_builder(
6825    *expressions,
6826    instance,
6827    arg,
6828    into=None,
6829    append=True,
6830    copy=True,
6831    dialect=None,
6832    **opts,
6833):
6834    expressions = [exp for exp in expressions if exp is not None and exp != ""]
6835    if not expressions:
6836        return instance
6837
6838    inst = maybe_copy(instance, copy)
6839
6840    existing = inst.args.get(arg)
6841    if append and existing is not None:
6842        expressions = [existing.this if into else existing] + list(expressions)
6843
6844    node = and_(*expressions, dialect=dialect, copy=copy, **opts)
6845
6846    inst.set(arg, into(this=node) if into else node)
6847    return inst
6848
6849
6850def _apply_cte_builder(
6851    instance: E,
6852    alias: ExpOrStr,
6853    as_: ExpOrStr,
6854    recursive: t.Optional[bool] = None,
6855    materialized: t.Optional[bool] = None,
6856    append: bool = True,
6857    dialect: DialectType = None,
6858    copy: bool = True,
6859    **opts,
6860) -> E:
6861    alias_expression = maybe_parse(alias, dialect=dialect, into=TableAlias, **opts)
6862    as_expression = maybe_parse(as_, dialect=dialect, **opts)
6863    cte = CTE(this=as_expression, alias=alias_expression, materialized=materialized)
6864    return _apply_child_list_builder(
6865        cte,
6866        instance=instance,
6867        arg="with",
6868        append=append,
6869        copy=copy,
6870        into=With,
6871        properties={"recursive": recursive or False},
6872    )
6873
6874
6875def _combine(
6876    expressions: t.Sequence[t.Optional[ExpOrStr]],
6877    operator: t.Type[Connector],
6878    dialect: DialectType = None,
6879    copy: bool = True,
6880    **opts,
6881) -> Expression:
6882    conditions = [
6883        condition(expression, dialect=dialect, copy=copy, **opts)
6884        for expression in expressions
6885        if expression is not None
6886    ]
6887
6888    this, *rest = conditions
6889    if rest:
6890        this = _wrap(this, Connector)
6891    for expression in rest:
6892        this = operator(this=this, expression=_wrap(expression, Connector))
6893
6894    return this
6895
6896
6897def _wrap(expression: E, kind: t.Type[Expression]) -> E | Paren:
6898    return Paren(this=expression) if isinstance(expression, kind) else expression
6899
6900
6901def _apply_set_operation(
6902    *expressions: ExpOrStr,
6903    set_operation: t.Type[S],
6904    distinct: bool = True,
6905    dialect: DialectType = None,
6906    copy: bool = True,
6907    **opts,
6908) -> S:
6909    return reduce(
6910        lambda x, y: set_operation(this=x, expression=y, distinct=distinct),
6911        (maybe_parse(e, dialect=dialect, copy=copy, **opts) for e in expressions),
6912    )
6913
6914
6915def union(
6916    *expressions: ExpOrStr,
6917    distinct: bool = True,
6918    dialect: DialectType = None,
6919    copy: bool = True,
6920    **opts,
6921) -> Union:
6922    """
6923    Initializes a syntax tree for the `UNION` operation.
6924
6925    Example:
6926        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
6927        'SELECT * FROM foo UNION SELECT * FROM bla'
6928
6929    Args:
6930        expressions: the SQL code strings, corresponding to the `UNION`'s operands.
6931            If `Expression` instances are passed, they will be used as-is.
6932        distinct: set the DISTINCT flag if and only if this is true.
6933        dialect: the dialect used to parse the input expression.
6934        copy: whether to copy the expression.
6935        opts: other options to use to parse the input expressions.
6936
6937    Returns:
6938        The new Union instance.
6939    """
6940    assert len(expressions) >= 2, "At least two expressions are required by `union`."
6941    return _apply_set_operation(
6942        *expressions, set_operation=Union, distinct=distinct, dialect=dialect, copy=copy, **opts
6943    )
6944
6945
6946def intersect(
6947    *expressions: ExpOrStr,
6948    distinct: bool = True,
6949    dialect: DialectType = None,
6950    copy: bool = True,
6951    **opts,
6952) -> Intersect:
6953    """
6954    Initializes a syntax tree for the `INTERSECT` operation.
6955
6956    Example:
6957        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
6958        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
6959
6960    Args:
6961        expressions: the SQL code strings, corresponding to the `INTERSECT`'s operands.
6962            If `Expression` instances are passed, they will be used as-is.
6963        distinct: set the DISTINCT flag if and only if this is true.
6964        dialect: the dialect used to parse the input expression.
6965        copy: whether to copy the expression.
6966        opts: other options to use to parse the input expressions.
6967
6968    Returns:
6969        The new Intersect instance.
6970    """
6971    assert len(expressions) >= 2, "At least two expressions are required by `intersect`."
6972    return _apply_set_operation(
6973        *expressions, set_operation=Intersect, distinct=distinct, dialect=dialect, copy=copy, **opts
6974    )
6975
6976
6977def except_(
6978    *expressions: ExpOrStr,
6979    distinct: bool = True,
6980    dialect: DialectType = None,
6981    copy: bool = True,
6982    **opts,
6983) -> Except:
6984    """
6985    Initializes a syntax tree for the `EXCEPT` operation.
6986
6987    Example:
6988        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
6989        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
6990
6991    Args:
6992        expressions: the SQL code strings, corresponding to the `EXCEPT`'s operands.
6993            If `Expression` instances are passed, they will be used as-is.
6994        distinct: set the DISTINCT flag if and only if this is true.
6995        dialect: the dialect used to parse the input expression.
6996        copy: whether to copy the expression.
6997        opts: other options to use to parse the input expressions.
6998
6999    Returns:
7000        The new Except instance.
7001    """
7002    assert len(expressions) >= 2, "At least two expressions are required by `except_`."
7003    return _apply_set_operation(
7004        *expressions, set_operation=Except, distinct=distinct, dialect=dialect, copy=copy, **opts
7005    )
7006
7007
7008def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
7009    """
7010    Initializes a syntax tree from one or multiple SELECT expressions.
7011
7012    Example:
7013        >>> select("col1", "col2").from_("tbl").sql()
7014        'SELECT col1, col2 FROM tbl'
7015
7016    Args:
7017        *expressions: the SQL code string to parse as the expressions of a
7018            SELECT statement. If an Expression instance is passed, this is used as-is.
7019        dialect: the dialect used to parse the input expressions (in the case that an
7020            input expression is a SQL string).
7021        **opts: other options to use to parse the input expressions (again, in the case
7022            that an input expression is a SQL string).
7023
7024    Returns:
7025        Select: the syntax tree for the SELECT statement.
7026    """
7027    return Select().select(*expressions, dialect=dialect, **opts)
7028
7029
7030def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
7031    """
7032    Initializes a syntax tree from a FROM expression.
7033
7034    Example:
7035        >>> from_("tbl").select("col1", "col2").sql()
7036        'SELECT col1, col2 FROM tbl'
7037
7038    Args:
7039        *expression: the SQL code string to parse as the FROM expressions of a
7040            SELECT statement. If an Expression instance is passed, this is used as-is.
7041        dialect: the dialect used to parse the input expression (in the case that the
7042            input expression is a SQL string).
7043        **opts: other options to use to parse the input expressions (again, in the case
7044            that the input expression is a SQL string).
7045
7046    Returns:
7047        Select: the syntax tree for the SELECT statement.
7048    """
7049    return Select().from_(expression, dialect=dialect, **opts)
7050
7051
7052def update(
7053    table: str | Table,
7054    properties: t.Optional[dict] = None,
7055    where: t.Optional[ExpOrStr] = None,
7056    from_: t.Optional[ExpOrStr] = None,
7057    with_: t.Optional[t.Dict[str, ExpOrStr]] = None,
7058    dialect: DialectType = None,
7059    **opts,
7060) -> Update:
7061    """
7062    Creates an update statement.
7063
7064    Example:
7065        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz_cte", where="baz_cte.id > 1 and my_table.id = baz_cte.id", with_={"baz_cte": "SELECT id FROM foo"}).sql()
7066        "WITH baz_cte AS (SELECT id FROM foo) UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz_cte WHERE baz_cte.id > 1 AND my_table.id = baz_cte.id"
7067
7068    Args:
7069        properties: dictionary of properties to SET which are
7070            auto converted to sql objects eg None -> NULL
7071        where: sql conditional parsed into a WHERE statement
7072        from_: sql statement parsed into a FROM statement
7073        with_: dictionary of CTE aliases / select statements to include in a WITH clause.
7074        dialect: the dialect used to parse the input expressions.
7075        **opts: other options to use to parse the input expressions.
7076
7077    Returns:
7078        Update: the syntax tree for the UPDATE statement.
7079    """
7080    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
7081    if properties:
7082        update_expr.set(
7083            "expressions",
7084            [
7085                EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
7086                for k, v in properties.items()
7087            ],
7088        )
7089    if from_:
7090        update_expr.set(
7091            "from",
7092            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
7093        )
7094    if isinstance(where, Condition):
7095        where = Where(this=where)
7096    if where:
7097        update_expr.set(
7098            "where",
7099            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
7100        )
7101    if with_:
7102        cte_list = [
7103            alias_(CTE(this=maybe_parse(qry, dialect=dialect, **opts)), alias, table=True)
7104            for alias, qry in with_.items()
7105        ]
7106        update_expr.set(
7107            "with",
7108            With(expressions=cte_list),
7109        )
7110    return update_expr
7111
7112
7113def delete(
7114    table: ExpOrStr,
7115    where: t.Optional[ExpOrStr] = None,
7116    returning: t.Optional[ExpOrStr] = None,
7117    dialect: DialectType = None,
7118    **opts,
7119) -> Delete:
7120    """
7121    Builds a delete statement.
7122
7123    Example:
7124        >>> delete("my_table", where="id > 1").sql()
7125        'DELETE FROM my_table WHERE id > 1'
7126
7127    Args:
7128        where: sql conditional parsed into a WHERE statement
7129        returning: sql conditional parsed into a RETURNING statement
7130        dialect: the dialect used to parse the input expressions.
7131        **opts: other options to use to parse the input expressions.
7132
7133    Returns:
7134        Delete: the syntax tree for the DELETE statement.
7135    """
7136    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
7137    if where:
7138        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
7139    if returning:
7140        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
7141    return delete_expr
7142
7143
7144def insert(
7145    expression: ExpOrStr,
7146    into: ExpOrStr,
7147    columns: t.Optional[t.Sequence[str | Identifier]] = None,
7148    overwrite: t.Optional[bool] = None,
7149    returning: t.Optional[ExpOrStr] = None,
7150    dialect: DialectType = None,
7151    copy: bool = True,
7152    **opts,
7153) -> Insert:
7154    """
7155    Builds an INSERT statement.
7156
7157    Example:
7158        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
7159        'INSERT INTO tbl VALUES (1, 2, 3)'
7160
7161    Args:
7162        expression: the sql string or expression of the INSERT statement
7163        into: the tbl to insert data to.
7164        columns: optionally the table's column names.
7165        overwrite: whether to INSERT OVERWRITE or not.
7166        returning: sql conditional parsed into a RETURNING statement
7167        dialect: the dialect used to parse the input expressions.
7168        copy: whether to copy the expression.
7169        **opts: other options to use to parse the input expressions.
7170
7171    Returns:
7172        Insert: the syntax tree for the INSERT statement.
7173    """
7174    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
7175    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
7176
7177    if columns:
7178        this = Schema(this=this, expressions=[to_identifier(c, copy=copy) for c in columns])
7179
7180    insert = Insert(this=this, expression=expr, overwrite=overwrite)
7181
7182    if returning:
7183        insert = insert.returning(returning, dialect=dialect, copy=False, **opts)
7184
7185    return insert
7186
7187
7188def merge(
7189    *when_exprs: ExpOrStr,
7190    into: ExpOrStr,
7191    using: ExpOrStr,
7192    on: ExpOrStr,
7193    returning: t.Optional[ExpOrStr] = None,
7194    dialect: DialectType = None,
7195    copy: bool = True,
7196    **opts,
7197) -> Merge:
7198    """
7199    Builds a MERGE statement.
7200
7201    Example:
7202        >>> merge("WHEN MATCHED THEN UPDATE SET col1 = source_table.col1",
7203        ...       "WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)",
7204        ...       into="my_table",
7205        ...       using="source_table",
7206        ...       on="my_table.id = source_table.id").sql()
7207        'MERGE INTO my_table USING source_table ON my_table.id = source_table.id WHEN MATCHED THEN UPDATE SET col1 = source_table.col1 WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)'
7208
7209    Args:
7210        *when_exprs: The WHEN clauses specifying actions for matched and unmatched rows.
7211        into: The target table to merge data into.
7212        using: The source table to merge data from.
7213        on: The join condition for the merge.
7214        returning: The columns to return from the merge.
7215        dialect: The dialect used to parse the input expressions.
7216        copy: Whether to copy the expression.
7217        **opts: Other options to use to parse the input expressions.
7218
7219    Returns:
7220        Merge: The syntax tree for the MERGE statement.
7221    """
7222    merge = Merge(
7223        this=maybe_parse(into, dialect=dialect, copy=copy, **opts),
7224        using=maybe_parse(using, dialect=dialect, copy=copy, **opts),
7225        on=maybe_parse(on, dialect=dialect, copy=copy, **opts),
7226        expressions=[
7227            maybe_parse(when_expr, dialect=dialect, copy=copy, into=When, **opts)
7228            for when_expr in when_exprs
7229        ],
7230    )
7231    if returning:
7232        merge = merge.returning(returning, dialect=dialect, copy=False, **opts)
7233
7234    return merge
7235
7236
7237def condition(
7238    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
7239) -> Condition:
7240    """
7241    Initialize a logical condition expression.
7242
7243    Example:
7244        >>> condition("x=1").sql()
7245        'x = 1'
7246
7247        This is helpful for composing larger logical syntax trees:
7248        >>> where = condition("x=1")
7249        >>> where = where.and_("y=1")
7250        >>> Select().from_("tbl").select("*").where(where).sql()
7251        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
7252
7253    Args:
7254        *expression: the SQL code string to parse.
7255            If an Expression instance is passed, this is used as-is.
7256        dialect: the dialect used to parse the input expression (in the case that the
7257            input expression is a SQL string).
7258        copy: Whether to copy `expression` (only applies to expressions).
7259        **opts: other options to use to parse the input expressions (again, in the case
7260            that the input expression is a SQL string).
7261
7262    Returns:
7263        The new Condition instance
7264    """
7265    return maybe_parse(
7266        expression,
7267        into=Condition,
7268        dialect=dialect,
7269        copy=copy,
7270        **opts,
7271    )
7272
7273
7274def and_(
7275    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
7276) -> Condition:
7277    """
7278    Combine multiple conditions with an AND logical operator.
7279
7280    Example:
7281        >>> and_("x=1", and_("y=1", "z=1")).sql()
7282        'x = 1 AND (y = 1 AND z = 1)'
7283
7284    Args:
7285        *expressions: the SQL code strings to parse.
7286            If an Expression instance is passed, this is used as-is.
7287        dialect: the dialect used to parse the input expression.
7288        copy: whether to copy `expressions` (only applies to Expressions).
7289        **opts: other options to use to parse the input expressions.
7290
7291    Returns:
7292        The new condition
7293    """
7294    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))
7295
7296
7297def or_(
7298    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
7299) -> Condition:
7300    """
7301    Combine multiple conditions with an OR logical operator.
7302
7303    Example:
7304        >>> or_("x=1", or_("y=1", "z=1")).sql()
7305        'x = 1 OR (y = 1 OR z = 1)'
7306
7307    Args:
7308        *expressions: the SQL code strings to parse.
7309            If an Expression instance is passed, this is used as-is.
7310        dialect: the dialect used to parse the input expression.
7311        copy: whether to copy `expressions` (only applies to Expressions).
7312        **opts: other options to use to parse the input expressions.
7313
7314    Returns:
7315        The new condition
7316    """
7317    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))
7318
7319
7320def xor(
7321    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
7322) -> Condition:
7323    """
7324    Combine multiple conditions with an XOR logical operator.
7325
7326    Example:
7327        >>> xor("x=1", xor("y=1", "z=1")).sql()
7328        'x = 1 XOR (y = 1 XOR z = 1)'
7329
7330    Args:
7331        *expressions: the SQL code strings to parse.
7332            If an Expression instance is passed, this is used as-is.
7333        dialect: the dialect used to parse the input expression.
7334        copy: whether to copy `expressions` (only applies to Expressions).
7335        **opts: other options to use to parse the input expressions.
7336
7337    Returns:
7338        The new condition
7339    """
7340    return t.cast(Condition, _combine(expressions, Xor, dialect, copy=copy, **opts))
7341
7342
7343def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
7344    """
7345    Wrap a condition with a NOT operator.
7346
7347    Example:
7348        >>> not_("this_suit='black'").sql()
7349        "NOT this_suit = 'black'"
7350
7351    Args:
7352        expression: the SQL code string to parse.
7353            If an Expression instance is passed, this is used as-is.
7354        dialect: the dialect used to parse the input expression.
7355        copy: whether to copy the expression or not.
7356        **opts: other options to use to parse the input expressions.
7357
7358    Returns:
7359        The new condition.
7360    """
7361    this = condition(
7362        expression,
7363        dialect=dialect,
7364        copy=copy,
7365        **opts,
7366    )
7367    return Not(this=_wrap(this, Connector))
7368
7369
7370def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
7371    """
7372    Wrap an expression in parentheses.
7373
7374    Example:
7375        >>> paren("5 + 3").sql()
7376        '(5 + 3)'
7377
7378    Args:
7379        expression: the SQL code string to parse.
7380            If an Expression instance is passed, this is used as-is.
7381        copy: whether to copy the expression or not.
7382
7383    Returns:
7384        The wrapped expression.
7385    """
7386    return Paren(this=maybe_parse(expression, copy=copy))
7387
7388
7389SAFE_IDENTIFIER_RE: t.Pattern[str] = re.compile(r"^[_a-zA-Z][\w]*$")
7390
7391
7392@t.overload
7393def to_identifier(name: None, quoted: t.Optional[bool] = None, copy: bool = True) -> None: ...
7394
7395
7396@t.overload
7397def to_identifier(
7398    name: str | Identifier, quoted: t.Optional[bool] = None, copy: bool = True
7399) -> Identifier: ...
7400
7401
7402def to_identifier(name, quoted=None, copy=True):
7403    """Builds an identifier.
7404
7405    Args:
7406        name: The name to turn into an identifier.
7407        quoted: Whether to force quote the identifier.
7408        copy: Whether to copy name if it's an Identifier.
7409
7410    Returns:
7411        The identifier ast node.
7412    """
7413
7414    if name is None:
7415        return None
7416
7417    if isinstance(name, Identifier):
7418        identifier = maybe_copy(name, copy)
7419    elif isinstance(name, str):
7420        identifier = Identifier(
7421            this=name,
7422            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
7423        )
7424    else:
7425        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
7426    return identifier
7427
7428
7429def parse_identifier(name: str | Identifier, dialect: DialectType = None) -> Identifier:
7430    """
7431    Parses a given string into an identifier.
7432
7433    Args:
7434        name: The name to parse into an identifier.
7435        dialect: The dialect to parse against.
7436
7437    Returns:
7438        The identifier ast node.
7439    """
7440    try:
7441        expression = maybe_parse(name, dialect=dialect, into=Identifier)
7442    except (ParseError, TokenError):
7443        expression = to_identifier(name)
7444
7445    return expression
7446
7447
7448INTERVAL_STRING_RE = re.compile(r"\s*([0-9]+)\s*([a-zA-Z]+)\s*")
7449
7450
7451def to_interval(interval: str | Literal) -> Interval:
7452    """Builds an interval expression from a string like '1 day' or '5 months'."""
7453    if isinstance(interval, Literal):
7454        if not interval.is_string:
7455            raise ValueError("Invalid interval string.")
7456
7457        interval = interval.this
7458
7459    interval = maybe_parse(f"INTERVAL {interval}")
7460    assert isinstance(interval, Interval)
7461    return interval
7462
7463
7464def to_table(
7465    sql_path: str | Table, dialect: DialectType = None, copy: bool = True, **kwargs
7466) -> Table:
7467    """
7468    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
7469    If a table is passed in then that table is returned.
7470
7471    Args:
7472        sql_path: a `[catalog].[schema].[table]` string.
7473        dialect: the source dialect according to which the table name will be parsed.
7474        copy: Whether to copy a table if it is passed in.
7475        kwargs: the kwargs to instantiate the resulting `Table` expression with.
7476
7477    Returns:
7478        A table expression.
7479    """
7480    if isinstance(sql_path, Table):
7481        return maybe_copy(sql_path, copy=copy)
7482
7483    table = maybe_parse(sql_path, into=Table, dialect=dialect)
7484
7485    for k, v in kwargs.items():
7486        table.set(k, v)
7487
7488    return table
7489
7490
7491def to_column(
7492    sql_path: str | Column,
7493    quoted: t.Optional[bool] = None,
7494    dialect: DialectType = None,
7495    copy: bool = True,
7496    **kwargs,
7497) -> Column:
7498    """
7499    Create a column from a `[table].[column]` sql path. Table is optional.
7500    If a column is passed in then that column is returned.
7501
7502    Args:
7503        sql_path: a `[table].[column]` string.
7504        quoted: Whether or not to force quote identifiers.
7505        dialect: the source dialect according to which the column name will be parsed.
7506        copy: Whether to copy a column if it is passed in.
7507        kwargs: the kwargs to instantiate the resulting `Column` expression with.
7508
7509    Returns:
7510        A column expression.
7511    """
7512    if isinstance(sql_path, Column):
7513        return maybe_copy(sql_path, copy=copy)
7514
7515    try:
7516        col = maybe_parse(sql_path, into=Column, dialect=dialect)
7517    except ParseError:
7518        return column(*reversed(sql_path.split(".")), quoted=quoted, **kwargs)
7519
7520    for k, v in kwargs.items():
7521        col.set(k, v)
7522
7523    if quoted:
7524        for i in col.find_all(Identifier):
7525            i.set("quoted", True)
7526
7527    return col
7528
7529
7530def alias_(
7531    expression: ExpOrStr,
7532    alias: t.Optional[str | Identifier],
7533    table: bool | t.Sequence[str | Identifier] = False,
7534    quoted: t.Optional[bool] = None,
7535    dialect: DialectType = None,
7536    copy: bool = True,
7537    **opts,
7538):
7539    """Create an Alias expression.
7540
7541    Example:
7542        >>> alias_('foo', 'bar').sql()
7543        'foo AS bar'
7544
7545        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
7546        '(SELECT 1, 2) AS bar(a, b)'
7547
7548    Args:
7549        expression: the SQL code strings to parse.
7550            If an Expression instance is passed, this is used as-is.
7551        alias: the alias name to use. If the name has
7552            special characters it is quoted.
7553        table: Whether to create a table alias, can also be a list of columns.
7554        quoted: whether to quote the alias
7555        dialect: the dialect used to parse the input expression.
7556        copy: Whether to copy the expression.
7557        **opts: other options to use to parse the input expressions.
7558
7559    Returns:
7560        Alias: the aliased expression
7561    """
7562    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
7563    alias = to_identifier(alias, quoted=quoted)
7564
7565    if table:
7566        table_alias = TableAlias(this=alias)
7567        exp.set("alias", table_alias)
7568
7569        if not isinstance(table, bool):
7570            for column in table:
7571                table_alias.append("columns", to_identifier(column, quoted=quoted))
7572
7573        return exp
7574
7575    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
7576    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
7577    # for the complete Window expression.
7578    #
7579    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
7580
7581    if "alias" in exp.arg_types and not isinstance(exp, Window):
7582        exp.set("alias", alias)
7583        return exp
7584    return Alias(this=exp, alias=alias)
7585
7586
7587def subquery(
7588    expression: ExpOrStr,
7589    alias: t.Optional[Identifier | str] = None,
7590    dialect: DialectType = None,
7591    **opts,
7592) -> Select:
7593    """
7594    Build a subquery expression that's selected from.
7595
7596    Example:
7597        >>> subquery('select x from tbl', 'bar').select('x').sql()
7598        'SELECT x FROM (SELECT x FROM tbl) AS bar'
7599
7600    Args:
7601        expression: the SQL code strings to parse.
7602            If an Expression instance is passed, this is used as-is.
7603        alias: the alias name to use.
7604        dialect: the dialect used to parse the input expression.
7605        **opts: other options to use to parse the input expressions.
7606
7607    Returns:
7608        A new Select instance with the subquery expression included.
7609    """
7610
7611    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias, **opts)
7612    return Select().from_(expression, dialect=dialect, **opts)
7613
7614
7615@t.overload
7616def column(
7617    col: str | Identifier,
7618    table: t.Optional[str | Identifier] = None,
7619    db: t.Optional[str | Identifier] = None,
7620    catalog: t.Optional[str | Identifier] = None,
7621    *,
7622    fields: t.Collection[t.Union[str, Identifier]],
7623    quoted: t.Optional[bool] = None,
7624    copy: bool = True,
7625) -> Dot:
7626    pass
7627
7628
7629@t.overload
7630def column(
7631    col: str | Identifier,
7632    table: t.Optional[str | Identifier] = None,
7633    db: t.Optional[str | Identifier] = None,
7634    catalog: t.Optional[str | Identifier] = None,
7635    *,
7636    fields: Lit[None] = None,
7637    quoted: t.Optional[bool] = None,
7638    copy: bool = True,
7639) -> Column:
7640    pass
7641
7642
7643def column(
7644    col,
7645    table=None,
7646    db=None,
7647    catalog=None,
7648    *,
7649    fields=None,
7650    quoted=None,
7651    copy=True,
7652):
7653    """
7654    Build a Column.
7655
7656    Args:
7657        col: Column name.
7658        table: Table name.
7659        db: Database name.
7660        catalog: Catalog name.
7661        fields: Additional fields using dots.
7662        quoted: Whether to force quotes on the column's identifiers.
7663        copy: Whether to copy identifiers if passed in.
7664
7665    Returns:
7666        The new Column instance.
7667    """
7668    this = Column(
7669        this=to_identifier(col, quoted=quoted, copy=copy),
7670        table=to_identifier(table, quoted=quoted, copy=copy),
7671        db=to_identifier(db, quoted=quoted, copy=copy),
7672        catalog=to_identifier(catalog, quoted=quoted, copy=copy),
7673    )
7674
7675    if fields:
7676        this = Dot.build(
7677            (this, *(to_identifier(field, quoted=quoted, copy=copy) for field in fields))
7678        )
7679    return this
7680
7681
7682def cast(
7683    expression: ExpOrStr, to: DATA_TYPE, copy: bool = True, dialect: DialectType = None, **opts
7684) -> Cast:
7685    """Cast an expression to a data type.
7686
7687    Example:
7688        >>> cast('x + 1', 'int').sql()
7689        'CAST(x + 1 AS INT)'
7690
7691    Args:
7692        expression: The expression to cast.
7693        to: The datatype to cast to.
7694        copy: Whether to copy the supplied expressions.
7695        dialect: The target dialect. This is used to prevent a re-cast in the following scenario:
7696            - The expression to be cast is already a exp.Cast expression
7697            - The existing cast is to a type that is logically equivalent to new type
7698
7699            For example, if :expression='CAST(x as DATETIME)' and :to=Type.TIMESTAMP,
7700            but in the target dialect DATETIME is mapped to TIMESTAMP, then we will NOT return `CAST(x (as DATETIME) as TIMESTAMP)`
7701            and instead just return the original expression `CAST(x as DATETIME)`.
7702
7703            This is to prevent it being output as a double cast `CAST(x (as TIMESTAMP) as TIMESTAMP)` once the DATETIME -> TIMESTAMP
7704            mapping is applied in the target dialect generator.
7705
7706    Returns:
7707        The new Cast instance.
7708    """
7709    expr = maybe_parse(expression, copy=copy, dialect=dialect, **opts)
7710    data_type = DataType.build(to, copy=copy, dialect=dialect, **opts)
7711
7712    # dont re-cast if the expression is already a cast to the correct type
7713    if isinstance(expr, Cast):
7714        from sqlglot.dialects.dialect import Dialect
7715
7716        target_dialect = Dialect.get_or_raise(dialect)
7717        type_mapping = target_dialect.generator_class.TYPE_MAPPING
7718
7719        existing_cast_type: DataType.Type = expr.to.this
7720        new_cast_type: DataType.Type = data_type.this
7721        types_are_equivalent = type_mapping.get(
7722            existing_cast_type, existing_cast_type
7723        ) == type_mapping.get(new_cast_type, new_cast_type)
7724        if expr.is_type(data_type) or types_are_equivalent:
7725            return expr
7726
7727    expr = Cast(this=expr, to=data_type)
7728    expr.type = data_type
7729
7730    return expr
7731
7732
7733def table_(
7734    table: Identifier | str,
7735    db: t.Optional[Identifier | str] = None,
7736    catalog: t.Optional[Identifier | str] = None,
7737    quoted: t.Optional[bool] = None,
7738    alias: t.Optional[Identifier | str] = None,
7739) -> Table:
7740    """Build a Table.
7741
7742    Args:
7743        table: Table name.
7744        db: Database name.
7745        catalog: Catalog name.
7746        quote: Whether to force quotes on the table's identifiers.
7747        alias: Table's alias.
7748
7749    Returns:
7750        The new Table instance.
7751    """
7752    return Table(
7753        this=to_identifier(table, quoted=quoted) if table else None,
7754        db=to_identifier(db, quoted=quoted) if db else None,
7755        catalog=to_identifier(catalog, quoted=quoted) if catalog else None,
7756        alias=TableAlias(this=to_identifier(alias)) if alias else None,
7757    )
7758
7759
7760def values(
7761    values: t.Iterable[t.Tuple[t.Any, ...]],
7762    alias: t.Optional[str] = None,
7763    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
7764) -> Values:
7765    """Build VALUES statement.
7766
7767    Example:
7768        >>> values([(1, '2')]).sql()
7769        "VALUES (1, '2')"
7770
7771    Args:
7772        values: values statements that will be converted to SQL
7773        alias: optional alias
7774        columns: Optional list of ordered column names or ordered dictionary of column names to types.
7775         If either are provided then an alias is also required.
7776
7777    Returns:
7778        Values: the Values expression object
7779    """
7780    if columns and not alias:
7781        raise ValueError("Alias is required when providing columns")
7782
7783    return Values(
7784        expressions=[convert(tup) for tup in values],
7785        alias=(
7786            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
7787            if columns
7788            else (TableAlias(this=to_identifier(alias)) if alias else None)
7789        ),
7790    )
7791
7792
7793def var(name: t.Optional[ExpOrStr]) -> Var:
7794    """Build a SQL variable.
7795
7796    Example:
7797        >>> repr(var('x'))
7798        'Var(this=x)'
7799
7800        >>> repr(var(column('x', table='y')))
7801        'Var(this=x)'
7802
7803    Args:
7804        name: The name of the var or an expression who's name will become the var.
7805
7806    Returns:
7807        The new variable node.
7808    """
7809    if not name:
7810        raise ValueError("Cannot convert empty name into var.")
7811
7812    if isinstance(name, Expression):
7813        name = name.name
7814    return Var(this=name)
7815
7816
7817def rename_table(
7818    old_name: str | Table,
7819    new_name: str | Table,
7820    dialect: DialectType = None,
7821) -> Alter:
7822    """Build ALTER TABLE... RENAME... expression
7823
7824    Args:
7825        old_name: The old name of the table
7826        new_name: The new name of the table
7827        dialect: The dialect to parse the table.
7828
7829    Returns:
7830        Alter table expression
7831    """
7832    old_table = to_table(old_name, dialect=dialect)
7833    new_table = to_table(new_name, dialect=dialect)
7834    return Alter(
7835        this=old_table,
7836        kind="TABLE",
7837        actions=[
7838            AlterRename(this=new_table),
7839        ],
7840    )
7841
7842
7843def rename_column(
7844    table_name: str | Table,
7845    old_column_name: str | Column,
7846    new_column_name: str | Column,
7847    exists: t.Optional[bool] = None,
7848    dialect: DialectType = None,
7849) -> Alter:
7850    """Build ALTER TABLE... RENAME COLUMN... expression
7851
7852    Args:
7853        table_name: Name of the table
7854        old_column: The old name of the column
7855        new_column: The new name of the column
7856        exists: Whether to add the `IF EXISTS` clause
7857        dialect: The dialect to parse the table/column.
7858
7859    Returns:
7860        Alter table expression
7861    """
7862    table = to_table(table_name, dialect=dialect)
7863    old_column = to_column(old_column_name, dialect=dialect)
7864    new_column = to_column(new_column_name, dialect=dialect)
7865    return Alter(
7866        this=table,
7867        kind="TABLE",
7868        actions=[
7869            RenameColumn(this=old_column, to=new_column, exists=exists),
7870        ],
7871    )
7872
7873
7874def convert(value: t.Any, copy: bool = False) -> Expression:
7875    """Convert a python value into an expression object.
7876
7877    Raises an error if a conversion is not possible.
7878
7879    Args:
7880        value: A python object.
7881        copy: Whether to copy `value` (only applies to Expressions and collections).
7882
7883    Returns:
7884        The equivalent expression object.
7885    """
7886    if isinstance(value, Expression):
7887        return maybe_copy(value, copy)
7888    if isinstance(value, str):
7889        return Literal.string(value)
7890    if isinstance(value, bool):
7891        return Boolean(this=value)
7892    if value is None or (isinstance(value, float) and math.isnan(value)):
7893        return null()
7894    if isinstance(value, numbers.Number):
7895        return Literal.number(value)
7896    if isinstance(value, bytes):
7897        return HexString(this=value.hex())
7898    if isinstance(value, datetime.datetime):
7899        datetime_literal = Literal.string(value.isoformat(sep=" "))
7900
7901        tz = None
7902        if value.tzinfo:
7903            # this works for zoneinfo.ZoneInfo, pytz.timezone and datetime.datetime.utc to return IANA timezone names like "America/Los_Angeles"
7904            # instead of abbreviations like "PDT". This is for consistency with other timezone handling functions in SQLGlot
7905            tz = Literal.string(str(value.tzinfo))
7906
7907        return TimeStrToTime(this=datetime_literal, zone=tz)
7908    if isinstance(value, datetime.date):
7909        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
7910        return DateStrToDate(this=date_literal)
7911    if isinstance(value, tuple):
7912        if hasattr(value, "_fields"):
7913            return Struct(
7914                expressions=[
7915                    PropertyEQ(
7916                        this=to_identifier(k), expression=convert(getattr(value, k), copy=copy)
7917                    )
7918                    for k in value._fields
7919                ]
7920            )
7921        return Tuple(expressions=[convert(v, copy=copy) for v in value])
7922    if isinstance(value, list):
7923        return Array(expressions=[convert(v, copy=copy) for v in value])
7924    if isinstance(value, dict):
7925        return Map(
7926            keys=Array(expressions=[convert(k, copy=copy) for k in value]),
7927            values=Array(expressions=[convert(v, copy=copy) for v in value.values()]),
7928        )
7929    if hasattr(value, "__dict__"):
7930        return Struct(
7931            expressions=[
7932                PropertyEQ(this=to_identifier(k), expression=convert(v, copy=copy))
7933                for k, v in value.__dict__.items()
7934            ]
7935        )
7936    raise ValueError(f"Cannot convert {value}")
7937
7938
7939def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
7940    """
7941    Replace children of an expression with the result of a lambda fun(child) -> exp.
7942    """
7943    for k, v in tuple(expression.args.items()):
7944        is_list_arg = type(v) is list
7945
7946        child_nodes = v if is_list_arg else [v]
7947        new_child_nodes = []
7948
7949        for cn in child_nodes:
7950            if isinstance(cn, Expression):
7951                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
7952                    new_child_nodes.append(child_node)
7953            else:
7954                new_child_nodes.append(cn)
7955
7956        expression.set(k, new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0))
7957
7958
7959def replace_tree(
7960    expression: Expression,
7961    fun: t.Callable,
7962    prune: t.Optional[t.Callable[[Expression], bool]] = None,
7963) -> Expression:
7964    """
7965    Replace an entire tree with the result of function calls on each node.
7966
7967    This will be traversed in reverse dfs, so leaves first.
7968    If new nodes are created as a result of function calls, they will also be traversed.
7969    """
7970    stack = list(expression.dfs(prune=prune))
7971
7972    while stack:
7973        node = stack.pop()
7974        new_node = fun(node)
7975
7976        if new_node is not node:
7977            node.replace(new_node)
7978
7979            if isinstance(new_node, Expression):
7980                stack.append(new_node)
7981
7982    return new_node
7983
7984
7985def column_table_names(expression: Expression, exclude: str = "") -> t.Set[str]:
7986    """
7987    Return all table names referenced through columns in an expression.
7988
7989    Example:
7990        >>> import sqlglot
7991        >>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
7992        ['a', 'c']
7993
7994    Args:
7995        expression: expression to find table names.
7996        exclude: a table name to exclude
7997
7998    Returns:
7999        A list of unique names.
8000    """
8001    return {
8002        table
8003        for table in (column.table for column in expression.find_all(Column))
8004        if table and table != exclude
8005    }
8006
8007
8008def table_name(table: Table | str, dialect: DialectType = None, identify: bool = False) -> str:
8009    """Get the full name of a table as a string.
8010
8011    Args:
8012        table: Table expression node or string.
8013        dialect: The dialect to generate the table name for.
8014        identify: Determines when an identifier should be quoted. Possible values are:
8015            False (default): Never quote, except in cases where it's mandatory by the dialect.
8016            True: Always quote.
8017
8018    Examples:
8019        >>> from sqlglot import exp, parse_one
8020        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
8021        'a.b.c'
8022
8023    Returns:
8024        The table name.
8025    """
8026
8027    table = maybe_parse(table, into=Table, dialect=dialect)
8028
8029    if not table:
8030        raise ValueError(f"Cannot parse {table}")
8031
8032    return ".".join(
8033        (
8034            part.sql(dialect=dialect, identify=True, copy=False)
8035            if identify or not SAFE_IDENTIFIER_RE.match(part.name)
8036            else part.name
8037        )
8038        for part in table.parts
8039    )
8040
8041
8042def normalize_table_name(table: str | Table, dialect: DialectType = None, copy: bool = True) -> str:
8043    """Returns a case normalized table name without quotes.
8044
8045    Args:
8046        table: the table to normalize
8047        dialect: the dialect to use for normalization rules
8048        copy: whether to copy the expression.
8049
8050    Examples:
8051        >>> normalize_table_name("`A-B`.c", dialect="bigquery")
8052        'A-B.c'
8053    """
8054    from sqlglot.optimizer.normalize_identifiers import normalize_identifiers
8055
8056    return ".".join(
8057        p.name
8058        for p in normalize_identifiers(
8059            to_table(table, dialect=dialect, copy=copy), dialect=dialect
8060        ).parts
8061    )
8062
8063
8064def replace_tables(
8065    expression: E, mapping: t.Dict[str, str], dialect: DialectType = None, copy: bool = True
8066) -> E:
8067    """Replace all tables in expression according to the mapping.
8068
8069    Args:
8070        expression: expression node to be transformed and replaced.
8071        mapping: mapping of table names.
8072        dialect: the dialect of the mapping table
8073        copy: whether to copy the expression.
8074
8075    Examples:
8076        >>> from sqlglot import exp, parse_one
8077        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
8078        'SELECT * FROM c /* a.b */'
8079
8080    Returns:
8081        The mapped expression.
8082    """
8083
8084    mapping = {normalize_table_name(k, dialect=dialect): v for k, v in mapping.items()}
8085
8086    def _replace_tables(node: Expression) -> Expression:
8087        if isinstance(node, Table):
8088            original = normalize_table_name(node, dialect=dialect)
8089            new_name = mapping.get(original)
8090
8091            if new_name:
8092                table = to_table(
8093                    new_name,
8094                    **{k: v for k, v in node.args.items() if k not in TABLE_PARTS},
8095                    dialect=dialect,
8096                )
8097                table.add_comments([original])
8098                return table
8099        return node
8100
8101    return expression.transform(_replace_tables, copy=copy)  # type: ignore
8102
8103
8104def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
8105    """Replace placeholders in an expression.
8106
8107    Args:
8108        expression: expression node to be transformed and replaced.
8109        args: positional names that will substitute unnamed placeholders in the given order.
8110        kwargs: keyword arguments that will substitute named placeholders.
8111
8112    Examples:
8113        >>> from sqlglot import exp, parse_one
8114        >>> replace_placeholders(
8115        ...     parse_one("select * from :tbl where ? = ?"),
8116        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
8117        ... ).sql()
8118        "SELECT * FROM foo WHERE str_col = 'b'"
8119
8120    Returns:
8121        The mapped expression.
8122    """
8123
8124    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
8125        if isinstance(node, Placeholder):
8126            if node.this:
8127                new_name = kwargs.get(node.this)
8128                if new_name is not None:
8129                    return convert(new_name)
8130            else:
8131                try:
8132                    return convert(next(args))
8133                except StopIteration:
8134                    pass
8135        return node
8136
8137    return expression.transform(_replace_placeholders, iter(args), **kwargs)
8138
8139
8140def expand(
8141    expression: Expression,
8142    sources: t.Dict[str, Query],
8143    dialect: DialectType = None,
8144    copy: bool = True,
8145) -> Expression:
8146    """Transforms an expression by expanding all referenced sources into subqueries.
8147
8148    Examples:
8149        >>> from sqlglot import parse_one
8150        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
8151        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
8152
8153        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
8154        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
8155
8156    Args:
8157        expression: The expression to expand.
8158        sources: A dictionary of name to Queries.
8159        dialect: The dialect of the sources dict.
8160        copy: Whether to copy the expression during transformation. Defaults to True.
8161
8162    Returns:
8163        The transformed expression.
8164    """
8165    sources = {normalize_table_name(k, dialect=dialect): v for k, v in sources.items()}
8166
8167    def _expand(node: Expression):
8168        if isinstance(node, Table):
8169            name = normalize_table_name(node, dialect=dialect)
8170            source = sources.get(name)
8171            if source:
8172                subquery = source.subquery(node.alias or name)
8173                subquery.comments = [f"source: {name}"]
8174                return subquery.transform(_expand, copy=False)
8175        return node
8176
8177    return expression.transform(_expand, copy=copy)
8178
8179
8180def func(name: str, *args, copy: bool = True, dialect: DialectType = None, **kwargs) -> Func:
8181    """
8182    Returns a Func expression.
8183
8184    Examples:
8185        >>> func("abs", 5).sql()
8186        'ABS(5)'
8187
8188        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
8189        'CAST(5 AS DOUBLE)'
8190
8191    Args:
8192        name: the name of the function to build.
8193        args: the args used to instantiate the function of interest.
8194        copy: whether to copy the argument expressions.
8195        dialect: the source dialect.
8196        kwargs: the kwargs used to instantiate the function of interest.
8197
8198    Note:
8199        The arguments `args` and `kwargs` are mutually exclusive.
8200
8201    Returns:
8202        An instance of the function of interest, or an anonymous function, if `name` doesn't
8203        correspond to an existing `sqlglot.expressions.Func` class.
8204    """
8205    if args and kwargs:
8206        raise ValueError("Can't use both args and kwargs to instantiate a function.")
8207
8208    from sqlglot.dialects.dialect import Dialect
8209
8210    dialect = Dialect.get_or_raise(dialect)
8211
8212    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect, copy=copy) for arg in args]
8213    kwargs = {key: maybe_parse(value, dialect=dialect, copy=copy) for key, value in kwargs.items()}
8214
8215    constructor = dialect.parser_class.FUNCTIONS.get(name.upper())
8216    if constructor:
8217        if converted:
8218            if "dialect" in constructor.__code__.co_varnames:
8219                function = constructor(converted, dialect=dialect)
8220            else:
8221                function = constructor(converted)
8222        elif constructor.__name__ == "from_arg_list":
8223            function = constructor.__self__(**kwargs)  # type: ignore
8224        else:
8225            constructor = FUNCTION_BY_NAME.get(name.upper())
8226            if constructor:
8227                function = constructor(**kwargs)
8228            else:
8229                raise ValueError(
8230                    f"Unable to convert '{name}' into a Func. Either manually construct "
8231                    "the Func expression of interest or parse the function call."
8232                )
8233    else:
8234        kwargs = kwargs or {"expressions": converted}
8235        function = Anonymous(this=name, **kwargs)
8236
8237    for error_message in function.error_messages(converted):
8238        raise ValueError(error_message)
8239
8240    return function
8241
8242
8243def case(
8244    expression: t.Optional[ExpOrStr] = None,
8245    **opts,
8246) -> Case:
8247    """
8248    Initialize a CASE statement.
8249
8250    Example:
8251        case().when("a = 1", "foo").else_("bar")
8252
8253    Args:
8254        expression: Optionally, the input expression (not all dialects support this)
8255        **opts: Extra keyword arguments for parsing `expression`
8256    """
8257    if expression is not None:
8258        this = maybe_parse(expression, **opts)
8259    else:
8260        this = None
8261    return Case(this=this, ifs=[])
8262
8263
8264def array(
8265    *expressions: ExpOrStr, copy: bool = True, dialect: DialectType = None, **kwargs
8266) -> Array:
8267    """
8268    Returns an array.
8269
8270    Examples:
8271        >>> array(1, 'x').sql()
8272        'ARRAY(1, x)'
8273
8274    Args:
8275        expressions: the expressions to add to the array.
8276        copy: whether to copy the argument expressions.
8277        dialect: the source dialect.
8278        kwargs: the kwargs used to instantiate the function of interest.
8279
8280    Returns:
8281        An array expression.
8282    """
8283    return Array(
8284        expressions=[
8285            maybe_parse(expression, copy=copy, dialect=dialect, **kwargs)
8286            for expression in expressions
8287        ]
8288    )
8289
8290
8291def tuple_(
8292    *expressions: ExpOrStr, copy: bool = True, dialect: DialectType = None, **kwargs
8293) -> Tuple:
8294    """
8295    Returns an tuple.
8296
8297    Examples:
8298        >>> tuple_(1, 'x').sql()
8299        '(1, x)'
8300
8301    Args:
8302        expressions: the expressions to add to the tuple.
8303        copy: whether to copy the argument expressions.
8304        dialect: the source dialect.
8305        kwargs: the kwargs used to instantiate the function of interest.
8306
8307    Returns:
8308        A tuple expression.
8309    """
8310    return Tuple(
8311        expressions=[
8312            maybe_parse(expression, copy=copy, dialect=dialect, **kwargs)
8313            for expression in expressions
8314        ]
8315    )
8316
8317
8318def true() -> Boolean:
8319    """
8320    Returns a true Boolean expression.
8321    """
8322    return Boolean(this=True)
8323
8324
8325def false() -> Boolean:
8326    """
8327    Returns a false Boolean expression.
8328    """
8329    return Boolean(this=False)
8330
8331
8332def null() -> Null:
8333    """
8334    Returns a Null expression.
8335    """
8336    return Null()
8337
8338
8339NONNULL_CONSTANTS = (
8340    Literal,
8341    Boolean,
8342)
8343
8344CONSTANTS = (
8345    Literal,
8346    Boolean,
8347    Null,
8348)
SQLGLOT_META = 'sqlglot.meta'
TABLE_PARTS = ('this', 'db', 'catalog')
COLUMN_PARTS = ('this', 'table', 'db', 'catalog')
class Expression:
  66class Expression(metaclass=_Expression):
  67    """
  68    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
  69    context, such as its child expressions, their names (arg keys), and whether a given child expression
  70    is optional or not.
  71
  72    Attributes:
  73        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
  74            and representing expressions as strings.
  75        arg_types: determines the arguments (child nodes) supported by an expression. It maps
  76            arg keys to booleans that indicate whether the corresponding args are optional.
  77        parent: a reference to the parent expression (or None, in case of root expressions).
  78        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
  79            uses to refer to it.
  80        index: the index of an expression if it is inside of a list argument in its parent.
  81        comments: a list of comments that are associated with a given expression. This is used in
  82            order to preserve comments when transpiling SQL code.
  83        type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
  84            optimizer, in order to enable some transformations that require type information.
  85        meta: a dictionary that can be used to store useful metadata for a given expression.
  86
  87    Example:
  88        >>> class Foo(Expression):
  89        ...     arg_types = {"this": True, "expression": False}
  90
  91        The above definition informs us that Foo is an Expression that requires an argument called
  92        "this" and may also optionally receive an argument called "expression".
  93
  94    Args:
  95        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
  96    """
  97
  98    key = "expression"
  99    arg_types = {"this": True}
 100    __slots__ = ("args", "parent", "arg_key", "index", "comments", "_type", "_meta", "_hash")
 101
 102    def __init__(self, **args: t.Any):
 103        self.args: t.Dict[str, t.Any] = args
 104        self.parent: t.Optional[Expression] = None
 105        self.arg_key: t.Optional[str] = None
 106        self.index: t.Optional[int] = None
 107        self.comments: t.Optional[t.List[str]] = None
 108        self._type: t.Optional[DataType] = None
 109        self._meta: t.Optional[t.Dict[str, t.Any]] = None
 110        self._hash: t.Optional[int] = None
 111
 112        for arg_key, value in self.args.items():
 113            self._set_parent(arg_key, value)
 114
 115    def __eq__(self, other) -> bool:
 116        return type(self) is type(other) and hash(self) == hash(other)
 117
 118    @property
 119    def hashable_args(self) -> t.Any:
 120        return frozenset(
 121            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
 122            for k, v in self.args.items()
 123            if not (v is None or v is False or (type(v) is list and not v))
 124        )
 125
 126    def __hash__(self) -> int:
 127        if self._hash is not None:
 128            return self._hash
 129
 130        return hash((self.__class__, self.hashable_args))
 131
 132    @property
 133    def this(self) -> t.Any:
 134        """
 135        Retrieves the argument with key "this".
 136        """
 137        return self.args.get("this")
 138
 139    @property
 140    def expression(self) -> t.Any:
 141        """
 142        Retrieves the argument with key "expression".
 143        """
 144        return self.args.get("expression")
 145
 146    @property
 147    def expressions(self) -> t.List[t.Any]:
 148        """
 149        Retrieves the argument with key "expressions".
 150        """
 151        return self.args.get("expressions") or []
 152
 153    def text(self, key) -> str:
 154        """
 155        Returns a textual representation of the argument corresponding to "key". This can only be used
 156        for args that are strings or leaf Expression instances, such as identifiers and literals.
 157        """
 158        field = self.args.get(key)
 159        if isinstance(field, str):
 160            return field
 161        if isinstance(field, (Identifier, Literal, Var)):
 162            return field.this
 163        if isinstance(field, (Star, Null)):
 164            return field.name
 165        return ""
 166
 167    @property
 168    def is_string(self) -> bool:
 169        """
 170        Checks whether a Literal expression is a string.
 171        """
 172        return isinstance(self, Literal) and self.args["is_string"]
 173
 174    @property
 175    def is_number(self) -> bool:
 176        """
 177        Checks whether a Literal expression is a number.
 178        """
 179        return (isinstance(self, Literal) and not self.args["is_string"]) or (
 180            isinstance(self, Neg) and self.this.is_number
 181        )
 182
 183    def to_py(self) -> t.Any:
 184        """
 185        Returns a Python object equivalent of the SQL node.
 186        """
 187        raise ValueError(f"{self} cannot be converted to a Python object.")
 188
 189    @property
 190    def is_int(self) -> bool:
 191        """
 192        Checks whether an expression is an integer.
 193        """
 194        return self.is_number and isinstance(self.to_py(), int)
 195
 196    @property
 197    def is_star(self) -> bool:
 198        """Checks whether an expression is a star."""
 199        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
 200
 201    @property
 202    def alias(self) -> str:
 203        """
 204        Returns the alias of the expression, or an empty string if it's not aliased.
 205        """
 206        if isinstance(self.args.get("alias"), TableAlias):
 207            return self.args["alias"].name
 208        return self.text("alias")
 209
 210    @property
 211    def alias_column_names(self) -> t.List[str]:
 212        table_alias = self.args.get("alias")
 213        if not table_alias:
 214            return []
 215        return [c.name for c in table_alias.args.get("columns") or []]
 216
 217    @property
 218    def name(self) -> str:
 219        return self.text("this")
 220
 221    @property
 222    def alias_or_name(self) -> str:
 223        return self.alias or self.name
 224
 225    @property
 226    def output_name(self) -> str:
 227        """
 228        Name of the output column if this expression is a selection.
 229
 230        If the Expression has no output name, an empty string is returned.
 231
 232        Example:
 233            >>> from sqlglot import parse_one
 234            >>> parse_one("SELECT a").expressions[0].output_name
 235            'a'
 236            >>> parse_one("SELECT b AS c").expressions[0].output_name
 237            'c'
 238            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
 239            ''
 240        """
 241        return ""
 242
 243    @property
 244    def type(self) -> t.Optional[DataType]:
 245        return self._type
 246
 247    @type.setter
 248    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
 249        if dtype and not isinstance(dtype, DataType):
 250            dtype = DataType.build(dtype)
 251        self._type = dtype  # type: ignore
 252
 253    def is_type(self, *dtypes) -> bool:
 254        return self.type is not None and self.type.is_type(*dtypes)
 255
 256    def is_leaf(self) -> bool:
 257        return not any(isinstance(v, (Expression, list)) for v in self.args.values())
 258
 259    @property
 260    def meta(self) -> t.Dict[str, t.Any]:
 261        if self._meta is None:
 262            self._meta = {}
 263        return self._meta
 264
 265    def __deepcopy__(self, memo):
 266        root = self.__class__()
 267        stack = [(self, root)]
 268
 269        while stack:
 270            node, copy = stack.pop()
 271
 272            if node.comments is not None:
 273                copy.comments = deepcopy(node.comments)
 274            if node._type is not None:
 275                copy._type = deepcopy(node._type)
 276            if node._meta is not None:
 277                copy._meta = deepcopy(node._meta)
 278            if node._hash is not None:
 279                copy._hash = node._hash
 280
 281            for k, vs in node.args.items():
 282                if hasattr(vs, "parent"):
 283                    stack.append((vs, vs.__class__()))
 284                    copy.set(k, stack[-1][-1])
 285                elif type(vs) is list:
 286                    copy.args[k] = []
 287
 288                    for v in vs:
 289                        if hasattr(v, "parent"):
 290                            stack.append((v, v.__class__()))
 291                            copy.append(k, stack[-1][-1])
 292                        else:
 293                            copy.append(k, v)
 294                else:
 295                    copy.args[k] = vs
 296
 297        return root
 298
 299    def copy(self):
 300        """
 301        Returns a deep copy of the expression.
 302        """
 303        return deepcopy(self)
 304
 305    def add_comments(self, comments: t.Optional[t.List[str]] = None) -> None:
 306        if self.comments is None:
 307            self.comments = []
 308
 309        if comments:
 310            for comment in comments:
 311                _, *meta = comment.split(SQLGLOT_META)
 312                if meta:
 313                    for kv in "".join(meta).split(","):
 314                        k, *v = kv.split("=")
 315                        value = v[0].strip() if v else True
 316                        self.meta[k.strip()] = value
 317                self.comments.append(comment)
 318
 319    def pop_comments(self) -> t.List[str]:
 320        comments = self.comments or []
 321        self.comments = None
 322        return comments
 323
 324    def append(self, arg_key: str, value: t.Any) -> None:
 325        """
 326        Appends value to arg_key if it's a list or sets it as a new list.
 327
 328        Args:
 329            arg_key (str): name of the list expression arg
 330            value (Any): value to append to the list
 331        """
 332        if type(self.args.get(arg_key)) is not list:
 333            self.args[arg_key] = []
 334        self._set_parent(arg_key, value)
 335        values = self.args[arg_key]
 336        if hasattr(value, "parent"):
 337            value.index = len(values)
 338        values.append(value)
 339
 340    def set(
 341        self,
 342        arg_key: str,
 343        value: t.Any,
 344        index: t.Optional[int] = None,
 345        overwrite: bool = True,
 346    ) -> None:
 347        """
 348        Sets arg_key to value.
 349
 350        Args:
 351            arg_key: name of the expression arg.
 352            value: value to set the arg to.
 353            index: if the arg is a list, this specifies what position to add the value in it.
 354            overwrite: assuming an index is given, this determines whether to overwrite the
 355                list entry instead of only inserting a new value (i.e., like list.insert).
 356        """
 357        if index is not None:
 358            expressions = self.args.get(arg_key) or []
 359
 360            if seq_get(expressions, index) is None:
 361                return
 362            if value is None:
 363                expressions.pop(index)
 364                for v in expressions[index:]:
 365                    v.index = v.index - 1
 366                return
 367
 368            if isinstance(value, list):
 369                expressions.pop(index)
 370                expressions[index:index] = value
 371            elif overwrite:
 372                expressions[index] = value
 373            else:
 374                expressions.insert(index, value)
 375
 376            value = expressions
 377        elif value is None:
 378            self.args.pop(arg_key, None)
 379            return
 380
 381        self.args[arg_key] = value
 382        self._set_parent(arg_key, value, index)
 383
 384    def _set_parent(self, arg_key: str, value: t.Any, index: t.Optional[int] = None) -> None:
 385        if hasattr(value, "parent"):
 386            value.parent = self
 387            value.arg_key = arg_key
 388            value.index = index
 389        elif type(value) is list:
 390            for index, v in enumerate(value):
 391                if hasattr(v, "parent"):
 392                    v.parent = self
 393                    v.arg_key = arg_key
 394                    v.index = index
 395
 396    @property
 397    def depth(self) -> int:
 398        """
 399        Returns the depth of this tree.
 400        """
 401        if self.parent:
 402            return self.parent.depth + 1
 403        return 0
 404
 405    def iter_expressions(self, reverse: bool = False) -> t.Iterator[Expression]:
 406        """Yields the key and expression for all arguments, exploding list args."""
 407        # remove tuple when python 3.7 is deprecated
 408        for vs in reversed(tuple(self.args.values())) if reverse else self.args.values():  # type: ignore
 409            if type(vs) is list:
 410                for v in reversed(vs) if reverse else vs:  # type: ignore
 411                    if hasattr(v, "parent"):
 412                        yield v
 413            else:
 414                if hasattr(vs, "parent"):
 415                    yield vs
 416
 417    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
 418        """
 419        Returns the first node in this tree which matches at least one of
 420        the specified types.
 421
 422        Args:
 423            expression_types: the expression type(s) to match.
 424            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 425
 426        Returns:
 427            The node which matches the criteria or None if no such node was found.
 428        """
 429        return next(self.find_all(*expression_types, bfs=bfs), None)
 430
 431    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
 432        """
 433        Returns a generator object which visits all nodes in this tree and only
 434        yields those that match at least one of the specified expression types.
 435
 436        Args:
 437            expression_types: the expression type(s) to match.
 438            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 439
 440        Returns:
 441            The generator object.
 442        """
 443        for expression in self.walk(bfs=bfs):
 444            if isinstance(expression, expression_types):
 445                yield expression
 446
 447    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
 448        """
 449        Returns a nearest parent matching expression_types.
 450
 451        Args:
 452            expression_types: the expression type(s) to match.
 453
 454        Returns:
 455            The parent node.
 456        """
 457        ancestor = self.parent
 458        while ancestor and not isinstance(ancestor, expression_types):
 459            ancestor = ancestor.parent
 460        return ancestor  # type: ignore
 461
 462    @property
 463    def parent_select(self) -> t.Optional[Select]:
 464        """
 465        Returns the parent select statement.
 466        """
 467        return self.find_ancestor(Select)
 468
 469    @property
 470    def same_parent(self) -> bool:
 471        """Returns if the parent is the same class as itself."""
 472        return type(self.parent) is self.__class__
 473
 474    def root(self) -> Expression:
 475        """
 476        Returns the root expression of this tree.
 477        """
 478        expression = self
 479        while expression.parent:
 480            expression = expression.parent
 481        return expression
 482
 483    def walk(
 484        self, bfs: bool = True, prune: t.Optional[t.Callable[[Expression], bool]] = None
 485    ) -> t.Iterator[Expression]:
 486        """
 487        Returns a generator object which visits all nodes in this tree.
 488
 489        Args:
 490            bfs: if set to True the BFS traversal order will be applied,
 491                otherwise the DFS traversal will be used instead.
 492            prune: callable that returns True if the generator should stop traversing
 493                this branch of the tree.
 494
 495        Returns:
 496            the generator object.
 497        """
 498        if bfs:
 499            yield from self.bfs(prune=prune)
 500        else:
 501            yield from self.dfs(prune=prune)
 502
 503    def dfs(
 504        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
 505    ) -> t.Iterator[Expression]:
 506        """
 507        Returns a generator object which visits all nodes in this tree in
 508        the DFS (Depth-first) order.
 509
 510        Returns:
 511            The generator object.
 512        """
 513        stack = [self]
 514
 515        while stack:
 516            node = stack.pop()
 517
 518            yield node
 519
 520            if prune and prune(node):
 521                continue
 522
 523            for v in node.iter_expressions(reverse=True):
 524                stack.append(v)
 525
 526    def bfs(
 527        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
 528    ) -> t.Iterator[Expression]:
 529        """
 530        Returns a generator object which visits all nodes in this tree in
 531        the BFS (Breadth-first) order.
 532
 533        Returns:
 534            The generator object.
 535        """
 536        queue = deque([self])
 537
 538        while queue:
 539            node = queue.popleft()
 540
 541            yield node
 542
 543            if prune and prune(node):
 544                continue
 545
 546            for v in node.iter_expressions():
 547                queue.append(v)
 548
 549    def unnest(self):
 550        """
 551        Returns the first non parenthesis child or self.
 552        """
 553        expression = self
 554        while type(expression) is Paren:
 555            expression = expression.this
 556        return expression
 557
 558    def unalias(self):
 559        """
 560        Returns the inner expression if this is an Alias.
 561        """
 562        if isinstance(self, Alias):
 563            return self.this
 564        return self
 565
 566    def unnest_operands(self):
 567        """
 568        Returns unnested operands as a tuple.
 569        """
 570        return tuple(arg.unnest() for arg in self.iter_expressions())
 571
 572    def flatten(self, unnest=True):
 573        """
 574        Returns a generator which yields child nodes whose parents are the same class.
 575
 576        A AND B AND C -> [A, B, C]
 577        """
 578        for node in self.dfs(prune=lambda n: n.parent and type(n) is not self.__class__):
 579            if type(node) is not self.__class__:
 580                yield node.unnest() if unnest and not isinstance(node, Subquery) else node
 581
 582    def __str__(self) -> str:
 583        return self.sql()
 584
 585    def __repr__(self) -> str:
 586        return _to_s(self)
 587
 588    def to_s(self) -> str:
 589        """
 590        Same as __repr__, but includes additional information which can be useful
 591        for debugging, like empty or missing args and the AST nodes' object IDs.
 592        """
 593        return _to_s(self, verbose=True)
 594
 595    def sql(self, dialect: DialectType = None, **opts) -> str:
 596        """
 597        Returns SQL string representation of this tree.
 598
 599        Args:
 600            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
 601            opts: other `sqlglot.generator.Generator` options.
 602
 603        Returns:
 604            The SQL string.
 605        """
 606        from sqlglot.dialects import Dialect
 607
 608        return Dialect.get_or_raise(dialect).generate(self, **opts)
 609
 610    def transform(self, fun: t.Callable, *args: t.Any, copy: bool = True, **kwargs) -> Expression:
 611        """
 612        Visits all tree nodes (excluding already transformed ones)
 613        and applies the given transformation function to each node.
 614
 615        Args:
 616            fun: a function which takes a node as an argument and returns a
 617                new transformed node or the same node without modifications. If the function
 618                returns None, then the corresponding node will be removed from the syntax tree.
 619            copy: if set to True a new tree instance is constructed, otherwise the tree is
 620                modified in place.
 621
 622        Returns:
 623            The transformed tree.
 624        """
 625        root = None
 626        new_node = None
 627
 628        for node in (self.copy() if copy else self).dfs(prune=lambda n: n is not new_node):
 629            parent, arg_key, index = node.parent, node.arg_key, node.index
 630            new_node = fun(node, *args, **kwargs)
 631
 632            if not root:
 633                root = new_node
 634            elif new_node is not node:
 635                parent.set(arg_key, new_node, index)
 636
 637        assert root
 638        return root.assert_is(Expression)
 639
 640    @t.overload
 641    def replace(self, expression: E) -> E: ...
 642
 643    @t.overload
 644    def replace(self, expression: None) -> None: ...
 645
 646    def replace(self, expression):
 647        """
 648        Swap out this expression with a new expression.
 649
 650        For example::
 651
 652            >>> tree = Select().select("x").from_("tbl")
 653            >>> tree.find(Column).replace(column("y"))
 654            Column(
 655              this=Identifier(this=y, quoted=False))
 656            >>> tree.sql()
 657            'SELECT y FROM tbl'
 658
 659        Args:
 660            expression: new node
 661
 662        Returns:
 663            The new expression or expressions.
 664        """
 665        parent = self.parent
 666
 667        if not parent or parent is expression:
 668            return expression
 669
 670        key = self.arg_key
 671        value = parent.args.get(key)
 672
 673        if type(expression) is list and isinstance(value, Expression):
 674            # We are trying to replace an Expression with a list, so it's assumed that
 675            # the intention was to really replace the parent of this expression.
 676            value.parent.replace(expression)
 677        else:
 678            parent.set(key, expression, self.index)
 679
 680        if expression is not self:
 681            self.parent = None
 682            self.arg_key = None
 683            self.index = None
 684
 685        return expression
 686
 687    def pop(self: E) -> E:
 688        """
 689        Remove this expression from its AST.
 690
 691        Returns:
 692            The popped expression.
 693        """
 694        self.replace(None)
 695        return self
 696
 697    def assert_is(self, type_: t.Type[E]) -> E:
 698        """
 699        Assert that this `Expression` is an instance of `type_`.
 700
 701        If it is NOT an instance of `type_`, this raises an assertion error.
 702        Otherwise, this returns this expression.
 703
 704        Examples:
 705            This is useful for type security in chained expressions:
 706
 707            >>> import sqlglot
 708            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
 709            'SELECT x, z FROM y'
 710        """
 711        if not isinstance(self, type_):
 712            raise AssertionError(f"{self} is not {type_}.")
 713        return self
 714
 715    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
 716        """
 717        Checks if this expression is valid (e.g. all mandatory args are set).
 718
 719        Args:
 720            args: a sequence of values that were used to instantiate a Func expression. This is used
 721                to check that the provided arguments don't exceed the function argument limit.
 722
 723        Returns:
 724            A list of error messages for all possible errors that were found.
 725        """
 726        errors: t.List[str] = []
 727
 728        for k in self.args:
 729            if k not in self.arg_types:
 730                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
 731        for k, mandatory in self.arg_types.items():
 732            v = self.args.get(k)
 733            if mandatory and (v is None or (isinstance(v, list) and not v)):
 734                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
 735
 736        if (
 737            args
 738            and isinstance(self, Func)
 739            and len(args) > len(self.arg_types)
 740            and not self.is_var_len_args
 741        ):
 742            errors.append(
 743                f"The number of provided arguments ({len(args)}) is greater than "
 744                f"the maximum number of supported arguments ({len(self.arg_types)})"
 745            )
 746
 747        return errors
 748
 749    def dump(self):
 750        """
 751        Dump this Expression to a JSON-serializable dict.
 752        """
 753        from sqlglot.serde import dump
 754
 755        return dump(self)
 756
 757    @classmethod
 758    def load(cls, obj):
 759        """
 760        Load a dict (as returned by `Expression.dump`) into an Expression instance.
 761        """
 762        from sqlglot.serde import load
 763
 764        return load(obj)
 765
 766    def and_(
 767        self,
 768        *expressions: t.Optional[ExpOrStr],
 769        dialect: DialectType = None,
 770        copy: bool = True,
 771        **opts,
 772    ) -> Condition:
 773        """
 774        AND this condition with one or multiple expressions.
 775
 776        Example:
 777            >>> condition("x=1").and_("y=1").sql()
 778            'x = 1 AND y = 1'
 779
 780        Args:
 781            *expressions: the SQL code strings to parse.
 782                If an `Expression` instance is passed, it will be used as-is.
 783            dialect: the dialect used to parse the input expression.
 784            copy: whether to copy the involved expressions (only applies to Expressions).
 785            opts: other options to use to parse the input expressions.
 786
 787        Returns:
 788            The new And condition.
 789        """
 790        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
 791
 792    def or_(
 793        self,
 794        *expressions: t.Optional[ExpOrStr],
 795        dialect: DialectType = None,
 796        copy: bool = True,
 797        **opts,
 798    ) -> Condition:
 799        """
 800        OR this condition with one or multiple expressions.
 801
 802        Example:
 803            >>> condition("x=1").or_("y=1").sql()
 804            'x = 1 OR y = 1'
 805
 806        Args:
 807            *expressions: the SQL code strings to parse.
 808                If an `Expression` instance is passed, it will be used as-is.
 809            dialect: the dialect used to parse the input expression.
 810            copy: whether to copy the involved expressions (only applies to Expressions).
 811            opts: other options to use to parse the input expressions.
 812
 813        Returns:
 814            The new Or condition.
 815        """
 816        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
 817
 818    def not_(self, copy: bool = True):
 819        """
 820        Wrap this condition with NOT.
 821
 822        Example:
 823            >>> condition("x=1").not_().sql()
 824            'NOT x = 1'
 825
 826        Args:
 827            copy: whether to copy this object.
 828
 829        Returns:
 830            The new Not instance.
 831        """
 832        return not_(self, copy=copy)
 833
 834    def as_(
 835        self,
 836        alias: str | Identifier,
 837        quoted: t.Optional[bool] = None,
 838        dialect: DialectType = None,
 839        copy: bool = True,
 840        **opts,
 841    ) -> Alias:
 842        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
 843
 844    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
 845        this = self.copy()
 846        other = convert(other, copy=True)
 847        if not isinstance(this, klass) and not isinstance(other, klass):
 848            this = _wrap(this, Binary)
 849            other = _wrap(other, Binary)
 850        if reverse:
 851            return klass(this=other, expression=this)
 852        return klass(this=this, expression=other)
 853
 854    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]) -> Bracket:
 855        return Bracket(
 856            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
 857        )
 858
 859    def __iter__(self) -> t.Iterator:
 860        if "expressions" in self.arg_types:
 861            return iter(self.args.get("expressions") or [])
 862        # We define this because __getitem__ converts Expression into an iterable, which is
 863        # problematic because one can hit infinite loops if they do "for x in some_expr: ..."
 864        # See: https://peps.python.org/pep-0234/
 865        raise TypeError(f"'{self.__class__.__name__}' object is not iterable")
 866
 867    def isin(
 868        self,
 869        *expressions: t.Any,
 870        query: t.Optional[ExpOrStr] = None,
 871        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
 872        copy: bool = True,
 873        **opts,
 874    ) -> In:
 875        subquery = maybe_parse(query, copy=copy, **opts) if query else None
 876        if subquery and not isinstance(subquery, Subquery):
 877            subquery = subquery.subquery(copy=False)
 878
 879        return In(
 880            this=maybe_copy(self, copy),
 881            expressions=[convert(e, copy=copy) for e in expressions],
 882            query=subquery,
 883            unnest=(
 884                Unnest(
 885                    expressions=[
 886                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
 887                        for e in ensure_list(unnest)
 888                    ]
 889                )
 890                if unnest
 891                else None
 892            ),
 893        )
 894
 895    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
 896        return Between(
 897            this=maybe_copy(self, copy),
 898            low=convert(low, copy=copy, **opts),
 899            high=convert(high, copy=copy, **opts),
 900        )
 901
 902    def is_(self, other: ExpOrStr) -> Is:
 903        return self._binop(Is, other)
 904
 905    def like(self, other: ExpOrStr) -> Like:
 906        return self._binop(Like, other)
 907
 908    def ilike(self, other: ExpOrStr) -> ILike:
 909        return self._binop(ILike, other)
 910
 911    def eq(self, other: t.Any) -> EQ:
 912        return self._binop(EQ, other)
 913
 914    def neq(self, other: t.Any) -> NEQ:
 915        return self._binop(NEQ, other)
 916
 917    def rlike(self, other: ExpOrStr) -> RegexpLike:
 918        return self._binop(RegexpLike, other)
 919
 920    def div(self, other: ExpOrStr, typed: bool = False, safe: bool = False) -> Div:
 921        div = self._binop(Div, other)
 922        div.args["typed"] = typed
 923        div.args["safe"] = safe
 924        return div
 925
 926    def asc(self, nulls_first: bool = True) -> Ordered:
 927        return Ordered(this=self.copy(), nulls_first=nulls_first)
 928
 929    def desc(self, nulls_first: bool = False) -> Ordered:
 930        return Ordered(this=self.copy(), desc=True, nulls_first=nulls_first)
 931
 932    def __lt__(self, other: t.Any) -> LT:
 933        return self._binop(LT, other)
 934
 935    def __le__(self, other: t.Any) -> LTE:
 936        return self._binop(LTE, other)
 937
 938    def __gt__(self, other: t.Any) -> GT:
 939        return self._binop(GT, other)
 940
 941    def __ge__(self, other: t.Any) -> GTE:
 942        return self._binop(GTE, other)
 943
 944    def __add__(self, other: t.Any) -> Add:
 945        return self._binop(Add, other)
 946
 947    def __radd__(self, other: t.Any) -> Add:
 948        return self._binop(Add, other, reverse=True)
 949
 950    def __sub__(self, other: t.Any) -> Sub:
 951        return self._binop(Sub, other)
 952
 953    def __rsub__(self, other: t.Any) -> Sub:
 954        return self._binop(Sub, other, reverse=True)
 955
 956    def __mul__(self, other: t.Any) -> Mul:
 957        return self._binop(Mul, other)
 958
 959    def __rmul__(self, other: t.Any) -> Mul:
 960        return self._binop(Mul, other, reverse=True)
 961
 962    def __truediv__(self, other: t.Any) -> Div:
 963        return self._binop(Div, other)
 964
 965    def __rtruediv__(self, other: t.Any) -> Div:
 966        return self._binop(Div, other, reverse=True)
 967
 968    def __floordiv__(self, other: t.Any) -> IntDiv:
 969        return self._binop(IntDiv, other)
 970
 971    def __rfloordiv__(self, other: t.Any) -> IntDiv:
 972        return self._binop(IntDiv, other, reverse=True)
 973
 974    def __mod__(self, other: t.Any) -> Mod:
 975        return self._binop(Mod, other)
 976
 977    def __rmod__(self, other: t.Any) -> Mod:
 978        return self._binop(Mod, other, reverse=True)
 979
 980    def __pow__(self, other: t.Any) -> Pow:
 981        return self._binop(Pow, other)
 982
 983    def __rpow__(self, other: t.Any) -> Pow:
 984        return self._binop(Pow, other, reverse=True)
 985
 986    def __and__(self, other: t.Any) -> And:
 987        return self._binop(And, other)
 988
 989    def __rand__(self, other: t.Any) -> And:
 990        return self._binop(And, other, reverse=True)
 991
 992    def __or__(self, other: t.Any) -> Or:
 993        return self._binop(Or, other)
 994
 995    def __ror__(self, other: t.Any) -> Or:
 996        return self._binop(Or, other, reverse=True)
 997
 998    def __neg__(self) -> Neg:
 999        return Neg(this=_wrap(self.copy(), Binary))
1000
1001    def __invert__(self) -> Not:
1002        return not_(self.copy())

The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary context, such as its child expressions, their names (arg keys), and whether a given child expression is optional or not.

Attributes:
  • key: a unique key for each class in the Expression hierarchy. This is useful for hashing and representing expressions as strings.
  • arg_types: determines the arguments (child nodes) supported by an expression. It maps arg keys to booleans that indicate whether the corresponding args are optional.
  • parent: a reference to the parent expression (or None, in case of root expressions).
  • arg_key: the arg key an expression is associated with, i.e. the name its parent expression uses to refer to it.
  • index: the index of an expression if it is inside of a list argument in its parent.
  • comments: a list of comments that are associated with a given expression. This is used in order to preserve comments when transpiling SQL code.
  • type: the sqlglot.expressions.DataType type of an expression. This is inferred by the optimizer, in order to enable some transformations that require type information.
  • meta: a dictionary that can be used to store useful metadata for a given expression.
Example:
>>> class Foo(Expression):
...     arg_types = {"this": True, "expression": False}

The above definition informs us that Foo is an Expression that requires an argument called "this" and may also optionally receive an argument called "expression".

Arguments:
  • args: a mapping used for retrieving the arguments of an expression, given their arg keys.
Expression(**args: Any)
102    def __init__(self, **args: t.Any):
103        self.args: t.Dict[str, t.Any] = args
104        self.parent: t.Optional[Expression] = None
105        self.arg_key: t.Optional[str] = None
106        self.index: t.Optional[int] = None
107        self.comments: t.Optional[t.List[str]] = None
108        self._type: t.Optional[DataType] = None
109        self._meta: t.Optional[t.Dict[str, t.Any]] = None
110        self._hash: t.Optional[int] = None
111
112        for arg_key, value in self.args.items():
113            self._set_parent(arg_key, value)
key = 'expression'
arg_types = {'this': True}
args: Dict[str, Any]
parent: Optional[Expression]
arg_key: Optional[str]
index: Optional[int]
comments: Optional[List[str]]
hashable_args: Any
118    @property
119    def hashable_args(self) -> t.Any:
120        return frozenset(
121            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
122            for k, v in self.args.items()
123            if not (v is None or v is False or (type(v) is list and not v))
124        )
this: Any
132    @property
133    def this(self) -> t.Any:
134        """
135        Retrieves the argument with key "this".
136        """
137        return self.args.get("this")

Retrieves the argument with key "this".

expression: Any
139    @property
140    def expression(self) -> t.Any:
141        """
142        Retrieves the argument with key "expression".
143        """
144        return self.args.get("expression")

Retrieves the argument with key "expression".

expressions: List[Any]
146    @property
147    def expressions(self) -> t.List[t.Any]:
148        """
149        Retrieves the argument with key "expressions".
150        """
151        return self.args.get("expressions") or []

Retrieves the argument with key "expressions".

def text(self, key) -> str:
153    def text(self, key) -> str:
154        """
155        Returns a textual representation of the argument corresponding to "key". This can only be used
156        for args that are strings or leaf Expression instances, such as identifiers and literals.
157        """
158        field = self.args.get(key)
159        if isinstance(field, str):
160            return field
161        if isinstance(field, (Identifier, Literal, Var)):
162            return field.this
163        if isinstance(field, (Star, Null)):
164            return field.name
165        return ""

Returns a textual representation of the argument corresponding to "key". This can only be used for args that are strings or leaf Expression instances, such as identifiers and literals.

is_string: bool
167    @property
168    def is_string(self) -> bool:
169        """
170        Checks whether a Literal expression is a string.
171        """
172        return isinstance(self, Literal) and self.args["is_string"]

Checks whether a Literal expression is a string.

is_number: bool
174    @property
175    def is_number(self) -> bool:
176        """
177        Checks whether a Literal expression is a number.
178        """
179        return (isinstance(self, Literal) and not self.args["is_string"]) or (
180            isinstance(self, Neg) and self.this.is_number
181        )

Checks whether a Literal expression is a number.

def to_py(self) -> Any:
183    def to_py(self) -> t.Any:
184        """
185        Returns a Python object equivalent of the SQL node.
186        """
187        raise ValueError(f"{self} cannot be converted to a Python object.")

Returns a Python object equivalent of the SQL node.

is_int: bool
189    @property
190    def is_int(self) -> bool:
191        """
192        Checks whether an expression is an integer.
193        """
194        return self.is_number and isinstance(self.to_py(), int)

Checks whether an expression is an integer.

is_star: bool
196    @property
197    def is_star(self) -> bool:
198        """Checks whether an expression is a star."""
199        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))

Checks whether an expression is a star.

alias: str
201    @property
202    def alias(self) -> str:
203        """
204        Returns the alias of the expression, or an empty string if it's not aliased.
205        """
206        if isinstance(self.args.get("alias"), TableAlias):
207            return self.args["alias"].name
208        return self.text("alias")

Returns the alias of the expression, or an empty string if it's not aliased.

alias_column_names: List[str]
210    @property
211    def alias_column_names(self) -> t.List[str]:
212        table_alias = self.args.get("alias")
213        if not table_alias:
214            return []
215        return [c.name for c in table_alias.args.get("columns") or []]
name: str
217    @property
218    def name(self) -> str:
219        return self.text("this")
alias_or_name: str
221    @property
222    def alias_or_name(self) -> str:
223        return self.alias or self.name
output_name: str
225    @property
226    def output_name(self) -> str:
227        """
228        Name of the output column if this expression is a selection.
229
230        If the Expression has no output name, an empty string is returned.
231
232        Example:
233            >>> from sqlglot import parse_one
234            >>> parse_one("SELECT a").expressions[0].output_name
235            'a'
236            >>> parse_one("SELECT b AS c").expressions[0].output_name
237            'c'
238            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
239            ''
240        """
241        return ""

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
type: Optional[DataType]
243    @property
244    def type(self) -> t.Optional[DataType]:
245        return self._type
def is_type(self, *dtypes) -> bool:
253    def is_type(self, *dtypes) -> bool:
254        return self.type is not None and self.type.is_type(*dtypes)
def is_leaf(self) -> bool:
256    def is_leaf(self) -> bool:
257        return not any(isinstance(v, (Expression, list)) for v in self.args.values())
meta: Dict[str, Any]
259    @property
260    def meta(self) -> t.Dict[str, t.Any]:
261        if self._meta is None:
262            self._meta = {}
263        return self._meta
def copy(self):
299    def copy(self):
300        """
301        Returns a deep copy of the expression.
302        """
303        return deepcopy(self)

Returns a deep copy of the expression.

def add_comments(self, comments: Optional[List[str]] = None) -> None:
305    def add_comments(self, comments: t.Optional[t.List[str]] = None) -> None:
306        if self.comments is None:
307            self.comments = []
308
309        if comments:
310            for comment in comments:
311                _, *meta = comment.split(SQLGLOT_META)
312                if meta:
313                    for kv in "".join(meta).split(","):
314                        k, *v = kv.split("=")
315                        value = v[0].strip() if v else True
316                        self.meta[k.strip()] = value
317                self.comments.append(comment)
def pop_comments(self) -> List[str]:
319    def pop_comments(self) -> t.List[str]:
320        comments = self.comments or []
321        self.comments = None
322        return comments
def append(self, arg_key: str, value: Any) -> None:
324    def append(self, arg_key: str, value: t.Any) -> None:
325        """
326        Appends value to arg_key if it's a list or sets it as a new list.
327
328        Args:
329            arg_key (str): name of the list expression arg
330            value (Any): value to append to the list
331        """
332        if type(self.args.get(arg_key)) is not list:
333            self.args[arg_key] = []
334        self._set_parent(arg_key, value)
335        values = self.args[arg_key]
336        if hasattr(value, "parent"):
337            value.index = len(values)
338        values.append(value)

Appends value to arg_key if it's a list or sets it as a new list.

Arguments:
  • arg_key (str): name of the list expression arg
  • value (Any): value to append to the list
def set( self, arg_key: str, value: Any, index: Optional[int] = None, overwrite: bool = True) -> None:
340    def set(
341        self,
342        arg_key: str,
343        value: t.Any,
344        index: t.Optional[int] = None,
345        overwrite: bool = True,
346    ) -> None:
347        """
348        Sets arg_key to value.
349
350        Args:
351            arg_key: name of the expression arg.
352            value: value to set the arg to.
353            index: if the arg is a list, this specifies what position to add the value in it.
354            overwrite: assuming an index is given, this determines whether to overwrite the
355                list entry instead of only inserting a new value (i.e., like list.insert).
356        """
357        if index is not None:
358            expressions = self.args.get(arg_key) or []
359
360            if seq_get(expressions, index) is None:
361                return
362            if value is None:
363                expressions.pop(index)
364                for v in expressions[index:]:
365                    v.index = v.index - 1
366                return
367
368            if isinstance(value, list):
369                expressions.pop(index)
370                expressions[index:index] = value
371            elif overwrite:
372                expressions[index] = value
373            else:
374                expressions.insert(index, value)
375
376            value = expressions
377        elif value is None:
378            self.args.pop(arg_key, None)
379            return
380
381        self.args[arg_key] = value
382        self._set_parent(arg_key, value, index)

Sets arg_key to value.

Arguments:
  • arg_key: name of the expression arg.
  • value: value to set the arg to.
  • index: if the arg is a list, this specifies what position to add the value in it.
  • overwrite: assuming an index is given, this determines whether to overwrite the list entry instead of only inserting a new value (i.e., like list.insert).
depth: int
396    @property
397    def depth(self) -> int:
398        """
399        Returns the depth of this tree.
400        """
401        if self.parent:
402            return self.parent.depth + 1
403        return 0

Returns the depth of this tree.

def iter_expressions(self, reverse: bool = False) -> Iterator[Expression]:
405    def iter_expressions(self, reverse: bool = False) -> t.Iterator[Expression]:
406        """Yields the key and expression for all arguments, exploding list args."""
407        # remove tuple when python 3.7 is deprecated
408        for vs in reversed(tuple(self.args.values())) if reverse else self.args.values():  # type: ignore
409            if type(vs) is list:
410                for v in reversed(vs) if reverse else vs:  # type: ignore
411                    if hasattr(v, "parent"):
412                        yield v
413            else:
414                if hasattr(vs, "parent"):
415                    yield vs

Yields the key and expression for all arguments, exploding list args.

def find(self, *expression_types: Type[~E], bfs: bool = True) -> Optional[~E]:
417    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
418        """
419        Returns the first node in this tree which matches at least one of
420        the specified types.
421
422        Args:
423            expression_types: the expression type(s) to match.
424            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
425
426        Returns:
427            The node which matches the criteria or None if no such node was found.
428        """
429        return next(self.find_all(*expression_types, bfs=bfs), None)

Returns the first node in this tree which matches at least one of the specified types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The node which matches the criteria or None if no such node was found.

def find_all(self, *expression_types: Type[~E], bfs: bool = True) -> Iterator[~E]:
431    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
432        """
433        Returns a generator object which visits all nodes in this tree and only
434        yields those that match at least one of the specified expression types.
435
436        Args:
437            expression_types: the expression type(s) to match.
438            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
439
440        Returns:
441            The generator object.
442        """
443        for expression in self.walk(bfs=bfs):
444            if isinstance(expression, expression_types):
445                yield expression

Returns a generator object which visits all nodes in this tree and only yields those that match at least one of the specified expression types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The generator object.

def find_ancestor(self, *expression_types: Type[~E]) -> Optional[~E]:
447    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
448        """
449        Returns a nearest parent matching expression_types.
450
451        Args:
452            expression_types: the expression type(s) to match.
453
454        Returns:
455            The parent node.
456        """
457        ancestor = self.parent
458        while ancestor and not isinstance(ancestor, expression_types):
459            ancestor = ancestor.parent
460        return ancestor  # type: ignore

Returns a nearest parent matching expression_types.

Arguments:
  • expression_types: the expression type(s) to match.
Returns:

The parent node.

parent_select: Optional[Select]
462    @property
463    def parent_select(self) -> t.Optional[Select]:
464        """
465        Returns the parent select statement.
466        """
467        return self.find_ancestor(Select)

Returns the parent select statement.

same_parent: bool
469    @property
470    def same_parent(self) -> bool:
471        """Returns if the parent is the same class as itself."""
472        return type(self.parent) is self.__class__

Returns if the parent is the same class as itself.

def root(self) -> Expression:
474    def root(self) -> Expression:
475        """
476        Returns the root expression of this tree.
477        """
478        expression = self
479        while expression.parent:
480            expression = expression.parent
481        return expression

Returns the root expression of this tree.

def walk( self, bfs: bool = True, prune: Optional[Callable[[Expression], bool]] = None) -> Iterator[Expression]:
483    def walk(
484        self, bfs: bool = True, prune: t.Optional[t.Callable[[Expression], bool]] = None
485    ) -> t.Iterator[Expression]:
486        """
487        Returns a generator object which visits all nodes in this tree.
488
489        Args:
490            bfs: if set to True the BFS traversal order will be applied,
491                otherwise the DFS traversal will be used instead.
492            prune: callable that returns True if the generator should stop traversing
493                this branch of the tree.
494
495        Returns:
496            the generator object.
497        """
498        if bfs:
499            yield from self.bfs(prune=prune)
500        else:
501            yield from self.dfs(prune=prune)

Returns a generator object which visits all nodes in this tree.

Arguments:
  • bfs: if set to True the BFS traversal order will be applied, otherwise the DFS traversal will be used instead.
  • prune: callable that returns True if the generator should stop traversing this branch of the tree.
Returns:

the generator object.

def dfs( self, prune: Optional[Callable[[Expression], bool]] = None) -> Iterator[Expression]:
503    def dfs(
504        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
505    ) -> t.Iterator[Expression]:
506        """
507        Returns a generator object which visits all nodes in this tree in
508        the DFS (Depth-first) order.
509
510        Returns:
511            The generator object.
512        """
513        stack = [self]
514
515        while stack:
516            node = stack.pop()
517
518            yield node
519
520            if prune and prune(node):
521                continue
522
523            for v in node.iter_expressions(reverse=True):
524                stack.append(v)

Returns a generator object which visits all nodes in this tree in the DFS (Depth-first) order.

Returns:

The generator object.

def bfs( self, prune: Optional[Callable[[Expression], bool]] = None) -> Iterator[Expression]:
526    def bfs(
527        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
528    ) -> t.Iterator[Expression]:
529        """
530        Returns a generator object which visits all nodes in this tree in
531        the BFS (Breadth-first) order.
532
533        Returns:
534            The generator object.
535        """
536        queue = deque([self])
537
538        while queue:
539            node = queue.popleft()
540
541            yield node
542
543            if prune and prune(node):
544                continue
545
546            for v in node.iter_expressions():
547                queue.append(v)

Returns a generator object which visits all nodes in this tree in the BFS (Breadth-first) order.

Returns:

The generator object.

def unnest(self):
549    def unnest(self):
550        """
551        Returns the first non parenthesis child or self.
552        """
553        expression = self
554        while type(expression) is Paren:
555            expression = expression.this
556        return expression

Returns the first non parenthesis child or self.

def unalias(self):
558    def unalias(self):
559        """
560        Returns the inner expression if this is an Alias.
561        """
562        if isinstance(self, Alias):
563            return self.this
564        return self

Returns the inner expression if this is an Alias.

def unnest_operands(self):
566    def unnest_operands(self):
567        """
568        Returns unnested operands as a tuple.
569        """
570        return tuple(arg.unnest() for arg in self.iter_expressions())

Returns unnested operands as a tuple.

def flatten(self, unnest=True):
572    def flatten(self, unnest=True):
573        """
574        Returns a generator which yields child nodes whose parents are the same class.
575
576        A AND B AND C -> [A, B, C]
577        """
578        for node in self.dfs(prune=lambda n: n.parent and type(n) is not self.__class__):
579            if type(node) is not self.__class__:
580                yield node.unnest() if unnest and not isinstance(node, Subquery) else node

Returns a generator which yields child nodes whose parents are the same class.

A AND B AND C -> [A, B, C]

def to_s(self) -> str:
588    def to_s(self) -> str:
589        """
590        Same as __repr__, but includes additional information which can be useful
591        for debugging, like empty or missing args and the AST nodes' object IDs.
592        """
593        return _to_s(self, verbose=True)

Same as __repr__, but includes additional information which can be useful for debugging, like empty or missing args and the AST nodes' object IDs.

def sql( self, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> str:
595    def sql(self, dialect: DialectType = None, **opts) -> str:
596        """
597        Returns SQL string representation of this tree.
598
599        Args:
600            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
601            opts: other `sqlglot.generator.Generator` options.
602
603        Returns:
604            The SQL string.
605        """
606        from sqlglot.dialects import Dialect
607
608        return Dialect.get_or_raise(dialect).generate(self, **opts)

Returns SQL string representation of this tree.

Arguments:
  • dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
  • opts: other sqlglot.generator.Generator options.
Returns:

The SQL string.

def transform( self, fun: Callable, *args: Any, copy: bool = True, **kwargs) -> Expression:
610    def transform(self, fun: t.Callable, *args: t.Any, copy: bool = True, **kwargs) -> Expression:
611        """
612        Visits all tree nodes (excluding already transformed ones)
613        and applies the given transformation function to each node.
614
615        Args:
616            fun: a function which takes a node as an argument and returns a
617                new transformed node or the same node without modifications. If the function
618                returns None, then the corresponding node will be removed from the syntax tree.
619            copy: if set to True a new tree instance is constructed, otherwise the tree is
620                modified in place.
621
622        Returns:
623            The transformed tree.
624        """
625        root = None
626        new_node = None
627
628        for node in (self.copy() if copy else self).dfs(prune=lambda n: n is not new_node):
629            parent, arg_key, index = node.parent, node.arg_key, node.index
630            new_node = fun(node, *args, **kwargs)
631
632            if not root:
633                root = new_node
634            elif new_node is not node:
635                parent.set(arg_key, new_node, index)
636
637        assert root
638        return root.assert_is(Expression)

Visits all tree nodes (excluding already transformed ones) and applies the given transformation function to each node.

Arguments:
  • fun: a function which takes a node as an argument and returns a new transformed node or the same node without modifications. If the function returns None, then the corresponding node will be removed from the syntax tree.
  • copy: if set to True a new tree instance is constructed, otherwise the tree is modified in place.
Returns:

The transformed tree.

def replace(self, expression):
646    def replace(self, expression):
647        """
648        Swap out this expression with a new expression.
649
650        For example::
651
652            >>> tree = Select().select("x").from_("tbl")
653            >>> tree.find(Column).replace(column("y"))
654            Column(
655              this=Identifier(this=y, quoted=False))
656            >>> tree.sql()
657            'SELECT y FROM tbl'
658
659        Args:
660            expression: new node
661
662        Returns:
663            The new expression or expressions.
664        """
665        parent = self.parent
666
667        if not parent or parent is expression:
668            return expression
669
670        key = self.arg_key
671        value = parent.args.get(key)
672
673        if type(expression) is list and isinstance(value, Expression):
674            # We are trying to replace an Expression with a list, so it's assumed that
675            # the intention was to really replace the parent of this expression.
676            value.parent.replace(expression)
677        else:
678            parent.set(key, expression, self.index)
679
680        if expression is not self:
681            self.parent = None
682            self.arg_key = None
683            self.index = None
684
685        return expression

Swap out this expression with a new expression.

For example::

>>> tree = Select().select("x").from_("tbl")
>>> tree.find(Column).replace(column("y"))
Column(
  this=Identifier(this=y, quoted=False))
>>> tree.sql()
'SELECT y FROM tbl'
Arguments:
  • expression: new node
Returns:

The new expression or expressions.

def pop(self: ~E) -> ~E:
687    def pop(self: E) -> E:
688        """
689        Remove this expression from its AST.
690
691        Returns:
692            The popped expression.
693        """
694        self.replace(None)
695        return self

Remove this expression from its AST.

Returns:

The popped expression.

def assert_is(self, type_: Type[~E]) -> ~E:
697    def assert_is(self, type_: t.Type[E]) -> E:
698        """
699        Assert that this `Expression` is an instance of `type_`.
700
701        If it is NOT an instance of `type_`, this raises an assertion error.
702        Otherwise, this returns this expression.
703
704        Examples:
705            This is useful for type security in chained expressions:
706
707            >>> import sqlglot
708            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
709            'SELECT x, z FROM y'
710        """
711        if not isinstance(self, type_):
712            raise AssertionError(f"{self} is not {type_}.")
713        return self

Assert that this Expression is an instance of type_.

If it is NOT an instance of type_, this raises an assertion error. Otherwise, this returns this expression.

Examples:

This is useful for type security in chained expressions:

>>> import sqlglot
>>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
'SELECT x, z FROM y'
def error_messages(self, args: Optional[Sequence] = None) -> List[str]:
715    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
716        """
717        Checks if this expression is valid (e.g. all mandatory args are set).
718
719        Args:
720            args: a sequence of values that were used to instantiate a Func expression. This is used
721                to check that the provided arguments don't exceed the function argument limit.
722
723        Returns:
724            A list of error messages for all possible errors that were found.
725        """
726        errors: t.List[str] = []
727
728        for k in self.args:
729            if k not in self.arg_types:
730                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
731        for k, mandatory in self.arg_types.items():
732            v = self.args.get(k)
733            if mandatory and (v is None or (isinstance(v, list) and not v)):
734                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
735
736        if (
737            args
738            and isinstance(self, Func)
739            and len(args) > len(self.arg_types)
740            and not self.is_var_len_args
741        ):
742            errors.append(
743                f"The number of provided arguments ({len(args)}) is greater than "
744                f"the maximum number of supported arguments ({len(self.arg_types)})"
745            )
746
747        return errors

Checks if this expression is valid (e.g. all mandatory args are set).

Arguments:
  • args: a sequence of values that were used to instantiate a Func expression. This is used to check that the provided arguments don't exceed the function argument limit.
Returns:

A list of error messages for all possible errors that were found.

def dump(self):
749    def dump(self):
750        """
751        Dump this Expression to a JSON-serializable dict.
752        """
753        from sqlglot.serde import dump
754
755        return dump(self)

Dump this Expression to a JSON-serializable dict.

@classmethod
def load(cls, obj):
757    @classmethod
758    def load(cls, obj):
759        """
760        Load a dict (as returned by `Expression.dump`) into an Expression instance.
761        """
762        from sqlglot.serde import load
763
764        return load(obj)

Load a dict (as returned by Expression.dump) into an Expression instance.

def and_( self, *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
766    def and_(
767        self,
768        *expressions: t.Optional[ExpOrStr],
769        dialect: DialectType = None,
770        copy: bool = True,
771        **opts,
772    ) -> Condition:
773        """
774        AND this condition with one or multiple expressions.
775
776        Example:
777            >>> condition("x=1").and_("y=1").sql()
778            'x = 1 AND y = 1'
779
780        Args:
781            *expressions: the SQL code strings to parse.
782                If an `Expression` instance is passed, it will be used as-is.
783            dialect: the dialect used to parse the input expression.
784            copy: whether to copy the involved expressions (only applies to Expressions).
785            opts: other options to use to parse the input expressions.
786
787        Returns:
788            The new And condition.
789        """
790        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)

AND this condition with one or multiple expressions.

Example:
>>> condition("x=1").and_("y=1").sql()
'x = 1 AND y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new And condition.

def or_( self, *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
792    def or_(
793        self,
794        *expressions: t.Optional[ExpOrStr],
795        dialect: DialectType = None,
796        copy: bool = True,
797        **opts,
798    ) -> Condition:
799        """
800        OR this condition with one or multiple expressions.
801
802        Example:
803            >>> condition("x=1").or_("y=1").sql()
804            'x = 1 OR y = 1'
805
806        Args:
807            *expressions: the SQL code strings to parse.
808                If an `Expression` instance is passed, it will be used as-is.
809            dialect: the dialect used to parse the input expression.
810            copy: whether to copy the involved expressions (only applies to Expressions).
811            opts: other options to use to parse the input expressions.
812
813        Returns:
814            The new Or condition.
815        """
816        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)

OR this condition with one or multiple expressions.

Example:
>>> condition("x=1").or_("y=1").sql()
'x = 1 OR y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new Or condition.

def not_(self, copy: bool = True):
818    def not_(self, copy: bool = True):
819        """
820        Wrap this condition with NOT.
821
822        Example:
823            >>> condition("x=1").not_().sql()
824            'NOT x = 1'
825
826        Args:
827            copy: whether to copy this object.
828
829        Returns:
830            The new Not instance.
831        """
832        return not_(self, copy=copy)

Wrap this condition with NOT.

Example:
>>> condition("x=1").not_().sql()
'NOT x = 1'
Arguments:
  • copy: whether to copy this object.
Returns:

The new Not instance.

def as_( self, alias: str | Identifier, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Alias:
834    def as_(
835        self,
836        alias: str | Identifier,
837        quoted: t.Optional[bool] = None,
838        dialect: DialectType = None,
839        copy: bool = True,
840        **opts,
841    ) -> Alias:
842        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
def isin( self, *expressions: Any, query: Union[str, Expression, NoneType] = None, unnest: Union[str, Expression, NoneType, Collection[Union[str, Expression]]] = None, copy: bool = True, **opts) -> In:
867    def isin(
868        self,
869        *expressions: t.Any,
870        query: t.Optional[ExpOrStr] = None,
871        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
872        copy: bool = True,
873        **opts,
874    ) -> In:
875        subquery = maybe_parse(query, copy=copy, **opts) if query else None
876        if subquery and not isinstance(subquery, Subquery):
877            subquery = subquery.subquery(copy=False)
878
879        return In(
880            this=maybe_copy(self, copy),
881            expressions=[convert(e, copy=copy) for e in expressions],
882            query=subquery,
883            unnest=(
884                Unnest(
885                    expressions=[
886                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
887                        for e in ensure_list(unnest)
888                    ]
889                )
890                if unnest
891                else None
892            ),
893        )
def between( self, low: Any, high: Any, copy: bool = True, **opts) -> Between:
895    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
896        return Between(
897            this=maybe_copy(self, copy),
898            low=convert(low, copy=copy, **opts),
899            high=convert(high, copy=copy, **opts),
900        )
def is_( self, other: Union[str, Expression]) -> Is:
902    def is_(self, other: ExpOrStr) -> Is:
903        return self._binop(Is, other)
def like( self, other: Union[str, Expression]) -> Like:
905    def like(self, other: ExpOrStr) -> Like:
906        return self._binop(Like, other)
def ilike( self, other: Union[str, Expression]) -> ILike:
908    def ilike(self, other: ExpOrStr) -> ILike:
909        return self._binop(ILike, other)
def eq(self, other: Any) -> EQ:
911    def eq(self, other: t.Any) -> EQ:
912        return self._binop(EQ, other)
def neq(self, other: Any) -> NEQ:
914    def neq(self, other: t.Any) -> NEQ:
915        return self._binop(NEQ, other)
def rlike( self, other: Union[str, Expression]) -> RegexpLike:
917    def rlike(self, other: ExpOrStr) -> RegexpLike:
918        return self._binop(RegexpLike, other)
def div( self, other: Union[str, Expression], typed: bool = False, safe: bool = False) -> Div:
920    def div(self, other: ExpOrStr, typed: bool = False, safe: bool = False) -> Div:
921        div = self._binop(Div, other)
922        div.args["typed"] = typed
923        div.args["safe"] = safe
924        return div
def asc(self, nulls_first: bool = True) -> Ordered:
926    def asc(self, nulls_first: bool = True) -> Ordered:
927        return Ordered(this=self.copy(), nulls_first=nulls_first)
def desc(self, nulls_first: bool = False) -> Ordered:
929    def desc(self, nulls_first: bool = False) -> Ordered:
930        return Ordered(this=self.copy(), desc=True, nulls_first=nulls_first)
IntoType = typing.Union[str, typing.Type[Expression], typing.Collection[typing.Union[str, typing.Type[Expression]]]]
ExpOrStr = typing.Union[str, Expression]
class Condition(Expression):
1013class Condition(Expression):
1014    """Logical conditions like x AND y, or simply x"""

Logical conditions like x AND y, or simply x

key = 'condition'
class Predicate(Condition):
1017class Predicate(Condition):
1018    """Relationships like x = y, x > 1, x >= y."""

Relationships like x = y, x > 1, x >= y.

key = 'predicate'
class DerivedTable(Expression):
1021class DerivedTable(Expression):
1022    @property
1023    def selects(self) -> t.List[Expression]:
1024        return self.this.selects if isinstance(self.this, Query) else []
1025
1026    @property
1027    def named_selects(self) -> t.List[str]:
1028        return [select.output_name for select in self.selects]
selects: List[Expression]
1022    @property
1023    def selects(self) -> t.List[Expression]:
1024        return self.this.selects if isinstance(self.this, Query) else []
named_selects: List[str]
1026    @property
1027    def named_selects(self) -> t.List[str]:
1028        return [select.output_name for select in self.selects]
key = 'derivedtable'
class Query(Expression):
1031class Query(Expression):
1032    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
1033        """
1034        Returns a `Subquery` that wraps around this query.
1035
1036        Example:
1037            >>> subquery = Select().select("x").from_("tbl").subquery()
1038            >>> Select().select("x").from_(subquery).sql()
1039            'SELECT x FROM (SELECT x FROM tbl)'
1040
1041        Args:
1042            alias: an optional alias for the subquery.
1043            copy: if `False`, modify this expression instance in-place.
1044        """
1045        instance = maybe_copy(self, copy)
1046        if not isinstance(alias, Expression):
1047            alias = TableAlias(this=to_identifier(alias)) if alias else None
1048
1049        return Subquery(this=instance, alias=alias)
1050
1051    def limit(
1052        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1053    ) -> Q:
1054        """
1055        Adds a LIMIT clause to this query.
1056
1057        Example:
1058            >>> select("1").union(select("1")).limit(1).sql()
1059            'SELECT 1 UNION SELECT 1 LIMIT 1'
1060
1061        Args:
1062            expression: the SQL code string to parse.
1063                This can also be an integer.
1064                If a `Limit` instance is passed, it will be used as-is.
1065                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
1066            dialect: the dialect used to parse the input expression.
1067            copy: if `False`, modify this expression instance in-place.
1068            opts: other options to use to parse the input expressions.
1069
1070        Returns:
1071            A limited Select expression.
1072        """
1073        return _apply_builder(
1074            expression=expression,
1075            instance=self,
1076            arg="limit",
1077            into=Limit,
1078            prefix="LIMIT",
1079            dialect=dialect,
1080            copy=copy,
1081            into_arg="expression",
1082            **opts,
1083        )
1084
1085    def offset(
1086        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1087    ) -> Q:
1088        """
1089        Set the OFFSET expression.
1090
1091        Example:
1092            >>> Select().from_("tbl").select("x").offset(10).sql()
1093            'SELECT x FROM tbl OFFSET 10'
1094
1095        Args:
1096            expression: the SQL code string to parse.
1097                This can also be an integer.
1098                If a `Offset` instance is passed, this is used as-is.
1099                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
1100            dialect: the dialect used to parse the input expression.
1101            copy: if `False`, modify this expression instance in-place.
1102            opts: other options to use to parse the input expressions.
1103
1104        Returns:
1105            The modified Select expression.
1106        """
1107        return _apply_builder(
1108            expression=expression,
1109            instance=self,
1110            arg="offset",
1111            into=Offset,
1112            prefix="OFFSET",
1113            dialect=dialect,
1114            copy=copy,
1115            into_arg="expression",
1116            **opts,
1117        )
1118
1119    def order_by(
1120        self: Q,
1121        *expressions: t.Optional[ExpOrStr],
1122        append: bool = True,
1123        dialect: DialectType = None,
1124        copy: bool = True,
1125        **opts,
1126    ) -> Q:
1127        """
1128        Set the ORDER BY expression.
1129
1130        Example:
1131            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
1132            'SELECT x FROM tbl ORDER BY x DESC'
1133
1134        Args:
1135            *expressions: the SQL code strings to parse.
1136                If a `Group` instance is passed, this is used as-is.
1137                If another `Expression` instance is passed, it will be wrapped in a `Order`.
1138            append: if `True`, add to any existing expressions.
1139                Otherwise, this flattens all the `Order` expression into a single expression.
1140            dialect: the dialect used to parse the input expression.
1141            copy: if `False`, modify this expression instance in-place.
1142            opts: other options to use to parse the input expressions.
1143
1144        Returns:
1145            The modified Select expression.
1146        """
1147        return _apply_child_list_builder(
1148            *expressions,
1149            instance=self,
1150            arg="order",
1151            append=append,
1152            copy=copy,
1153            prefix="ORDER BY",
1154            into=Order,
1155            dialect=dialect,
1156            **opts,
1157        )
1158
1159    @property
1160    def ctes(self) -> t.List[CTE]:
1161        """Returns a list of all the CTEs attached to this query."""
1162        with_ = self.args.get("with")
1163        return with_.expressions if with_ else []
1164
1165    @property
1166    def selects(self) -> t.List[Expression]:
1167        """Returns the query's projections."""
1168        raise NotImplementedError("Query objects must implement `selects`")
1169
1170    @property
1171    def named_selects(self) -> t.List[str]:
1172        """Returns the output names of the query's projections."""
1173        raise NotImplementedError("Query objects must implement `named_selects`")
1174
1175    def select(
1176        self: Q,
1177        *expressions: t.Optional[ExpOrStr],
1178        append: bool = True,
1179        dialect: DialectType = None,
1180        copy: bool = True,
1181        **opts,
1182    ) -> Q:
1183        """
1184        Append to or set the SELECT expressions.
1185
1186        Example:
1187            >>> Select().select("x", "y").sql()
1188            'SELECT x, y'
1189
1190        Args:
1191            *expressions: the SQL code strings to parse.
1192                If an `Expression` instance is passed, it will be used as-is.
1193            append: if `True`, add to any existing expressions.
1194                Otherwise, this resets the expressions.
1195            dialect: the dialect used to parse the input expressions.
1196            copy: if `False`, modify this expression instance in-place.
1197            opts: other options to use to parse the input expressions.
1198
1199        Returns:
1200            The modified Query expression.
1201        """
1202        raise NotImplementedError("Query objects must implement `select`")
1203
1204    def with_(
1205        self: Q,
1206        alias: ExpOrStr,
1207        as_: ExpOrStr,
1208        recursive: t.Optional[bool] = None,
1209        materialized: t.Optional[bool] = None,
1210        append: bool = True,
1211        dialect: DialectType = None,
1212        copy: bool = True,
1213        **opts,
1214    ) -> Q:
1215        """
1216        Append to or set the common table expressions.
1217
1218        Example:
1219            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
1220            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
1221
1222        Args:
1223            alias: the SQL code string to parse as the table name.
1224                If an `Expression` instance is passed, this is used as-is.
1225            as_: the SQL code string to parse as the table expression.
1226                If an `Expression` instance is passed, it will be used as-is.
1227            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1228            materialized: set the MATERIALIZED part of the expression.
1229            append: if `True`, add to any existing expressions.
1230                Otherwise, this resets the expressions.
1231            dialect: the dialect used to parse the input expression.
1232            copy: if `False`, modify this expression instance in-place.
1233            opts: other options to use to parse the input expressions.
1234
1235        Returns:
1236            The modified expression.
1237        """
1238        return _apply_cte_builder(
1239            self,
1240            alias,
1241            as_,
1242            recursive=recursive,
1243            materialized=materialized,
1244            append=append,
1245            dialect=dialect,
1246            copy=copy,
1247            **opts,
1248        )
1249
1250    def union(
1251        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1252    ) -> Union:
1253        """
1254        Builds a UNION expression.
1255
1256        Example:
1257            >>> import sqlglot
1258            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
1259            'SELECT * FROM foo UNION SELECT * FROM bla'
1260
1261        Args:
1262            expressions: the SQL code strings.
1263                If `Expression` instances are passed, they will be used as-is.
1264            distinct: set the DISTINCT flag if and only if this is true.
1265            dialect: the dialect used to parse the input expression.
1266            opts: other options to use to parse the input expressions.
1267
1268        Returns:
1269            The new Union expression.
1270        """
1271        return union(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1272
1273    def intersect(
1274        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1275    ) -> Intersect:
1276        """
1277        Builds an INTERSECT expression.
1278
1279        Example:
1280            >>> import sqlglot
1281            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
1282            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
1283
1284        Args:
1285            expressions: the SQL code strings.
1286                If `Expression` instances are passed, they will be used as-is.
1287            distinct: set the DISTINCT flag if and only if this is true.
1288            dialect: the dialect used to parse the input expression.
1289            opts: other options to use to parse the input expressions.
1290
1291        Returns:
1292            The new Intersect expression.
1293        """
1294        return intersect(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1295
1296    def except_(
1297        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1298    ) -> Except:
1299        """
1300        Builds an EXCEPT expression.
1301
1302        Example:
1303            >>> import sqlglot
1304            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
1305            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
1306
1307        Args:
1308            expressions: the SQL code strings.
1309                If `Expression` instance are passed, they will be used as-is.
1310            distinct: set the DISTINCT flag if and only if this is true.
1311            dialect: the dialect used to parse the input expression.
1312            opts: other options to use to parse the input expressions.
1313
1314        Returns:
1315            The new Except expression.
1316        """
1317        return except_(self, *expressions, distinct=distinct, dialect=dialect, **opts)
def subquery( self, alias: Union[str, Expression, NoneType] = None, copy: bool = True) -> Subquery:
1032    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
1033        """
1034        Returns a `Subquery` that wraps around this query.
1035
1036        Example:
1037            >>> subquery = Select().select("x").from_("tbl").subquery()
1038            >>> Select().select("x").from_(subquery).sql()
1039            'SELECT x FROM (SELECT x FROM tbl)'
1040
1041        Args:
1042            alias: an optional alias for the subquery.
1043            copy: if `False`, modify this expression instance in-place.
1044        """
1045        instance = maybe_copy(self, copy)
1046        if not isinstance(alias, Expression):
1047            alias = TableAlias(this=to_identifier(alias)) if alias else None
1048
1049        return Subquery(this=instance, alias=alias)

Returns a Subquery that wraps around this query.

Example:
>>> subquery = Select().select("x").from_("tbl").subquery()
>>> Select().select("x").from_(subquery).sql()
'SELECT x FROM (SELECT x FROM tbl)'
Arguments:
  • alias: an optional alias for the subquery.
  • copy: if False, modify this expression instance in-place.
def limit( self: ~Q, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1051    def limit(
1052        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1053    ) -> Q:
1054        """
1055        Adds a LIMIT clause to this query.
1056
1057        Example:
1058            >>> select("1").union(select("1")).limit(1).sql()
1059            'SELECT 1 UNION SELECT 1 LIMIT 1'
1060
1061        Args:
1062            expression: the SQL code string to parse.
1063                This can also be an integer.
1064                If a `Limit` instance is passed, it will be used as-is.
1065                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
1066            dialect: the dialect used to parse the input expression.
1067            copy: if `False`, modify this expression instance in-place.
1068            opts: other options to use to parse the input expressions.
1069
1070        Returns:
1071            A limited Select expression.
1072        """
1073        return _apply_builder(
1074            expression=expression,
1075            instance=self,
1076            arg="limit",
1077            into=Limit,
1078            prefix="LIMIT",
1079            dialect=dialect,
1080            copy=copy,
1081            into_arg="expression",
1082            **opts,
1083        )

Adds a LIMIT clause to this query.

Example:
>>> select("1").union(select("1")).limit(1).sql()
'SELECT 1 UNION SELECT 1 LIMIT 1'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, it will be used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

A limited Select expression.

def offset( self: ~Q, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1085    def offset(
1086        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1087    ) -> Q:
1088        """
1089        Set the OFFSET expression.
1090
1091        Example:
1092            >>> Select().from_("tbl").select("x").offset(10).sql()
1093            'SELECT x FROM tbl OFFSET 10'
1094
1095        Args:
1096            expression: the SQL code string to parse.
1097                This can also be an integer.
1098                If a `Offset` instance is passed, this is used as-is.
1099                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
1100            dialect: the dialect used to parse the input expression.
1101            copy: if `False`, modify this expression instance in-place.
1102            opts: other options to use to parse the input expressions.
1103
1104        Returns:
1105            The modified Select expression.
1106        """
1107        return _apply_builder(
1108            expression=expression,
1109            instance=self,
1110            arg="offset",
1111            into=Offset,
1112            prefix="OFFSET",
1113            dialect=dialect,
1114            copy=copy,
1115            into_arg="expression",
1116            **opts,
1117        )

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").offset(10).sql()
'SELECT x FROM tbl OFFSET 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Offset instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Offset.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def order_by( self: ~Q, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1119    def order_by(
1120        self: Q,
1121        *expressions: t.Optional[ExpOrStr],
1122        append: bool = True,
1123        dialect: DialectType = None,
1124        copy: bool = True,
1125        **opts,
1126    ) -> Q:
1127        """
1128        Set the ORDER BY expression.
1129
1130        Example:
1131            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
1132            'SELECT x FROM tbl ORDER BY x DESC'
1133
1134        Args:
1135            *expressions: the SQL code strings to parse.
1136                If a `Group` instance is passed, this is used as-is.
1137                If another `Expression` instance is passed, it will be wrapped in a `Order`.
1138            append: if `True`, add to any existing expressions.
1139                Otherwise, this flattens all the `Order` expression into a single expression.
1140            dialect: the dialect used to parse the input expression.
1141            copy: if `False`, modify this expression instance in-place.
1142            opts: other options to use to parse the input expressions.
1143
1144        Returns:
1145            The modified Select expression.
1146        """
1147        return _apply_child_list_builder(
1148            *expressions,
1149            instance=self,
1150            arg="order",
1151            append=append,
1152            copy=copy,
1153            prefix="ORDER BY",
1154            into=Order,
1155            dialect=dialect,
1156            **opts,
1157        )

Set the ORDER BY expression.

Example:
>>> Select().from_("tbl").select("x").order_by("x DESC").sql()
'SELECT x FROM tbl ORDER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Order.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

ctes: List[CTE]
1159    @property
1160    def ctes(self) -> t.List[CTE]:
1161        """Returns a list of all the CTEs attached to this query."""
1162        with_ = self.args.get("with")
1163        return with_.expressions if with_ else []

Returns a list of all the CTEs attached to this query.

selects: List[Expression]
1165    @property
1166    def selects(self) -> t.List[Expression]:
1167        """Returns the query's projections."""
1168        raise NotImplementedError("Query objects must implement `selects`")

Returns the query's projections.

named_selects: List[str]
1170    @property
1171    def named_selects(self) -> t.List[str]:
1172        """Returns the output names of the query's projections."""
1173        raise NotImplementedError("Query objects must implement `named_selects`")

Returns the output names of the query's projections.

def select( self: ~Q, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1175    def select(
1176        self: Q,
1177        *expressions: t.Optional[ExpOrStr],
1178        append: bool = True,
1179        dialect: DialectType = None,
1180        copy: bool = True,
1181        **opts,
1182    ) -> Q:
1183        """
1184        Append to or set the SELECT expressions.
1185
1186        Example:
1187            >>> Select().select("x", "y").sql()
1188            'SELECT x, y'
1189
1190        Args:
1191            *expressions: the SQL code strings to parse.
1192                If an `Expression` instance is passed, it will be used as-is.
1193            append: if `True`, add to any existing expressions.
1194                Otherwise, this resets the expressions.
1195            dialect: the dialect used to parse the input expressions.
1196            copy: if `False`, modify this expression instance in-place.
1197            opts: other options to use to parse the input expressions.
1198
1199        Returns:
1200            The modified Query expression.
1201        """
1202        raise NotImplementedError("Query objects must implement `select`")

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Query expression.

def with_( self: ~Q, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, materialized: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1204    def with_(
1205        self: Q,
1206        alias: ExpOrStr,
1207        as_: ExpOrStr,
1208        recursive: t.Optional[bool] = None,
1209        materialized: t.Optional[bool] = None,
1210        append: bool = True,
1211        dialect: DialectType = None,
1212        copy: bool = True,
1213        **opts,
1214    ) -> Q:
1215        """
1216        Append to or set the common table expressions.
1217
1218        Example:
1219            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
1220            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
1221
1222        Args:
1223            alias: the SQL code string to parse as the table name.
1224                If an `Expression` instance is passed, this is used as-is.
1225            as_: the SQL code string to parse as the table expression.
1226                If an `Expression` instance is passed, it will be used as-is.
1227            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1228            materialized: set the MATERIALIZED part of the expression.
1229            append: if `True`, add to any existing expressions.
1230                Otherwise, this resets the expressions.
1231            dialect: the dialect used to parse the input expression.
1232            copy: if `False`, modify this expression instance in-place.
1233            opts: other options to use to parse the input expressions.
1234
1235        Returns:
1236            The modified expression.
1237        """
1238        return _apply_cte_builder(
1239            self,
1240            alias,
1241            as_,
1242            recursive=recursive,
1243            materialized=materialized,
1244            append=append,
1245            dialect=dialect,
1246            copy=copy,
1247            **opts,
1248        )

Append to or set the common table expressions.

Example:
>>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • materialized: set the MATERIALIZED part of the expression.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

def union( self, *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Union:
1250    def union(
1251        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1252    ) -> Union:
1253        """
1254        Builds a UNION expression.
1255
1256        Example:
1257            >>> import sqlglot
1258            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
1259            'SELECT * FROM foo UNION SELECT * FROM bla'
1260
1261        Args:
1262            expressions: the SQL code strings.
1263                If `Expression` instances are passed, they will be used as-is.
1264            distinct: set the DISTINCT flag if and only if this is true.
1265            dialect: the dialect used to parse the input expression.
1266            opts: other options to use to parse the input expressions.
1267
1268        Returns:
1269            The new Union expression.
1270        """
1271        return union(self, *expressions, distinct=distinct, dialect=dialect, **opts)

Builds a UNION expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union expression.

def intersect( self, *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Intersect:
1273    def intersect(
1274        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1275    ) -> Intersect:
1276        """
1277        Builds an INTERSECT expression.
1278
1279        Example:
1280            >>> import sqlglot
1281            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
1282            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
1283
1284        Args:
1285            expressions: the SQL code strings.
1286                If `Expression` instances are passed, they will be used as-is.
1287            distinct: set the DISTINCT flag if and only if this is true.
1288            dialect: the dialect used to parse the input expression.
1289            opts: other options to use to parse the input expressions.
1290
1291        Returns:
1292            The new Intersect expression.
1293        """
1294        return intersect(self, *expressions, distinct=distinct, dialect=dialect, **opts)

Builds an INTERSECT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect expression.

def except_( self, *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Except:
1296    def except_(
1297        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1298    ) -> Except:
1299        """
1300        Builds an EXCEPT expression.
1301
1302        Example:
1303            >>> import sqlglot
1304            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
1305            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
1306
1307        Args:
1308            expressions: the SQL code strings.
1309                If `Expression` instance are passed, they will be used as-is.
1310            distinct: set the DISTINCT flag if and only if this is true.
1311            dialect: the dialect used to parse the input expression.
1312            opts: other options to use to parse the input expressions.
1313
1314        Returns:
1315            The new Except expression.
1316        """
1317        return except_(self, *expressions, distinct=distinct, dialect=dialect, **opts)

Builds an EXCEPT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings. If Expression instance are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except expression.

key = 'query'
class UDTF(DerivedTable):
1320class UDTF(DerivedTable):
1321    @property
1322    def selects(self) -> t.List[Expression]:
1323        alias = self.args.get("alias")
1324        return alias.columns if alias else []
selects: List[Expression]
1321    @property
1322    def selects(self) -> t.List[Expression]:
1323        alias = self.args.get("alias")
1324        return alias.columns if alias else []
key = 'udtf'
class Cache(Expression):
1327class Cache(Expression):
1328    arg_types = {
1329        "this": True,
1330        "lazy": False,
1331        "options": False,
1332        "expression": False,
1333    }
arg_types = {'this': True, 'lazy': False, 'options': False, 'expression': False}
key = 'cache'
class Uncache(Expression):
1336class Uncache(Expression):
1337    arg_types = {"this": True, "exists": False}
arg_types = {'this': True, 'exists': False}
key = 'uncache'
class Refresh(Expression):
1340class Refresh(Expression):
1341    pass
key = 'refresh'
class DDL(Expression):
1344class DDL(Expression):
1345    @property
1346    def ctes(self) -> t.List[CTE]:
1347        """Returns a list of all the CTEs attached to this statement."""
1348        with_ = self.args.get("with")
1349        return with_.expressions if with_ else []
1350
1351    @property
1352    def selects(self) -> t.List[Expression]:
1353        """If this statement contains a query (e.g. a CTAS), this returns the query's projections."""
1354        return self.expression.selects if isinstance(self.expression, Query) else []
1355
1356    @property
1357    def named_selects(self) -> t.List[str]:
1358        """
1359        If this statement contains a query (e.g. a CTAS), this returns the output
1360        names of the query's projections.
1361        """
1362        return self.expression.named_selects if isinstance(self.expression, Query) else []
ctes: List[CTE]
1345    @property
1346    def ctes(self) -> t.List[CTE]:
1347        """Returns a list of all the CTEs attached to this statement."""
1348        with_ = self.args.get("with")
1349        return with_.expressions if with_ else []

Returns a list of all the CTEs attached to this statement.

selects: List[Expression]
1351    @property
1352    def selects(self) -> t.List[Expression]:
1353        """If this statement contains a query (e.g. a CTAS), this returns the query's projections."""
1354        return self.expression.selects if isinstance(self.expression, Query) else []

If this statement contains a query (e.g. a CTAS), this returns the query's projections.

named_selects: List[str]
1356    @property
1357    def named_selects(self) -> t.List[str]:
1358        """
1359        If this statement contains a query (e.g. a CTAS), this returns the output
1360        names of the query's projections.
1361        """
1362        return self.expression.named_selects if isinstance(self.expression, Query) else []

If this statement contains a query (e.g. a CTAS), this returns the output names of the query's projections.

key = 'ddl'
class DML(Expression):
1365class DML(Expression):
1366    def returning(
1367        self,
1368        expression: ExpOrStr,
1369        dialect: DialectType = None,
1370        copy: bool = True,
1371        **opts,
1372    ) -> "Self":
1373        """
1374        Set the RETURNING expression. Not supported by all dialects.
1375
1376        Example:
1377            >>> delete("tbl").returning("*", dialect="postgres").sql()
1378            'DELETE FROM tbl RETURNING *'
1379
1380        Args:
1381            expression: the SQL code strings to parse.
1382                If an `Expression` instance is passed, it will be used as-is.
1383            dialect: the dialect used to parse the input expressions.
1384            copy: if `False`, modify this expression instance in-place.
1385            opts: other options to use to parse the input expressions.
1386
1387        Returns:
1388            Delete: the modified expression.
1389        """
1390        return _apply_builder(
1391            expression=expression,
1392            instance=self,
1393            arg="returning",
1394            prefix="RETURNING",
1395            dialect=dialect,
1396            copy=copy,
1397            into=Returning,
1398            **opts,
1399        )
def returning( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> typing_extensions.Self:
1366    def returning(
1367        self,
1368        expression: ExpOrStr,
1369        dialect: DialectType = None,
1370        copy: bool = True,
1371        **opts,
1372    ) -> "Self":
1373        """
1374        Set the RETURNING expression. Not supported by all dialects.
1375
1376        Example:
1377            >>> delete("tbl").returning("*", dialect="postgres").sql()
1378            'DELETE FROM tbl RETURNING *'
1379
1380        Args:
1381            expression: the SQL code strings to parse.
1382                If an `Expression` instance is passed, it will be used as-is.
1383            dialect: the dialect used to parse the input expressions.
1384            copy: if `False`, modify this expression instance in-place.
1385            opts: other options to use to parse the input expressions.
1386
1387        Returns:
1388            Delete: the modified expression.
1389        """
1390        return _apply_builder(
1391            expression=expression,
1392            instance=self,
1393            arg="returning",
1394            prefix="RETURNING",
1395            dialect=dialect,
1396            copy=copy,
1397            into=Returning,
1398            **opts,
1399        )

Set the RETURNING expression. Not supported by all dialects.

Example:
>>> delete("tbl").returning("*", dialect="postgres").sql()
'DELETE FROM tbl RETURNING *'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

key = 'dml'
class Create(DDL):
1402class Create(DDL):
1403    arg_types = {
1404        "with": False,
1405        "this": True,
1406        "kind": True,
1407        "expression": False,
1408        "exists": False,
1409        "properties": False,
1410        "replace": False,
1411        "refresh": False,
1412        "unique": False,
1413        "indexes": False,
1414        "no_schema_binding": False,
1415        "begin": False,
1416        "end": False,
1417        "clone": False,
1418        "concurrently": False,
1419        "clustered": False,
1420    }
1421
1422    @property
1423    def kind(self) -> t.Optional[str]:
1424        kind = self.args.get("kind")
1425        return kind and kind.upper()
arg_types = {'with': False, 'this': True, 'kind': True, 'expression': False, 'exists': False, 'properties': False, 'replace': False, 'refresh': False, 'unique': False, 'indexes': False, 'no_schema_binding': False, 'begin': False, 'end': False, 'clone': False, 'concurrently': False, 'clustered': False}
kind: Optional[str]
1422    @property
1423    def kind(self) -> t.Optional[str]:
1424        kind = self.args.get("kind")
1425        return kind and kind.upper()
key = 'create'
class SequenceProperties(Expression):
1428class SequenceProperties(Expression):
1429    arg_types = {
1430        "increment": False,
1431        "minvalue": False,
1432        "maxvalue": False,
1433        "cache": False,
1434        "start": False,
1435        "owned": False,
1436        "options": False,
1437    }
arg_types = {'increment': False, 'minvalue': False, 'maxvalue': False, 'cache': False, 'start': False, 'owned': False, 'options': False}
key = 'sequenceproperties'
class TruncateTable(Expression):
1440class TruncateTable(Expression):
1441    arg_types = {
1442        "expressions": True,
1443        "is_database": False,
1444        "exists": False,
1445        "only": False,
1446        "cluster": False,
1447        "identity": False,
1448        "option": False,
1449        "partition": False,
1450    }
arg_types = {'expressions': True, 'is_database': False, 'exists': False, 'only': False, 'cluster': False, 'identity': False, 'option': False, 'partition': False}
key = 'truncatetable'
class Clone(Expression):
1456class Clone(Expression):
1457    arg_types = {"this": True, "shallow": False, "copy": False}
arg_types = {'this': True, 'shallow': False, 'copy': False}
key = 'clone'
class Describe(Expression):
1460class Describe(Expression):
1461    arg_types = {
1462        "this": True,
1463        "style": False,
1464        "kind": False,
1465        "expressions": False,
1466        "partition": False,
1467    }
arg_types = {'this': True, 'style': False, 'kind': False, 'expressions': False, 'partition': False}
key = 'describe'
class Summarize(Expression):
1471class Summarize(Expression):
1472    arg_types = {"this": True, "table": False}
arg_types = {'this': True, 'table': False}
key = 'summarize'
class Kill(Expression):
1475class Kill(Expression):
1476    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'kill'
class Pragma(Expression):
1479class Pragma(Expression):
1480    pass
key = 'pragma'
class Declare(Expression):
1483class Declare(Expression):
1484    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'declare'
class DeclareItem(Expression):
1487class DeclareItem(Expression):
1488    arg_types = {"this": True, "kind": True, "default": False}
arg_types = {'this': True, 'kind': True, 'default': False}
key = 'declareitem'
class Set(Expression):
1491class Set(Expression):
1492    arg_types = {"expressions": False, "unset": False, "tag": False}
arg_types = {'expressions': False, 'unset': False, 'tag': False}
key = 'set'
class Heredoc(Expression):
1495class Heredoc(Expression):
1496    arg_types = {"this": True, "tag": False}
arg_types = {'this': True, 'tag': False}
key = 'heredoc'
class SetItem(Expression):
1499class SetItem(Expression):
1500    arg_types = {
1501        "this": False,
1502        "expressions": False,
1503        "kind": False,
1504        "collate": False,  # MySQL SET NAMES statement
1505        "global": False,
1506    }
arg_types = {'this': False, 'expressions': False, 'kind': False, 'collate': False, 'global': False}
key = 'setitem'
class Show(Expression):
1509class Show(Expression):
1510    arg_types = {
1511        "this": True,
1512        "history": False,
1513        "terse": False,
1514        "target": False,
1515        "offset": False,
1516        "starts_with": False,
1517        "limit": False,
1518        "from": False,
1519        "like": False,
1520        "where": False,
1521        "db": False,
1522        "scope": False,
1523        "scope_kind": False,
1524        "full": False,
1525        "mutex": False,
1526        "query": False,
1527        "channel": False,
1528        "global": False,
1529        "log": False,
1530        "position": False,
1531        "types": False,
1532    }
arg_types = {'this': True, 'history': False, 'terse': False, 'target': False, 'offset': False, 'starts_with': False, 'limit': False, 'from': False, 'like': False, 'where': False, 'db': False, 'scope': False, 'scope_kind': False, 'full': False, 'mutex': False, 'query': False, 'channel': False, 'global': False, 'log': False, 'position': False, 'types': False}
key = 'show'
class UserDefinedFunction(Expression):
1535class UserDefinedFunction(Expression):
1536    arg_types = {"this": True, "expressions": False, "wrapped": False}
arg_types = {'this': True, 'expressions': False, 'wrapped': False}
key = 'userdefinedfunction'
class CharacterSet(Expression):
1539class CharacterSet(Expression):
1540    arg_types = {"this": True, "default": False}
arg_types = {'this': True, 'default': False}
key = 'characterset'
class With(Expression):
1543class With(Expression):
1544    arg_types = {"expressions": True, "recursive": False}
1545
1546    @property
1547    def recursive(self) -> bool:
1548        return bool(self.args.get("recursive"))
arg_types = {'expressions': True, 'recursive': False}
recursive: bool
1546    @property
1547    def recursive(self) -> bool:
1548        return bool(self.args.get("recursive"))
key = 'with'
class WithinGroup(Expression):
1551class WithinGroup(Expression):
1552    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'withingroup'
class CTE(DerivedTable):
1557class CTE(DerivedTable):
1558    arg_types = {
1559        "this": True,
1560        "alias": True,
1561        "scalar": False,
1562        "materialized": False,
1563    }
arg_types = {'this': True, 'alias': True, 'scalar': False, 'materialized': False}
key = 'cte'
class ProjectionDef(Expression):
1566class ProjectionDef(Expression):
1567    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'projectiondef'
class TableAlias(Expression):
1570class TableAlias(Expression):
1571    arg_types = {"this": False, "columns": False}
1572
1573    @property
1574    def columns(self):
1575        return self.args.get("columns") or []
arg_types = {'this': False, 'columns': False}
columns
1573    @property
1574    def columns(self):
1575        return self.args.get("columns") or []
key = 'tablealias'
class BitString(Condition):
1578class BitString(Condition):
1579    pass
key = 'bitstring'
class HexString(Condition):
1582class HexString(Condition):
1583    pass
key = 'hexstring'
class ByteString(Condition):
1586class ByteString(Condition):
1587    pass
key = 'bytestring'
class RawString(Condition):
1590class RawString(Condition):
1591    pass
key = 'rawstring'
class UnicodeString(Condition):
1594class UnicodeString(Condition):
1595    arg_types = {"this": True, "escape": False}
arg_types = {'this': True, 'escape': False}
key = 'unicodestring'
class Column(Condition):
1598class Column(Condition):
1599    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1600
1601    @property
1602    def table(self) -> str:
1603        return self.text("table")
1604
1605    @property
1606    def db(self) -> str:
1607        return self.text("db")
1608
1609    @property
1610    def catalog(self) -> str:
1611        return self.text("catalog")
1612
1613    @property
1614    def output_name(self) -> str:
1615        return self.name
1616
1617    @property
1618    def parts(self) -> t.List[Identifier]:
1619        """Return the parts of a column in order catalog, db, table, name."""
1620        return [
1621            t.cast(Identifier, self.args[part])
1622            for part in ("catalog", "db", "table", "this")
1623            if self.args.get(part)
1624        ]
1625
1626    def to_dot(self) -> Dot | Identifier:
1627        """Converts the column into a dot expression."""
1628        parts = self.parts
1629        parent = self.parent
1630
1631        while parent:
1632            if isinstance(parent, Dot):
1633                parts.append(parent.expression)
1634            parent = parent.parent
1635
1636        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]
arg_types = {'this': True, 'table': False, 'db': False, 'catalog': False, 'join_mark': False}
table: str
1601    @property
1602    def table(self) -> str:
1603        return self.text("table")
db: str
1605    @property
1606    def db(self) -> str:
1607        return self.text("db")
catalog: str
1609    @property
1610    def catalog(self) -> str:
1611        return self.text("catalog")
output_name: str
1613    @property
1614    def output_name(self) -> str:
1615        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
parts: List[Identifier]
1617    @property
1618    def parts(self) -> t.List[Identifier]:
1619        """Return the parts of a column in order catalog, db, table, name."""
1620        return [
1621            t.cast(Identifier, self.args[part])
1622            for part in ("catalog", "db", "table", "this")
1623            if self.args.get(part)
1624        ]

Return the parts of a column in order catalog, db, table, name.

def to_dot(self) -> Dot | Identifier:
1626    def to_dot(self) -> Dot | Identifier:
1627        """Converts the column into a dot expression."""
1628        parts = self.parts
1629        parent = self.parent
1630
1631        while parent:
1632            if isinstance(parent, Dot):
1633                parts.append(parent.expression)
1634            parent = parent.parent
1635
1636        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]

Converts the column into a dot expression.

key = 'column'
class ColumnPosition(Expression):
1639class ColumnPosition(Expression):
1640    arg_types = {"this": False, "position": True}
arg_types = {'this': False, 'position': True}
key = 'columnposition'
class ColumnDef(Expression):
1643class ColumnDef(Expression):
1644    arg_types = {
1645        "this": True,
1646        "kind": False,
1647        "constraints": False,
1648        "exists": False,
1649        "position": False,
1650    }
1651
1652    @property
1653    def constraints(self) -> t.List[ColumnConstraint]:
1654        return self.args.get("constraints") or []
1655
1656    @property
1657    def kind(self) -> t.Optional[DataType]:
1658        return self.args.get("kind")
arg_types = {'this': True, 'kind': False, 'constraints': False, 'exists': False, 'position': False}
constraints: List[ColumnConstraint]
1652    @property
1653    def constraints(self) -> t.List[ColumnConstraint]:
1654        return self.args.get("constraints") or []
kind: Optional[DataType]
1656    @property
1657    def kind(self) -> t.Optional[DataType]:
1658        return self.args.get("kind")
key = 'columndef'
class AlterColumn(Expression):
1661class AlterColumn(Expression):
1662    arg_types = {
1663        "this": True,
1664        "dtype": False,
1665        "collate": False,
1666        "using": False,
1667        "default": False,
1668        "drop": False,
1669        "comment": False,
1670        "allow_null": False,
1671    }
arg_types = {'this': True, 'dtype': False, 'collate': False, 'using': False, 'default': False, 'drop': False, 'comment': False, 'allow_null': False}
key = 'altercolumn'
class AlterDistStyle(Expression):
1675class AlterDistStyle(Expression):
1676    pass
key = 'alterdiststyle'
class AlterSortKey(Expression):
1679class AlterSortKey(Expression):
1680    arg_types = {"this": False, "expressions": False, "compound": False}
arg_types = {'this': False, 'expressions': False, 'compound': False}
key = 'altersortkey'
class AlterSet(Expression):
1683class AlterSet(Expression):
1684    arg_types = {
1685        "expressions": False,
1686        "option": False,
1687        "tablespace": False,
1688        "access_method": False,
1689        "file_format": False,
1690        "copy_options": False,
1691        "tag": False,
1692        "location": False,
1693        "serde": False,
1694    }
arg_types = {'expressions': False, 'option': False, 'tablespace': False, 'access_method': False, 'file_format': False, 'copy_options': False, 'tag': False, 'location': False, 'serde': False}
key = 'alterset'
class RenameColumn(Expression):
1697class RenameColumn(Expression):
1698    arg_types = {"this": True, "to": True, "exists": False}
arg_types = {'this': True, 'to': True, 'exists': False}
key = 'renamecolumn'
class AlterRename(Expression):
1701class AlterRename(Expression):
1702    pass
key = 'alterrename'
class SwapTable(Expression):
1705class SwapTable(Expression):
1706    pass
key = 'swaptable'
class Comment(Expression):
1709class Comment(Expression):
1710    arg_types = {
1711        "this": True,
1712        "kind": True,
1713        "expression": True,
1714        "exists": False,
1715        "materialized": False,
1716    }
arg_types = {'this': True, 'kind': True, 'expression': True, 'exists': False, 'materialized': False}
key = 'comment'
class Comprehension(Expression):
1719class Comprehension(Expression):
1720    arg_types = {"this": True, "expression": True, "iterator": True, "condition": False}
arg_types = {'this': True, 'expression': True, 'iterator': True, 'condition': False}
key = 'comprehension'
class MergeTreeTTLAction(Expression):
1724class MergeTreeTTLAction(Expression):
1725    arg_types = {
1726        "this": True,
1727        "delete": False,
1728        "recompress": False,
1729        "to_disk": False,
1730        "to_volume": False,
1731    }
arg_types = {'this': True, 'delete': False, 'recompress': False, 'to_disk': False, 'to_volume': False}
key = 'mergetreettlaction'
class MergeTreeTTL(Expression):
1735class MergeTreeTTL(Expression):
1736    arg_types = {
1737        "expressions": True,
1738        "where": False,
1739        "group": False,
1740        "aggregates": False,
1741    }
arg_types = {'expressions': True, 'where': False, 'group': False, 'aggregates': False}
key = 'mergetreettl'
class IndexConstraintOption(Expression):
1745class IndexConstraintOption(Expression):
1746    arg_types = {
1747        "key_block_size": False,
1748        "using": False,
1749        "parser": False,
1750        "comment": False,
1751        "visible": False,
1752        "engine_attr": False,
1753        "secondary_engine_attr": False,
1754    }
arg_types = {'key_block_size': False, 'using': False, 'parser': False, 'comment': False, 'visible': False, 'engine_attr': False, 'secondary_engine_attr': False}
key = 'indexconstraintoption'
class ColumnConstraint(Expression):
1757class ColumnConstraint(Expression):
1758    arg_types = {"this": False, "kind": True}
1759
1760    @property
1761    def kind(self) -> ColumnConstraintKind:
1762        return self.args["kind"]
arg_types = {'this': False, 'kind': True}
kind: ColumnConstraintKind
1760    @property
1761    def kind(self) -> ColumnConstraintKind:
1762        return self.args["kind"]
key = 'columnconstraint'
class ColumnConstraintKind(Expression):
1765class ColumnConstraintKind(Expression):
1766    pass
key = 'columnconstraintkind'
class AutoIncrementColumnConstraint(ColumnConstraintKind):
1769class AutoIncrementColumnConstraint(ColumnConstraintKind):
1770    pass
key = 'autoincrementcolumnconstraint'
class PeriodForSystemTimeConstraint(ColumnConstraintKind):
1773class PeriodForSystemTimeConstraint(ColumnConstraintKind):
1774    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'periodforsystemtimeconstraint'
class CaseSpecificColumnConstraint(ColumnConstraintKind):
1777class CaseSpecificColumnConstraint(ColumnConstraintKind):
1778    arg_types = {"not_": True}
arg_types = {'not_': True}
key = 'casespecificcolumnconstraint'
class CharacterSetColumnConstraint(ColumnConstraintKind):
1781class CharacterSetColumnConstraint(ColumnConstraintKind):
1782    arg_types = {"this": True}
arg_types = {'this': True}
key = 'charactersetcolumnconstraint'
class CheckColumnConstraint(ColumnConstraintKind):
1785class CheckColumnConstraint(ColumnConstraintKind):
1786    arg_types = {"this": True, "enforced": False}
arg_types = {'this': True, 'enforced': False}
key = 'checkcolumnconstraint'
class ClusteredColumnConstraint(ColumnConstraintKind):
1789class ClusteredColumnConstraint(ColumnConstraintKind):
1790    pass
key = 'clusteredcolumnconstraint'
class CollateColumnConstraint(ColumnConstraintKind):
1793class CollateColumnConstraint(ColumnConstraintKind):
1794    pass
key = 'collatecolumnconstraint'
class CommentColumnConstraint(ColumnConstraintKind):
1797class CommentColumnConstraint(ColumnConstraintKind):
1798    pass
key = 'commentcolumnconstraint'
class CompressColumnConstraint(ColumnConstraintKind):
1801class CompressColumnConstraint(ColumnConstraintKind):
1802    arg_types = {"this": False}
arg_types = {'this': False}
key = 'compresscolumnconstraint'
class DateFormatColumnConstraint(ColumnConstraintKind):
1805class DateFormatColumnConstraint(ColumnConstraintKind):
1806    arg_types = {"this": True}
arg_types = {'this': True}
key = 'dateformatcolumnconstraint'
class DefaultColumnConstraint(ColumnConstraintKind):
1809class DefaultColumnConstraint(ColumnConstraintKind):
1810    pass
key = 'defaultcolumnconstraint'
class EncodeColumnConstraint(ColumnConstraintKind):
1813class EncodeColumnConstraint(ColumnConstraintKind):
1814    pass
key = 'encodecolumnconstraint'
class ExcludeColumnConstraint(ColumnConstraintKind):
1818class ExcludeColumnConstraint(ColumnConstraintKind):
1819    pass
key = 'excludecolumnconstraint'
class EphemeralColumnConstraint(ColumnConstraintKind):
1822class EphemeralColumnConstraint(ColumnConstraintKind):
1823    arg_types = {"this": False}
arg_types = {'this': False}
key = 'ephemeralcolumnconstraint'
class WithOperator(Expression):
1826class WithOperator(Expression):
1827    arg_types = {"this": True, "op": True}
arg_types = {'this': True, 'op': True}
key = 'withoperator'
class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1830class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1831    # this: True -> ALWAYS, this: False -> BY DEFAULT
1832    arg_types = {
1833        "this": False,
1834        "expression": False,
1835        "on_null": False,
1836        "start": False,
1837        "increment": False,
1838        "minvalue": False,
1839        "maxvalue": False,
1840        "cycle": False,
1841    }
arg_types = {'this': False, 'expression': False, 'on_null': False, 'start': False, 'increment': False, 'minvalue': False, 'maxvalue': False, 'cycle': False}
key = 'generatedasidentitycolumnconstraint'
class GeneratedAsRowColumnConstraint(ColumnConstraintKind):
1844class GeneratedAsRowColumnConstraint(ColumnConstraintKind):
1845    arg_types = {"start": False, "hidden": False}
arg_types = {'start': False, 'hidden': False}
key = 'generatedasrowcolumnconstraint'
class IndexColumnConstraint(ColumnConstraintKind):
1850class IndexColumnConstraint(ColumnConstraintKind):
1851    arg_types = {
1852        "this": False,
1853        "expressions": False,
1854        "kind": False,
1855        "index_type": False,
1856        "options": False,
1857        "expression": False,  # Clickhouse
1858        "granularity": False,
1859    }
arg_types = {'this': False, 'expressions': False, 'kind': False, 'index_type': False, 'options': False, 'expression': False, 'granularity': False}
key = 'indexcolumnconstraint'
class InlineLengthColumnConstraint(ColumnConstraintKind):
1862class InlineLengthColumnConstraint(ColumnConstraintKind):
1863    pass
key = 'inlinelengthcolumnconstraint'
class NonClusteredColumnConstraint(ColumnConstraintKind):
1866class NonClusteredColumnConstraint(ColumnConstraintKind):
1867    pass
key = 'nonclusteredcolumnconstraint'
class NotForReplicationColumnConstraint(ColumnConstraintKind):
1870class NotForReplicationColumnConstraint(ColumnConstraintKind):
1871    arg_types = {}
arg_types = {}
key = 'notforreplicationcolumnconstraint'
class MaskingPolicyColumnConstraint(ColumnConstraintKind):
1875class MaskingPolicyColumnConstraint(ColumnConstraintKind):
1876    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'maskingpolicycolumnconstraint'
class NotNullColumnConstraint(ColumnConstraintKind):
1879class NotNullColumnConstraint(ColumnConstraintKind):
1880    arg_types = {"allow_null": False}
arg_types = {'allow_null': False}
key = 'notnullcolumnconstraint'
class OnUpdateColumnConstraint(ColumnConstraintKind):
1884class OnUpdateColumnConstraint(ColumnConstraintKind):
1885    pass
key = 'onupdatecolumnconstraint'
class TagColumnConstraint(ColumnConstraintKind):
1889class TagColumnConstraint(ColumnConstraintKind):
1890    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'tagcolumnconstraint'
class TransformColumnConstraint(ColumnConstraintKind):
1894class TransformColumnConstraint(ColumnConstraintKind):
1895    pass
key = 'transformcolumnconstraint'
class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1898class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1899    arg_types = {"desc": False}
arg_types = {'desc': False}
key = 'primarykeycolumnconstraint'
class TitleColumnConstraint(ColumnConstraintKind):
1902class TitleColumnConstraint(ColumnConstraintKind):
1903    pass
key = 'titlecolumnconstraint'
class UniqueColumnConstraint(ColumnConstraintKind):
1906class UniqueColumnConstraint(ColumnConstraintKind):
1907    arg_types = {"this": False, "index_type": False, "on_conflict": False, "nulls": False}
arg_types = {'this': False, 'index_type': False, 'on_conflict': False, 'nulls': False}
key = 'uniquecolumnconstraint'
class UppercaseColumnConstraint(ColumnConstraintKind):
1910class UppercaseColumnConstraint(ColumnConstraintKind):
1911    arg_types: t.Dict[str, t.Any] = {}
arg_types: Dict[str, Any] = {}
key = 'uppercasecolumnconstraint'
class PathColumnConstraint(ColumnConstraintKind):
1914class PathColumnConstraint(ColumnConstraintKind):
1915    pass
key = 'pathcolumnconstraint'
class ProjectionPolicyColumnConstraint(ColumnConstraintKind):
1919class ProjectionPolicyColumnConstraint(ColumnConstraintKind):
1920    pass
key = 'projectionpolicycolumnconstraint'
class ComputedColumnConstraint(ColumnConstraintKind):
1925class ComputedColumnConstraint(ColumnConstraintKind):
1926    arg_types = {"this": True, "persisted": False, "not_null": False}
arg_types = {'this': True, 'persisted': False, 'not_null': False}
key = 'computedcolumnconstraint'
class Constraint(Expression):
1929class Constraint(Expression):
1930    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'constraint'
class Delete(DML):
1933class Delete(DML):
1934    arg_types = {
1935        "with": False,
1936        "this": False,
1937        "using": False,
1938        "where": False,
1939        "returning": False,
1940        "limit": False,
1941        "tables": False,  # Multiple-Table Syntax (MySQL)
1942        "cluster": False,  # Clickhouse
1943    }
1944
1945    def delete(
1946        self,
1947        table: ExpOrStr,
1948        dialect: DialectType = None,
1949        copy: bool = True,
1950        **opts,
1951    ) -> Delete:
1952        """
1953        Create a DELETE expression or replace the table on an existing DELETE expression.
1954
1955        Example:
1956            >>> delete("tbl").sql()
1957            'DELETE FROM tbl'
1958
1959        Args:
1960            table: the table from which to delete.
1961            dialect: the dialect used to parse the input expression.
1962            copy: if `False`, modify this expression instance in-place.
1963            opts: other options to use to parse the input expressions.
1964
1965        Returns:
1966            Delete: the modified expression.
1967        """
1968        return _apply_builder(
1969            expression=table,
1970            instance=self,
1971            arg="this",
1972            dialect=dialect,
1973            into=Table,
1974            copy=copy,
1975            **opts,
1976        )
1977
1978    def where(
1979        self,
1980        *expressions: t.Optional[ExpOrStr],
1981        append: bool = True,
1982        dialect: DialectType = None,
1983        copy: bool = True,
1984        **opts,
1985    ) -> Delete:
1986        """
1987        Append to or set the WHERE expressions.
1988
1989        Example:
1990            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1991            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1992
1993        Args:
1994            *expressions: the SQL code strings to parse.
1995                If an `Expression` instance is passed, it will be used as-is.
1996                Multiple expressions are combined with an AND operator.
1997            append: if `True`, AND the new expressions to any existing expression.
1998                Otherwise, this resets the expression.
1999            dialect: the dialect used to parse the input expressions.
2000            copy: if `False`, modify this expression instance in-place.
2001            opts: other options to use to parse the input expressions.
2002
2003        Returns:
2004            Delete: the modified expression.
2005        """
2006        return _apply_conjunction_builder(
2007            *expressions,
2008            instance=self,
2009            arg="where",
2010            append=append,
2011            into=Where,
2012            dialect=dialect,
2013            copy=copy,
2014            **opts,
2015        )
arg_types = {'with': False, 'this': False, 'using': False, 'where': False, 'returning': False, 'limit': False, 'tables': False, 'cluster': False}
def delete( self, table: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
1945    def delete(
1946        self,
1947        table: ExpOrStr,
1948        dialect: DialectType = None,
1949        copy: bool = True,
1950        **opts,
1951    ) -> Delete:
1952        """
1953        Create a DELETE expression or replace the table on an existing DELETE expression.
1954
1955        Example:
1956            >>> delete("tbl").sql()
1957            'DELETE FROM tbl'
1958
1959        Args:
1960            table: the table from which to delete.
1961            dialect: the dialect used to parse the input expression.
1962            copy: if `False`, modify this expression instance in-place.
1963            opts: other options to use to parse the input expressions.
1964
1965        Returns:
1966            Delete: the modified expression.
1967        """
1968        return _apply_builder(
1969            expression=table,
1970            instance=self,
1971            arg="this",
1972            dialect=dialect,
1973            into=Table,
1974            copy=copy,
1975            **opts,
1976        )

Create a DELETE expression or replace the table on an existing DELETE expression.

Example:
>>> delete("tbl").sql()
'DELETE FROM tbl'
Arguments:
  • table: the table from which to delete.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def where( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
1978    def where(
1979        self,
1980        *expressions: t.Optional[ExpOrStr],
1981        append: bool = True,
1982        dialect: DialectType = None,
1983        copy: bool = True,
1984        **opts,
1985    ) -> Delete:
1986        """
1987        Append to or set the WHERE expressions.
1988
1989        Example:
1990            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1991            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1992
1993        Args:
1994            *expressions: the SQL code strings to parse.
1995                If an `Expression` instance is passed, it will be used as-is.
1996                Multiple expressions are combined with an AND operator.
1997            append: if `True`, AND the new expressions to any existing expression.
1998                Otherwise, this resets the expression.
1999            dialect: the dialect used to parse the input expressions.
2000            copy: if `False`, modify this expression instance in-place.
2001            opts: other options to use to parse the input expressions.
2002
2003        Returns:
2004            Delete: the modified expression.
2005        """
2006        return _apply_conjunction_builder(
2007            *expressions,
2008            instance=self,
2009            arg="where",
2010            append=append,
2011            into=Where,
2012            dialect=dialect,
2013            copy=copy,
2014            **opts,
2015        )

Append to or set the WHERE expressions.

Example:
>>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
"DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

key = 'delete'
class Drop(Expression):
2018class Drop(Expression):
2019    arg_types = {
2020        "this": False,
2021        "kind": False,
2022        "expressions": False,
2023        "exists": False,
2024        "temporary": False,
2025        "materialized": False,
2026        "cascade": False,
2027        "constraints": False,
2028        "purge": False,
2029        "cluster": False,
2030        "concurrently": False,
2031    }
2032
2033    @property
2034    def kind(self) -> t.Optional[str]:
2035        kind = self.args.get("kind")
2036        return kind and kind.upper()
arg_types = {'this': False, 'kind': False, 'expressions': False, 'exists': False, 'temporary': False, 'materialized': False, 'cascade': False, 'constraints': False, 'purge': False, 'cluster': False, 'concurrently': False}
kind: Optional[str]
2033    @property
2034    def kind(self) -> t.Optional[str]:
2035        kind = self.args.get("kind")
2036        return kind and kind.upper()
key = 'drop'
class Filter(Expression):
2039class Filter(Expression):
2040    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'filter'
class Check(Expression):
2043class Check(Expression):
2044    pass
key = 'check'
class Changes(Expression):
2047class Changes(Expression):
2048    arg_types = {"information": True, "at_before": False, "end": False}
arg_types = {'information': True, 'at_before': False, 'end': False}
key = 'changes'
class Connect(Expression):
2052class Connect(Expression):
2053    arg_types = {"start": False, "connect": True, "nocycle": False}
arg_types = {'start': False, 'connect': True, 'nocycle': False}
key = 'connect'
class CopyParameter(Expression):
2056class CopyParameter(Expression):
2057    arg_types = {"this": True, "expression": False, "expressions": False}
arg_types = {'this': True, 'expression': False, 'expressions': False}
key = 'copyparameter'
class Copy(DML):
2060class Copy(DML):
2061    arg_types = {
2062        "this": True,
2063        "kind": True,
2064        "files": True,
2065        "credentials": False,
2066        "format": False,
2067        "params": False,
2068    }
arg_types = {'this': True, 'kind': True, 'files': True, 'credentials': False, 'format': False, 'params': False}
key = 'copy'
class Credentials(Expression):
2071class Credentials(Expression):
2072    arg_types = {
2073        "credentials": False,
2074        "encryption": False,
2075        "storage": False,
2076        "iam_role": False,
2077        "region": False,
2078    }
arg_types = {'credentials': False, 'encryption': False, 'storage': False, 'iam_role': False, 'region': False}
key = 'credentials'
class Prior(Expression):
2081class Prior(Expression):
2082    pass
key = 'prior'
class Directory(Expression):
2085class Directory(Expression):
2086    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
2087    arg_types = {"this": True, "local": False, "row_format": False}
arg_types = {'this': True, 'local': False, 'row_format': False}
key = 'directory'
class ForeignKey(Expression):
2090class ForeignKey(Expression):
2091    arg_types = {
2092        "expressions": True,
2093        "reference": False,
2094        "delete": False,
2095        "update": False,
2096    }
arg_types = {'expressions': True, 'reference': False, 'delete': False, 'update': False}
key = 'foreignkey'
class ColumnPrefix(Expression):
2099class ColumnPrefix(Expression):
2100    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'columnprefix'
class PrimaryKey(Expression):
2103class PrimaryKey(Expression):
2104    arg_types = {"expressions": True, "options": False}
arg_types = {'expressions': True, 'options': False}
key = 'primarykey'
class Into(Expression):
2109class Into(Expression):
2110    arg_types = {
2111        "this": False,
2112        "temporary": False,
2113        "unlogged": False,
2114        "bulk_collect": False,
2115        "expressions": False,
2116    }
arg_types = {'this': False, 'temporary': False, 'unlogged': False, 'bulk_collect': False, 'expressions': False}
key = 'into'
class From(Expression):
2119class From(Expression):
2120    @property
2121    def name(self) -> str:
2122        return self.this.name
2123
2124    @property
2125    def alias_or_name(self) -> str:
2126        return self.this.alias_or_name
name: str
2120    @property
2121    def name(self) -> str:
2122        return self.this.name
alias_or_name: str
2124    @property
2125    def alias_or_name(self) -> str:
2126        return self.this.alias_or_name
key = 'from'
class Having(Expression):
2129class Having(Expression):
2130    pass
key = 'having'
class Hint(Expression):
2133class Hint(Expression):
2134    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'hint'
class JoinHint(Expression):
2137class JoinHint(Expression):
2138    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'joinhint'
class Identifier(Expression):
2141class Identifier(Expression):
2142    arg_types = {"this": True, "quoted": False, "global": False, "temporary": False}
2143
2144    @property
2145    def quoted(self) -> bool:
2146        return bool(self.args.get("quoted"))
2147
2148    @property
2149    def hashable_args(self) -> t.Any:
2150        return (self.this, self.quoted)
2151
2152    @property
2153    def output_name(self) -> str:
2154        return self.name
arg_types = {'this': True, 'quoted': False, 'global': False, 'temporary': False}
quoted: bool
2144    @property
2145    def quoted(self) -> bool:
2146        return bool(self.args.get("quoted"))
hashable_args: Any
2148    @property
2149    def hashable_args(self) -> t.Any:
2150        return (self.this, self.quoted)
output_name: str
2152    @property
2153    def output_name(self) -> str:
2154        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'identifier'
class Opclass(Expression):
2158class Opclass(Expression):
2159    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'opclass'
class Index(Expression):
2162class Index(Expression):
2163    arg_types = {
2164        "this": False,
2165        "table": False,
2166        "unique": False,
2167        "primary": False,
2168        "amp": False,  # teradata
2169        "params": False,
2170    }
arg_types = {'this': False, 'table': False, 'unique': False, 'primary': False, 'amp': False, 'params': False}
key = 'index'
class IndexParameters(Expression):
2173class IndexParameters(Expression):
2174    arg_types = {
2175        "using": False,
2176        "include": False,
2177        "columns": False,
2178        "with_storage": False,
2179        "partition_by": False,
2180        "tablespace": False,
2181        "where": False,
2182        "on": False,
2183    }
arg_types = {'using': False, 'include': False, 'columns': False, 'with_storage': False, 'partition_by': False, 'tablespace': False, 'where': False, 'on': False}
key = 'indexparameters'
class Insert(DDL, DML):
2186class Insert(DDL, DML):
2187    arg_types = {
2188        "hint": False,
2189        "with": False,
2190        "is_function": False,
2191        "this": False,
2192        "expression": False,
2193        "conflict": False,
2194        "returning": False,
2195        "overwrite": False,
2196        "exists": False,
2197        "alternative": False,
2198        "where": False,
2199        "ignore": False,
2200        "by_name": False,
2201        "stored": False,
2202        "partition": False,
2203        "settings": False,
2204        "source": False,
2205    }
2206
2207    def with_(
2208        self,
2209        alias: ExpOrStr,
2210        as_: ExpOrStr,
2211        recursive: t.Optional[bool] = None,
2212        materialized: t.Optional[bool] = None,
2213        append: bool = True,
2214        dialect: DialectType = None,
2215        copy: bool = True,
2216        **opts,
2217    ) -> Insert:
2218        """
2219        Append to or set the common table expressions.
2220
2221        Example:
2222            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
2223            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
2224
2225        Args:
2226            alias: the SQL code string to parse as the table name.
2227                If an `Expression` instance is passed, this is used as-is.
2228            as_: the SQL code string to parse as the table expression.
2229                If an `Expression` instance is passed, it will be used as-is.
2230            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2231            materialized: set the MATERIALIZED part of the expression.
2232            append: if `True`, add to any existing expressions.
2233                Otherwise, this resets the expressions.
2234            dialect: the dialect used to parse the input expression.
2235            copy: if `False`, modify this expression instance in-place.
2236            opts: other options to use to parse the input expressions.
2237
2238        Returns:
2239            The modified expression.
2240        """
2241        return _apply_cte_builder(
2242            self,
2243            alias,
2244            as_,
2245            recursive=recursive,
2246            materialized=materialized,
2247            append=append,
2248            dialect=dialect,
2249            copy=copy,
2250            **opts,
2251        )
arg_types = {'hint': False, 'with': False, 'is_function': False, 'this': False, 'expression': False, 'conflict': False, 'returning': False, 'overwrite': False, 'exists': False, 'alternative': False, 'where': False, 'ignore': False, 'by_name': False, 'stored': False, 'partition': False, 'settings': False, 'source': False}
def with_( self, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, materialized: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Insert:
2207    def with_(
2208        self,
2209        alias: ExpOrStr,
2210        as_: ExpOrStr,
2211        recursive: t.Optional[bool] = None,
2212        materialized: t.Optional[bool] = None,
2213        append: bool = True,
2214        dialect: DialectType = None,
2215        copy: bool = True,
2216        **opts,
2217    ) -> Insert:
2218        """
2219        Append to or set the common table expressions.
2220
2221        Example:
2222            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
2223            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
2224
2225        Args:
2226            alias: the SQL code string to parse as the table name.
2227                If an `Expression` instance is passed, this is used as-is.
2228            as_: the SQL code string to parse as the table expression.
2229                If an `Expression` instance is passed, it will be used as-is.
2230            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2231            materialized: set the MATERIALIZED part of the expression.
2232            append: if `True`, add to any existing expressions.
2233                Otherwise, this resets the expressions.
2234            dialect: the dialect used to parse the input expression.
2235            copy: if `False`, modify this expression instance in-place.
2236            opts: other options to use to parse the input expressions.
2237
2238        Returns:
2239            The modified expression.
2240        """
2241        return _apply_cte_builder(
2242            self,
2243            alias,
2244            as_,
2245            recursive=recursive,
2246            materialized=materialized,
2247            append=append,
2248            dialect=dialect,
2249            copy=copy,
2250            **opts,
2251        )

Append to or set the common table expressions.

Example:
>>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • materialized: set the MATERIALIZED part of the expression.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

key = 'insert'
class ConditionalInsert(Expression):
2254class ConditionalInsert(Expression):
2255    arg_types = {"this": True, "expression": False, "else_": False}
arg_types = {'this': True, 'expression': False, 'else_': False}
key = 'conditionalinsert'
class MultitableInserts(Expression):
2258class MultitableInserts(Expression):
2259    arg_types = {"expressions": True, "kind": True, "source": True}
arg_types = {'expressions': True, 'kind': True, 'source': True}
key = 'multitableinserts'
class OnConflict(Expression):
2262class OnConflict(Expression):
2263    arg_types = {
2264        "duplicate": False,
2265        "expressions": False,
2266        "action": False,
2267        "conflict_keys": False,
2268        "constraint": False,
2269    }
arg_types = {'duplicate': False, 'expressions': False, 'action': False, 'conflict_keys': False, 'constraint': False}
key = 'onconflict'
class OnCondition(Expression):
2272class OnCondition(Expression):
2273    arg_types = {"error": False, "empty": False, "null": False}
arg_types = {'error': False, 'empty': False, 'null': False}
key = 'oncondition'
class Returning(Expression):
2276class Returning(Expression):
2277    arg_types = {"expressions": True, "into": False}
arg_types = {'expressions': True, 'into': False}
key = 'returning'
class Introducer(Expression):
2281class Introducer(Expression):
2282    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'introducer'
class National(Expression):
2286class National(Expression):
2287    pass
key = 'national'
class LoadData(Expression):
2290class LoadData(Expression):
2291    arg_types = {
2292        "this": True,
2293        "local": False,
2294        "overwrite": False,
2295        "inpath": True,
2296        "partition": False,
2297        "input_format": False,
2298        "serde": False,
2299    }
arg_types = {'this': True, 'local': False, 'overwrite': False, 'inpath': True, 'partition': False, 'input_format': False, 'serde': False}
key = 'loaddata'
class Partition(Expression):
2302class Partition(Expression):
2303    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'partition'
class PartitionRange(Expression):
2306class PartitionRange(Expression):
2307    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'partitionrange'
class PartitionId(Expression):
2311class PartitionId(Expression):
2312    pass
key = 'partitionid'
class Fetch(Expression):
2315class Fetch(Expression):
2316    arg_types = {
2317        "direction": False,
2318        "count": False,
2319        "percent": False,
2320        "with_ties": False,
2321    }
arg_types = {'direction': False, 'count': False, 'percent': False, 'with_ties': False}
key = 'fetch'
class Grant(Expression):
2324class Grant(Expression):
2325    arg_types = {
2326        "privileges": True,
2327        "kind": False,
2328        "securable": True,
2329        "principals": True,
2330        "grant_option": False,
2331    }
arg_types = {'privileges': True, 'kind': False, 'securable': True, 'principals': True, 'grant_option': False}
key = 'grant'
class Group(Expression):
2334class Group(Expression):
2335    arg_types = {
2336        "expressions": False,
2337        "grouping_sets": False,
2338        "cube": False,
2339        "rollup": False,
2340        "totals": False,
2341        "all": False,
2342    }
arg_types = {'expressions': False, 'grouping_sets': False, 'cube': False, 'rollup': False, 'totals': False, 'all': False}
key = 'group'
class Cube(Expression):
2345class Cube(Expression):
2346    arg_types = {"expressions": False}
arg_types = {'expressions': False}
key = 'cube'
class Rollup(Expression):
2349class Rollup(Expression):
2350    arg_types = {"expressions": False}
arg_types = {'expressions': False}
key = 'rollup'
class GroupingSets(Expression):
2353class GroupingSets(Expression):
2354    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'groupingsets'
class Lambda(Expression):
2357class Lambda(Expression):
2358    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'lambda'
class Limit(Expression):
2361class Limit(Expression):
2362    arg_types = {"this": False, "expression": True, "offset": False, "expressions": False}
arg_types = {'this': False, 'expression': True, 'offset': False, 'expressions': False}
key = 'limit'
class Literal(Condition):
2365class Literal(Condition):
2366    arg_types = {"this": True, "is_string": True}
2367
2368    @property
2369    def hashable_args(self) -> t.Any:
2370        return (self.this, self.args.get("is_string"))
2371
2372    @classmethod
2373    def number(cls, number) -> Literal:
2374        return cls(this=str(number), is_string=False)
2375
2376    @classmethod
2377    def string(cls, string) -> Literal:
2378        return cls(this=str(string), is_string=True)
2379
2380    @property
2381    def output_name(self) -> str:
2382        return self.name
2383
2384    def to_py(self) -> int | str | Decimal:
2385        if self.is_number:
2386            try:
2387                return int(self.this)
2388            except ValueError:
2389                return Decimal(self.this)
2390        return self.this
arg_types = {'this': True, 'is_string': True}
hashable_args: Any
2368    @property
2369    def hashable_args(self) -> t.Any:
2370        return (self.this, self.args.get("is_string"))
@classmethod
def number(cls, number) -> Literal:
2372    @classmethod
2373    def number(cls, number) -> Literal:
2374        return cls(this=str(number), is_string=False)
@classmethod
def string(cls, string) -> Literal:
2376    @classmethod
2377    def string(cls, string) -> Literal:
2378        return cls(this=str(string), is_string=True)
output_name: str
2380    @property
2381    def output_name(self) -> str:
2382        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
def to_py(self) -> int | str | decimal.Decimal:
2384    def to_py(self) -> int | str | Decimal:
2385        if self.is_number:
2386            try:
2387                return int(self.this)
2388            except ValueError:
2389                return Decimal(self.this)
2390        return self.this

Returns a Python object equivalent of the SQL node.

key = 'literal'
class Join(Expression):
2393class Join(Expression):
2394    arg_types = {
2395        "this": True,
2396        "on": False,
2397        "side": False,
2398        "kind": False,
2399        "using": False,
2400        "method": False,
2401        "global": False,
2402        "hint": False,
2403        "match_condition": False,  # Snowflake
2404        "expressions": False,
2405    }
2406
2407    @property
2408    def method(self) -> str:
2409        return self.text("method").upper()
2410
2411    @property
2412    def kind(self) -> str:
2413        return self.text("kind").upper()
2414
2415    @property
2416    def side(self) -> str:
2417        return self.text("side").upper()
2418
2419    @property
2420    def hint(self) -> str:
2421        return self.text("hint").upper()
2422
2423    @property
2424    def alias_or_name(self) -> str:
2425        return self.this.alias_or_name
2426
2427    def on(
2428        self,
2429        *expressions: t.Optional[ExpOrStr],
2430        append: bool = True,
2431        dialect: DialectType = None,
2432        copy: bool = True,
2433        **opts,
2434    ) -> Join:
2435        """
2436        Append to or set the ON expressions.
2437
2438        Example:
2439            >>> import sqlglot
2440            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
2441            'JOIN x ON y = 1'
2442
2443        Args:
2444            *expressions: the SQL code strings to parse.
2445                If an `Expression` instance is passed, it will be used as-is.
2446                Multiple expressions are combined with an AND operator.
2447            append: if `True`, AND the new expressions to any existing expression.
2448                Otherwise, this resets the expression.
2449            dialect: the dialect used to parse the input expressions.
2450            copy: if `False`, modify this expression instance in-place.
2451            opts: other options to use to parse the input expressions.
2452
2453        Returns:
2454            The modified Join expression.
2455        """
2456        join = _apply_conjunction_builder(
2457            *expressions,
2458            instance=self,
2459            arg="on",
2460            append=append,
2461            dialect=dialect,
2462            copy=copy,
2463            **opts,
2464        )
2465
2466        if join.kind == "CROSS":
2467            join.set("kind", None)
2468
2469        return join
2470
2471    def using(
2472        self,
2473        *expressions: t.Optional[ExpOrStr],
2474        append: bool = True,
2475        dialect: DialectType = None,
2476        copy: bool = True,
2477        **opts,
2478    ) -> Join:
2479        """
2480        Append to or set the USING expressions.
2481
2482        Example:
2483            >>> import sqlglot
2484            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
2485            'JOIN x USING (foo, bla)'
2486
2487        Args:
2488            *expressions: the SQL code strings to parse.
2489                If an `Expression` instance is passed, it will be used as-is.
2490            append: if `True`, concatenate the new expressions to the existing "using" list.
2491                Otherwise, this resets the expression.
2492            dialect: the dialect used to parse the input expressions.
2493            copy: if `False`, modify this expression instance in-place.
2494            opts: other options to use to parse the input expressions.
2495
2496        Returns:
2497            The modified Join expression.
2498        """
2499        join = _apply_list_builder(
2500            *expressions,
2501            instance=self,
2502            arg="using",
2503            append=append,
2504            dialect=dialect,
2505            copy=copy,
2506            **opts,
2507        )
2508
2509        if join.kind == "CROSS":
2510            join.set("kind", None)
2511
2512        return join
arg_types = {'this': True, 'on': False, 'side': False, 'kind': False, 'using': False, 'method': False, 'global': False, 'hint': False, 'match_condition': False, 'expressions': False}
method: str
2407    @property
2408    def method(self) -> str:
2409        return self.text("method").upper()
kind: str
2411    @property
2412    def kind(self) -> str:
2413        return self.text("kind").upper()
side: str
2415    @property
2416    def side(self) -> str:
2417        return self.text("side").upper()
hint: str
2419    @property
2420    def hint(self) -> str:
2421        return self.text("hint").upper()
alias_or_name: str
2423    @property
2424    def alias_or_name(self) -> str:
2425        return self.this.alias_or_name
def on( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Join:
2427    def on(
2428        self,
2429        *expressions: t.Optional[ExpOrStr],
2430        append: bool = True,
2431        dialect: DialectType = None,
2432        copy: bool = True,
2433        **opts,
2434    ) -> Join:
2435        """
2436        Append to or set the ON expressions.
2437
2438        Example:
2439            >>> import sqlglot
2440            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
2441            'JOIN x ON y = 1'
2442
2443        Args:
2444            *expressions: the SQL code strings to parse.
2445                If an `Expression` instance is passed, it will be used as-is.
2446                Multiple expressions are combined with an AND operator.
2447            append: if `True`, AND the new expressions to any existing expression.
2448                Otherwise, this resets the expression.
2449            dialect: the dialect used to parse the input expressions.
2450            copy: if `False`, modify this expression instance in-place.
2451            opts: other options to use to parse the input expressions.
2452
2453        Returns:
2454            The modified Join expression.
2455        """
2456        join = _apply_conjunction_builder(
2457            *expressions,
2458            instance=self,
2459            arg="on",
2460            append=append,
2461            dialect=dialect,
2462            copy=copy,
2463            **opts,
2464        )
2465
2466        if join.kind == "CROSS":
2467            join.set("kind", None)
2468
2469        return join

Append to or set the ON expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
'JOIN x ON y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

def using( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Join:
2471    def using(
2472        self,
2473        *expressions: t.Optional[ExpOrStr],
2474        append: bool = True,
2475        dialect: DialectType = None,
2476        copy: bool = True,
2477        **opts,
2478    ) -> Join:
2479        """
2480        Append to or set the USING expressions.
2481
2482        Example:
2483            >>> import sqlglot
2484            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
2485            'JOIN x USING (foo, bla)'
2486
2487        Args:
2488            *expressions: the SQL code strings to parse.
2489                If an `Expression` instance is passed, it will be used as-is.
2490            append: if `True`, concatenate the new expressions to the existing "using" list.
2491                Otherwise, this resets the expression.
2492            dialect: the dialect used to parse the input expressions.
2493            copy: if `False`, modify this expression instance in-place.
2494            opts: other options to use to parse the input expressions.
2495
2496        Returns:
2497            The modified Join expression.
2498        """
2499        join = _apply_list_builder(
2500            *expressions,
2501            instance=self,
2502            arg="using",
2503            append=append,
2504            dialect=dialect,
2505            copy=copy,
2506            **opts,
2507        )
2508
2509        if join.kind == "CROSS":
2510            join.set("kind", None)
2511
2512        return join

Append to or set the USING expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
'JOIN x USING (foo, bla)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, concatenate the new expressions to the existing "using" list. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

key = 'join'
class Lateral(UDTF):
2515class Lateral(UDTF):
2516    arg_types = {
2517        "this": True,
2518        "view": False,
2519        "outer": False,
2520        "alias": False,
2521        "cross_apply": False,  # True -> CROSS APPLY, False -> OUTER APPLY
2522    }
arg_types = {'this': True, 'view': False, 'outer': False, 'alias': False, 'cross_apply': False}
key = 'lateral'
class MatchRecognizeMeasure(Expression):
2525class MatchRecognizeMeasure(Expression):
2526    arg_types = {
2527        "this": True,
2528        "window_frame": False,
2529    }
arg_types = {'this': True, 'window_frame': False}
key = 'matchrecognizemeasure'
class MatchRecognize(Expression):
2532class MatchRecognize(Expression):
2533    arg_types = {
2534        "partition_by": False,
2535        "order": False,
2536        "measures": False,
2537        "rows": False,
2538        "after": False,
2539        "pattern": False,
2540        "define": False,
2541        "alias": False,
2542    }
arg_types = {'partition_by': False, 'order': False, 'measures': False, 'rows': False, 'after': False, 'pattern': False, 'define': False, 'alias': False}
key = 'matchrecognize'
class Final(Expression):
2547class Final(Expression):
2548    pass
key = 'final'
class Offset(Expression):
2551class Offset(Expression):
2552    arg_types = {"this": False, "expression": True, "expressions": False}
arg_types = {'this': False, 'expression': True, 'expressions': False}
key = 'offset'
class Order(Expression):
2555class Order(Expression):
2556    arg_types = {"this": False, "expressions": True, "siblings": False}
arg_types = {'this': False, 'expressions': True, 'siblings': False}
key = 'order'
class WithFill(Expression):
2560class WithFill(Expression):
2561    arg_types = {
2562        "from": False,
2563        "to": False,
2564        "step": False,
2565        "interpolate": False,
2566    }
arg_types = {'from': False, 'to': False, 'step': False, 'interpolate': False}
key = 'withfill'
class Cluster(Order):
2571class Cluster(Order):
2572    pass
key = 'cluster'
class Distribute(Order):
2575class Distribute(Order):
2576    pass
key = 'distribute'
class Sort(Order):
2579class Sort(Order):
2580    pass
key = 'sort'
class Ordered(Expression):
2583class Ordered(Expression):
2584    arg_types = {"this": True, "desc": False, "nulls_first": True, "with_fill": False}
arg_types = {'this': True, 'desc': False, 'nulls_first': True, 'with_fill': False}
key = 'ordered'
class Property(Expression):
2587class Property(Expression):
2588    arg_types = {"this": True, "value": True}
arg_types = {'this': True, 'value': True}
key = 'property'
class GrantPrivilege(Expression):
2591class GrantPrivilege(Expression):
2592    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'grantprivilege'
class GrantPrincipal(Expression):
2595class GrantPrincipal(Expression):
2596    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'grantprincipal'
class AllowedValuesProperty(Expression):
2599class AllowedValuesProperty(Expression):
2600    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'allowedvaluesproperty'
class AlgorithmProperty(Property):
2603class AlgorithmProperty(Property):
2604    arg_types = {"this": True}
arg_types = {'this': True}
key = 'algorithmproperty'
class AutoIncrementProperty(Property):
2607class AutoIncrementProperty(Property):
2608    arg_types = {"this": True}
arg_types = {'this': True}
key = 'autoincrementproperty'
class AutoRefreshProperty(Property):
2612class AutoRefreshProperty(Property):
2613    arg_types = {"this": True}
arg_types = {'this': True}
key = 'autorefreshproperty'
class BackupProperty(Property):
2616class BackupProperty(Property):
2617    arg_types = {"this": True}
arg_types = {'this': True}
key = 'backupproperty'
class BlockCompressionProperty(Property):
2620class BlockCompressionProperty(Property):
2621    arg_types = {
2622        "autotemp": False,
2623        "always": False,
2624        "default": False,
2625        "manual": False,
2626        "never": False,
2627    }
arg_types = {'autotemp': False, 'always': False, 'default': False, 'manual': False, 'never': False}
key = 'blockcompressionproperty'
class CharacterSetProperty(Property):
2630class CharacterSetProperty(Property):
2631    arg_types = {"this": True, "default": True}
arg_types = {'this': True, 'default': True}
key = 'charactersetproperty'
class ChecksumProperty(Property):
2634class ChecksumProperty(Property):
2635    arg_types = {"on": False, "default": False}
arg_types = {'on': False, 'default': False}
key = 'checksumproperty'
class CollateProperty(Property):
2638class CollateProperty(Property):
2639    arg_types = {"this": True, "default": False}
arg_types = {'this': True, 'default': False}
key = 'collateproperty'
class CopyGrantsProperty(Property):
2642class CopyGrantsProperty(Property):
2643    arg_types = {}
arg_types = {}
key = 'copygrantsproperty'
class DataBlocksizeProperty(Property):
2646class DataBlocksizeProperty(Property):
2647    arg_types = {
2648        "size": False,
2649        "units": False,
2650        "minimum": False,
2651        "maximum": False,
2652        "default": False,
2653    }
arg_types = {'size': False, 'units': False, 'minimum': False, 'maximum': False, 'default': False}
key = 'datablocksizeproperty'
class DataDeletionProperty(Property):
2656class DataDeletionProperty(Property):
2657    arg_types = {"on": True, "filter_col": False, "retention_period": False}
arg_types = {'on': True, 'filter_col': False, 'retention_period': False}
key = 'datadeletionproperty'
class DefinerProperty(Property):
2660class DefinerProperty(Property):
2661    arg_types = {"this": True}
arg_types = {'this': True}
key = 'definerproperty'
class DistKeyProperty(Property):
2664class DistKeyProperty(Property):
2665    arg_types = {"this": True}
arg_types = {'this': True}
key = 'distkeyproperty'
class DistributedByProperty(Property):
2670class DistributedByProperty(Property):
2671    arg_types = {"expressions": False, "kind": True, "buckets": False, "order": False}
arg_types = {'expressions': False, 'kind': True, 'buckets': False, 'order': False}
key = 'distributedbyproperty'
class DistStyleProperty(Property):
2674class DistStyleProperty(Property):
2675    arg_types = {"this": True}
arg_types = {'this': True}
key = 'diststyleproperty'
class DuplicateKeyProperty(Property):
2678class DuplicateKeyProperty(Property):
2679    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'duplicatekeyproperty'
class EngineProperty(Property):
2682class EngineProperty(Property):
2683    arg_types = {"this": True}
arg_types = {'this': True}
key = 'engineproperty'
class HeapProperty(Property):
2686class HeapProperty(Property):
2687    arg_types = {}
arg_types = {}
key = 'heapproperty'
class ToTableProperty(Property):
2690class ToTableProperty(Property):
2691    arg_types = {"this": True}
arg_types = {'this': True}
key = 'totableproperty'
class ExecuteAsProperty(Property):
2694class ExecuteAsProperty(Property):
2695    arg_types = {"this": True}
arg_types = {'this': True}
key = 'executeasproperty'
class ExternalProperty(Property):
2698class ExternalProperty(Property):
2699    arg_types = {"this": False}
arg_types = {'this': False}
key = 'externalproperty'
class FallbackProperty(Property):
2702class FallbackProperty(Property):
2703    arg_types = {"no": True, "protection": False}
arg_types = {'no': True, 'protection': False}
key = 'fallbackproperty'
class FileFormatProperty(Property):
2706class FileFormatProperty(Property):
2707    arg_types = {"this": True}
arg_types = {'this': True}
key = 'fileformatproperty'
class FreespaceProperty(Property):
2710class FreespaceProperty(Property):
2711    arg_types = {"this": True, "percent": False}
arg_types = {'this': True, 'percent': False}
key = 'freespaceproperty'
class GlobalProperty(Property):
2714class GlobalProperty(Property):
2715    arg_types = {}
arg_types = {}
key = 'globalproperty'
class IcebergProperty(Property):
2718class IcebergProperty(Property):
2719    arg_types = {}
arg_types = {}
key = 'icebergproperty'
class InheritsProperty(Property):
2722class InheritsProperty(Property):
2723    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'inheritsproperty'
class InputModelProperty(Property):
2726class InputModelProperty(Property):
2727    arg_types = {"this": True}
arg_types = {'this': True}
key = 'inputmodelproperty'
class OutputModelProperty(Property):
2730class OutputModelProperty(Property):
2731    arg_types = {"this": True}
arg_types = {'this': True}
key = 'outputmodelproperty'
class IsolatedLoadingProperty(Property):
2734class IsolatedLoadingProperty(Property):
2735    arg_types = {"no": False, "concurrent": False, "target": False}
arg_types = {'no': False, 'concurrent': False, 'target': False}
key = 'isolatedloadingproperty'
class JournalProperty(Property):
2738class JournalProperty(Property):
2739    arg_types = {
2740        "no": False,
2741        "dual": False,
2742        "before": False,
2743        "local": False,
2744        "after": False,
2745    }
arg_types = {'no': False, 'dual': False, 'before': False, 'local': False, 'after': False}
key = 'journalproperty'
class LanguageProperty(Property):
2748class LanguageProperty(Property):
2749    arg_types = {"this": True}
arg_types = {'this': True}
key = 'languageproperty'
class ClusteredByProperty(Property):
2753class ClusteredByProperty(Property):
2754    arg_types = {"expressions": True, "sorted_by": False, "buckets": True}
arg_types = {'expressions': True, 'sorted_by': False, 'buckets': True}
key = 'clusteredbyproperty'
class DictProperty(Property):
2757class DictProperty(Property):
2758    arg_types = {"this": True, "kind": True, "settings": False}
arg_types = {'this': True, 'kind': True, 'settings': False}
key = 'dictproperty'
class DictSubProperty(Property):
2761class DictSubProperty(Property):
2762    pass
key = 'dictsubproperty'
class DictRange(Property):
2765class DictRange(Property):
2766    arg_types = {"this": True, "min": True, "max": True}
arg_types = {'this': True, 'min': True, 'max': True}
key = 'dictrange'
class DynamicProperty(Property):
2769class DynamicProperty(Property):
2770    arg_types = {}
arg_types = {}
key = 'dynamicproperty'
class OnCluster(Property):
2775class OnCluster(Property):
2776    arg_types = {"this": True}
arg_types = {'this': True}
key = 'oncluster'
class EmptyProperty(Property):
2780class EmptyProperty(Property):
2781    arg_types = {}
arg_types = {}
key = 'emptyproperty'
class LikeProperty(Property):
2784class LikeProperty(Property):
2785    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'likeproperty'
class LocationProperty(Property):
2788class LocationProperty(Property):
2789    arg_types = {"this": True}
arg_types = {'this': True}
key = 'locationproperty'
class LockProperty(Property):
2792class LockProperty(Property):
2793    arg_types = {"this": True}
arg_types = {'this': True}
key = 'lockproperty'
class LockingProperty(Property):
2796class LockingProperty(Property):
2797    arg_types = {
2798        "this": False,
2799        "kind": True,
2800        "for_or_in": False,
2801        "lock_type": True,
2802        "override": False,
2803    }
arg_types = {'this': False, 'kind': True, 'for_or_in': False, 'lock_type': True, 'override': False}
key = 'lockingproperty'
class LogProperty(Property):
2806class LogProperty(Property):
2807    arg_types = {"no": True}
arg_types = {'no': True}
key = 'logproperty'
class MaterializedProperty(Property):
2810class MaterializedProperty(Property):
2811    arg_types = {"this": False}
arg_types = {'this': False}
key = 'materializedproperty'
class MergeBlockRatioProperty(Property):
2814class MergeBlockRatioProperty(Property):
2815    arg_types = {"this": False, "no": False, "default": False, "percent": False}
arg_types = {'this': False, 'no': False, 'default': False, 'percent': False}
key = 'mergeblockratioproperty'
class NoPrimaryIndexProperty(Property):
2818class NoPrimaryIndexProperty(Property):
2819    arg_types = {}
arg_types = {}
key = 'noprimaryindexproperty'
class OnProperty(Property):
2822class OnProperty(Property):
2823    arg_types = {"this": True}
arg_types = {'this': True}
key = 'onproperty'
class OnCommitProperty(Property):
2826class OnCommitProperty(Property):
2827    arg_types = {"delete": False}
arg_types = {'delete': False}
key = 'oncommitproperty'
class PartitionedByProperty(Property):
2830class PartitionedByProperty(Property):
2831    arg_types = {"this": True}
arg_types = {'this': True}
key = 'partitionedbyproperty'
class PartitionBoundSpec(Expression):
2835class PartitionBoundSpec(Expression):
2836    # this -> IN / MODULUS, expression -> REMAINDER, from_expressions -> FROM (...), to_expressions -> TO (...)
2837    arg_types = {
2838        "this": False,
2839        "expression": False,
2840        "from_expressions": False,
2841        "to_expressions": False,
2842    }
arg_types = {'this': False, 'expression': False, 'from_expressions': False, 'to_expressions': False}
key = 'partitionboundspec'
class PartitionedOfProperty(Property):
2845class PartitionedOfProperty(Property):
2846    # this -> parent_table (schema), expression -> FOR VALUES ... / DEFAULT
2847    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'partitionedofproperty'
class StreamingTableProperty(Property):
2850class StreamingTableProperty(Property):
2851    arg_types = {}
arg_types = {}
key = 'streamingtableproperty'
class RemoteWithConnectionModelProperty(Property):
2854class RemoteWithConnectionModelProperty(Property):
2855    arg_types = {"this": True}
arg_types = {'this': True}
key = 'remotewithconnectionmodelproperty'
class ReturnsProperty(Property):
2858class ReturnsProperty(Property):
2859    arg_types = {"this": False, "is_table": False, "table": False, "null": False}
arg_types = {'this': False, 'is_table': False, 'table': False, 'null': False}
key = 'returnsproperty'
class StrictProperty(Property):
2862class StrictProperty(Property):
2863    arg_types = {}
arg_types = {}
key = 'strictproperty'
class RowFormatProperty(Property):
2866class RowFormatProperty(Property):
2867    arg_types = {"this": True}
arg_types = {'this': True}
key = 'rowformatproperty'
class RowFormatDelimitedProperty(Property):
2870class RowFormatDelimitedProperty(Property):
2871    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
2872    arg_types = {
2873        "fields": False,
2874        "escaped": False,
2875        "collection_items": False,
2876        "map_keys": False,
2877        "lines": False,
2878        "null": False,
2879        "serde": False,
2880    }
arg_types = {'fields': False, 'escaped': False, 'collection_items': False, 'map_keys': False, 'lines': False, 'null': False, 'serde': False}
key = 'rowformatdelimitedproperty'
class RowFormatSerdeProperty(Property):
2883class RowFormatSerdeProperty(Property):
2884    arg_types = {"this": True, "serde_properties": False}
arg_types = {'this': True, 'serde_properties': False}
key = 'rowformatserdeproperty'
class QueryTransform(Expression):
2888class QueryTransform(Expression):
2889    arg_types = {
2890        "expressions": True,
2891        "command_script": True,
2892        "schema": False,
2893        "row_format_before": False,
2894        "record_writer": False,
2895        "row_format_after": False,
2896        "record_reader": False,
2897    }
arg_types = {'expressions': True, 'command_script': True, 'schema': False, 'row_format_before': False, 'record_writer': False, 'row_format_after': False, 'record_reader': False}
key = 'querytransform'
class SampleProperty(Property):
2900class SampleProperty(Property):
2901    arg_types = {"this": True}
arg_types = {'this': True}
key = 'sampleproperty'
class SecurityProperty(Property):
2905class SecurityProperty(Property):
2906    arg_types = {"this": True}
arg_types = {'this': True}
key = 'securityproperty'
class SchemaCommentProperty(Property):
2909class SchemaCommentProperty(Property):
2910    arg_types = {"this": True}
arg_types = {'this': True}
key = 'schemacommentproperty'
class SerdeProperties(Property):
2913class SerdeProperties(Property):
2914    arg_types = {"expressions": True, "with": False}
arg_types = {'expressions': True, 'with': False}
key = 'serdeproperties'
class SetProperty(Property):
2917class SetProperty(Property):
2918    arg_types = {"multi": True}
arg_types = {'multi': True}
key = 'setproperty'
class SharingProperty(Property):
2921class SharingProperty(Property):
2922    arg_types = {"this": False}
arg_types = {'this': False}
key = 'sharingproperty'
class SetConfigProperty(Property):
2925class SetConfigProperty(Property):
2926    arg_types = {"this": True}
arg_types = {'this': True}
key = 'setconfigproperty'
class SettingsProperty(Property):
2929class SettingsProperty(Property):
2930    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'settingsproperty'
class SortKeyProperty(Property):
2933class SortKeyProperty(Property):
2934    arg_types = {"this": True, "compound": False}
arg_types = {'this': True, 'compound': False}
key = 'sortkeyproperty'
class SqlReadWriteProperty(Property):
2937class SqlReadWriteProperty(Property):
2938    arg_types = {"this": True}
arg_types = {'this': True}
key = 'sqlreadwriteproperty'
class SqlSecurityProperty(Property):
2941class SqlSecurityProperty(Property):
2942    arg_types = {"definer": True}
arg_types = {'definer': True}
key = 'sqlsecurityproperty'
class StabilityProperty(Property):
2945class StabilityProperty(Property):
2946    arg_types = {"this": True}
arg_types = {'this': True}
key = 'stabilityproperty'
class TemporaryProperty(Property):
2949class TemporaryProperty(Property):
2950    arg_types = {"this": False}
arg_types = {'this': False}
key = 'temporaryproperty'
class SecureProperty(Property):
2953class SecureProperty(Property):
2954    arg_types = {}
arg_types = {}
key = 'secureproperty'
class TransformModelProperty(Property):
2957class TransformModelProperty(Property):
2958    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'transformmodelproperty'
class TransientProperty(Property):
2961class TransientProperty(Property):
2962    arg_types = {"this": False}
arg_types = {'this': False}
key = 'transientproperty'
class UnloggedProperty(Property):
2965class UnloggedProperty(Property):
2966    arg_types = {}
arg_types = {}
key = 'unloggedproperty'
class ViewAttributeProperty(Property):
2970class ViewAttributeProperty(Property):
2971    arg_types = {"this": True}
arg_types = {'this': True}
key = 'viewattributeproperty'
class VolatileProperty(Property):
2974class VolatileProperty(Property):
2975    arg_types = {"this": False}
arg_types = {'this': False}
key = 'volatileproperty'
class WithDataProperty(Property):
2978class WithDataProperty(Property):
2979    arg_types = {"no": True, "statistics": False}
arg_types = {'no': True, 'statistics': False}
key = 'withdataproperty'
class WithJournalTableProperty(Property):
2982class WithJournalTableProperty(Property):
2983    arg_types = {"this": True}
arg_types = {'this': True}
key = 'withjournaltableproperty'
class WithSchemaBindingProperty(Property):
2986class WithSchemaBindingProperty(Property):
2987    arg_types = {"this": True}
arg_types = {'this': True}
key = 'withschemabindingproperty'
class WithSystemVersioningProperty(Property):
2990class WithSystemVersioningProperty(Property):
2991    arg_types = {
2992        "on": False,
2993        "this": False,
2994        "data_consistency": False,
2995        "retention_period": False,
2996        "with": True,
2997    }
arg_types = {'on': False, 'this': False, 'data_consistency': False, 'retention_period': False, 'with': True}
key = 'withsystemversioningproperty'
class WithProcedureOptions(Property):
3000class WithProcedureOptions(Property):
3001    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'withprocedureoptions'
class Properties(Expression):
3004class Properties(Expression):
3005    arg_types = {"expressions": True}
3006
3007    NAME_TO_PROPERTY = {
3008        "ALGORITHM": AlgorithmProperty,
3009        "AUTO_INCREMENT": AutoIncrementProperty,
3010        "CHARACTER SET": CharacterSetProperty,
3011        "CLUSTERED_BY": ClusteredByProperty,
3012        "COLLATE": CollateProperty,
3013        "COMMENT": SchemaCommentProperty,
3014        "DEFINER": DefinerProperty,
3015        "DISTKEY": DistKeyProperty,
3016        "DISTRIBUTED_BY": DistributedByProperty,
3017        "DISTSTYLE": DistStyleProperty,
3018        "ENGINE": EngineProperty,
3019        "EXECUTE AS": ExecuteAsProperty,
3020        "FORMAT": FileFormatProperty,
3021        "LANGUAGE": LanguageProperty,
3022        "LOCATION": LocationProperty,
3023        "LOCK": LockProperty,
3024        "PARTITIONED_BY": PartitionedByProperty,
3025        "RETURNS": ReturnsProperty,
3026        "ROW_FORMAT": RowFormatProperty,
3027        "SORTKEY": SortKeyProperty,
3028    }
3029
3030    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
3031
3032    # CREATE property locations
3033    # Form: schema specified
3034    #   create [POST_CREATE]
3035    #     table a [POST_NAME]
3036    #     (b int) [POST_SCHEMA]
3037    #     with ([POST_WITH])
3038    #     index (b) [POST_INDEX]
3039    #
3040    # Form: alias selection
3041    #   create [POST_CREATE]
3042    #     table a [POST_NAME]
3043    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
3044    #     index (c) [POST_INDEX]
3045    class Location(AutoName):
3046        POST_CREATE = auto()
3047        POST_NAME = auto()
3048        POST_SCHEMA = auto()
3049        POST_WITH = auto()
3050        POST_ALIAS = auto()
3051        POST_EXPRESSION = auto()
3052        POST_INDEX = auto()
3053        UNSUPPORTED = auto()
3054
3055    @classmethod
3056    def from_dict(cls, properties_dict: t.Dict) -> Properties:
3057        expressions = []
3058        for key, value in properties_dict.items():
3059            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
3060            if property_cls:
3061                expressions.append(property_cls(this=convert(value)))
3062            else:
3063                expressions.append(Property(this=Literal.string(key), value=convert(value)))
3064
3065        return cls(expressions=expressions)
arg_types = {'expressions': True}
NAME_TO_PROPERTY = {'ALGORITHM': <class 'AlgorithmProperty'>, 'AUTO_INCREMENT': <class 'AutoIncrementProperty'>, 'CHARACTER SET': <class 'CharacterSetProperty'>, 'CLUSTERED_BY': <class 'ClusteredByProperty'>, 'COLLATE': <class 'CollateProperty'>, 'COMMENT': <class 'SchemaCommentProperty'>, 'DEFINER': <class 'DefinerProperty'>, 'DISTKEY': <class 'DistKeyProperty'>, 'DISTRIBUTED_BY': <class 'DistributedByProperty'>, 'DISTSTYLE': <class 'DistStyleProperty'>, 'ENGINE': <class 'EngineProperty'>, 'EXECUTE AS': <class 'ExecuteAsProperty'>, 'FORMAT': <class 'FileFormatProperty'>, 'LANGUAGE': <class 'LanguageProperty'>, 'LOCATION': <class 'LocationProperty'>, 'LOCK': <class 'LockProperty'>, 'PARTITIONED_BY': <class 'PartitionedByProperty'>, 'RETURNS': <class 'ReturnsProperty'>, 'ROW_FORMAT': <class 'RowFormatProperty'>, 'SORTKEY': <class 'SortKeyProperty'>}
PROPERTY_TO_NAME = {<class 'AlgorithmProperty'>: 'ALGORITHM', <class 'AutoIncrementProperty'>: 'AUTO_INCREMENT', <class 'CharacterSetProperty'>: 'CHARACTER SET', <class 'ClusteredByProperty'>: 'CLUSTERED_BY', <class 'CollateProperty'>: 'COLLATE', <class 'SchemaCommentProperty'>: 'COMMENT', <class 'DefinerProperty'>: 'DEFINER', <class 'DistKeyProperty'>: 'DISTKEY', <class 'DistributedByProperty'>: 'DISTRIBUTED_BY', <class 'DistStyleProperty'>: 'DISTSTYLE', <class 'EngineProperty'>: 'ENGINE', <class 'ExecuteAsProperty'>: 'EXECUTE AS', <class 'FileFormatProperty'>: 'FORMAT', <class 'LanguageProperty'>: 'LANGUAGE', <class 'LocationProperty'>: 'LOCATION', <class 'LockProperty'>: 'LOCK', <class 'PartitionedByProperty'>: 'PARTITIONED_BY', <class 'ReturnsProperty'>: 'RETURNS', <class 'RowFormatProperty'>: 'ROW_FORMAT', <class 'SortKeyProperty'>: 'SORTKEY'}
@classmethod
def from_dict(cls, properties_dict: Dict) -> Properties:
3055    @classmethod
3056    def from_dict(cls, properties_dict: t.Dict) -> Properties:
3057        expressions = []
3058        for key, value in properties_dict.items():
3059            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
3060            if property_cls:
3061                expressions.append(property_cls(this=convert(value)))
3062            else:
3063                expressions.append(Property(this=Literal.string(key), value=convert(value)))
3064
3065        return cls(expressions=expressions)
key = 'properties'
class Properties.Location(sqlglot.helper.AutoName):
3045    class Location(AutoName):
3046        POST_CREATE = auto()
3047        POST_NAME = auto()
3048        POST_SCHEMA = auto()
3049        POST_WITH = auto()
3050        POST_ALIAS = auto()
3051        POST_EXPRESSION = auto()
3052        POST_INDEX = auto()
3053        UNSUPPORTED = auto()

An enumeration.

POST_CREATE = <Location.POST_CREATE: 'POST_CREATE'>
POST_NAME = <Location.POST_NAME: 'POST_NAME'>
POST_SCHEMA = <Location.POST_SCHEMA: 'POST_SCHEMA'>
POST_WITH = <Location.POST_WITH: 'POST_WITH'>
POST_ALIAS = <Location.POST_ALIAS: 'POST_ALIAS'>
POST_EXPRESSION = <Location.POST_EXPRESSION: 'POST_EXPRESSION'>
POST_INDEX = <Location.POST_INDEX: 'POST_INDEX'>
UNSUPPORTED = <Location.UNSUPPORTED: 'UNSUPPORTED'>
class Qualify(Expression):
3068class Qualify(Expression):
3069    pass
key = 'qualify'
class InputOutputFormat(Expression):
3072class InputOutputFormat(Expression):
3073    arg_types = {"input_format": False, "output_format": False}
arg_types = {'input_format': False, 'output_format': False}
key = 'inputoutputformat'
class Return(Expression):
3077class Return(Expression):
3078    pass
key = 'return'
class Reference(Expression):
3081class Reference(Expression):
3082    arg_types = {"this": True, "expressions": False, "options": False}
arg_types = {'this': True, 'expressions': False, 'options': False}
key = 'reference'
class Tuple(Expression):
3085class Tuple(Expression):
3086    arg_types = {"expressions": False}
3087
3088    def isin(
3089        self,
3090        *expressions: t.Any,
3091        query: t.Optional[ExpOrStr] = None,
3092        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
3093        copy: bool = True,
3094        **opts,
3095    ) -> In:
3096        return In(
3097            this=maybe_copy(self, copy),
3098            expressions=[convert(e, copy=copy) for e in expressions],
3099            query=maybe_parse(query, copy=copy, **opts) if query else None,
3100            unnest=(
3101                Unnest(
3102                    expressions=[
3103                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
3104                        for e in ensure_list(unnest)
3105                    ]
3106                )
3107                if unnest
3108                else None
3109            ),
3110        )
arg_types = {'expressions': False}
def isin( self, *expressions: Any, query: Union[str, Expression, NoneType] = None, unnest: Union[str, Expression, NoneType, Collection[Union[str, Expression]]] = None, copy: bool = True, **opts) -> In:
3088    def isin(
3089        self,
3090        *expressions: t.Any,
3091        query: t.Optional[ExpOrStr] = None,
3092        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
3093        copy: bool = True,
3094        **opts,
3095    ) -> In:
3096        return In(
3097            this=maybe_copy(self, copy),
3098            expressions=[convert(e, copy=copy) for e in expressions],
3099            query=maybe_parse(query, copy=copy, **opts) if query else None,
3100            unnest=(
3101                Unnest(
3102                    expressions=[
3103                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
3104                        for e in ensure_list(unnest)
3105                    ]
3106                )
3107                if unnest
3108                else None
3109            ),
3110        )
key = 'tuple'
QUERY_MODIFIERS = {'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'prewhere': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False, 'options': False}
class QueryOption(Expression):
3141class QueryOption(Expression):
3142    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'queryoption'
class WithTableHint(Expression):
3146class WithTableHint(Expression):
3147    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'withtablehint'
class IndexTableHint(Expression):
3151class IndexTableHint(Expression):
3152    arg_types = {"this": True, "expressions": False, "target": False}
arg_types = {'this': True, 'expressions': False, 'target': False}
key = 'indextablehint'
class HistoricalData(Expression):
3156class HistoricalData(Expression):
3157    arg_types = {"this": True, "kind": True, "expression": True}
arg_types = {'this': True, 'kind': True, 'expression': True}
key = 'historicaldata'
class Table(Expression):
3160class Table(Expression):
3161    arg_types = {
3162        "this": False,
3163        "alias": False,
3164        "db": False,
3165        "catalog": False,
3166        "laterals": False,
3167        "joins": False,
3168        "pivots": False,
3169        "hints": False,
3170        "system_time": False,
3171        "version": False,
3172        "format": False,
3173        "pattern": False,
3174        "ordinality": False,
3175        "when": False,
3176        "only": False,
3177        "partition": False,
3178        "changes": False,
3179        "rows_from": False,
3180        "sample": False,
3181    }
3182
3183    @property
3184    def name(self) -> str:
3185        if isinstance(self.this, Func):
3186            return ""
3187        return self.this.name
3188
3189    @property
3190    def db(self) -> str:
3191        return self.text("db")
3192
3193    @property
3194    def catalog(self) -> str:
3195        return self.text("catalog")
3196
3197    @property
3198    def selects(self) -> t.List[Expression]:
3199        return []
3200
3201    @property
3202    def named_selects(self) -> t.List[str]:
3203        return []
3204
3205    @property
3206    def parts(self) -> t.List[Expression]:
3207        """Return the parts of a table in order catalog, db, table."""
3208        parts: t.List[Expression] = []
3209
3210        for arg in ("catalog", "db", "this"):
3211            part = self.args.get(arg)
3212
3213            if isinstance(part, Dot):
3214                parts.extend(part.flatten())
3215            elif isinstance(part, Expression):
3216                parts.append(part)
3217
3218        return parts
3219
3220    def to_column(self, copy: bool = True) -> Alias | Column | Dot:
3221        parts = self.parts
3222        last_part = parts[-1]
3223
3224        if isinstance(last_part, Identifier):
3225            col = column(*reversed(parts[0:4]), fields=parts[4:], copy=copy)  # type: ignore
3226        else:
3227            # This branch will be reached if a function or array is wrapped in a `Table`
3228            col = last_part
3229
3230        alias = self.args.get("alias")
3231        if alias:
3232            col = alias_(col, alias.this, copy=copy)
3233
3234        return col
arg_types = {'this': False, 'alias': False, 'db': False, 'catalog': False, 'laterals': False, 'joins': False, 'pivots': False, 'hints': False, 'system_time': False, 'version': False, 'format': False, 'pattern': False, 'ordinality': False, 'when': False, 'only': False, 'partition': False, 'changes': False, 'rows_from': False, 'sample': False}
name: str
3183    @property
3184    def name(self) -> str:
3185        if isinstance(self.this, Func):
3186            return ""
3187        return self.this.name
db: str
3189    @property
3190    def db(self) -> str:
3191        return self.text("db")
catalog: str
3193    @property
3194    def catalog(self) -> str:
3195        return self.text("catalog")
selects: List[Expression]
3197    @property
3198    def selects(self) -> t.List[Expression]:
3199        return []
named_selects: List[str]
3201    @property
3202    def named_selects(self) -> t.List[str]:
3203        return []
parts: List[Expression]
3205    @property
3206    def parts(self) -> t.List[Expression]:
3207        """Return the parts of a table in order catalog, db, table."""
3208        parts: t.List[Expression] = []
3209
3210        for arg in ("catalog", "db", "this"):
3211            part = self.args.get(arg)
3212
3213            if isinstance(part, Dot):
3214                parts.extend(part.flatten())
3215            elif isinstance(part, Expression):
3216                parts.append(part)
3217
3218        return parts

Return the parts of a table in order catalog, db, table.

def to_column( self, copy: bool = True) -> Alias | Column | Dot:
3220    def to_column(self, copy: bool = True) -> Alias | Column | Dot:
3221        parts = self.parts
3222        last_part = parts[-1]
3223
3224        if isinstance(last_part, Identifier):
3225            col = column(*reversed(parts[0:4]), fields=parts[4:], copy=copy)  # type: ignore
3226        else:
3227            # This branch will be reached if a function or array is wrapped in a `Table`
3228            col = last_part
3229
3230        alias = self.args.get("alias")
3231        if alias:
3232            col = alias_(col, alias.this, copy=copy)
3233
3234        return col
key = 'table'
class SetOperation(Query):
3237class SetOperation(Query):
3238    arg_types = {
3239        "with": False,
3240        "this": True,
3241        "expression": True,
3242        "distinct": False,
3243        "by_name": False,
3244        **QUERY_MODIFIERS,
3245    }
3246
3247    def select(
3248        self: S,
3249        *expressions: t.Optional[ExpOrStr],
3250        append: bool = True,
3251        dialect: DialectType = None,
3252        copy: bool = True,
3253        **opts,
3254    ) -> S:
3255        this = maybe_copy(self, copy)
3256        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
3257        this.expression.unnest().select(
3258            *expressions, append=append, dialect=dialect, copy=False, **opts
3259        )
3260        return this
3261
3262    @property
3263    def named_selects(self) -> t.List[str]:
3264        return self.this.unnest().named_selects
3265
3266    @property
3267    def is_star(self) -> bool:
3268        return self.this.is_star or self.expression.is_star
3269
3270    @property
3271    def selects(self) -> t.List[Expression]:
3272        return self.this.unnest().selects
3273
3274    @property
3275    def left(self) -> Query:
3276        return self.this
3277
3278    @property
3279    def right(self) -> Query:
3280        return self.expression
arg_types = {'with': False, 'this': True, 'expression': True, 'distinct': False, 'by_name': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'prewhere': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False, 'options': False}
def select( self: ~S, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~S:
3247    def select(
3248        self: S,
3249        *expressions: t.Optional[ExpOrStr],
3250        append: bool = True,
3251        dialect: DialectType = None,
3252        copy: bool = True,
3253        **opts,
3254    ) -> S:
3255        this = maybe_copy(self, copy)
3256        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
3257        this.expression.unnest().select(
3258            *expressions, append=append, dialect=dialect, copy=False, **opts
3259        )
3260        return this

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Query expression.

named_selects: List[str]
3262    @property
3263    def named_selects(self) -> t.List[str]:
3264        return self.this.unnest().named_selects

Returns the output names of the query's projections.

is_star: bool
3266    @property
3267    def is_star(self) -> bool:
3268        return self.this.is_star or self.expression.is_star

Checks whether an expression is a star.

selects: List[Expression]
3270    @property
3271    def selects(self) -> t.List[Expression]:
3272        return self.this.unnest().selects

Returns the query's projections.

left: Query
3274    @property
3275    def left(self) -> Query:
3276        return self.this
right: Query
3278    @property
3279    def right(self) -> Query:
3280        return self.expression
key = 'setoperation'
class Union(SetOperation):
3283class Union(SetOperation):
3284    pass
key = 'union'
class Except(SetOperation):
3287class Except(SetOperation):
3288    pass
key = 'except'
class Intersect(SetOperation):
3291class Intersect(SetOperation):
3292    pass
key = 'intersect'
class Update(DML):
3295class Update(DML):
3296    arg_types = {
3297        "with": False,
3298        "this": False,
3299        "expressions": True,
3300        "from": False,
3301        "where": False,
3302        "returning": False,
3303        "order": False,
3304        "limit": False,
3305    }
3306
3307    def table(
3308        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3309    ) -> Update:
3310        """
3311        Set the table to update.
3312
3313        Example:
3314            >>> Update().table("my_table").set_("x = 1").sql()
3315            'UPDATE my_table SET x = 1'
3316
3317        Args:
3318            expression : the SQL code strings to parse.
3319                If a `Table` instance is passed, this is used as-is.
3320                If another `Expression` instance is passed, it will be wrapped in a `Table`.
3321            dialect: the dialect used to parse the input expression.
3322            copy: if `False`, modify this expression instance in-place.
3323            opts: other options to use to parse the input expressions.
3324
3325        Returns:
3326            The modified Update expression.
3327        """
3328        return _apply_builder(
3329            expression=expression,
3330            instance=self,
3331            arg="this",
3332            into=Table,
3333            prefix=None,
3334            dialect=dialect,
3335            copy=copy,
3336            **opts,
3337        )
3338
3339    def set_(
3340        self,
3341        *expressions: ExpOrStr,
3342        append: bool = True,
3343        dialect: DialectType = None,
3344        copy: bool = True,
3345        **opts,
3346    ) -> Update:
3347        """
3348        Append to or set the SET expressions.
3349
3350        Example:
3351            >>> Update().table("my_table").set_("x = 1").sql()
3352            'UPDATE my_table SET x = 1'
3353
3354        Args:
3355            *expressions: the SQL code strings to parse.
3356                If `Expression` instance(s) are passed, they will be used as-is.
3357                Multiple expressions are combined with a comma.
3358            append: if `True`, add the new expressions to any existing SET expressions.
3359                Otherwise, this resets the expressions.
3360            dialect: the dialect used to parse the input expressions.
3361            copy: if `False`, modify this expression instance in-place.
3362            opts: other options to use to parse the input expressions.
3363        """
3364        return _apply_list_builder(
3365            *expressions,
3366            instance=self,
3367            arg="expressions",
3368            append=append,
3369            into=Expression,
3370            prefix=None,
3371            dialect=dialect,
3372            copy=copy,
3373            **opts,
3374        )
3375
3376    def where(
3377        self,
3378        *expressions: t.Optional[ExpOrStr],
3379        append: bool = True,
3380        dialect: DialectType = None,
3381        copy: bool = True,
3382        **opts,
3383    ) -> Select:
3384        """
3385        Append to or set the WHERE expressions.
3386
3387        Example:
3388            >>> Update().table("tbl").set_("x = 1").where("x = 'a' OR x < 'b'").sql()
3389            "UPDATE tbl SET x = 1 WHERE x = 'a' OR x < 'b'"
3390
3391        Args:
3392            *expressions: the SQL code strings to parse.
3393                If an `Expression` instance is passed, it will be used as-is.
3394                Multiple expressions are combined with an AND operator.
3395            append: if `True`, AND the new expressions to any existing expression.
3396                Otherwise, this resets the expression.
3397            dialect: the dialect used to parse the input expressions.
3398            copy: if `False`, modify this expression instance in-place.
3399            opts: other options to use to parse the input expressions.
3400
3401        Returns:
3402            Select: the modified expression.
3403        """
3404        return _apply_conjunction_builder(
3405            *expressions,
3406            instance=self,
3407            arg="where",
3408            append=append,
3409            into=Where,
3410            dialect=dialect,
3411            copy=copy,
3412            **opts,
3413        )
3414
3415    def from_(
3416        self,
3417        expression: t.Optional[ExpOrStr] = None,
3418        dialect: DialectType = None,
3419        copy: bool = True,
3420        **opts,
3421    ) -> Update:
3422        """
3423        Set the FROM expression.
3424
3425        Example:
3426            >>> Update().table("my_table").set_("x = 1").from_("baz").sql()
3427            'UPDATE my_table SET x = 1 FROM baz'
3428
3429        Args:
3430            expression : the SQL code strings to parse.
3431                If a `From` instance is passed, this is used as-is.
3432                If another `Expression` instance is passed, it will be wrapped in a `From`.
3433                If nothing is passed in then a from is not applied to the expression
3434            dialect: the dialect used to parse the input expression.
3435            copy: if `False`, modify this expression instance in-place.
3436            opts: other options to use to parse the input expressions.
3437
3438        Returns:
3439            The modified Update expression.
3440        """
3441        if not expression:
3442            return maybe_copy(self, copy)
3443
3444        return _apply_builder(
3445            expression=expression,
3446            instance=self,
3447            arg="from",
3448            into=From,
3449            prefix="FROM",
3450            dialect=dialect,
3451            copy=copy,
3452            **opts,
3453        )
3454
3455    def with_(
3456        self,
3457        alias: ExpOrStr,
3458        as_: ExpOrStr,
3459        recursive: t.Optional[bool] = None,
3460        materialized: t.Optional[bool] = None,
3461        append: bool = True,
3462        dialect: DialectType = None,
3463        copy: bool = True,
3464        **opts,
3465    ) -> Update:
3466        """
3467        Append to or set the common table expressions.
3468
3469        Example:
3470            >>> Update().table("my_table").set_("x = 1").from_("baz").with_("baz", "SELECT id FROM foo").sql()
3471            'WITH baz AS (SELECT id FROM foo) UPDATE my_table SET x = 1 FROM baz'
3472
3473        Args:
3474            alias: the SQL code string to parse as the table name.
3475                If an `Expression` instance is passed, this is used as-is.
3476            as_: the SQL code string to parse as the table expression.
3477                If an `Expression` instance is passed, it will be used as-is.
3478            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
3479            materialized: set the MATERIALIZED part of the expression.
3480            append: if `True`, add to any existing expressions.
3481                Otherwise, this resets the expressions.
3482            dialect: the dialect used to parse the input expression.
3483            copy: if `False`, modify this expression instance in-place.
3484            opts: other options to use to parse the input expressions.
3485
3486        Returns:
3487            The modified expression.
3488        """
3489        return _apply_cte_builder(
3490            self,
3491            alias,
3492            as_,
3493            recursive=recursive,
3494            materialized=materialized,
3495            append=append,
3496            dialect=dialect,
3497            copy=copy,
3498            **opts,
3499        )
arg_types = {'with': False, 'this': False, 'expressions': True, 'from': False, 'where': False, 'returning': False, 'order': False, 'limit': False}
def table( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Update:
3307    def table(
3308        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3309    ) -> Update:
3310        """
3311        Set the table to update.
3312
3313        Example:
3314            >>> Update().table("my_table").set_("x = 1").sql()
3315            'UPDATE my_table SET x = 1'
3316
3317        Args:
3318            expression : the SQL code strings to parse.
3319                If a `Table` instance is passed, this is used as-is.
3320                If another `Expression` instance is passed, it will be wrapped in a `Table`.
3321            dialect: the dialect used to parse the input expression.
3322            copy: if `False`, modify this expression instance in-place.
3323            opts: other options to use to parse the input expressions.
3324
3325        Returns:
3326            The modified Update expression.
3327        """
3328        return _apply_builder(
3329            expression=expression,
3330            instance=self,
3331            arg="this",
3332            into=Table,
3333            prefix=None,
3334            dialect=dialect,
3335            copy=copy,
3336            **opts,
3337        )

Set the table to update.

Example:
>>> Update().table("my_table").set_("x = 1").sql()
'UPDATE my_table SET x = 1'
Arguments:
  • expression : the SQL code strings to parse. If a Table instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Table.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Update expression.

def set_( self, *expressions: Union[str, Expression], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Update:
3339    def set_(
3340        self,
3341        *expressions: ExpOrStr,
3342        append: bool = True,
3343        dialect: DialectType = None,
3344        copy: bool = True,
3345        **opts,
3346    ) -> Update:
3347        """
3348        Append to or set the SET expressions.
3349
3350        Example:
3351            >>> Update().table("my_table").set_("x = 1").sql()
3352            'UPDATE my_table SET x = 1'
3353
3354        Args:
3355            *expressions: the SQL code strings to parse.
3356                If `Expression` instance(s) are passed, they will be used as-is.
3357                Multiple expressions are combined with a comma.
3358            append: if `True`, add the new expressions to any existing SET expressions.
3359                Otherwise, this resets the expressions.
3360            dialect: the dialect used to parse the input expressions.
3361            copy: if `False`, modify this expression instance in-place.
3362            opts: other options to use to parse the input expressions.
3363        """
3364        return _apply_list_builder(
3365            *expressions,
3366            instance=self,
3367            arg="expressions",
3368            append=append,
3369            into=Expression,
3370            prefix=None,
3371            dialect=dialect,
3372            copy=copy,
3373            **opts,
3374        )

Append to or set the SET expressions.

Example:
>>> Update().table("my_table").set_("x = 1").sql()
'UPDATE my_table SET x = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If Expression instance(s) are passed, they will be used as-is. Multiple expressions are combined with a comma.
  • append: if True, add the new expressions to any existing SET expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
def where( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3376    def where(
3377        self,
3378        *expressions: t.Optional[ExpOrStr],
3379        append: bool = True,
3380        dialect: DialectType = None,
3381        copy: bool = True,
3382        **opts,
3383    ) -> Select:
3384        """
3385        Append to or set the WHERE expressions.
3386
3387        Example:
3388            >>> Update().table("tbl").set_("x = 1").where("x = 'a' OR x < 'b'").sql()
3389            "UPDATE tbl SET x = 1 WHERE x = 'a' OR x < 'b'"
3390
3391        Args:
3392            *expressions: the SQL code strings to parse.
3393                If an `Expression` instance is passed, it will be used as-is.
3394                Multiple expressions are combined with an AND operator.
3395            append: if `True`, AND the new expressions to any existing expression.
3396                Otherwise, this resets the expression.
3397            dialect: the dialect used to parse the input expressions.
3398            copy: if `False`, modify this expression instance in-place.
3399            opts: other options to use to parse the input expressions.
3400
3401        Returns:
3402            Select: the modified expression.
3403        """
3404        return _apply_conjunction_builder(
3405            *expressions,
3406            instance=self,
3407            arg="where",
3408            append=append,
3409            into=Where,
3410            dialect=dialect,
3411            copy=copy,
3412            **opts,
3413        )

Append to or set the WHERE expressions.

Example:
>>> Update().table("tbl").set_("x = 1").where("x = 'a' OR x < 'b'").sql()
"UPDATE tbl SET x = 1 WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def from_( self, expression: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Update:
3415    def from_(
3416        self,
3417        expression: t.Optional[ExpOrStr] = None,
3418        dialect: DialectType = None,
3419        copy: bool = True,
3420        **opts,
3421    ) -> Update:
3422        """
3423        Set the FROM expression.
3424
3425        Example:
3426            >>> Update().table("my_table").set_("x = 1").from_("baz").sql()
3427            'UPDATE my_table SET x = 1 FROM baz'
3428
3429        Args:
3430            expression : the SQL code strings to parse.
3431                If a `From` instance is passed, this is used as-is.
3432                If another `Expression` instance is passed, it will be wrapped in a `From`.
3433                If nothing is passed in then a from is not applied to the expression
3434            dialect: the dialect used to parse the input expression.
3435            copy: if `False`, modify this expression instance in-place.
3436            opts: other options to use to parse the input expressions.
3437
3438        Returns:
3439            The modified Update expression.
3440        """
3441        if not expression:
3442            return maybe_copy(self, copy)
3443
3444        return _apply_builder(
3445            expression=expression,
3446            instance=self,
3447            arg="from",
3448            into=From,
3449            prefix="FROM",
3450            dialect=dialect,
3451            copy=copy,
3452            **opts,
3453        )

Set the FROM expression.

Example:
>>> Update().table("my_table").set_("x = 1").from_("baz").sql()
'UPDATE my_table SET x = 1 FROM baz'
Arguments:
  • expression : the SQL code strings to parse. If a From instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a From. If nothing is passed in then a from is not applied to the expression
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Update expression.

def with_( self, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, materialized: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Update:
3455    def with_(
3456        self,
3457        alias: ExpOrStr,
3458        as_: ExpOrStr,
3459        recursive: t.Optional[bool] = None,
3460        materialized: t.Optional[bool] = None,
3461        append: bool = True,
3462        dialect: DialectType = None,
3463        copy: bool = True,
3464        **opts,
3465    ) -> Update:
3466        """
3467        Append to or set the common table expressions.
3468
3469        Example:
3470            >>> Update().table("my_table").set_("x = 1").from_("baz").with_("baz", "SELECT id FROM foo").sql()
3471            'WITH baz AS (SELECT id FROM foo) UPDATE my_table SET x = 1 FROM baz'
3472
3473        Args:
3474            alias: the SQL code string to parse as the table name.
3475                If an `Expression` instance is passed, this is used as-is.
3476            as_: the SQL code string to parse as the table expression.
3477                If an `Expression` instance is passed, it will be used as-is.
3478            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
3479            materialized: set the MATERIALIZED part of the expression.
3480            append: if `True`, add to any existing expressions.
3481                Otherwise, this resets the expressions.
3482            dialect: the dialect used to parse the input expression.
3483            copy: if `False`, modify this expression instance in-place.
3484            opts: other options to use to parse the input expressions.
3485
3486        Returns:
3487            The modified expression.
3488        """
3489        return _apply_cte_builder(
3490            self,
3491            alias,
3492            as_,
3493            recursive=recursive,
3494            materialized=materialized,
3495            append=append,
3496            dialect=dialect,
3497            copy=copy,
3498            **opts,
3499        )

Append to or set the common table expressions.

Example:
>>> Update().table("my_table").set_("x = 1").from_("baz").with_("baz", "SELECT id FROM foo").sql()
'WITH baz AS (SELECT id FROM foo) UPDATE my_table SET x = 1 FROM baz'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • materialized: set the MATERIALIZED part of the expression.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

key = 'update'
class Values(UDTF):
3502class Values(UDTF):
3503    arg_types = {"expressions": True, "alias": False}
arg_types = {'expressions': True, 'alias': False}
key = 'values'
class Var(Expression):
3506class Var(Expression):
3507    pass
key = 'var'
class Version(Expression):
3510class Version(Expression):
3511    """
3512    Time travel, iceberg, bigquery etc
3513    https://trino.io/docs/current/connector/iceberg.html?highlight=snapshot#using-snapshots
3514    https://www.databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
3515    https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#for_system_time_as_of
3516    https://learn.microsoft.com/en-us/sql/relational-databases/tables/querying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
3517    this is either TIMESTAMP or VERSION
3518    kind is ("AS OF", "BETWEEN")
3519    """
3520
3521    arg_types = {"this": True, "kind": True, "expression": False}
arg_types = {'this': True, 'kind': True, 'expression': False}
key = 'version'
class Schema(Expression):
3524class Schema(Expression):
3525    arg_types = {"this": False, "expressions": False}
arg_types = {'this': False, 'expressions': False}
key = 'schema'
class Lock(Expression):
3530class Lock(Expression):
3531    arg_types = {"update": True, "expressions": False, "wait": False}
arg_types = {'update': True, 'expressions': False, 'wait': False}
key = 'lock'
class Select(Query):
3534class Select(Query):
3535    arg_types = {
3536        "with": False,
3537        "kind": False,
3538        "expressions": False,
3539        "hint": False,
3540        "distinct": False,
3541        "into": False,
3542        "from": False,
3543        "operation_modifiers": False,
3544        **QUERY_MODIFIERS,
3545    }
3546
3547    def from_(
3548        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3549    ) -> Select:
3550        """
3551        Set the FROM expression.
3552
3553        Example:
3554            >>> Select().from_("tbl").select("x").sql()
3555            'SELECT x FROM tbl'
3556
3557        Args:
3558            expression : the SQL code strings to parse.
3559                If a `From` instance is passed, this is used as-is.
3560                If another `Expression` instance is passed, it will be wrapped in a `From`.
3561            dialect: the dialect used to parse the input expression.
3562            copy: if `False`, modify this expression instance in-place.
3563            opts: other options to use to parse the input expressions.
3564
3565        Returns:
3566            The modified Select expression.
3567        """
3568        return _apply_builder(
3569            expression=expression,
3570            instance=self,
3571            arg="from",
3572            into=From,
3573            prefix="FROM",
3574            dialect=dialect,
3575            copy=copy,
3576            **opts,
3577        )
3578
3579    def group_by(
3580        self,
3581        *expressions: t.Optional[ExpOrStr],
3582        append: bool = True,
3583        dialect: DialectType = None,
3584        copy: bool = True,
3585        **opts,
3586    ) -> Select:
3587        """
3588        Set the GROUP BY expression.
3589
3590        Example:
3591            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
3592            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
3593
3594        Args:
3595            *expressions: the SQL code strings to parse.
3596                If a `Group` instance is passed, this is used as-is.
3597                If another `Expression` instance is passed, it will be wrapped in a `Group`.
3598                If nothing is passed in then a group by is not applied to the expression
3599            append: if `True`, add to any existing expressions.
3600                Otherwise, this flattens all the `Group` expression into a single expression.
3601            dialect: the dialect used to parse the input expression.
3602            copy: if `False`, modify this expression instance in-place.
3603            opts: other options to use to parse the input expressions.
3604
3605        Returns:
3606            The modified Select expression.
3607        """
3608        if not expressions:
3609            return self if not copy else self.copy()
3610
3611        return _apply_child_list_builder(
3612            *expressions,
3613            instance=self,
3614            arg="group",
3615            append=append,
3616            copy=copy,
3617            prefix="GROUP BY",
3618            into=Group,
3619            dialect=dialect,
3620            **opts,
3621        )
3622
3623    def sort_by(
3624        self,
3625        *expressions: t.Optional[ExpOrStr],
3626        append: bool = True,
3627        dialect: DialectType = None,
3628        copy: bool = True,
3629        **opts,
3630    ) -> Select:
3631        """
3632        Set the SORT BY expression.
3633
3634        Example:
3635            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
3636            'SELECT x FROM tbl SORT BY x DESC'
3637
3638        Args:
3639            *expressions: the SQL code strings to parse.
3640                If a `Group` instance is passed, this is used as-is.
3641                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
3642            append: if `True`, add to any existing expressions.
3643                Otherwise, this flattens all the `Order` expression into a single expression.
3644            dialect: the dialect used to parse the input expression.
3645            copy: if `False`, modify this expression instance in-place.
3646            opts: other options to use to parse the input expressions.
3647
3648        Returns:
3649            The modified Select expression.
3650        """
3651        return _apply_child_list_builder(
3652            *expressions,
3653            instance=self,
3654            arg="sort",
3655            append=append,
3656            copy=copy,
3657            prefix="SORT BY",
3658            into=Sort,
3659            dialect=dialect,
3660            **opts,
3661        )
3662
3663    def cluster_by(
3664        self,
3665        *expressions: t.Optional[ExpOrStr],
3666        append: bool = True,
3667        dialect: DialectType = None,
3668        copy: bool = True,
3669        **opts,
3670    ) -> Select:
3671        """
3672        Set the CLUSTER BY expression.
3673
3674        Example:
3675            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
3676            'SELECT x FROM tbl CLUSTER BY x DESC'
3677
3678        Args:
3679            *expressions: the SQL code strings to parse.
3680                If a `Group` instance is passed, this is used as-is.
3681                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
3682            append: if `True`, add to any existing expressions.
3683                Otherwise, this flattens all the `Order` expression into a single expression.
3684            dialect: the dialect used to parse the input expression.
3685            copy: if `False`, modify this expression instance in-place.
3686            opts: other options to use to parse the input expressions.
3687
3688        Returns:
3689            The modified Select expression.
3690        """
3691        return _apply_child_list_builder(
3692            *expressions,
3693            instance=self,
3694            arg="cluster",
3695            append=append,
3696            copy=copy,
3697            prefix="CLUSTER BY",
3698            into=Cluster,
3699            dialect=dialect,
3700            **opts,
3701        )
3702
3703    def select(
3704        self,
3705        *expressions: t.Optional[ExpOrStr],
3706        append: bool = True,
3707        dialect: DialectType = None,
3708        copy: bool = True,
3709        **opts,
3710    ) -> Select:
3711        return _apply_list_builder(
3712            *expressions,
3713            instance=self,
3714            arg="expressions",
3715            append=append,
3716            dialect=dialect,
3717            into=Expression,
3718            copy=copy,
3719            **opts,
3720        )
3721
3722    def lateral(
3723        self,
3724        *expressions: t.Optional[ExpOrStr],
3725        append: bool = True,
3726        dialect: DialectType = None,
3727        copy: bool = True,
3728        **opts,
3729    ) -> Select:
3730        """
3731        Append to or set the LATERAL expressions.
3732
3733        Example:
3734            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3735            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3736
3737        Args:
3738            *expressions: the SQL code strings to parse.
3739                If an `Expression` instance is passed, it will be used as-is.
3740            append: if `True`, add to any existing expressions.
3741                Otherwise, this resets the expressions.
3742            dialect: the dialect used to parse the input expressions.
3743            copy: if `False`, modify this expression instance in-place.
3744            opts: other options to use to parse the input expressions.
3745
3746        Returns:
3747            The modified Select expression.
3748        """
3749        return _apply_list_builder(
3750            *expressions,
3751            instance=self,
3752            arg="laterals",
3753            append=append,
3754            into=Lateral,
3755            prefix="LATERAL VIEW",
3756            dialect=dialect,
3757            copy=copy,
3758            **opts,
3759        )
3760
3761    def join(
3762        self,
3763        expression: ExpOrStr,
3764        on: t.Optional[ExpOrStr] = None,
3765        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
3766        append: bool = True,
3767        join_type: t.Optional[str] = None,
3768        join_alias: t.Optional[Identifier | str] = None,
3769        dialect: DialectType = None,
3770        copy: bool = True,
3771        **opts,
3772    ) -> Select:
3773        """
3774        Append to or set the JOIN expressions.
3775
3776        Example:
3777            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
3778            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
3779
3780            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
3781            'SELECT 1 FROM a JOIN b USING (x, y, z)'
3782
3783            Use `join_type` to change the type of join:
3784
3785            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
3786            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
3787
3788        Args:
3789            expression: the SQL code string to parse.
3790                If an `Expression` instance is passed, it will be used as-is.
3791            on: optionally specify the join "on" criteria as a SQL string.
3792                If an `Expression` instance is passed, it will be used as-is.
3793            using: optionally specify the join "using" criteria as a SQL string.
3794                If an `Expression` instance is passed, it will be used as-is.
3795            append: if `True`, add to any existing expressions.
3796                Otherwise, this resets the expressions.
3797            join_type: if set, alter the parsed join type.
3798            join_alias: an optional alias for the joined source.
3799            dialect: the dialect used to parse the input expressions.
3800            copy: if `False`, modify this expression instance in-place.
3801            opts: other options to use to parse the input expressions.
3802
3803        Returns:
3804            Select: the modified expression.
3805        """
3806        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
3807
3808        try:
3809            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
3810        except ParseError:
3811            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
3812
3813        join = expression if isinstance(expression, Join) else Join(this=expression)
3814
3815        if isinstance(join.this, Select):
3816            join.this.replace(join.this.subquery())
3817
3818        if join_type:
3819            method: t.Optional[Token]
3820            side: t.Optional[Token]
3821            kind: t.Optional[Token]
3822
3823            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
3824
3825            if method:
3826                join.set("method", method.text)
3827            if side:
3828                join.set("side", side.text)
3829            if kind:
3830                join.set("kind", kind.text)
3831
3832        if on:
3833            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
3834            join.set("on", on)
3835
3836        if using:
3837            join = _apply_list_builder(
3838                *ensure_list(using),
3839                instance=join,
3840                arg="using",
3841                append=append,
3842                copy=copy,
3843                into=Identifier,
3844                **opts,
3845            )
3846
3847        if join_alias:
3848            join.set("this", alias_(join.this, join_alias, table=True))
3849
3850        return _apply_list_builder(
3851            join,
3852            instance=self,
3853            arg="joins",
3854            append=append,
3855            copy=copy,
3856            **opts,
3857        )
3858
3859    def where(
3860        self,
3861        *expressions: t.Optional[ExpOrStr],
3862        append: bool = True,
3863        dialect: DialectType = None,
3864        copy: bool = True,
3865        **opts,
3866    ) -> Select:
3867        """
3868        Append to or set the WHERE expressions.
3869
3870        Example:
3871            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
3872            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
3873
3874        Args:
3875            *expressions: the SQL code strings to parse.
3876                If an `Expression` instance is passed, it will be used as-is.
3877                Multiple expressions are combined with an AND operator.
3878            append: if `True`, AND the new expressions to any existing expression.
3879                Otherwise, this resets the expression.
3880            dialect: the dialect used to parse the input expressions.
3881            copy: if `False`, modify this expression instance in-place.
3882            opts: other options to use to parse the input expressions.
3883
3884        Returns:
3885            Select: the modified expression.
3886        """
3887        return _apply_conjunction_builder(
3888            *expressions,
3889            instance=self,
3890            arg="where",
3891            append=append,
3892            into=Where,
3893            dialect=dialect,
3894            copy=copy,
3895            **opts,
3896        )
3897
3898    def having(
3899        self,
3900        *expressions: t.Optional[ExpOrStr],
3901        append: bool = True,
3902        dialect: DialectType = None,
3903        copy: bool = True,
3904        **opts,
3905    ) -> Select:
3906        """
3907        Append to or set the HAVING expressions.
3908
3909        Example:
3910            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
3911            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
3912
3913        Args:
3914            *expressions: the SQL code strings to parse.
3915                If an `Expression` instance is passed, it will be used as-is.
3916                Multiple expressions are combined with an AND operator.
3917            append: if `True`, AND the new expressions to any existing expression.
3918                Otherwise, this resets the expression.
3919            dialect: the dialect used to parse the input expressions.
3920            copy: if `False`, modify this expression instance in-place.
3921            opts: other options to use to parse the input expressions.
3922
3923        Returns:
3924            The modified Select expression.
3925        """
3926        return _apply_conjunction_builder(
3927            *expressions,
3928            instance=self,
3929            arg="having",
3930            append=append,
3931            into=Having,
3932            dialect=dialect,
3933            copy=copy,
3934            **opts,
3935        )
3936
3937    def window(
3938        self,
3939        *expressions: t.Optional[ExpOrStr],
3940        append: bool = True,
3941        dialect: DialectType = None,
3942        copy: bool = True,
3943        **opts,
3944    ) -> Select:
3945        return _apply_list_builder(
3946            *expressions,
3947            instance=self,
3948            arg="windows",
3949            append=append,
3950            into=Window,
3951            dialect=dialect,
3952            copy=copy,
3953            **opts,
3954        )
3955
3956    def qualify(
3957        self,
3958        *expressions: t.Optional[ExpOrStr],
3959        append: bool = True,
3960        dialect: DialectType = None,
3961        copy: bool = True,
3962        **opts,
3963    ) -> Select:
3964        return _apply_conjunction_builder(
3965            *expressions,
3966            instance=self,
3967            arg="qualify",
3968            append=append,
3969            into=Qualify,
3970            dialect=dialect,
3971            copy=copy,
3972            **opts,
3973        )
3974
3975    def distinct(
3976        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
3977    ) -> Select:
3978        """
3979        Set the OFFSET expression.
3980
3981        Example:
3982            >>> Select().from_("tbl").select("x").distinct().sql()
3983            'SELECT DISTINCT x FROM tbl'
3984
3985        Args:
3986            ons: the expressions to distinct on
3987            distinct: whether the Select should be distinct
3988            copy: if `False`, modify this expression instance in-place.
3989
3990        Returns:
3991            Select: the modified expression.
3992        """
3993        instance = maybe_copy(self, copy)
3994        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3995        instance.set("distinct", Distinct(on=on) if distinct else None)
3996        return instance
3997
3998    def ctas(
3999        self,
4000        table: ExpOrStr,
4001        properties: t.Optional[t.Dict] = None,
4002        dialect: DialectType = None,
4003        copy: bool = True,
4004        **opts,
4005    ) -> Create:
4006        """
4007        Convert this expression to a CREATE TABLE AS statement.
4008
4009        Example:
4010            >>> Select().select("*").from_("tbl").ctas("x").sql()
4011            'CREATE TABLE x AS SELECT * FROM tbl'
4012
4013        Args:
4014            table: the SQL code string to parse as the table name.
4015                If another `Expression` instance is passed, it will be used as-is.
4016            properties: an optional mapping of table properties
4017            dialect: the dialect used to parse the input table.
4018            copy: if `False`, modify this expression instance in-place.
4019            opts: other options to use to parse the input table.
4020
4021        Returns:
4022            The new Create expression.
4023        """
4024        instance = maybe_copy(self, copy)
4025        table_expression = maybe_parse(table, into=Table, dialect=dialect, **opts)
4026
4027        properties_expression = None
4028        if properties:
4029            properties_expression = Properties.from_dict(properties)
4030
4031        return Create(
4032            this=table_expression,
4033            kind="TABLE",
4034            expression=instance,
4035            properties=properties_expression,
4036        )
4037
4038    def lock(self, update: bool = True, copy: bool = True) -> Select:
4039        """
4040        Set the locking read mode for this expression.
4041
4042        Examples:
4043            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
4044            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
4045
4046            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
4047            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
4048
4049        Args:
4050            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
4051            copy: if `False`, modify this expression instance in-place.
4052
4053        Returns:
4054            The modified expression.
4055        """
4056        inst = maybe_copy(self, copy)
4057        inst.set("locks", [Lock(update=update)])
4058
4059        return inst
4060
4061    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
4062        """
4063        Set hints for this expression.
4064
4065        Examples:
4066            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
4067            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
4068
4069        Args:
4070            hints: The SQL code strings to parse as the hints.
4071                If an `Expression` instance is passed, it will be used as-is.
4072            dialect: The dialect used to parse the hints.
4073            copy: If `False`, modify this expression instance in-place.
4074
4075        Returns:
4076            The modified expression.
4077        """
4078        inst = maybe_copy(self, copy)
4079        inst.set(
4080            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
4081        )
4082
4083        return inst
4084
4085    @property
4086    def named_selects(self) -> t.List[str]:
4087        return [e.output_name for e in self.expressions if e.alias_or_name]
4088
4089    @property
4090    def is_star(self) -> bool:
4091        return any(expression.is_star for expression in self.expressions)
4092
4093    @property
4094    def selects(self) -> t.List[Expression]:
4095        return self.expressions
arg_types = {'with': False, 'kind': False, 'expressions': False, 'hint': False, 'distinct': False, 'into': False, 'from': False, 'operation_modifiers': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'prewhere': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False, 'options': False}
def from_( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3547    def from_(
3548        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3549    ) -> Select:
3550        """
3551        Set the FROM expression.
3552
3553        Example:
3554            >>> Select().from_("tbl").select("x").sql()
3555            'SELECT x FROM tbl'
3556
3557        Args:
3558            expression : the SQL code strings to parse.
3559                If a `From` instance is passed, this is used as-is.
3560                If another `Expression` instance is passed, it will be wrapped in a `From`.
3561            dialect: the dialect used to parse the input expression.
3562            copy: if `False`, modify this expression instance in-place.
3563            opts: other options to use to parse the input expressions.
3564
3565        Returns:
3566            The modified Select expression.
3567        """
3568        return _apply_builder(
3569            expression=expression,
3570            instance=self,
3571            arg="from",
3572            into=From,
3573            prefix="FROM",
3574            dialect=dialect,
3575            copy=copy,
3576            **opts,
3577        )

Set the FROM expression.

Example:
>>> Select().from_("tbl").select("x").sql()
'SELECT x FROM tbl'
Arguments:
  • expression : the SQL code strings to parse. If a From instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a From.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def group_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3579    def group_by(
3580        self,
3581        *expressions: t.Optional[ExpOrStr],
3582        append: bool = True,
3583        dialect: DialectType = None,
3584        copy: bool = True,
3585        **opts,
3586    ) -> Select:
3587        """
3588        Set the GROUP BY expression.
3589
3590        Example:
3591            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
3592            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
3593
3594        Args:
3595            *expressions: the SQL code strings to parse.
3596                If a `Group` instance is passed, this is used as-is.
3597                If another `Expression` instance is passed, it will be wrapped in a `Group`.
3598                If nothing is passed in then a group by is not applied to the expression
3599            append: if `True`, add to any existing expressions.
3600                Otherwise, this flattens all the `Group` expression into a single expression.
3601            dialect: the dialect used to parse the input expression.
3602            copy: if `False`, modify this expression instance in-place.
3603            opts: other options to use to parse the input expressions.
3604
3605        Returns:
3606            The modified Select expression.
3607        """
3608        if not expressions:
3609            return self if not copy else self.copy()
3610
3611        return _apply_child_list_builder(
3612            *expressions,
3613            instance=self,
3614            arg="group",
3615            append=append,
3616            copy=copy,
3617            prefix="GROUP BY",
3618            into=Group,
3619            dialect=dialect,
3620            **opts,
3621        )

Set the GROUP BY expression.

Example:
>>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
'SELECT x, COUNT(1) FROM tbl GROUP BY x'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Group. If nothing is passed in then a group by is not applied to the expression
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Group expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def sort_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3623    def sort_by(
3624        self,
3625        *expressions: t.Optional[ExpOrStr],
3626        append: bool = True,
3627        dialect: DialectType = None,
3628        copy: bool = True,
3629        **opts,
3630    ) -> Select:
3631        """
3632        Set the SORT BY expression.
3633
3634        Example:
3635            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
3636            'SELECT x FROM tbl SORT BY x DESC'
3637
3638        Args:
3639            *expressions: the SQL code strings to parse.
3640                If a `Group` instance is passed, this is used as-is.
3641                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
3642            append: if `True`, add to any existing expressions.
3643                Otherwise, this flattens all the `Order` expression into a single expression.
3644            dialect: the dialect used to parse the input expression.
3645            copy: if `False`, modify this expression instance in-place.
3646            opts: other options to use to parse the input expressions.
3647
3648        Returns:
3649            The modified Select expression.
3650        """
3651        return _apply_child_list_builder(
3652            *expressions,
3653            instance=self,
3654            arg="sort",
3655            append=append,
3656            copy=copy,
3657            prefix="SORT BY",
3658            into=Sort,
3659            dialect=dialect,
3660            **opts,
3661        )

Set the SORT BY expression.

Example:
>>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl SORT BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a SORT.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def cluster_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3663    def cluster_by(
3664        self,
3665        *expressions: t.Optional[ExpOrStr],
3666        append: bool = True,
3667        dialect: DialectType = None,
3668        copy: bool = True,
3669        **opts,
3670    ) -> Select:
3671        """
3672        Set the CLUSTER BY expression.
3673
3674        Example:
3675            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
3676            'SELECT x FROM tbl CLUSTER BY x DESC'
3677
3678        Args:
3679            *expressions: the SQL code strings to parse.
3680                If a `Group` instance is passed, this is used as-is.
3681                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
3682            append: if `True`, add to any existing expressions.
3683                Otherwise, this flattens all the `Order` expression into a single expression.
3684            dialect: the dialect used to parse the input expression.
3685            copy: if `False`, modify this expression instance in-place.
3686            opts: other options to use to parse the input expressions.
3687
3688        Returns:
3689            The modified Select expression.
3690        """
3691        return _apply_child_list_builder(
3692            *expressions,
3693            instance=self,
3694            arg="cluster",
3695            append=append,
3696            copy=copy,
3697            prefix="CLUSTER BY",
3698            into=Cluster,
3699            dialect=dialect,
3700            **opts,
3701        )

Set the CLUSTER BY expression.

Example:
>>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl CLUSTER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Cluster.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3703    def select(
3704        self,
3705        *expressions: t.Optional[ExpOrStr],
3706        append: bool = True,
3707        dialect: DialectType = None,
3708        copy: bool = True,
3709        **opts,
3710    ) -> Select:
3711        return _apply_list_builder(
3712            *expressions,
3713            instance=self,
3714            arg="expressions",
3715            append=append,
3716            dialect=dialect,
3717            into=Expression,
3718            copy=copy,
3719            **opts,
3720        )

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Query expression.

def lateral( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3722    def lateral(
3723        self,
3724        *expressions: t.Optional[ExpOrStr],
3725        append: bool = True,
3726        dialect: DialectType = None,
3727        copy: bool = True,
3728        **opts,
3729    ) -> Select:
3730        """
3731        Append to or set the LATERAL expressions.
3732
3733        Example:
3734            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3735            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3736
3737        Args:
3738            *expressions: the SQL code strings to parse.
3739                If an `Expression` instance is passed, it will be used as-is.
3740            append: if `True`, add to any existing expressions.
3741                Otherwise, this resets the expressions.
3742            dialect: the dialect used to parse the input expressions.
3743            copy: if `False`, modify this expression instance in-place.
3744            opts: other options to use to parse the input expressions.
3745
3746        Returns:
3747            The modified Select expression.
3748        """
3749        return _apply_list_builder(
3750            *expressions,
3751            instance=self,
3752            arg="laterals",
3753            append=append,
3754            into=Lateral,
3755            prefix="LATERAL VIEW",
3756            dialect=dialect,
3757            copy=copy,
3758            **opts,
3759        )

Append to or set the LATERAL expressions.

Example:
>>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def join( self, expression: Union[str, Expression], on: Union[str, Expression, NoneType] = None, using: Union[str, Expression, Collection[Union[str, Expression]], NoneType] = None, append: bool = True, join_type: Optional[str] = None, join_alias: Union[Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3761    def join(
3762        self,
3763        expression: ExpOrStr,
3764        on: t.Optional[ExpOrStr] = None,
3765        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
3766        append: bool = True,
3767        join_type: t.Optional[str] = None,
3768        join_alias: t.Optional[Identifier | str] = None,
3769        dialect: DialectType = None,
3770        copy: bool = True,
3771        **opts,
3772    ) -> Select:
3773        """
3774        Append to or set the JOIN expressions.
3775
3776        Example:
3777            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
3778            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
3779
3780            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
3781            'SELECT 1 FROM a JOIN b USING (x, y, z)'
3782
3783            Use `join_type` to change the type of join:
3784
3785            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
3786            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
3787
3788        Args:
3789            expression: the SQL code string to parse.
3790                If an `Expression` instance is passed, it will be used as-is.
3791            on: optionally specify the join "on" criteria as a SQL string.
3792                If an `Expression` instance is passed, it will be used as-is.
3793            using: optionally specify the join "using" criteria as a SQL string.
3794                If an `Expression` instance is passed, it will be used as-is.
3795            append: if `True`, add to any existing expressions.
3796                Otherwise, this resets the expressions.
3797            join_type: if set, alter the parsed join type.
3798            join_alias: an optional alias for the joined source.
3799            dialect: the dialect used to parse the input expressions.
3800            copy: if `False`, modify this expression instance in-place.
3801            opts: other options to use to parse the input expressions.
3802
3803        Returns:
3804            Select: the modified expression.
3805        """
3806        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
3807
3808        try:
3809            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
3810        except ParseError:
3811            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
3812
3813        join = expression if isinstance(expression, Join) else Join(this=expression)
3814
3815        if isinstance(join.this, Select):
3816            join.this.replace(join.this.subquery())
3817
3818        if join_type:
3819            method: t.Optional[Token]
3820            side: t.Optional[Token]
3821            kind: t.Optional[Token]
3822
3823            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
3824
3825            if method:
3826                join.set("method", method.text)
3827            if side:
3828                join.set("side", side.text)
3829            if kind:
3830                join.set("kind", kind.text)
3831
3832        if on:
3833            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
3834            join.set("on", on)
3835
3836        if using:
3837            join = _apply_list_builder(
3838                *ensure_list(using),
3839                instance=join,
3840                arg="using",
3841                append=append,
3842                copy=copy,
3843                into=Identifier,
3844                **opts,
3845            )
3846
3847        if join_alias:
3848            join.set("this", alias_(join.this, join_alias, table=True))
3849
3850        return _apply_list_builder(
3851            join,
3852            instance=self,
3853            arg="joins",
3854            append=append,
3855            copy=copy,
3856            **opts,
3857        )

Append to or set the JOIN expressions.

Example:
>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
>>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
'SELECT 1 FROM a JOIN b USING (x, y, z)'

Use join_type to change the type of join:

>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, it will be used as-is.
  • on: optionally specify the join "on" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • using: optionally specify the join "using" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • join_type: if set, alter the parsed join type.
  • join_alias: an optional alias for the joined source.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def where( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3859    def where(
3860        self,
3861        *expressions: t.Optional[ExpOrStr],
3862        append: bool = True,
3863        dialect: DialectType = None,
3864        copy: bool = True,
3865        **opts,
3866    ) -> Select:
3867        """
3868        Append to or set the WHERE expressions.
3869
3870        Example:
3871            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
3872            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
3873
3874        Args:
3875            *expressions: the SQL code strings to parse.
3876                If an `Expression` instance is passed, it will be used as-is.
3877                Multiple expressions are combined with an AND operator.
3878            append: if `True`, AND the new expressions to any existing expression.
3879                Otherwise, this resets the expression.
3880            dialect: the dialect used to parse the input expressions.
3881            copy: if `False`, modify this expression instance in-place.
3882            opts: other options to use to parse the input expressions.
3883
3884        Returns:
3885            Select: the modified expression.
3886        """
3887        return _apply_conjunction_builder(
3888            *expressions,
3889            instance=self,
3890            arg="where",
3891            append=append,
3892            into=Where,
3893            dialect=dialect,
3894            copy=copy,
3895            **opts,
3896        )

Append to or set the WHERE expressions.

Example:
>>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
"SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def having( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3898    def having(
3899        self,
3900        *expressions: t.Optional[ExpOrStr],
3901        append: bool = True,
3902        dialect: DialectType = None,
3903        copy: bool = True,
3904        **opts,
3905    ) -> Select:
3906        """
3907        Append to or set the HAVING expressions.
3908
3909        Example:
3910            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
3911            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
3912
3913        Args:
3914            *expressions: the SQL code strings to parse.
3915                If an `Expression` instance is passed, it will be used as-is.
3916                Multiple expressions are combined with an AND operator.
3917            append: if `True`, AND the new expressions to any existing expression.
3918                Otherwise, this resets the expression.
3919            dialect: the dialect used to parse the input expressions.
3920            copy: if `False`, modify this expression instance in-place.
3921            opts: other options to use to parse the input expressions.
3922
3923        Returns:
3924            The modified Select expression.
3925        """
3926        return _apply_conjunction_builder(
3927            *expressions,
3928            instance=self,
3929            arg="having",
3930            append=append,
3931            into=Having,
3932            dialect=dialect,
3933            copy=copy,
3934            **opts,
3935        )

Append to or set the HAVING expressions.

Example:
>>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def window( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3937    def window(
3938        self,
3939        *expressions: t.Optional[ExpOrStr],
3940        append: bool = True,
3941        dialect: DialectType = None,
3942        copy: bool = True,
3943        **opts,
3944    ) -> Select:
3945        return _apply_list_builder(
3946            *expressions,
3947            instance=self,
3948            arg="windows",
3949            append=append,
3950            into=Window,
3951            dialect=dialect,
3952            copy=copy,
3953            **opts,
3954        )
def qualify( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3956    def qualify(
3957        self,
3958        *expressions: t.Optional[ExpOrStr],
3959        append: bool = True,
3960        dialect: DialectType = None,
3961        copy: bool = True,
3962        **opts,
3963    ) -> Select:
3964        return _apply_conjunction_builder(
3965            *expressions,
3966            instance=self,
3967            arg="qualify",
3968            append=append,
3969            into=Qualify,
3970            dialect=dialect,
3971            copy=copy,
3972            **opts,
3973        )
def distinct( self, *ons: Union[str, Expression, NoneType], distinct: bool = True, copy: bool = True) -> Select:
3975    def distinct(
3976        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
3977    ) -> Select:
3978        """
3979        Set the OFFSET expression.
3980
3981        Example:
3982            >>> Select().from_("tbl").select("x").distinct().sql()
3983            'SELECT DISTINCT x FROM tbl'
3984
3985        Args:
3986            ons: the expressions to distinct on
3987            distinct: whether the Select should be distinct
3988            copy: if `False`, modify this expression instance in-place.
3989
3990        Returns:
3991            Select: the modified expression.
3992        """
3993        instance = maybe_copy(self, copy)
3994        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3995        instance.set("distinct", Distinct(on=on) if distinct else None)
3996        return instance

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").distinct().sql()
'SELECT DISTINCT x FROM tbl'
Arguments:
  • ons: the expressions to distinct on
  • distinct: whether the Select should be distinct
  • copy: if False, modify this expression instance in-place.
Returns:

Select: the modified expression.

def ctas( self, table: Union[str, Expression], properties: Optional[Dict] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Create:
3998    def ctas(
3999        self,
4000        table: ExpOrStr,
4001        properties: t.Optional[t.Dict] = None,
4002        dialect: DialectType = None,
4003        copy: bool = True,
4004        **opts,
4005    ) -> Create:
4006        """
4007        Convert this expression to a CREATE TABLE AS statement.
4008
4009        Example:
4010            >>> Select().select("*").from_("tbl").ctas("x").sql()
4011            'CREATE TABLE x AS SELECT * FROM tbl'
4012
4013        Args:
4014            table: the SQL code string to parse as the table name.
4015                If another `Expression` instance is passed, it will be used as-is.
4016            properties: an optional mapping of table properties
4017            dialect: the dialect used to parse the input table.
4018            copy: if `False`, modify this expression instance in-place.
4019            opts: other options to use to parse the input table.
4020
4021        Returns:
4022            The new Create expression.
4023        """
4024        instance = maybe_copy(self, copy)
4025        table_expression = maybe_parse(table, into=Table, dialect=dialect, **opts)
4026
4027        properties_expression = None
4028        if properties:
4029            properties_expression = Properties.from_dict(properties)
4030
4031        return Create(
4032            this=table_expression,
4033            kind="TABLE",
4034            expression=instance,
4035            properties=properties_expression,
4036        )

Convert this expression to a CREATE TABLE AS statement.

Example:
>>> Select().select("*").from_("tbl").ctas("x").sql()
'CREATE TABLE x AS SELECT * FROM tbl'
Arguments:
  • table: the SQL code string to parse as the table name. If another Expression instance is passed, it will be used as-is.
  • properties: an optional mapping of table properties
  • dialect: the dialect used to parse the input table.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input table.
Returns:

The new Create expression.

def lock( self, update: bool = True, copy: bool = True) -> Select:
4038    def lock(self, update: bool = True, copy: bool = True) -> Select:
4039        """
4040        Set the locking read mode for this expression.
4041
4042        Examples:
4043            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
4044            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
4045
4046            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
4047            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
4048
4049        Args:
4050            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
4051            copy: if `False`, modify this expression instance in-place.
4052
4053        Returns:
4054            The modified expression.
4055        """
4056        inst = maybe_copy(self, copy)
4057        inst.set("locks", [Lock(update=update)])
4058
4059        return inst

Set the locking read mode for this expression.

Examples:
>>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
>>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
Arguments:
  • update: if True, the locking type will be FOR UPDATE, else it will be FOR SHARE.
  • copy: if False, modify this expression instance in-place.
Returns:

The modified expression.

def hint( self, *hints: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True) -> Select:
4061    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
4062        """
4063        Set hints for this expression.
4064
4065        Examples:
4066            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
4067            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
4068
4069        Args:
4070            hints: The SQL code strings to parse as the hints.
4071                If an `Expression` instance is passed, it will be used as-is.
4072            dialect: The dialect used to parse the hints.
4073            copy: If `False`, modify this expression instance in-place.
4074
4075        Returns:
4076            The modified expression.
4077        """
4078        inst = maybe_copy(self, copy)
4079        inst.set(
4080            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
4081        )
4082
4083        return inst

Set hints for this expression.

Examples:
>>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
'SELECT /*+ BROADCAST(y) */ x FROM tbl'
Arguments:
  • hints: The SQL code strings to parse as the hints. If an Expression instance is passed, it will be used as-is.
  • dialect: The dialect used to parse the hints.
  • copy: If False, modify this expression instance in-place.
Returns:

The modified expression.

named_selects: List[str]
4085    @property
4086    def named_selects(self) -> t.List[str]:
4087        return [e.output_name for e in self.expressions if e.alias_or_name]

Returns the output names of the query's projections.

is_star: bool
4089    @property
4090    def is_star(self) -> bool:
4091        return any(expression.is_star for expression in self.expressions)

Checks whether an expression is a star.

selects: List[Expression]
4093    @property
4094    def selects(self) -> t.List[Expression]:
4095        return self.expressions

Returns the query's projections.

key = 'select'
UNWRAPPED_QUERIES = (<class 'Select'>, <class 'SetOperation'>)
class Subquery(DerivedTable, Query):
4101class Subquery(DerivedTable, Query):
4102    arg_types = {
4103        "this": True,
4104        "alias": False,
4105        "with": False,
4106        **QUERY_MODIFIERS,
4107    }
4108
4109    def unnest(self):
4110        """Returns the first non subquery."""
4111        expression = self
4112        while isinstance(expression, Subquery):
4113            expression = expression.this
4114        return expression
4115
4116    def unwrap(self) -> Subquery:
4117        expression = self
4118        while expression.same_parent and expression.is_wrapper:
4119            expression = t.cast(Subquery, expression.parent)
4120        return expression
4121
4122    def select(
4123        self,
4124        *expressions: t.Optional[ExpOrStr],
4125        append: bool = True,
4126        dialect: DialectType = None,
4127        copy: bool = True,
4128        **opts,
4129    ) -> Subquery:
4130        this = maybe_copy(self, copy)
4131        this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
4132        return this
4133
4134    @property
4135    def is_wrapper(self) -> bool:
4136        """
4137        Whether this Subquery acts as a simple wrapper around another expression.
4138
4139        SELECT * FROM (((SELECT * FROM t)))
4140                      ^
4141                      This corresponds to a "wrapper" Subquery node
4142        """
4143        return all(v is None for k, v in self.args.items() if k != "this")
4144
4145    @property
4146    def is_star(self) -> bool:
4147        return self.this.is_star
4148
4149    @property
4150    def output_name(self) -> str:
4151        return self.alias
arg_types = {'this': True, 'alias': False, 'with': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'prewhere': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False, 'options': False}
def unnest(self):
4109    def unnest(self):
4110        """Returns the first non subquery."""
4111        expression = self
4112        while isinstance(expression, Subquery):
4113            expression = expression.this
4114        return expression

Returns the first non subquery.

def unwrap(self) -> Subquery:
4116    def unwrap(self) -> Subquery:
4117        expression = self
4118        while expression.same_parent and expression.is_wrapper:
4119            expression = t.cast(Subquery, expression.parent)
4120        return expression
def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Subquery:
4122    def select(
4123        self,
4124        *expressions: t.Optional[ExpOrStr],
4125        append: bool = True,
4126        dialect: DialectType = None,
4127        copy: bool = True,
4128        **opts,
4129    ) -> Subquery:
4130        this = maybe_copy(self, copy)
4131        this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
4132        return this

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Query expression.

is_wrapper: bool
4134    @property
4135    def is_wrapper(self) -> bool:
4136        """
4137        Whether this Subquery acts as a simple wrapper around another expression.
4138
4139        SELECT * FROM (((SELECT * FROM t)))
4140                      ^
4141                      This corresponds to a "wrapper" Subquery node
4142        """
4143        return all(v is None for k, v in self.args.items() if k != "this")

Whether this Subquery acts as a simple wrapper around another expression.

SELECT * FROM (((SELECT * FROM t))) ^ This corresponds to a "wrapper" Subquery node

is_star: bool
4145    @property
4146    def is_star(self) -> bool:
4147        return self.this.is_star

Checks whether an expression is a star.

output_name: str
4149    @property
4150    def output_name(self) -> str:
4151        return self.alias

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'subquery'
class TableSample(Expression):
4154class TableSample(Expression):
4155    arg_types = {
4156        "expressions": False,
4157        "method": False,
4158        "bucket_numerator": False,
4159        "bucket_denominator": False,
4160        "bucket_field": False,
4161        "percent": False,
4162        "rows": False,
4163        "size": False,
4164        "seed": False,
4165    }
arg_types = {'expressions': False, 'method': False, 'bucket_numerator': False, 'bucket_denominator': False, 'bucket_field': False, 'percent': False, 'rows': False, 'size': False, 'seed': False}
key = 'tablesample'
class Tag(Expression):
4168class Tag(Expression):
4169    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
4170
4171    arg_types = {
4172        "this": False,
4173        "prefix": False,
4174        "postfix": False,
4175    }

Tags are used for generating arbitrary sql like SELECT x.

arg_types = {'this': False, 'prefix': False, 'postfix': False}
key = 'tag'
class Pivot(Expression):
4180class Pivot(Expression):
4181    arg_types = {
4182        "this": False,
4183        "alias": False,
4184        "expressions": False,
4185        "field": False,
4186        "unpivot": False,
4187        "using": False,
4188        "group": False,
4189        "columns": False,
4190        "include_nulls": False,
4191        "default_on_null": False,
4192    }
4193
4194    @property
4195    def unpivot(self) -> bool:
4196        return bool(self.args.get("unpivot"))
arg_types = {'this': False, 'alias': False, 'expressions': False, 'field': False, 'unpivot': False, 'using': False, 'group': False, 'columns': False, 'include_nulls': False, 'default_on_null': False}
unpivot: bool
4194    @property
4195    def unpivot(self) -> bool:
4196        return bool(self.args.get("unpivot"))
key = 'pivot'
class Window(Condition):
4199class Window(Condition):
4200    arg_types = {
4201        "this": True,
4202        "partition_by": False,
4203        "order": False,
4204        "spec": False,
4205        "alias": False,
4206        "over": False,
4207        "first": False,
4208    }
arg_types = {'this': True, 'partition_by': False, 'order': False, 'spec': False, 'alias': False, 'over': False, 'first': False}
key = 'window'
class WindowSpec(Expression):
4211class WindowSpec(Expression):
4212    arg_types = {
4213        "kind": False,
4214        "start": False,
4215        "start_side": False,
4216        "end": False,
4217        "end_side": False,
4218    }
arg_types = {'kind': False, 'start': False, 'start_side': False, 'end': False, 'end_side': False}
key = 'windowspec'
class PreWhere(Expression):
4221class PreWhere(Expression):
4222    pass
key = 'prewhere'
class Where(Expression):
4225class Where(Expression):
4226    pass
key = 'where'
class Star(Expression):
4229class Star(Expression):
4230    arg_types = {"except": False, "replace": False, "rename": False}
4231
4232    @property
4233    def name(self) -> str:
4234        return "*"
4235
4236    @property
4237    def output_name(self) -> str:
4238        return self.name
arg_types = {'except': False, 'replace': False, 'rename': False}
name: str
4232    @property
4233    def name(self) -> str:
4234        return "*"
output_name: str
4236    @property
4237    def output_name(self) -> str:
4238        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'star'
class Parameter(Condition):
4241class Parameter(Condition):
4242    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'parameter'
class SessionParameter(Condition):
4245class SessionParameter(Condition):
4246    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'sessionparameter'
class Placeholder(Condition):
4249class Placeholder(Condition):
4250    arg_types = {"this": False, "kind": False}
4251
4252    @property
4253    def name(self) -> str:
4254        return self.this or "?"
arg_types = {'this': False, 'kind': False}
name: str
4252    @property
4253    def name(self) -> str:
4254        return self.this or "?"
key = 'placeholder'
class Null(Condition):
4257class Null(Condition):
4258    arg_types: t.Dict[str, t.Any] = {}
4259
4260    @property
4261    def name(self) -> str:
4262        return "NULL"
4263
4264    def to_py(self) -> Lit[None]:
4265        return None
arg_types: Dict[str, Any] = {}
name: str
4260    @property
4261    def name(self) -> str:
4262        return "NULL"
def to_py(self) -> Literal[None]:
4264    def to_py(self) -> Lit[None]:
4265        return None

Returns a Python object equivalent of the SQL node.

key = 'null'
class Boolean(Condition):
4268class Boolean(Condition):
4269    def to_py(self) -> bool:
4270        return self.this
def to_py(self) -> bool:
4269    def to_py(self) -> bool:
4270        return self.this

Returns a Python object equivalent of the SQL node.

key = 'boolean'
class DataTypeParam(Expression):
4273class DataTypeParam(Expression):
4274    arg_types = {"this": True, "expression": False}
4275
4276    @property
4277    def name(self) -> str:
4278        return self.this.name
arg_types = {'this': True, 'expression': False}
name: str
4276    @property
4277    def name(self) -> str:
4278        return self.this.name
key = 'datatypeparam'
class DataType(Expression):
4283class DataType(Expression):
4284    arg_types = {
4285        "this": True,
4286        "expressions": False,
4287        "nested": False,
4288        "values": False,
4289        "prefix": False,
4290        "kind": False,
4291        "nullable": False,
4292    }
4293
4294    class Type(AutoName):
4295        ARRAY = auto()
4296        AGGREGATEFUNCTION = auto()
4297        SIMPLEAGGREGATEFUNCTION = auto()
4298        BIGDECIMAL = auto()
4299        BIGINT = auto()
4300        BIGSERIAL = auto()
4301        BINARY = auto()
4302        BIT = auto()
4303        BOOLEAN = auto()
4304        BPCHAR = auto()
4305        CHAR = auto()
4306        DATE = auto()
4307        DATE32 = auto()
4308        DATEMULTIRANGE = auto()
4309        DATERANGE = auto()
4310        DATETIME = auto()
4311        DATETIME64 = auto()
4312        DECIMAL = auto()
4313        DECIMAL32 = auto()
4314        DECIMAL64 = auto()
4315        DECIMAL128 = auto()
4316        DECIMAL256 = auto()
4317        DOUBLE = auto()
4318        ENUM = auto()
4319        ENUM8 = auto()
4320        ENUM16 = auto()
4321        FIXEDSTRING = auto()
4322        FLOAT = auto()
4323        GEOGRAPHY = auto()
4324        GEOMETRY = auto()
4325        POINT = auto()
4326        RING = auto()
4327        LINESTRING = auto()
4328        MULTILINESTRING = auto()
4329        POLYGON = auto()
4330        MULTIPOLYGON = auto()
4331        HLLSKETCH = auto()
4332        HSTORE = auto()
4333        IMAGE = auto()
4334        INET = auto()
4335        INT = auto()
4336        INT128 = auto()
4337        INT256 = auto()
4338        INT4MULTIRANGE = auto()
4339        INT4RANGE = auto()
4340        INT8MULTIRANGE = auto()
4341        INT8RANGE = auto()
4342        INTERVAL = auto()
4343        IPADDRESS = auto()
4344        IPPREFIX = auto()
4345        IPV4 = auto()
4346        IPV6 = auto()
4347        JSON = auto()
4348        JSONB = auto()
4349        LIST = auto()
4350        LONGBLOB = auto()
4351        LONGTEXT = auto()
4352        LOWCARDINALITY = auto()
4353        MAP = auto()
4354        MEDIUMBLOB = auto()
4355        MEDIUMINT = auto()
4356        MEDIUMTEXT = auto()
4357        MONEY = auto()
4358        NAME = auto()
4359        NCHAR = auto()
4360        NESTED = auto()
4361        NULL = auto()
4362        NUMMULTIRANGE = auto()
4363        NUMRANGE = auto()
4364        NVARCHAR = auto()
4365        OBJECT = auto()
4366        RANGE = auto()
4367        ROWVERSION = auto()
4368        SERIAL = auto()
4369        SET = auto()
4370        SMALLINT = auto()
4371        SMALLMONEY = auto()
4372        SMALLSERIAL = auto()
4373        STRUCT = auto()
4374        SUPER = auto()
4375        TEXT = auto()
4376        TINYBLOB = auto()
4377        TINYTEXT = auto()
4378        TIME = auto()
4379        TIMETZ = auto()
4380        TIMESTAMP = auto()
4381        TIMESTAMPNTZ = auto()
4382        TIMESTAMPLTZ = auto()
4383        TIMESTAMPTZ = auto()
4384        TIMESTAMP_S = auto()
4385        TIMESTAMP_MS = auto()
4386        TIMESTAMP_NS = auto()
4387        TINYINT = auto()
4388        TSMULTIRANGE = auto()
4389        TSRANGE = auto()
4390        TSTZMULTIRANGE = auto()
4391        TSTZRANGE = auto()
4392        UBIGINT = auto()
4393        UINT = auto()
4394        UINT128 = auto()
4395        UINT256 = auto()
4396        UMEDIUMINT = auto()
4397        UDECIMAL = auto()
4398        UNION = auto()
4399        UNIQUEIDENTIFIER = auto()
4400        UNKNOWN = auto()  # Sentinel value, useful for type annotation
4401        USERDEFINED = "USER-DEFINED"
4402        USMALLINT = auto()
4403        UTINYINT = auto()
4404        UUID = auto()
4405        VARBINARY = auto()
4406        VARCHAR = auto()
4407        VARIANT = auto()
4408        VECTOR = auto()
4409        XML = auto()
4410        YEAR = auto()
4411        TDIGEST = auto()
4412
4413    STRUCT_TYPES = {
4414        Type.NESTED,
4415        Type.OBJECT,
4416        Type.STRUCT,
4417        Type.UNION,
4418    }
4419
4420    ARRAY_TYPES = {
4421        Type.ARRAY,
4422        Type.LIST,
4423    }
4424
4425    NESTED_TYPES = {
4426        *STRUCT_TYPES,
4427        *ARRAY_TYPES,
4428        Type.MAP,
4429    }
4430
4431    TEXT_TYPES = {
4432        Type.CHAR,
4433        Type.NCHAR,
4434        Type.NVARCHAR,
4435        Type.TEXT,
4436        Type.VARCHAR,
4437        Type.NAME,
4438    }
4439
4440    SIGNED_INTEGER_TYPES = {
4441        Type.BIGINT,
4442        Type.INT,
4443        Type.INT128,
4444        Type.INT256,
4445        Type.MEDIUMINT,
4446        Type.SMALLINT,
4447        Type.TINYINT,
4448    }
4449
4450    UNSIGNED_INTEGER_TYPES = {
4451        Type.UBIGINT,
4452        Type.UINT,
4453        Type.UINT128,
4454        Type.UINT256,
4455        Type.UMEDIUMINT,
4456        Type.USMALLINT,
4457        Type.UTINYINT,
4458    }
4459
4460    INTEGER_TYPES = {
4461        *SIGNED_INTEGER_TYPES,
4462        *UNSIGNED_INTEGER_TYPES,
4463        Type.BIT,
4464    }
4465
4466    FLOAT_TYPES = {
4467        Type.DOUBLE,
4468        Type.FLOAT,
4469    }
4470
4471    REAL_TYPES = {
4472        *FLOAT_TYPES,
4473        Type.BIGDECIMAL,
4474        Type.DECIMAL,
4475        Type.DECIMAL32,
4476        Type.DECIMAL64,
4477        Type.DECIMAL128,
4478        Type.DECIMAL256,
4479        Type.MONEY,
4480        Type.SMALLMONEY,
4481        Type.UDECIMAL,
4482    }
4483
4484    NUMERIC_TYPES = {
4485        *INTEGER_TYPES,
4486        *REAL_TYPES,
4487    }
4488
4489    TEMPORAL_TYPES = {
4490        Type.DATE,
4491        Type.DATE32,
4492        Type.DATETIME,
4493        Type.DATETIME64,
4494        Type.TIME,
4495        Type.TIMESTAMP,
4496        Type.TIMESTAMPNTZ,
4497        Type.TIMESTAMPLTZ,
4498        Type.TIMESTAMPTZ,
4499        Type.TIMESTAMP_MS,
4500        Type.TIMESTAMP_NS,
4501        Type.TIMESTAMP_S,
4502        Type.TIMETZ,
4503    }
4504
4505    @classmethod
4506    def build(
4507        cls,
4508        dtype: DATA_TYPE,
4509        dialect: DialectType = None,
4510        udt: bool = False,
4511        copy: bool = True,
4512        **kwargs,
4513    ) -> DataType:
4514        """
4515        Constructs a DataType object.
4516
4517        Args:
4518            dtype: the data type of interest.
4519            dialect: the dialect to use for parsing `dtype`, in case it's a string.
4520            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
4521                DataType, thus creating a user-defined type.
4522            copy: whether to copy the data type.
4523            kwargs: additional arguments to pass in the constructor of DataType.
4524
4525        Returns:
4526            The constructed DataType object.
4527        """
4528        from sqlglot import parse_one
4529
4530        if isinstance(dtype, str):
4531            if dtype.upper() == "UNKNOWN":
4532                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
4533
4534            try:
4535                data_type_exp = parse_one(
4536                    dtype, read=dialect, into=DataType, error_level=ErrorLevel.IGNORE
4537                )
4538            except ParseError:
4539                if udt:
4540                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
4541                raise
4542        elif isinstance(dtype, DataType.Type):
4543            data_type_exp = DataType(this=dtype)
4544        elif isinstance(dtype, DataType):
4545            return maybe_copy(dtype, copy)
4546        else:
4547            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
4548
4549        return DataType(**{**data_type_exp.args, **kwargs})
4550
4551    def is_type(self, *dtypes: DATA_TYPE, check_nullable: bool = False) -> bool:
4552        """
4553        Checks whether this DataType matches one of the provided data types. Nested types or precision
4554        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
4555
4556        Args:
4557            dtypes: the data types to compare this DataType to.
4558            check_nullable: whether to take the NULLABLE type constructor into account for the comparison.
4559                If false, it means that NULLABLE<INT> is equivalent to INT.
4560
4561        Returns:
4562            True, if and only if there is a type in `dtypes` which is equal to this DataType.
4563        """
4564        self_is_nullable = self.args.get("nullable")
4565        for dtype in dtypes:
4566            other_type = DataType.build(dtype, copy=False, udt=True)
4567            other_is_nullable = other_type.args.get("nullable")
4568            if (
4569                other_type.expressions
4570                or (check_nullable and (self_is_nullable or other_is_nullable))
4571                or self.this == DataType.Type.USERDEFINED
4572                or other_type.this == DataType.Type.USERDEFINED
4573            ):
4574                matches = self == other_type
4575            else:
4576                matches = self.this == other_type.this
4577
4578            if matches:
4579                return True
4580        return False
arg_types = {'this': True, 'expressions': False, 'nested': False, 'values': False, 'prefix': False, 'kind': False, 'nullable': False}
STRUCT_TYPES = {<Type.OBJECT: 'OBJECT'>, <Type.NESTED: 'NESTED'>, <Type.UNION: 'UNION'>, <Type.STRUCT: 'STRUCT'>}
ARRAY_TYPES = {<Type.LIST: 'LIST'>, <Type.ARRAY: 'ARRAY'>}
NESTED_TYPES = {<Type.MAP: 'MAP'>, <Type.UNION: 'UNION'>, <Type.STRUCT: 'STRUCT'>, <Type.LIST: 'LIST'>, <Type.OBJECT: 'OBJECT'>, <Type.NESTED: 'NESTED'>, <Type.ARRAY: 'ARRAY'>}
TEXT_TYPES = {<Type.CHAR: 'CHAR'>, <Type.VARCHAR: 'VARCHAR'>, <Type.NCHAR: 'NCHAR'>, <Type.NAME: 'NAME'>, <Type.NVARCHAR: 'NVARCHAR'>, <Type.TEXT: 'TEXT'>}
SIGNED_INTEGER_TYPES = {<Type.INT128: 'INT128'>, <Type.MEDIUMINT: 'MEDIUMINT'>, <Type.SMALLINT: 'SMALLINT'>, <Type.INT256: 'INT256'>, <Type.TINYINT: 'TINYINT'>, <Type.BIGINT: 'BIGINT'>, <Type.INT: 'INT'>}
UNSIGNED_INTEGER_TYPES = {<Type.USMALLINT: 'USMALLINT'>, <Type.UINT: 'UINT'>, <Type.UTINYINT: 'UTINYINT'>, <Type.UINT256: 'UINT256'>, <Type.UBIGINT: 'UBIGINT'>, <Type.UMEDIUMINT: 'UMEDIUMINT'>, <Type.UINT128: 'UINT128'>}
INTEGER_TYPES = {<Type.INT128: 'INT128'>, <Type.MEDIUMINT: 'MEDIUMINT'>, <Type.USMALLINT: 'USMALLINT'>, <Type.SMALLINT: 'SMALLINT'>, <Type.BIT: 'BIT'>, <Type.UINT: 'UINT'>, <Type.UTINYINT: 'UTINYINT'>, <Type.INT256: 'INT256'>, <Type.TINYINT: 'TINYINT'>, <Type.UINT256: 'UINT256'>, <Type.UBIGINT: 'UBIGINT'>, <Type.BIGINT: 'BIGINT'>, <Type.INT: 'INT'>, <Type.UMEDIUMINT: 'UMEDIUMINT'>, <Type.UINT128: 'UINT128'>}
FLOAT_TYPES = {<Type.FLOAT: 'FLOAT'>, <Type.DOUBLE: 'DOUBLE'>}
REAL_TYPES = {<Type.MONEY: 'MONEY'>, <Type.DOUBLE: 'DOUBLE'>, <Type.DECIMAL256: 'DECIMAL256'>, <Type.DECIMAL: 'DECIMAL'>, <Type.FLOAT: 'FLOAT'>, <Type.DECIMAL32: 'DECIMAL32'>, <Type.SMALLMONEY: 'SMALLMONEY'>, <Type.DECIMAL64: 'DECIMAL64'>, <Type.DECIMAL128: 'DECIMAL128'>, <Type.UDECIMAL: 'UDECIMAL'>, <Type.BIGDECIMAL: 'BIGDECIMAL'>}
NUMERIC_TYPES = {<Type.MONEY: 'MONEY'>, <Type.INT128: 'INT128'>, <Type.MEDIUMINT: 'MEDIUMINT'>, <Type.DOUBLE: 'DOUBLE'>, <Type.DECIMAL256: 'DECIMAL256'>, <Type.DECIMAL: 'DECIMAL'>, <Type.DECIMAL32: 'DECIMAL32'>, <Type.UINT: 'UINT'>, <Type.UTINYINT: 'UTINYINT'>, <Type.SMALLMONEY: 'SMALLMONEY'>, <Type.TINYINT: 'TINYINT'>, <Type.DECIMAL128: 'DECIMAL128'>, <Type.UBIGINT: 'UBIGINT'>, <Type.UDECIMAL: 'UDECIMAL'>, <Type.INT: 'INT'>, <Type.UMEDIUMINT: 'UMEDIUMINT'>, <Type.BIGDECIMAL: 'BIGDECIMAL'>, <Type.UINT128: 'UINT128'>, <Type.USMALLINT: 'USMALLINT'>, <Type.SMALLINT: 'SMALLINT'>, <Type.BIT: 'BIT'>, <Type.INT256: 'INT256'>, <Type.UINT256: 'UINT256'>, <Type.DECIMAL64: 'DECIMAL64'>, <Type.BIGINT: 'BIGINT'>, <Type.FLOAT: 'FLOAT'>}
TEMPORAL_TYPES = {<Type.DATE: 'DATE'>, <Type.TIMETZ: 'TIMETZ'>, <Type.DATETIME64: 'DATETIME64'>, <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>, <Type.TIMESTAMP_NS: 'TIMESTAMP_NS'>, <Type.TIMESTAMP_MS: 'TIMESTAMP_MS'>, <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>, <Type.TIMESTAMPNTZ: 'TIMESTAMPNTZ'>, <Type.TIMESTAMP_S: 'TIMESTAMP_S'>, <Type.DATE32: 'DATE32'>, <Type.TIMESTAMP: 'TIMESTAMP'>, <Type.TIME: 'TIME'>, <Type.DATETIME: 'DATETIME'>}
@classmethod
def build( cls, dtype: Union[str, DataType, DataType.Type], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, udt: bool = False, copy: bool = True, **kwargs) -> DataType:
4505    @classmethod
4506    def build(
4507        cls,
4508        dtype: DATA_TYPE,
4509        dialect: DialectType = None,
4510        udt: bool = False,
4511        copy: bool = True,
4512        **kwargs,
4513    ) -> DataType:
4514        """
4515        Constructs a DataType object.
4516
4517        Args:
4518            dtype: the data type of interest.
4519            dialect: the dialect to use for parsing `dtype`, in case it's a string.
4520            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
4521                DataType, thus creating a user-defined type.
4522            copy: whether to copy the data type.
4523            kwargs: additional arguments to pass in the constructor of DataType.
4524
4525        Returns:
4526            The constructed DataType object.
4527        """
4528        from sqlglot import parse_one
4529
4530        if isinstance(dtype, str):
4531            if dtype.upper() == "UNKNOWN":
4532                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
4533
4534            try:
4535                data_type_exp = parse_one(
4536                    dtype, read=dialect, into=DataType, error_level=ErrorLevel.IGNORE
4537                )
4538            except ParseError:
4539                if udt:
4540                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
4541                raise
4542        elif isinstance(dtype, DataType.Type):
4543            data_type_exp = DataType(this=dtype)
4544        elif isinstance(dtype, DataType):
4545            return maybe_copy(dtype, copy)
4546        else:
4547            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
4548
4549        return DataType(**{**data_type_exp.args, **kwargs})

Constructs a DataType object.

Arguments:
  • dtype: the data type of interest.
  • dialect: the dialect to use for parsing dtype, in case it's a string.
  • udt: when set to True, dtype will be used as-is if it can't be parsed into a DataType, thus creating a user-defined type.
  • copy: whether to copy the data type.
  • kwargs: additional arguments to pass in the constructor of DataType.
Returns:

The constructed DataType object.

def is_type( self, *dtypes: Union[str, DataType, DataType.Type], check_nullable: bool = False) -> bool:
4551    def is_type(self, *dtypes: DATA_TYPE, check_nullable: bool = False) -> bool:
4552        """
4553        Checks whether this DataType matches one of the provided data types. Nested types or precision
4554        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
4555
4556        Args:
4557            dtypes: the data types to compare this DataType to.
4558            check_nullable: whether to take the NULLABLE type constructor into account for the comparison.
4559                If false, it means that NULLABLE<INT> is equivalent to INT.
4560
4561        Returns:
4562            True, if and only if there is a type in `dtypes` which is equal to this DataType.
4563        """
4564        self_is_nullable = self.args.get("nullable")
4565        for dtype in dtypes:
4566            other_type = DataType.build(dtype, copy=False, udt=True)
4567            other_is_nullable = other_type.args.get("nullable")
4568            if (
4569                other_type.expressions
4570                or (check_nullable and (self_is_nullable or other_is_nullable))
4571                or self.this == DataType.Type.USERDEFINED
4572                or other_type.this == DataType.Type.USERDEFINED
4573            ):
4574                matches = self == other_type
4575            else:
4576                matches = self.this == other_type.this
4577
4578            if matches:
4579                return True
4580        return False

Checks whether this DataType matches one of the provided data types. Nested types or precision will be compared using "structural equivalence" semantics, so e.g. array != array.

Arguments:
  • dtypes: the data types to compare this DataType to.
  • check_nullable: whether to take the NULLABLE type constructor into account for the comparison. If false, it means that NULLABLE is equivalent to INT.
Returns:

True, if and only if there is a type in dtypes which is equal to this DataType.

key = 'datatype'
class DataType.Type(sqlglot.helper.AutoName):
4294    class Type(AutoName):
4295        ARRAY = auto()
4296        AGGREGATEFUNCTION = auto()
4297        SIMPLEAGGREGATEFUNCTION = auto()
4298        BIGDECIMAL = auto()
4299        BIGINT = auto()
4300        BIGSERIAL = auto()
4301        BINARY = auto()
4302        BIT = auto()
4303        BOOLEAN = auto()
4304        BPCHAR = auto()
4305        CHAR = auto()
4306        DATE = auto()
4307        DATE32 = auto()
4308        DATEMULTIRANGE = auto()
4309        DATERANGE = auto()
4310        DATETIME = auto()
4311        DATETIME64 = auto()
4312        DECIMAL = auto()
4313        DECIMAL32 = auto()
4314        DECIMAL64 = auto()
4315        DECIMAL128 = auto()
4316        DECIMAL256 = auto()
4317        DOUBLE = auto()
4318        ENUM = auto()
4319        ENUM8 = auto()
4320        ENUM16 = auto()
4321        FIXEDSTRING = auto()
4322        FLOAT = auto()
4323        GEOGRAPHY = auto()
4324        GEOMETRY = auto()
4325        POINT = auto()
4326        RING = auto()
4327        LINESTRING = auto()
4328        MULTILINESTRING = auto()
4329        POLYGON = auto()
4330        MULTIPOLYGON = auto()
4331        HLLSKETCH = auto()
4332        HSTORE = auto()
4333        IMAGE = auto()
4334        INET = auto()
4335        INT = auto()
4336        INT128 = auto()
4337        INT256 = auto()
4338        INT4MULTIRANGE = auto()
4339        INT4RANGE = auto()
4340        INT8MULTIRANGE = auto()
4341        INT8RANGE = auto()
4342        INTERVAL = auto()
4343        IPADDRESS = auto()
4344        IPPREFIX = auto()
4345        IPV4 = auto()
4346        IPV6 = auto()
4347        JSON = auto()
4348        JSONB = auto()
4349        LIST = auto()
4350        LONGBLOB = auto()
4351        LONGTEXT = auto()
4352        LOWCARDINALITY = auto()
4353        MAP = auto()
4354        MEDIUMBLOB = auto()
4355        MEDIUMINT = auto()
4356        MEDIUMTEXT = auto()
4357        MONEY = auto()
4358        NAME = auto()
4359        NCHAR = auto()
4360        NESTED = auto()
4361        NULL = auto()
4362        NUMMULTIRANGE = auto()
4363        NUMRANGE = auto()
4364        NVARCHAR = auto()
4365        OBJECT = auto()
4366        RANGE = auto()
4367        ROWVERSION = auto()
4368        SERIAL = auto()
4369        SET = auto()
4370        SMALLINT = auto()
4371        SMALLMONEY = auto()
4372        SMALLSERIAL = auto()
4373        STRUCT = auto()
4374        SUPER = auto()
4375        TEXT = auto()
4376        TINYBLOB = auto()
4377        TINYTEXT = auto()
4378        TIME = auto()
4379        TIMETZ = auto()
4380        TIMESTAMP = auto()
4381        TIMESTAMPNTZ = auto()
4382        TIMESTAMPLTZ = auto()
4383        TIMESTAMPTZ = auto()
4384        TIMESTAMP_S = auto()
4385        TIMESTAMP_MS = auto()
4386        TIMESTAMP_NS = auto()
4387        TINYINT = auto()
4388        TSMULTIRANGE = auto()
4389        TSRANGE = auto()
4390        TSTZMULTIRANGE = auto()
4391        TSTZRANGE = auto()
4392        UBIGINT = auto()
4393        UINT = auto()
4394        UINT128 = auto()
4395        UINT256 = auto()
4396        UMEDIUMINT = auto()
4397        UDECIMAL = auto()
4398        UNION = auto()
4399        UNIQUEIDENTIFIER = auto()
4400        UNKNOWN = auto()  # Sentinel value, useful for type annotation
4401        USERDEFINED = "USER-DEFINED"
4402        USMALLINT = auto()
4403        UTINYINT = auto()
4404        UUID = auto()
4405        VARBINARY = auto()
4406        VARCHAR = auto()
4407        VARIANT = auto()
4408        VECTOR = auto()
4409        XML = auto()
4410        YEAR = auto()
4411        TDIGEST = auto()

An enumeration.

ARRAY = <Type.ARRAY: 'ARRAY'>
AGGREGATEFUNCTION = <Type.AGGREGATEFUNCTION: 'AGGREGATEFUNCTION'>
SIMPLEAGGREGATEFUNCTION = <Type.SIMPLEAGGREGATEFUNCTION: 'SIMPLEAGGREGATEFUNCTION'>
BIGDECIMAL = <Type.BIGDECIMAL: 'BIGDECIMAL'>
BIGINT = <Type.BIGINT: 'BIGINT'>
BIGSERIAL = <Type.BIGSERIAL: 'BIGSERIAL'>
BINARY = <Type.BINARY: 'BINARY'>
BIT = <Type.BIT: 'BIT'>
BOOLEAN = <Type.BOOLEAN: 'BOOLEAN'>
BPCHAR = <Type.BPCHAR: 'BPCHAR'>
CHAR = <Type.CHAR: 'CHAR'>
DATE = <Type.DATE: 'DATE'>
DATE32 = <Type.DATE32: 'DATE32'>
DATEMULTIRANGE = <Type.DATEMULTIRANGE: 'DATEMULTIRANGE'>
DATERANGE = <Type.DATERANGE: 'DATERANGE'>
DATETIME = <Type.DATETIME: 'DATETIME'>
DATETIME64 = <Type.DATETIME64: 'DATETIME64'>
DECIMAL = <Type.DECIMAL: 'DECIMAL'>
DECIMAL32 = <Type.DECIMAL32: 'DECIMAL32'>
DECIMAL64 = <Type.DECIMAL64: 'DECIMAL64'>
DECIMAL128 = <Type.DECIMAL128: 'DECIMAL128'>
DECIMAL256 = <Type.DECIMAL256: 'DECIMAL256'>
DOUBLE = <Type.DOUBLE: 'DOUBLE'>
ENUM = <Type.ENUM: 'ENUM'>
ENUM8 = <Type.ENUM8: 'ENUM8'>
ENUM16 = <Type.ENUM16: 'ENUM16'>
FIXEDSTRING = <Type.FIXEDSTRING: 'FIXEDSTRING'>
FLOAT = <Type.FLOAT: 'FLOAT'>
GEOGRAPHY = <Type.GEOGRAPHY: 'GEOGRAPHY'>
GEOMETRY = <Type.GEOMETRY: 'GEOMETRY'>
POINT = <Type.POINT: 'POINT'>
RING = <Type.RING: 'RING'>
LINESTRING = <Type.LINESTRING: 'LINESTRING'>
MULTILINESTRING = <Type.MULTILINESTRING: 'MULTILINESTRING'>
POLYGON = <Type.POLYGON: 'POLYGON'>
MULTIPOLYGON = <Type.MULTIPOLYGON: 'MULTIPOLYGON'>
HLLSKETCH = <Type.HLLSKETCH: 'HLLSKETCH'>
HSTORE = <Type.HSTORE: 'HSTORE'>
IMAGE = <Type.IMAGE: 'IMAGE'>
INET = <Type.INET: 'INET'>
INT = <Type.INT: 'INT'>
INT128 = <Type.INT128: 'INT128'>
INT256 = <Type.INT256: 'INT256'>
INT4MULTIRANGE = <Type.INT4MULTIRANGE: 'INT4MULTIRANGE'>
INT4RANGE = <Type.INT4RANGE: 'INT4RANGE'>
INT8MULTIRANGE = <Type.INT8MULTIRANGE: 'INT8MULTIRANGE'>
INT8RANGE = <Type.INT8RANGE: 'INT8RANGE'>
INTERVAL = <Type.INTERVAL: 'INTERVAL'>
IPADDRESS = <Type.IPADDRESS: 'IPADDRESS'>
IPPREFIX = <Type.IPPREFIX: 'IPPREFIX'>
IPV4 = <Type.IPV4: 'IPV4'>
IPV6 = <Type.IPV6: 'IPV6'>
JSON = <Type.JSON: 'JSON'>
JSONB = <Type.JSONB: 'JSONB'>
LIST = <Type.LIST: 'LIST'>
LONGBLOB = <Type.LONGBLOB: 'LONGBLOB'>
LONGTEXT = <Type.LONGTEXT: 'LONGTEXT'>
LOWCARDINALITY = <Type.LOWCARDINALITY: 'LOWCARDINALITY'>
MAP = <Type.MAP: 'MAP'>
MEDIUMBLOB = <Type.MEDIUMBLOB: 'MEDIUMBLOB'>
MEDIUMINT = <Type.MEDIUMINT: 'MEDIUMINT'>
MEDIUMTEXT = <Type.MEDIUMTEXT: 'MEDIUMTEXT'>
MONEY = <Type.MONEY: 'MONEY'>
NAME = <Type.NAME: 'NAME'>
NCHAR = <Type.NCHAR: 'NCHAR'>
NESTED = <Type.NESTED: 'NESTED'>
NULL = <Type.NULL: 'NULL'>
NUMMULTIRANGE = <Type.NUMMULTIRANGE: 'NUMMULTIRANGE'>
NUMRANGE = <Type.NUMRANGE: 'NUMRANGE'>
NVARCHAR = <Type.NVARCHAR: 'NVARCHAR'>
OBJECT = <Type.OBJECT: 'OBJECT'>
RANGE = <Type.RANGE: 'RANGE'>
ROWVERSION = <Type.ROWVERSION: 'ROWVERSION'>
SERIAL = <Type.SERIAL: 'SERIAL'>
SET = <Type.SET: 'SET'>
SMALLINT = <Type.SMALLINT: 'SMALLINT'>
SMALLMONEY = <Type.SMALLMONEY: 'SMALLMONEY'>
SMALLSERIAL = <Type.SMALLSERIAL: 'SMALLSERIAL'>
STRUCT = <Type.STRUCT: 'STRUCT'>
SUPER = <Type.SUPER: 'SUPER'>
TEXT = <Type.TEXT: 'TEXT'>
TINYBLOB = <Type.TINYBLOB: 'TINYBLOB'>
TINYTEXT = <Type.TINYTEXT: 'TINYTEXT'>
TIME = <Type.TIME: 'TIME'>
TIMETZ = <Type.TIMETZ: 'TIMETZ'>
TIMESTAMP = <Type.TIMESTAMP: 'TIMESTAMP'>
TIMESTAMPNTZ = <Type.TIMESTAMPNTZ: 'TIMESTAMPNTZ'>
TIMESTAMPLTZ = <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>
TIMESTAMPTZ = <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>
TIMESTAMP_S = <Type.TIMESTAMP_S: 'TIMESTAMP_S'>
TIMESTAMP_MS = <Type.TIMESTAMP_MS: 'TIMESTAMP_MS'>
TIMESTAMP_NS = <Type.TIMESTAMP_NS: 'TIMESTAMP_NS'>
TINYINT = <Type.TINYINT: 'TINYINT'>
TSMULTIRANGE = <Type.TSMULTIRANGE: 'TSMULTIRANGE'>
TSRANGE = <Type.TSRANGE: 'TSRANGE'>
TSTZMULTIRANGE = <Type.TSTZMULTIRANGE: 'TSTZMULTIRANGE'>
TSTZRANGE = <Type.TSTZRANGE: 'TSTZRANGE'>
UBIGINT = <Type.UBIGINT: 'UBIGINT'>
UINT = <Type.UINT: 'UINT'>
UINT128 = <Type.UINT128: 'UINT128'>
UINT256 = <Type.UINT256: 'UINT256'>
UMEDIUMINT = <Type.UMEDIUMINT: 'UMEDIUMINT'>
UDECIMAL = <Type.UDECIMAL: 'UDECIMAL'>
UNION = <Type.UNION: 'UNION'>
UNIQUEIDENTIFIER = <Type.UNIQUEIDENTIFIER: 'UNIQUEIDENTIFIER'>
UNKNOWN = <Type.UNKNOWN: 'UNKNOWN'>
USERDEFINED = <Type.USERDEFINED: 'USER-DEFINED'>
USMALLINT = <Type.USMALLINT: 'USMALLINT'>
UTINYINT = <Type.UTINYINT: 'UTINYINT'>
UUID = <Type.UUID: 'UUID'>
VARBINARY = <Type.VARBINARY: 'VARBINARY'>
VARCHAR = <Type.VARCHAR: 'VARCHAR'>
VARIANT = <Type.VARIANT: 'VARIANT'>
VECTOR = <Type.VECTOR: 'VECTOR'>
XML = <Type.XML: 'XML'>
YEAR = <Type.YEAR: 'YEAR'>
TDIGEST = <Type.TDIGEST: 'TDIGEST'>
DATA_TYPE = typing.Union[str, DataType, DataType.Type]
class PseudoType(DataType):
4587class PseudoType(DataType):
4588    arg_types = {"this": True}
arg_types = {'this': True}
key = 'pseudotype'
class ObjectIdentifier(DataType):
4592class ObjectIdentifier(DataType):
4593    arg_types = {"this": True}
arg_types = {'this': True}
key = 'objectidentifier'
class SubqueryPredicate(Predicate):
4597class SubqueryPredicate(Predicate):
4598    pass
key = 'subquerypredicate'
class All(SubqueryPredicate):
4601class All(SubqueryPredicate):
4602    pass
key = 'all'
class Any(SubqueryPredicate):
4605class Any(SubqueryPredicate):
4606    pass
key = 'any'
class Exists(SubqueryPredicate):
4609class Exists(SubqueryPredicate):
4610    pass
key = 'exists'
class Command(Expression):
4615class Command(Expression):
4616    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'command'
class Transaction(Expression):
4619class Transaction(Expression):
4620    arg_types = {"this": False, "modes": False, "mark": False}
arg_types = {'this': False, 'modes': False, 'mark': False}
key = 'transaction'
class Commit(Expression):
4623class Commit(Expression):
4624    arg_types = {"chain": False, "this": False, "durability": False}
arg_types = {'chain': False, 'this': False, 'durability': False}
key = 'commit'
class Rollback(Expression):
4627class Rollback(Expression):
4628    arg_types = {"savepoint": False, "this": False}
arg_types = {'savepoint': False, 'this': False}
key = 'rollback'
class Alter(Expression):
4631class Alter(Expression):
4632    arg_types = {
4633        "this": True,
4634        "kind": True,
4635        "actions": True,
4636        "exists": False,
4637        "only": False,
4638        "options": False,
4639        "cluster": False,
4640        "not_valid": False,
4641    }
4642
4643    @property
4644    def kind(self) -> t.Optional[str]:
4645        kind = self.args.get("kind")
4646        return kind and kind.upper()
4647
4648    @property
4649    def actions(self) -> t.List[Expression]:
4650        return self.args.get("actions") or []
arg_types = {'this': True, 'kind': True, 'actions': True, 'exists': False, 'only': False, 'options': False, 'cluster': False, 'not_valid': False}
kind: Optional[str]
4643    @property
4644    def kind(self) -> t.Optional[str]:
4645        kind = self.args.get("kind")
4646        return kind and kind.upper()
actions: List[Expression]
4648    @property
4649    def actions(self) -> t.List[Expression]:
4650        return self.args.get("actions") or []
key = 'alter'
class AddConstraint(Expression):
4653class AddConstraint(Expression):
4654    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'addconstraint'
class DropPartition(Expression):
4657class DropPartition(Expression):
4658    arg_types = {"expressions": True, "exists": False}
arg_types = {'expressions': True, 'exists': False}
key = 'droppartition'
class ReplacePartition(Expression):
4662class ReplacePartition(Expression):
4663    arg_types = {"expression": True, "source": True}
arg_types = {'expression': True, 'source': True}
key = 'replacepartition'
class Binary(Condition):
4667class Binary(Condition):
4668    arg_types = {"this": True, "expression": True}
4669
4670    @property
4671    def left(self) -> Expression:
4672        return self.this
4673
4674    @property
4675    def right(self) -> Expression:
4676        return self.expression
arg_types = {'this': True, 'expression': True}
left: Expression
4670    @property
4671    def left(self) -> Expression:
4672        return self.this
right: Expression
4674    @property
4675    def right(self) -> Expression:
4676        return self.expression
key = 'binary'
class Add(Binary):
4679class Add(Binary):
4680    pass
key = 'add'
class Connector(Binary):
4683class Connector(Binary):
4684    pass
key = 'connector'
class And(Connector):
4687class And(Connector):
4688    pass
key = 'and'
class Or(Connector):
4691class Or(Connector):
4692    pass
key = 'or'
class BitwiseAnd(Binary):
4695class BitwiseAnd(Binary):
4696    pass
key = 'bitwiseand'
class BitwiseLeftShift(Binary):
4699class BitwiseLeftShift(Binary):
4700    pass
key = 'bitwiseleftshift'
class BitwiseOr(Binary):
4703class BitwiseOr(Binary):
4704    pass
key = 'bitwiseor'
class BitwiseRightShift(Binary):
4707class BitwiseRightShift(Binary):
4708    pass
key = 'bitwiserightshift'
class BitwiseXor(Binary):
4711class BitwiseXor(Binary):
4712    pass
key = 'bitwisexor'
class Div(Binary):
4715class Div(Binary):
4716    arg_types = {"this": True, "expression": True, "typed": False, "safe": False}
arg_types = {'this': True, 'expression': True, 'typed': False, 'safe': False}
key = 'div'
class Overlaps(Binary):
4719class Overlaps(Binary):
4720    pass
key = 'overlaps'
class Dot(Binary):
4723class Dot(Binary):
4724    @property
4725    def is_star(self) -> bool:
4726        return self.expression.is_star
4727
4728    @property
4729    def name(self) -> str:
4730        return self.expression.name
4731
4732    @property
4733    def output_name(self) -> str:
4734        return self.name
4735
4736    @classmethod
4737    def build(self, expressions: t.Sequence[Expression]) -> Dot:
4738        """Build a Dot object with a sequence of expressions."""
4739        if len(expressions) < 2:
4740            raise ValueError("Dot requires >= 2 expressions.")
4741
4742        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))
4743
4744    @property
4745    def parts(self) -> t.List[Expression]:
4746        """Return the parts of a table / column in order catalog, db, table."""
4747        this, *parts = self.flatten()
4748
4749        parts.reverse()
4750
4751        for arg in COLUMN_PARTS:
4752            part = this.args.get(arg)
4753
4754            if isinstance(part, Expression):
4755                parts.append(part)
4756
4757        parts.reverse()
4758        return parts
is_star: bool
4724    @property
4725    def is_star(self) -> bool:
4726        return self.expression.is_star

Checks whether an expression is a star.

name: str
4728    @property
4729    def name(self) -> str:
4730        return self.expression.name
output_name: str
4732    @property
4733    def output_name(self) -> str:
4734        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
@classmethod
def build( self, expressions: Sequence[Expression]) -> Dot:
4736    @classmethod
4737    def build(self, expressions: t.Sequence[Expression]) -> Dot:
4738        """Build a Dot object with a sequence of expressions."""
4739        if len(expressions) < 2:
4740            raise ValueError("Dot requires >= 2 expressions.")
4741
4742        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))

Build a Dot object with a sequence of expressions.

parts: List[Expression]
4744    @property
4745    def parts(self) -> t.List[Expression]:
4746        """Return the parts of a table / column in order catalog, db, table."""
4747        this, *parts = self.flatten()
4748
4749        parts.reverse()
4750
4751        for arg in COLUMN_PARTS:
4752            part = this.args.get(arg)
4753
4754            if isinstance(part, Expression):
4755                parts.append(part)
4756
4757        parts.reverse()
4758        return parts

Return the parts of a table / column in order catalog, db, table.

key = 'dot'
class DPipe(Binary):
4761class DPipe(Binary):
4762    arg_types = {"this": True, "expression": True, "safe": False}
arg_types = {'this': True, 'expression': True, 'safe': False}
key = 'dpipe'
class EQ(Binary, Predicate):
4765class EQ(Binary, Predicate):
4766    pass
key = 'eq'
class NullSafeEQ(Binary, Predicate):
4769class NullSafeEQ(Binary, Predicate):
4770    pass
key = 'nullsafeeq'
class NullSafeNEQ(Binary, Predicate):
4773class NullSafeNEQ(Binary, Predicate):
4774    pass
key = 'nullsafeneq'
class PropertyEQ(Binary):
4778class PropertyEQ(Binary):
4779    pass
key = 'propertyeq'
class Distance(Binary):
4782class Distance(Binary):
4783    pass
key = 'distance'
class Escape(Binary):
4786class Escape(Binary):
4787    pass
key = 'escape'
class Glob(Binary, Predicate):
4790class Glob(Binary, Predicate):
4791    pass
key = 'glob'
class GT(Binary, Predicate):
4794class GT(Binary, Predicate):
4795    pass
key = 'gt'
class GTE(Binary, Predicate):
4798class GTE(Binary, Predicate):
4799    pass
key = 'gte'
class ILike(Binary, Predicate):
4802class ILike(Binary, Predicate):
4803    pass
key = 'ilike'
class ILikeAny(Binary, Predicate):
4806class ILikeAny(Binary, Predicate):
4807    pass
key = 'ilikeany'
class IntDiv(Binary):
4810class IntDiv(Binary):
4811    pass
key = 'intdiv'
class Is(Binary, Predicate):
4814class Is(Binary, Predicate):
4815    pass
key = 'is'
class Kwarg(Binary):
4818class Kwarg(Binary):
4819    """Kwarg in special functions like func(kwarg => y)."""

Kwarg in special functions like func(kwarg => y).

key = 'kwarg'
class Like(Binary, Predicate):
4822class Like(Binary, Predicate):
4823    pass
key = 'like'
class LikeAny(Binary, Predicate):
4826class LikeAny(Binary, Predicate):
4827    pass
key = 'likeany'
class LT(Binary, Predicate):
4830class LT(Binary, Predicate):
4831    pass
key = 'lt'
class LTE(Binary, Predicate):
4834class LTE(Binary, Predicate):
4835    pass
key = 'lte'
class Mod(Binary):
4838class Mod(Binary):
4839    pass
key = 'mod'
class Mul(Binary):
4842class Mul(Binary):
4843    pass
key = 'mul'
class NEQ(Binary, Predicate):
4846class NEQ(Binary, Predicate):
4847    pass
key = 'neq'
class Operator(Binary):
4851class Operator(Binary):
4852    arg_types = {"this": True, "operator": True, "expression": True}
arg_types = {'this': True, 'operator': True, 'expression': True}
key = 'operator'
class SimilarTo(Binary, Predicate):
4855class SimilarTo(Binary, Predicate):
4856    pass
key = 'similarto'
class Slice(Binary):
4859class Slice(Binary):
4860    arg_types = {"this": False, "expression": False}
arg_types = {'this': False, 'expression': False}
key = 'slice'
class Sub(Binary):
4863class Sub(Binary):
4864    pass
key = 'sub'
class Unary(Condition):
4869class Unary(Condition):
4870    pass
key = 'unary'
class BitwiseNot(Unary):
4873class BitwiseNot(Unary):
4874    pass
key = 'bitwisenot'
class Not(Unary):
4877class Not(Unary):
4878    pass
key = 'not'
class Paren(Unary):
4881class Paren(Unary):
4882    @property
4883    def output_name(self) -> str:
4884        return self.this.name
output_name: str
4882    @property
4883    def output_name(self) -> str:
4884        return self.this.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'paren'
class Neg(Unary):
4887class Neg(Unary):
4888    def to_py(self) -> int | Decimal:
4889        if self.is_number:
4890            return self.this.to_py() * -1
4891        return super().to_py()
def to_py(self) -> int | decimal.Decimal:
4888    def to_py(self) -> int | Decimal:
4889        if self.is_number:
4890            return self.this.to_py() * -1
4891        return super().to_py()

Returns a Python object equivalent of the SQL node.

key = 'neg'
class Alias(Expression):
4894class Alias(Expression):
4895    arg_types = {"this": True, "alias": False}
4896
4897    @property
4898    def output_name(self) -> str:
4899        return self.alias
arg_types = {'this': True, 'alias': False}
output_name: str
4897    @property
4898    def output_name(self) -> str:
4899        return self.alias

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'alias'
class PivotAlias(Alias):
4904class PivotAlias(Alias):
4905    pass
key = 'pivotalias'
class PivotAny(Expression):
4910class PivotAny(Expression):
4911    arg_types = {"this": False}
arg_types = {'this': False}
key = 'pivotany'
class Aliases(Expression):
4914class Aliases(Expression):
4915    arg_types = {"this": True, "expressions": True}
4916
4917    @property
4918    def aliases(self):
4919        return self.expressions
arg_types = {'this': True, 'expressions': True}
aliases
4917    @property
4918    def aliases(self):
4919        return self.expressions
key = 'aliases'
class AtIndex(Expression):
4923class AtIndex(Expression):
4924    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'atindex'
class AtTimeZone(Expression):
4927class AtTimeZone(Expression):
4928    arg_types = {"this": True, "zone": True}
arg_types = {'this': True, 'zone': True}
key = 'attimezone'
class FromTimeZone(Expression):
4931class FromTimeZone(Expression):
4932    arg_types = {"this": True, "zone": True}
arg_types = {'this': True, 'zone': True}
key = 'fromtimezone'
class Between(Predicate):
4935class Between(Predicate):
4936    arg_types = {"this": True, "low": True, "high": True}
arg_types = {'this': True, 'low': True, 'high': True}
key = 'between'
class Bracket(Condition):
4939class Bracket(Condition):
4940    # https://cloud.google.com/bigquery/docs/reference/standard-sql/operators#array_subscript_operator
4941    arg_types = {
4942        "this": True,
4943        "expressions": True,
4944        "offset": False,
4945        "safe": False,
4946        "returns_list_for_maps": False,
4947    }
4948
4949    @property
4950    def output_name(self) -> str:
4951        if len(self.expressions) == 1:
4952            return self.expressions[0].output_name
4953
4954        return super().output_name
arg_types = {'this': True, 'expressions': True, 'offset': False, 'safe': False, 'returns_list_for_maps': False}
output_name: str
4949    @property
4950    def output_name(self) -> str:
4951        if len(self.expressions) == 1:
4952            return self.expressions[0].output_name
4953
4954        return super().output_name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'bracket'
class Distinct(Expression):
4957class Distinct(Expression):
4958    arg_types = {"expressions": False, "on": False}
arg_types = {'expressions': False, 'on': False}
key = 'distinct'
class In(Predicate):
4961class In(Predicate):
4962    arg_types = {
4963        "this": True,
4964        "expressions": False,
4965        "query": False,
4966        "unnest": False,
4967        "field": False,
4968        "is_global": False,
4969    }
arg_types = {'this': True, 'expressions': False, 'query': False, 'unnest': False, 'field': False, 'is_global': False}
key = 'in'
class ForIn(Expression):
4973class ForIn(Expression):
4974    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'forin'
class TimeUnit(Expression):
4977class TimeUnit(Expression):
4978    """Automatically converts unit arg into a var."""
4979
4980    arg_types = {"unit": False}
4981
4982    UNABBREVIATED_UNIT_NAME = {
4983        "D": "DAY",
4984        "H": "HOUR",
4985        "M": "MINUTE",
4986        "MS": "MILLISECOND",
4987        "NS": "NANOSECOND",
4988        "Q": "QUARTER",
4989        "S": "SECOND",
4990        "US": "MICROSECOND",
4991        "W": "WEEK",
4992        "Y": "YEAR",
4993    }
4994
4995    VAR_LIKE = (Column, Literal, Var)
4996
4997    def __init__(self, **args):
4998        unit = args.get("unit")
4999        if isinstance(unit, self.VAR_LIKE):
5000            args["unit"] = Var(
5001                this=(self.UNABBREVIATED_UNIT_NAME.get(unit.name) or unit.name).upper()
5002            )
5003        elif isinstance(unit, Week):
5004            unit.set("this", Var(this=unit.this.name.upper()))
5005
5006        super().__init__(**args)
5007
5008    @property
5009    def unit(self) -> t.Optional[Var | IntervalSpan]:
5010        return self.args.get("unit")

Automatically converts unit arg into a var.

TimeUnit(**args)
4997    def __init__(self, **args):
4998        unit = args.get("unit")
4999        if isinstance(unit, self.VAR_LIKE):
5000            args["unit"] = Var(
5001                this=(self.UNABBREVIATED_UNIT_NAME.get(unit.name) or unit.name).upper()
5002            )
5003        elif isinstance(unit, Week):
5004            unit.set("this", Var(this=unit.this.name.upper()))
5005
5006        super().__init__(**args)
arg_types = {'unit': False}
UNABBREVIATED_UNIT_NAME = {'D': 'DAY', 'H': 'HOUR', 'M': 'MINUTE', 'MS': 'MILLISECOND', 'NS': 'NANOSECOND', 'Q': 'QUARTER', 'S': 'SECOND', 'US': 'MICROSECOND', 'W': 'WEEK', 'Y': 'YEAR'}
VAR_LIKE = (<class 'Column'>, <class 'Literal'>, <class 'Var'>)
unit: Union[Var, IntervalSpan, NoneType]
5008    @property
5009    def unit(self) -> t.Optional[Var | IntervalSpan]:
5010        return self.args.get("unit")
key = 'timeunit'
class IntervalOp(TimeUnit):
5013class IntervalOp(TimeUnit):
5014    arg_types = {"unit": False, "expression": True}
5015
5016    def interval(self):
5017        return Interval(
5018            this=self.expression.copy(),
5019            unit=self.unit.copy() if self.unit else None,
5020        )
arg_types = {'unit': False, 'expression': True}
def interval(self):
5016    def interval(self):
5017        return Interval(
5018            this=self.expression.copy(),
5019            unit=self.unit.copy() if self.unit else None,
5020        )
key = 'intervalop'
class IntervalSpan(DataType):
5026class IntervalSpan(DataType):
5027    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'intervalspan'
class Interval(TimeUnit):
5030class Interval(TimeUnit):
5031    arg_types = {"this": False, "unit": False}
arg_types = {'this': False, 'unit': False}
key = 'interval'
class IgnoreNulls(Expression):
5034class IgnoreNulls(Expression):
5035    pass
key = 'ignorenulls'
class RespectNulls(Expression):
5038class RespectNulls(Expression):
5039    pass
key = 'respectnulls'
class HavingMax(Expression):
5043class HavingMax(Expression):
5044    arg_types = {"this": True, "expression": True, "max": True}
arg_types = {'this': True, 'expression': True, 'max': True}
key = 'havingmax'
class Func(Condition):
5048class Func(Condition):
5049    """
5050    The base class for all function expressions.
5051
5052    Attributes:
5053        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
5054            treated as a variable length argument and the argument's value will be stored as a list.
5055        _sql_names (list): the SQL name (1st item in the list) and aliases (subsequent items) for this
5056            function expression. These values are used to map this node to a name during parsing as
5057            well as to provide the function's name during SQL string generation. By default the SQL
5058            name is set to the expression's class name transformed to snake case.
5059    """
5060
5061    is_var_len_args = False
5062
5063    @classmethod
5064    def from_arg_list(cls, args):
5065        if cls.is_var_len_args:
5066            all_arg_keys = list(cls.arg_types)
5067            # If this function supports variable length argument treat the last argument as such.
5068            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
5069            num_non_var = len(non_var_len_arg_keys)
5070
5071            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
5072            args_dict[all_arg_keys[-1]] = args[num_non_var:]
5073        else:
5074            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
5075
5076        return cls(**args_dict)
5077
5078    @classmethod
5079    def sql_names(cls):
5080        if cls is Func:
5081            raise NotImplementedError(
5082                "SQL name is only supported by concrete function implementations"
5083            )
5084        if "_sql_names" not in cls.__dict__:
5085            cls._sql_names = [camel_to_snake_case(cls.__name__)]
5086        return cls._sql_names
5087
5088    @classmethod
5089    def sql_name(cls):
5090        return cls.sql_names()[0]
5091
5092    @classmethod
5093    def default_parser_mappings(cls):
5094        return {name: cls.from_arg_list for name in cls.sql_names()}

The base class for all function expressions.

Attributes:
  • is_var_len_args (bool): if set to True the last argument defined in arg_types will be treated as a variable length argument and the argument's value will be stored as a list.
  • _sql_names (list): the SQL name (1st item in the list) and aliases (subsequent items) for this function expression. These values are used to map this node to a name during parsing as well as to provide the function's name during SQL string generation. By default the SQL name is set to the expression's class name transformed to snake case.
is_var_len_args = False
@classmethod
def from_arg_list(cls, args):
5063    @classmethod
5064    def from_arg_list(cls, args):
5065        if cls.is_var_len_args:
5066            all_arg_keys = list(cls.arg_types)
5067            # If this function supports variable length argument treat the last argument as such.
5068            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
5069            num_non_var = len(non_var_len_arg_keys)
5070
5071            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
5072            args_dict[all_arg_keys[-1]] = args[num_non_var:]
5073        else:
5074            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
5075
5076        return cls(**args_dict)
@classmethod
def sql_names(cls):
5078    @classmethod
5079    def sql_names(cls):
5080        if cls is Func:
5081            raise NotImplementedError(
5082                "SQL name is only supported by concrete function implementations"
5083            )
5084        if "_sql_names" not in cls.__dict__:
5085            cls._sql_names = [camel_to_snake_case(cls.__name__)]
5086        return cls._sql_names
@classmethod
def sql_name(cls):
5088    @classmethod
5089    def sql_name(cls):
5090        return cls.sql_names()[0]
@classmethod
def default_parser_mappings(cls):
5092    @classmethod
5093    def default_parser_mappings(cls):
5094        return {name: cls.from_arg_list for name in cls.sql_names()}
key = 'func'
class AggFunc(Func):
5097class AggFunc(Func):
5098    pass
key = 'aggfunc'
class ParameterizedAgg(AggFunc):
5101class ParameterizedAgg(AggFunc):
5102    arg_types = {"this": True, "expressions": True, "params": True}
arg_types = {'this': True, 'expressions': True, 'params': True}
key = 'parameterizedagg'
class Abs(Func):
5105class Abs(Func):
5106    pass
key = 'abs'
class ArgMax(AggFunc):
5109class ArgMax(AggFunc):
5110    arg_types = {"this": True, "expression": True, "count": False}
5111    _sql_names = ["ARG_MAX", "ARGMAX", "MAX_BY"]
arg_types = {'this': True, 'expression': True, 'count': False}
key = 'argmax'
class ArgMin(AggFunc):
5114class ArgMin(AggFunc):
5115    arg_types = {"this": True, "expression": True, "count": False}
5116    _sql_names = ["ARG_MIN", "ARGMIN", "MIN_BY"]
arg_types = {'this': True, 'expression': True, 'count': False}
key = 'argmin'
class ApproxTopK(AggFunc):
5119class ApproxTopK(AggFunc):
5120    arg_types = {"this": True, "expression": False, "counters": False}
arg_types = {'this': True, 'expression': False, 'counters': False}
key = 'approxtopk'
class Flatten(Func):
5123class Flatten(Func):
5124    pass
key = 'flatten'
class Transform(Func):
5128class Transform(Func):
5129    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'transform'
class Anonymous(Func):
5132class Anonymous(Func):
5133    arg_types = {"this": True, "expressions": False}
5134    is_var_len_args = True
5135
5136    @property
5137    def name(self) -> str:
5138        return self.this if isinstance(self.this, str) else self.this.name
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
name: str
5136    @property
5137    def name(self) -> str:
5138        return self.this if isinstance(self.this, str) else self.this.name
key = 'anonymous'
class AnonymousAggFunc(AggFunc):
5141class AnonymousAggFunc(AggFunc):
5142    arg_types = {"this": True, "expressions": False}
5143    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'anonymousaggfunc'
class CombinedAggFunc(AnonymousAggFunc):
5147class CombinedAggFunc(AnonymousAggFunc):
5148    arg_types = {"this": True, "expressions": False, "parts": True}
arg_types = {'this': True, 'expressions': False, 'parts': True}
key = 'combinedaggfunc'
class CombinedParameterizedAgg(ParameterizedAgg):
5151class CombinedParameterizedAgg(ParameterizedAgg):
5152    arg_types = {"this": True, "expressions": True, "params": True, "parts": True}
arg_types = {'this': True, 'expressions': True, 'params': True, 'parts': True}
key = 'combinedparameterizedagg'
class Hll(AggFunc):
5157class Hll(AggFunc):
5158    arg_types = {"this": True, "expressions": False}
5159    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'hll'
class ApproxDistinct(AggFunc):
5162class ApproxDistinct(AggFunc):
5163    arg_types = {"this": True, "accuracy": False}
5164    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
arg_types = {'this': True, 'accuracy': False}
key = 'approxdistinct'
class Apply(Func):
5167class Apply(Func):
5168    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'apply'
class Array(Func):
5171class Array(Func):
5172    arg_types = {"expressions": False, "bracket_notation": False}
5173    is_var_len_args = True
arg_types = {'expressions': False, 'bracket_notation': False}
is_var_len_args = True
key = 'array'
class ToArray(Func):
5177class ToArray(Func):
5178    pass
key = 'toarray'
class List(Func):
5182class List(Func):
5183    arg_types = {"expressions": False}
5184    is_var_len_args = True
arg_types = {'expressions': False}
is_var_len_args = True
key = 'list'
class Pad(Func):
5188class Pad(Func):
5189    arg_types = {"this": True, "expression": True, "fill_pattern": False, "is_left": True}
arg_types = {'this': True, 'expression': True, 'fill_pattern': False, 'is_left': True}
key = 'pad'
class ToChar(Func):
5194class ToChar(Func):
5195    arg_types = {"this": True, "format": False, "nlsparam": False}
arg_types = {'this': True, 'format': False, 'nlsparam': False}
key = 'tochar'
class ToNumber(Func):
5200class ToNumber(Func):
5201    arg_types = {
5202        "this": True,
5203        "format": False,
5204        "nlsparam": False,
5205        "precision": False,
5206        "scale": False,
5207    }
arg_types = {'this': True, 'format': False, 'nlsparam': False, 'precision': False, 'scale': False}
key = 'tonumber'
class ToDouble(Func):
5211class ToDouble(Func):
5212    arg_types = {
5213        "this": True,
5214        "format": False,
5215    }
arg_types = {'this': True, 'format': False}
key = 'todouble'
class Columns(Func):
5218class Columns(Func):
5219    arg_types = {"this": True, "unpack": False}
arg_types = {'this': True, 'unpack': False}
key = 'columns'
class Convert(Func):
5223class Convert(Func):
5224    arg_types = {"this": True, "expression": True, "style": False}
arg_types = {'this': True, 'expression': True, 'style': False}
key = 'convert'
class ConvertTimezone(Func):
5227class ConvertTimezone(Func):
5228    arg_types = {"source_tz": False, "target_tz": True, "timestamp": True}
arg_types = {'source_tz': False, 'target_tz': True, 'timestamp': True}
key = 'converttimezone'
class GenerateSeries(Func):
5231class GenerateSeries(Func):
5232    arg_types = {"start": True, "end": True, "step": False, "is_end_exclusive": False}
arg_types = {'start': True, 'end': True, 'step': False, 'is_end_exclusive': False}
key = 'generateseries'
class ExplodingGenerateSeries(GenerateSeries):
5238class ExplodingGenerateSeries(GenerateSeries):
5239    pass
key = 'explodinggenerateseries'
class ArrayAgg(AggFunc):
5242class ArrayAgg(AggFunc):
5243    arg_types = {"this": True, "nulls_excluded": False}
arg_types = {'this': True, 'nulls_excluded': False}
key = 'arrayagg'
class ArrayUniqueAgg(AggFunc):
5246class ArrayUniqueAgg(AggFunc):
5247    pass
key = 'arrayuniqueagg'
class ArrayAll(Func):
5250class ArrayAll(Func):
5251    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'arrayall'
class ArrayAny(Func):
5255class ArrayAny(Func):
5256    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'arrayany'
class ArrayConcat(Func):
5259class ArrayConcat(Func):
5260    _sql_names = ["ARRAY_CONCAT", "ARRAY_CAT"]
5261    arg_types = {"this": True, "expressions": False}
5262    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'arrayconcat'
class ArrayConstructCompact(Func):
5265class ArrayConstructCompact(Func):
5266    arg_types = {"expressions": True}
5267    is_var_len_args = True
arg_types = {'expressions': True}
is_var_len_args = True
key = 'arrayconstructcompact'
class ArrayContains(Binary, Func):
5270class ArrayContains(Binary, Func):
5271    _sql_names = ["ARRAY_CONTAINS", "ARRAY_HAS"]
key = 'arraycontains'
class ArrayContainsAll(Binary, Func):
5274class ArrayContainsAll(Binary, Func):
5275    _sql_names = ["ARRAY_CONTAINS_ALL", "ARRAY_HAS_ALL"]
key = 'arraycontainsall'
class ArrayFilter(Func):
5278class ArrayFilter(Func):
5279    arg_types = {"this": True, "expression": True}
5280    _sql_names = ["FILTER", "ARRAY_FILTER"]
arg_types = {'this': True, 'expression': True}
key = 'arrayfilter'
class ArrayToString(Func):
5283class ArrayToString(Func):
5284    arg_types = {"this": True, "expression": True, "null": False}
5285    _sql_names = ["ARRAY_TO_STRING", "ARRAY_JOIN"]
arg_types = {'this': True, 'expression': True, 'null': False}
key = 'arraytostring'
class String(Func):
5289class String(Func):
5290    arg_types = {"this": True, "zone": False}
arg_types = {'this': True, 'zone': False}
key = 'string'
class StringToArray(Func):
5293class StringToArray(Func):
5294    arg_types = {"this": True, "expression": True, "null": False}
5295    _sql_names = ["STRING_TO_ARRAY", "SPLIT_BY_STRING"]
arg_types = {'this': True, 'expression': True, 'null': False}
key = 'stringtoarray'
class ArrayOverlaps(Binary, Func):
5298class ArrayOverlaps(Binary, Func):
5299    pass
key = 'arrayoverlaps'
class ArraySize(Func):
5302class ArraySize(Func):
5303    arg_types = {"this": True, "expression": False}
5304    _sql_names = ["ARRAY_SIZE", "ARRAY_LENGTH"]
arg_types = {'this': True, 'expression': False}
key = 'arraysize'
class ArraySort(Func):
5307class ArraySort(Func):
5308    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'arraysort'
class ArraySum(Func):
5311class ArraySum(Func):
5312    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'arraysum'
class ArrayUnionAgg(AggFunc):
5315class ArrayUnionAgg(AggFunc):
5316    pass
key = 'arrayunionagg'
class Avg(AggFunc):
5319class Avg(AggFunc):
5320    pass
key = 'avg'
class AnyValue(AggFunc):
5323class AnyValue(AggFunc):
5324    pass
key = 'anyvalue'
class Lag(AggFunc):
5327class Lag(AggFunc):
5328    arg_types = {"this": True, "offset": False, "default": False}
arg_types = {'this': True, 'offset': False, 'default': False}
key = 'lag'
class Lead(AggFunc):
5331class Lead(AggFunc):
5332    arg_types = {"this": True, "offset": False, "default": False}
arg_types = {'this': True, 'offset': False, 'default': False}
key = 'lead'
class First(AggFunc):
5337class First(AggFunc):
5338    pass
key = 'first'
class Last(AggFunc):
5341class Last(AggFunc):
5342    pass
key = 'last'
class FirstValue(AggFunc):
5345class FirstValue(AggFunc):
5346    pass
key = 'firstvalue'
class LastValue(AggFunc):
5349class LastValue(AggFunc):
5350    pass
key = 'lastvalue'
class NthValue(AggFunc):
5353class NthValue(AggFunc):
5354    arg_types = {"this": True, "offset": True}
arg_types = {'this': True, 'offset': True}
key = 'nthvalue'
class Case(Func):
5357class Case(Func):
5358    arg_types = {"this": False, "ifs": True, "default": False}
5359
5360    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
5361        instance = maybe_copy(self, copy)
5362        instance.append(
5363            "ifs",
5364            If(
5365                this=maybe_parse(condition, copy=copy, **opts),
5366                true=maybe_parse(then, copy=copy, **opts),
5367            ),
5368        )
5369        return instance
5370
5371    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
5372        instance = maybe_copy(self, copy)
5373        instance.set("default", maybe_parse(condition, copy=copy, **opts))
5374        return instance
arg_types = {'this': False, 'ifs': True, 'default': False}
def when( self, condition: Union[str, Expression], then: Union[str, Expression], copy: bool = True, **opts) -> Case:
5360    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
5361        instance = maybe_copy(self, copy)
5362        instance.append(
5363            "ifs",
5364            If(
5365                this=maybe_parse(condition, copy=copy, **opts),
5366                true=maybe_parse(then, copy=copy, **opts),
5367            ),
5368        )
5369        return instance
def else_( self, condition: Union[str, Expression], copy: bool = True, **opts) -> Case:
5371    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
5372        instance = maybe_copy(self, copy)
5373        instance.set("default", maybe_parse(condition, copy=copy, **opts))
5374        return instance
key = 'case'
class Cast(Func):
5377class Cast(Func):
5378    arg_types = {
5379        "this": True,
5380        "to": True,
5381        "format": False,
5382        "safe": False,
5383        "action": False,
5384    }
5385
5386    @property
5387    def name(self) -> str:
5388        return self.this.name
5389
5390    @property
5391    def to(self) -> DataType:
5392        return self.args["to"]
5393
5394    @property
5395    def output_name(self) -> str:
5396        return self.name
5397
5398    def is_type(self, *dtypes: DATA_TYPE) -> bool:
5399        """
5400        Checks whether this Cast's DataType matches one of the provided data types. Nested types
5401        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
5402        array<int> != array<float>.
5403
5404        Args:
5405            dtypes: the data types to compare this Cast's DataType to.
5406
5407        Returns:
5408            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
5409        """
5410        return self.to.is_type(*dtypes)
arg_types = {'this': True, 'to': True, 'format': False, 'safe': False, 'action': False}
name: str
5386    @property
5387    def name(self) -> str:
5388        return self.this.name
to: DataType
5390    @property
5391    def to(self) -> DataType:
5392        return self.args["to"]
output_name: str
5394    @property
5395    def output_name(self) -> str:
5396        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
def is_type( self, *dtypes: Union[str, DataType, DataType.Type]) -> bool:
5398    def is_type(self, *dtypes: DATA_TYPE) -> bool:
5399        """
5400        Checks whether this Cast's DataType matches one of the provided data types. Nested types
5401        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
5402        array<int> != array<float>.
5403
5404        Args:
5405            dtypes: the data types to compare this Cast's DataType to.
5406
5407        Returns:
5408            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
5409        """
5410        return self.to.is_type(*dtypes)

Checks whether this Cast's DataType matches one of the provided data types. Nested types like arrays or structs will be compared using "structural equivalence" semantics, so e.g. array != array.

Arguments:
  • dtypes: the data types to compare this Cast's DataType to.
Returns:

True, if and only if there is a type in dtypes which is equal to this Cast's DataType.

key = 'cast'
class TryCast(Cast):
5413class TryCast(Cast):
5414    pass
key = 'trycast'
class Try(Func):
5417class Try(Func):
5418    pass
key = 'try'
class CastToStrType(Func):
5421class CastToStrType(Func):
5422    arg_types = {"this": True, "to": True}
arg_types = {'this': True, 'to': True}
key = 'casttostrtype'
class Collate(Binary, Func):
5425class Collate(Binary, Func):
5426    pass
key = 'collate'
class Ceil(Func):
5429class Ceil(Func):
5430    arg_types = {"this": True, "decimals": False}
5431    _sql_names = ["CEIL", "CEILING"]
arg_types = {'this': True, 'decimals': False}
key = 'ceil'
class Coalesce(Func):
5434class Coalesce(Func):
5435    arg_types = {"this": True, "expressions": False, "is_nvl": False}
5436    is_var_len_args = True
5437    _sql_names = ["COALESCE", "IFNULL", "NVL"]
arg_types = {'this': True, 'expressions': False, 'is_nvl': False}
is_var_len_args = True
key = 'coalesce'
class Chr(Func):
5440class Chr(Func):
5441    arg_types = {"expressions": True, "charset": False}
5442    is_var_len_args = True
5443    _sql_names = ["CHR", "CHAR"]
arg_types = {'expressions': True, 'charset': False}
is_var_len_args = True
key = 'chr'
class Concat(Func):
5446class Concat(Func):
5447    arg_types = {"expressions": True, "safe": False, "coalesce": False}
5448    is_var_len_args = True
arg_types = {'expressions': True, 'safe': False, 'coalesce': False}
is_var_len_args = True
key = 'concat'
class ConcatWs(Concat):
5451class ConcatWs(Concat):
5452    _sql_names = ["CONCAT_WS"]
key = 'concatws'
class ConnectByRoot(Func):
5456class ConnectByRoot(Func):
5457    pass
key = 'connectbyroot'
class Count(AggFunc):
5460class Count(AggFunc):
5461    arg_types = {"this": False, "expressions": False, "big_int": False}
5462    is_var_len_args = True
arg_types = {'this': False, 'expressions': False, 'big_int': False}
is_var_len_args = True
key = 'count'
class CountIf(AggFunc):
5465class CountIf(AggFunc):
5466    _sql_names = ["COUNT_IF", "COUNTIF"]
key = 'countif'
class Cbrt(Func):
5470class Cbrt(Func):
5471    pass
key = 'cbrt'
class CurrentDate(Func):
5474class CurrentDate(Func):
5475    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentdate'
class CurrentDatetime(Func):
5478class CurrentDatetime(Func):
5479    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentdatetime'
class CurrentTime(Func):
5482class CurrentTime(Func):
5483    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currenttime'
class CurrentTimestamp(Func):
5486class CurrentTimestamp(Func):
5487    arg_types = {"this": False, "sysdate": False}
arg_types = {'this': False, 'sysdate': False}
key = 'currenttimestamp'
class CurrentUser(Func):
5490class CurrentUser(Func):
5491    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentuser'
class DateAdd(Func, IntervalOp):
5494class DateAdd(Func, IntervalOp):
5495    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'dateadd'
class DateSub(Func, IntervalOp):
5498class DateSub(Func, IntervalOp):
5499    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datesub'
class DateDiff(Func, TimeUnit):
5502class DateDiff(Func, TimeUnit):
5503    _sql_names = ["DATEDIFF", "DATE_DIFF"]
5504    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datediff'
class DateTrunc(Func):
5507class DateTrunc(Func):
5508    arg_types = {"unit": True, "this": True, "zone": False}
5509
5510    def __init__(self, **args):
5511        unit = args.get("unit")
5512        if isinstance(unit, TimeUnit.VAR_LIKE):
5513            args["unit"] = Literal.string(
5514                (TimeUnit.UNABBREVIATED_UNIT_NAME.get(unit.name) or unit.name).upper()
5515            )
5516        elif isinstance(unit, Week):
5517            unit.set("this", Literal.string(unit.this.name.upper()))
5518
5519        super().__init__(**args)
5520
5521    @property
5522    def unit(self) -> Expression:
5523        return self.args["unit"]
DateTrunc(**args)
5510    def __init__(self, **args):
5511        unit = args.get("unit")
5512        if isinstance(unit, TimeUnit.VAR_LIKE):
5513            args["unit"] = Literal.string(
5514                (TimeUnit.UNABBREVIATED_UNIT_NAME.get(unit.name) or unit.name).upper()
5515            )
5516        elif isinstance(unit, Week):
5517            unit.set("this", Literal.string(unit.this.name.upper()))
5518
5519        super().__init__(**args)
arg_types = {'unit': True, 'this': True, 'zone': False}
unit: Expression
5521    @property
5522    def unit(self) -> Expression:
5523        return self.args["unit"]
key = 'datetrunc'
class Datetime(Func):
5528class Datetime(Func):
5529    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'datetime'
class DatetimeAdd(Func, IntervalOp):
5532class DatetimeAdd(Func, IntervalOp):
5533    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimeadd'
class DatetimeSub(Func, IntervalOp):
5536class DatetimeSub(Func, IntervalOp):
5537    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimesub'
class DatetimeDiff(Func, TimeUnit):
5540class DatetimeDiff(Func, TimeUnit):
5541    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimediff'
class DatetimeTrunc(Func, TimeUnit):
5544class DatetimeTrunc(Func, TimeUnit):
5545    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'datetimetrunc'
class DayOfWeek(Func):
5548class DayOfWeek(Func):
5549    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
key = 'dayofweek'
class DayOfWeekIso(Func):
5554class DayOfWeekIso(Func):
5555    _sql_names = ["DAYOFWEEK_ISO", "ISODOW"]
key = 'dayofweekiso'
class DayOfMonth(Func):
5558class DayOfMonth(Func):
5559    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
key = 'dayofmonth'
class DayOfYear(Func):
5562class DayOfYear(Func):
5563    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
key = 'dayofyear'
class ToDays(Func):
5566class ToDays(Func):
5567    pass
key = 'todays'
class WeekOfYear(Func):
5570class WeekOfYear(Func):
5571    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
key = 'weekofyear'
class MonthsBetween(Func):
5574class MonthsBetween(Func):
5575    arg_types = {"this": True, "expression": True, "roundoff": False}
arg_types = {'this': True, 'expression': True, 'roundoff': False}
key = 'monthsbetween'
class LastDay(Func, TimeUnit):
5578class LastDay(Func, TimeUnit):
5579    _sql_names = ["LAST_DAY", "LAST_DAY_OF_MONTH"]
5580    arg_types = {"this": True, "unit": False}
arg_types = {'this': True, 'unit': False}
key = 'lastday'
class Extract(Func):
5583class Extract(Func):
5584    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'extract'
class Timestamp(Func):
5587class Timestamp(Func):
5588    arg_types = {"this": False, "zone": False, "with_tz": False}
arg_types = {'this': False, 'zone': False, 'with_tz': False}
key = 'timestamp'
class TimestampAdd(Func, TimeUnit):
5591class TimestampAdd(Func, TimeUnit):
5592    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampadd'
class TimestampSub(Func, TimeUnit):
5595class TimestampSub(Func, TimeUnit):
5596    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampsub'
class TimestampDiff(Func, TimeUnit):
5599class TimestampDiff(Func, TimeUnit):
5600    _sql_names = ["TIMESTAMPDIFF", "TIMESTAMP_DIFF"]
5601    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampdiff'
class TimestampTrunc(Func, TimeUnit):
5604class TimestampTrunc(Func, TimeUnit):
5605    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'timestamptrunc'
class TimeAdd(Func, TimeUnit):
5608class TimeAdd(Func, TimeUnit):
5609    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timeadd'
class TimeSub(Func, TimeUnit):
5612class TimeSub(Func, TimeUnit):
5613    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timesub'
class TimeDiff(Func, TimeUnit):
5616class TimeDiff(Func, TimeUnit):
5617    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timediff'
class TimeTrunc(Func, TimeUnit):
5620class TimeTrunc(Func, TimeUnit):
5621    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'timetrunc'
class DateFromParts(Func):
5624class DateFromParts(Func):
5625    _sql_names = ["DATE_FROM_PARTS", "DATEFROMPARTS"]
5626    arg_types = {"year": True, "month": True, "day": True}
arg_types = {'year': True, 'month': True, 'day': True}
key = 'datefromparts'
class TimeFromParts(Func):
5629class TimeFromParts(Func):
5630    _sql_names = ["TIME_FROM_PARTS", "TIMEFROMPARTS"]
5631    arg_types = {
5632        "hour": True,
5633        "min": True,
5634        "sec": True,
5635        "nano": False,
5636        "fractions": False,
5637        "precision": False,
5638    }
arg_types = {'hour': True, 'min': True, 'sec': True, 'nano': False, 'fractions': False, 'precision': False}
key = 'timefromparts'
class DateStrToDate(Func):
5641class DateStrToDate(Func):
5642    pass
key = 'datestrtodate'
class DateToDateStr(Func):
5645class DateToDateStr(Func):
5646    pass
key = 'datetodatestr'
class DateToDi(Func):
5649class DateToDi(Func):
5650    pass
key = 'datetodi'
class Date(Func):
5654class Date(Func):
5655    arg_types = {"this": False, "zone": False, "expressions": False}
5656    is_var_len_args = True
arg_types = {'this': False, 'zone': False, 'expressions': False}
is_var_len_args = True
key = 'date'
class Day(Func):
5659class Day(Func):
5660    pass
key = 'day'
class Decode(Func):
5663class Decode(Func):
5664    arg_types = {"this": True, "charset": True, "replace": False}
arg_types = {'this': True, 'charset': True, 'replace': False}
key = 'decode'
class DiToDate(Func):
5667class DiToDate(Func):
5668    pass
key = 'ditodate'
class Encode(Func):
5671class Encode(Func):
5672    arg_types = {"this": True, "charset": True}
arg_types = {'this': True, 'charset': True}
key = 'encode'
class Exp(Func):
5675class Exp(Func):
5676    pass
key = 'exp'
class Explode(Func, UDTF):
5680class Explode(Func, UDTF):
5681    arg_types = {"this": True, "expressions": False}
5682    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'explode'
class Inline(Func):
5686class Inline(Func):
5687    pass
key = 'inline'
class ExplodeOuter(Explode):
5690class ExplodeOuter(Explode):
5691    pass
key = 'explodeouter'
class Posexplode(Explode):
5694class Posexplode(Explode):
5695    pass
key = 'posexplode'
class PosexplodeOuter(Posexplode, ExplodeOuter):
5698class PosexplodeOuter(Posexplode, ExplodeOuter):
5699    pass
key = 'posexplodeouter'
class Unnest(Func, UDTF):
5702class Unnest(Func, UDTF):
5703    arg_types = {
5704        "expressions": True,
5705        "alias": False,
5706        "offset": False,
5707        "explode_array": False,
5708    }
5709
5710    @property
5711    def selects(self) -> t.List[Expression]:
5712        columns = super().selects
5713        offset = self.args.get("offset")
5714        if offset:
5715            columns = columns + [to_identifier("offset") if offset is True else offset]
5716        return columns
arg_types = {'expressions': True, 'alias': False, 'offset': False, 'explode_array': False}
selects: List[Expression]
5710    @property
5711    def selects(self) -> t.List[Expression]:
5712        columns = super().selects
5713        offset = self.args.get("offset")
5714        if offset:
5715            columns = columns + [to_identifier("offset") if offset is True else offset]
5716        return columns
key = 'unnest'
class Floor(Func):
5719class Floor(Func):
5720    arg_types = {"this": True, "decimals": False}
arg_types = {'this': True, 'decimals': False}
key = 'floor'
class FromBase64(Func):
5723class FromBase64(Func):
5724    pass
key = 'frombase64'
class ToBase64(Func):
5727class ToBase64(Func):
5728    pass
key = 'tobase64'
class FromISO8601Timestamp(Func):
5732class FromISO8601Timestamp(Func):
5733    _sql_names = ["FROM_ISO8601_TIMESTAMP"]
key = 'fromiso8601timestamp'
class GapFill(Func):
5736class GapFill(Func):
5737    arg_types = {
5738        "this": True,
5739        "ts_column": True,
5740        "bucket_width": True,
5741        "partitioning_columns": False,
5742        "value_columns": False,
5743        "origin": False,
5744        "ignore_nulls": False,
5745    }
arg_types = {'this': True, 'ts_column': True, 'bucket_width': True, 'partitioning_columns': False, 'value_columns': False, 'origin': False, 'ignore_nulls': False}
key = 'gapfill'
class GenerateDateArray(Func):
5749class GenerateDateArray(Func):
5750    arg_types = {"start": True, "end": True, "step": False}
arg_types = {'start': True, 'end': True, 'step': False}
key = 'generatedatearray'
class GenerateTimestampArray(Func):
5754class GenerateTimestampArray(Func):
5755    arg_types = {"start": True, "end": True, "step": True}
arg_types = {'start': True, 'end': True, 'step': True}
key = 'generatetimestamparray'
class Greatest(Func):
5758class Greatest(Func):
5759    arg_types = {"this": True, "expressions": False}
5760    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'greatest'
class GroupConcat(AggFunc):
5763class GroupConcat(AggFunc):
5764    arg_types = {"this": True, "separator": False}
arg_types = {'this': True, 'separator': False}
key = 'groupconcat'
class Hex(Func):
5767class Hex(Func):
5768    pass
key = 'hex'
class LowerHex(Hex):
5771class LowerHex(Hex):
5772    pass
key = 'lowerhex'
class Xor(Connector, Func):
5775class Xor(Connector, Func):
5776    arg_types = {"this": False, "expression": False, "expressions": False}
arg_types = {'this': False, 'expression': False, 'expressions': False}
key = 'xor'
class If(Func):
5779class If(Func):
5780    arg_types = {"this": True, "true": True, "false": False}
5781    _sql_names = ["IF", "IIF"]
arg_types = {'this': True, 'true': True, 'false': False}
key = 'if'
class Nullif(Func):
5784class Nullif(Func):
5785    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'nullif'
class Initcap(Func):
5788class Initcap(Func):
5789    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'initcap'
class IsNan(Func):
5792class IsNan(Func):
5793    _sql_names = ["IS_NAN", "ISNAN"]
key = 'isnan'
class IsInf(Func):
5796class IsInf(Func):
5797    _sql_names = ["IS_INF", "ISINF"]
key = 'isinf'
class JSON(Expression):
5801class JSON(Expression):
5802    arg_types = {"this": False, "with": False, "unique": False}
arg_types = {'this': False, 'with': False, 'unique': False}
key = 'json'
class JSONPath(Expression):
5805class JSONPath(Expression):
5806    arg_types = {"expressions": True, "escape": False}
5807
5808    @property
5809    def output_name(self) -> str:
5810        last_segment = self.expressions[-1].this
5811        return last_segment if isinstance(last_segment, str) else ""
arg_types = {'expressions': True, 'escape': False}
output_name: str
5808    @property
5809    def output_name(self) -> str:
5810        last_segment = self.expressions[-1].this
5811        return last_segment if isinstance(last_segment, str) else ""

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'jsonpath'
class JSONPathPart(Expression):
5814class JSONPathPart(Expression):
5815    arg_types = {}
arg_types = {}
key = 'jsonpathpart'
class JSONPathFilter(JSONPathPart):
5818class JSONPathFilter(JSONPathPart):
5819    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathfilter'
class JSONPathKey(JSONPathPart):
5822class JSONPathKey(JSONPathPart):
5823    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathkey'
class JSONPathRecursive(JSONPathPart):
5826class JSONPathRecursive(JSONPathPart):
5827    arg_types = {"this": False}
arg_types = {'this': False}
key = 'jsonpathrecursive'
class JSONPathRoot(JSONPathPart):
5830class JSONPathRoot(JSONPathPart):
5831    pass
key = 'jsonpathroot'
class JSONPathScript(JSONPathPart):
5834class JSONPathScript(JSONPathPart):
5835    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathscript'
class JSONPathSlice(JSONPathPart):
5838class JSONPathSlice(JSONPathPart):
5839    arg_types = {"start": False, "end": False, "step": False}
arg_types = {'start': False, 'end': False, 'step': False}
key = 'jsonpathslice'
class JSONPathSelector(JSONPathPart):
5842class JSONPathSelector(JSONPathPart):
5843    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathselector'
class JSONPathSubscript(JSONPathPart):
5846class JSONPathSubscript(JSONPathPart):
5847    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathsubscript'
class JSONPathUnion(JSONPathPart):
5850class JSONPathUnion(JSONPathPart):
5851    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'jsonpathunion'
class JSONPathWildcard(JSONPathPart):
5854class JSONPathWildcard(JSONPathPart):
5855    pass
key = 'jsonpathwildcard'
class FormatJson(Expression):
5858class FormatJson(Expression):
5859    pass
key = 'formatjson'
class JSONKeyValue(Expression):
5862class JSONKeyValue(Expression):
5863    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'jsonkeyvalue'
class JSONObject(Func):
5866class JSONObject(Func):
5867    arg_types = {
5868        "expressions": False,
5869        "null_handling": False,
5870        "unique_keys": False,
5871        "return_type": False,
5872        "encoding": False,
5873    }
arg_types = {'expressions': False, 'null_handling': False, 'unique_keys': False, 'return_type': False, 'encoding': False}
key = 'jsonobject'
class JSONObjectAgg(AggFunc):
5876class JSONObjectAgg(AggFunc):
5877    arg_types = {
5878        "expressions": False,
5879        "null_handling": False,
5880        "unique_keys": False,
5881        "return_type": False,
5882        "encoding": False,
5883    }
arg_types = {'expressions': False, 'null_handling': False, 'unique_keys': False, 'return_type': False, 'encoding': False}
key = 'jsonobjectagg'
class JSONArray(Func):
5887class JSONArray(Func):
5888    arg_types = {
5889        "expressions": True,
5890        "null_handling": False,
5891        "return_type": False,
5892        "strict": False,
5893    }
arg_types = {'expressions': True, 'null_handling': False, 'return_type': False, 'strict': False}
key = 'jsonarray'
class JSONArrayAgg(Func):
5897class JSONArrayAgg(Func):
5898    arg_types = {
5899        "this": True,
5900        "order": False,
5901        "null_handling": False,
5902        "return_type": False,
5903        "strict": False,
5904    }
arg_types = {'this': True, 'order': False, 'null_handling': False, 'return_type': False, 'strict': False}
key = 'jsonarrayagg'
class JSONExists(Func):
5907class JSONExists(Func):
5908    arg_types = {"this": True, "path": True, "passing": False, "on_condition": False}
arg_types = {'this': True, 'path': True, 'passing': False, 'on_condition': False}
key = 'jsonexists'
class JSONColumnDef(Expression):
5913class JSONColumnDef(Expression):
5914    arg_types = {"this": False, "kind": False, "path": False, "nested_schema": False}
arg_types = {'this': False, 'kind': False, 'path': False, 'nested_schema': False}
key = 'jsoncolumndef'
class JSONSchema(Expression):
5917class JSONSchema(Expression):
5918    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'jsonschema'
class JSONValue(Expression):
5922class JSONValue(Expression):
5923    arg_types = {
5924        "this": True,
5925        "path": True,
5926        "returning": False,
5927        "on_condition": False,
5928    }
arg_types = {'this': True, 'path': True, 'returning': False, 'on_condition': False}
key = 'jsonvalue'
class JSONTable(Func):
5932class JSONTable(Func):
5933    arg_types = {
5934        "this": True,
5935        "schema": True,
5936        "path": False,
5937        "error_handling": False,
5938        "empty_handling": False,
5939    }
arg_types = {'this': True, 'schema': True, 'path': False, 'error_handling': False, 'empty_handling': False}
key = 'jsontable'
class ObjectInsert(Func):
5943class ObjectInsert(Func):
5944    arg_types = {
5945        "this": True,
5946        "key": True,
5947        "value": True,
5948        "update_flag": False,
5949    }
arg_types = {'this': True, 'key': True, 'value': True, 'update_flag': False}
key = 'objectinsert'
class OpenJSONColumnDef(Expression):
5952class OpenJSONColumnDef(Expression):
5953    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
arg_types = {'this': True, 'kind': True, 'path': False, 'as_json': False}
key = 'openjsoncolumndef'
class OpenJSON(Func):
5956class OpenJSON(Func):
5957    arg_types = {"this": True, "path": False, "expressions": False}
arg_types = {'this': True, 'path': False, 'expressions': False}
key = 'openjson'
class JSONBContains(Binary, Func):
5960class JSONBContains(Binary, Func):
5961    _sql_names = ["JSONB_CONTAINS"]
key = 'jsonbcontains'
class JSONExtract(Binary, Func):
5964class JSONExtract(Binary, Func):
5965    arg_types = {
5966        "this": True,
5967        "expression": True,
5968        "only_json_types": False,
5969        "expressions": False,
5970        "variant_extract": False,
5971        "json_query": False,
5972        "option": False,
5973    }
5974    _sql_names = ["JSON_EXTRACT"]
5975    is_var_len_args = True
5976
5977    @property
5978    def output_name(self) -> str:
5979        return self.expression.output_name if not self.expressions else ""
arg_types = {'this': True, 'expression': True, 'only_json_types': False, 'expressions': False, 'variant_extract': False, 'json_query': False, 'option': False}
is_var_len_args = True
output_name: str
5977    @property
5978    def output_name(self) -> str:
5979        return self.expression.output_name if not self.expressions else ""

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'jsonextract'
class JSONExtractScalar(Binary, Func):
5982class JSONExtractScalar(Binary, Func):
5983    arg_types = {"this": True, "expression": True, "only_json_types": False, "expressions": False}
5984    _sql_names = ["JSON_EXTRACT_SCALAR"]
5985    is_var_len_args = True
5986
5987    @property
5988    def output_name(self) -> str:
5989        return self.expression.output_name
arg_types = {'this': True, 'expression': True, 'only_json_types': False, 'expressions': False}
is_var_len_args = True
output_name: str
5987    @property
5988    def output_name(self) -> str:
5989        return self.expression.output_name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'jsonextractscalar'
class JSONBExtract(Binary, Func):
5992class JSONBExtract(Binary, Func):
5993    _sql_names = ["JSONB_EXTRACT"]
key = 'jsonbextract'
class JSONBExtractScalar(Binary, Func):
5996class JSONBExtractScalar(Binary, Func):
5997    _sql_names = ["JSONB_EXTRACT_SCALAR"]
key = 'jsonbextractscalar'
class JSONFormat(Func):
6000class JSONFormat(Func):
6001    arg_types = {"this": False, "options": False}
6002    _sql_names = ["JSON_FORMAT"]
arg_types = {'this': False, 'options': False}
key = 'jsonformat'
class JSONArrayContains(Binary, Predicate, Func):
6006class JSONArrayContains(Binary, Predicate, Func):
6007    _sql_names = ["JSON_ARRAY_CONTAINS"]
key = 'jsonarraycontains'
class ParseJSON(Func):
6010class ParseJSON(Func):
6011    # BigQuery, Snowflake have PARSE_JSON, Presto has JSON_PARSE
6012    # Snowflake also has TRY_PARSE_JSON, which is represented using `safe`
6013    _sql_names = ["PARSE_JSON", "JSON_PARSE"]
6014    arg_types = {"this": True, "expression": False, "safe": False}
arg_types = {'this': True, 'expression': False, 'safe': False}
key = 'parsejson'
class Least(Func):
6017class Least(Func):
6018    arg_types = {"this": True, "expressions": False}
6019    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'least'
class Left(Func):
6022class Left(Func):
6023    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'left'
class Length(Func):
6030class Length(Func):
6031    arg_types = {"this": True, "binary": False}
6032    _sql_names = ["LENGTH", "LEN"]
arg_types = {'this': True, 'binary': False}
key = 'length'
class Levenshtein(Func):
6035class Levenshtein(Func):
6036    arg_types = {
6037        "this": True,
6038        "expression": False,
6039        "ins_cost": False,
6040        "del_cost": False,
6041        "sub_cost": False,
6042        "max_dist": False,
6043    }
arg_types = {'this': True, 'expression': False, 'ins_cost': False, 'del_cost': False, 'sub_cost': False, 'max_dist': False}
key = 'levenshtein'
class Ln(Func):
6046class Ln(Func):
6047    pass
key = 'ln'
class Log(Func):
6050class Log(Func):
6051    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'log'
class LogicalOr(AggFunc):
6054class LogicalOr(AggFunc):
6055    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
key = 'logicalor'
class LogicalAnd(AggFunc):
6058class LogicalAnd(AggFunc):
6059    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
key = 'logicaland'
class Lower(Func):
6062class Lower(Func):
6063    _sql_names = ["LOWER", "LCASE"]
key = 'lower'
class Map(Func):
6066class Map(Func):
6067    arg_types = {"keys": False, "values": False}
6068
6069    @property
6070    def keys(self) -> t.List[Expression]:
6071        keys = self.args.get("keys")
6072        return keys.expressions if keys else []
6073
6074    @property
6075    def values(self) -> t.List[Expression]:
6076        values = self.args.get("values")
6077        return values.expressions if values else []
arg_types = {'keys': False, 'values': False}
keys: List[Expression]
6069    @property
6070    def keys(self) -> t.List[Expression]:
6071        keys = self.args.get("keys")
6072        return keys.expressions if keys else []
values: List[Expression]
6074    @property
6075    def values(self) -> t.List[Expression]:
6076        values = self.args.get("values")
6077        return values.expressions if values else []
key = 'map'
class ToMap(Func):
6081class ToMap(Func):
6082    pass
key = 'tomap'
class MapFromEntries(Func):
6085class MapFromEntries(Func):
6086    pass
key = 'mapfromentries'
class ScopeResolution(Expression):
6090class ScopeResolution(Expression):
6091    arg_types = {"this": False, "expression": True}
arg_types = {'this': False, 'expression': True}
key = 'scoperesolution'
class Stream(Expression):
6094class Stream(Expression):
6095    pass
key = 'stream'
class StarMap(Func):
6098class StarMap(Func):
6099    pass
key = 'starmap'
class VarMap(Func):
6102class VarMap(Func):
6103    arg_types = {"keys": True, "values": True}
6104    is_var_len_args = True
6105
6106    @property
6107    def keys(self) -> t.List[Expression]:
6108        return self.args["keys"].expressions
6109
6110    @property
6111    def values(self) -> t.List[Expression]:
6112        return self.args["values"].expressions
arg_types = {'keys': True, 'values': True}
is_var_len_args = True
keys: List[Expression]
6106    @property
6107    def keys(self) -> t.List[Expression]:
6108        return self.args["keys"].expressions
values: List[Expression]
6110    @property
6111    def values(self) -> t.List[Expression]:
6112        return self.args["values"].expressions
key = 'varmap'
class MatchAgainst(Func):
6116class MatchAgainst(Func):
6117    arg_types = {"this": True, "expressions": True, "modifier": False}
arg_types = {'this': True, 'expressions': True, 'modifier': False}
key = 'matchagainst'
class Max(AggFunc):
6120class Max(AggFunc):
6121    arg_types = {"this": True, "expressions": False}
6122    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'max'
class MD5(Func):
6125class MD5(Func):
6126    _sql_names = ["MD5"]
key = 'md5'
class MD5Digest(Func):
6130class MD5Digest(Func):
6131    _sql_names = ["MD5_DIGEST"]
key = 'md5digest'
class Min(AggFunc):
6134class Min(AggFunc):
6135    arg_types = {"this": True, "expressions": False}
6136    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'min'
class Month(Func):
6139class Month(Func):
6140    pass
key = 'month'
class AddMonths(Func):
6143class AddMonths(Func):
6144    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'addmonths'
class Nvl2(Func):
6147class Nvl2(Func):
6148    arg_types = {"this": True, "true": True, "false": False}
arg_types = {'this': True, 'true': True, 'false': False}
key = 'nvl2'
class Normalize(Func):
6151class Normalize(Func):
6152    arg_types = {"this": True, "form": False}
arg_types = {'this': True, 'form': False}
key = 'normalize'
class Overlay(Func):
6155class Overlay(Func):
6156    arg_types = {"this": True, "expression": True, "from": True, "for": False}
arg_types = {'this': True, 'expression': True, 'from': True, 'for': False}
key = 'overlay'
class Predict(Func):
6160class Predict(Func):
6161    arg_types = {"this": True, "expression": True, "params_struct": False}
arg_types = {'this': True, 'expression': True, 'params_struct': False}
key = 'predict'
class Pow(Binary, Func):
6164class Pow(Binary, Func):
6165    _sql_names = ["POWER", "POW"]
key = 'pow'
class PercentileCont(AggFunc):
6168class PercentileCont(AggFunc):
6169    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'percentilecont'
class PercentileDisc(AggFunc):
6172class PercentileDisc(AggFunc):
6173    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'percentiledisc'
class Quantile(AggFunc):
6176class Quantile(AggFunc):
6177    arg_types = {"this": True, "quantile": True}
arg_types = {'this': True, 'quantile': True}
key = 'quantile'
class ApproxQuantile(Quantile):
6180class ApproxQuantile(Quantile):
6181    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
arg_types = {'this': True, 'quantile': True, 'accuracy': False, 'weight': False}
key = 'approxquantile'
class Quarter(Func):
6184class Quarter(Func):
6185    pass
key = 'quarter'
class Rand(Func):
6190class Rand(Func):
6191    _sql_names = ["RAND", "RANDOM"]
6192    arg_types = {"this": False, "lower": False, "upper": False}
arg_types = {'this': False, 'lower': False, 'upper': False}
key = 'rand'
class Randn(Func):
6195class Randn(Func):
6196    arg_types = {"this": False}
arg_types = {'this': False}
key = 'randn'
class RangeN(Func):
6199class RangeN(Func):
6200    arg_types = {"this": True, "expressions": True, "each": False}
arg_types = {'this': True, 'expressions': True, 'each': False}
key = 'rangen'
class ReadCSV(Func):
6203class ReadCSV(Func):
6204    _sql_names = ["READ_CSV"]
6205    is_var_len_args = True
6206    arg_types = {"this": True, "expressions": False}
is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
key = 'readcsv'
class Reduce(Func):
6209class Reduce(Func):
6210    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
arg_types = {'this': True, 'initial': True, 'merge': True, 'finish': False}
key = 'reduce'
class RegexpExtract(Func):
6213class RegexpExtract(Func):
6214    arg_types = {
6215        "this": True,
6216        "expression": True,
6217        "position": False,
6218        "occurrence": False,
6219        "parameters": False,
6220        "group": False,
6221    }
arg_types = {'this': True, 'expression': True, 'position': False, 'occurrence': False, 'parameters': False, 'group': False}
key = 'regexpextract'
class RegexpReplace(Func):
6224class RegexpReplace(Func):
6225    arg_types = {
6226        "this": True,
6227        "expression": True,
6228        "replacement": False,
6229        "position": False,
6230        "occurrence": False,
6231        "modifiers": False,
6232    }
arg_types = {'this': True, 'expression': True, 'replacement': False, 'position': False, 'occurrence': False, 'modifiers': False}
key = 'regexpreplace'
class RegexpLike(Binary, Func):
6235class RegexpLike(Binary, Func):
6236    arg_types = {"this": True, "expression": True, "flag": False}
arg_types = {'this': True, 'expression': True, 'flag': False}
key = 'regexplike'
class RegexpILike(Binary, Func):
6239class RegexpILike(Binary, Func):
6240    arg_types = {"this": True, "expression": True, "flag": False}
arg_types = {'this': True, 'expression': True, 'flag': False}
key = 'regexpilike'
class RegexpSplit(Func):
6245class RegexpSplit(Func):
6246    arg_types = {"this": True, "expression": True, "limit": False}
arg_types = {'this': True, 'expression': True, 'limit': False}
key = 'regexpsplit'
class Repeat(Func):
6249class Repeat(Func):
6250    arg_types = {"this": True, "times": True}
arg_types = {'this': True, 'times': True}
key = 'repeat'
class Round(Func):
6255class Round(Func):
6256    arg_types = {"this": True, "decimals": False, "truncate": False}
arg_types = {'this': True, 'decimals': False, 'truncate': False}
key = 'round'
class RowNumber(Func):
6259class RowNumber(Func):
6260    arg_types: t.Dict[str, t.Any] = {}
arg_types: Dict[str, Any] = {}
key = 'rownumber'
class SafeDivide(Func):
6263class SafeDivide(Func):
6264    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'safedivide'
class SHA(Func):
6267class SHA(Func):
6268    _sql_names = ["SHA", "SHA1"]
key = 'sha'
class SHA2(Func):
6271class SHA2(Func):
6272    _sql_names = ["SHA2"]
6273    arg_types = {"this": True, "length": False}
arg_types = {'this': True, 'length': False}
key = 'sha2'
class Sign(Func):
6276class Sign(Func):
6277    _sql_names = ["SIGN", "SIGNUM"]
key = 'sign'
class SortArray(Func):
6280class SortArray(Func):
6281    arg_types = {"this": True, "asc": False}
arg_types = {'this': True, 'asc': False}
key = 'sortarray'
class Split(Func):
6284class Split(Func):
6285    arg_types = {"this": True, "expression": True, "limit": False}
arg_types = {'this': True, 'expression': True, 'limit': False}
key = 'split'
class SplitPart(Func):
6289class SplitPart(Func):
6290    arg_types = {"this": True, "delimiter": True, "part_index": True}
arg_types = {'this': True, 'delimiter': True, 'part_index': True}
key = 'splitpart'
class Substring(Func):
6295class Substring(Func):
6296    _sql_names = ["SUBSTRING", "SUBSTR"]
6297    arg_types = {"this": True, "start": False, "length": False}
arg_types = {'this': True, 'start': False, 'length': False}
key = 'substring'
class StandardHash(Func):
6300class StandardHash(Func):
6301    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'standardhash'
class StartsWith(Func):
6304class StartsWith(Func):
6305    _sql_names = ["STARTS_WITH", "STARTSWITH"]
6306    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'startswith'
class StrPosition(Func):
6309class StrPosition(Func):
6310    arg_types = {
6311        "this": True,
6312        "substr": True,
6313        "position": False,
6314        "instance": False,
6315    }
arg_types = {'this': True, 'substr': True, 'position': False, 'instance': False}
key = 'strposition'
class StrToDate(Func):
6318class StrToDate(Func):
6319    arg_types = {"this": True, "format": False, "safe": False}
arg_types = {'this': True, 'format': False, 'safe': False}
key = 'strtodate'
class StrToTime(Func):
6322class StrToTime(Func):
6323    arg_types = {"this": True, "format": True, "zone": False, "safe": False}
arg_types = {'this': True, 'format': True, 'zone': False, 'safe': False}
key = 'strtotime'
class StrToUnix(Func):
6328class StrToUnix(Func):
6329    arg_types = {"this": False, "format": False}
arg_types = {'this': False, 'format': False}
key = 'strtounix'
class StrToMap(Func):
6334class StrToMap(Func):
6335    arg_types = {
6336        "this": True,
6337        "pair_delim": False,
6338        "key_value_delim": False,
6339        "duplicate_resolution_callback": False,
6340    }
arg_types = {'this': True, 'pair_delim': False, 'key_value_delim': False, 'duplicate_resolution_callback': False}
key = 'strtomap'
class NumberToStr(Func):
6343class NumberToStr(Func):
6344    arg_types = {"this": True, "format": True, "culture": False}
arg_types = {'this': True, 'format': True, 'culture': False}
key = 'numbertostr'
class FromBase(Func):
6347class FromBase(Func):
6348    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'frombase'
class Struct(Func):
6351class Struct(Func):
6352    arg_types = {"expressions": False}
6353    is_var_len_args = True
arg_types = {'expressions': False}
is_var_len_args = True
key = 'struct'
class StructExtract(Func):
6356class StructExtract(Func):
6357    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'structextract'
class Stuff(Func):
6362class Stuff(Func):
6363    _sql_names = ["STUFF", "INSERT"]
6364    arg_types = {"this": True, "start": True, "length": True, "expression": True}
arg_types = {'this': True, 'start': True, 'length': True, 'expression': True}
key = 'stuff'
class Sum(AggFunc):
6367class Sum(AggFunc):
6368    pass
key = 'sum'
class Sqrt(Func):
6371class Sqrt(Func):
6372    pass
key = 'sqrt'
class Stddev(AggFunc):
6375class Stddev(AggFunc):
6376    _sql_names = ["STDDEV", "STDEV"]
key = 'stddev'
class StddevPop(AggFunc):
6379class StddevPop(AggFunc):
6380    pass
key = 'stddevpop'
class StddevSamp(AggFunc):
6383class StddevSamp(AggFunc):
6384    pass
key = 'stddevsamp'
class Time(Func):
6388class Time(Func):
6389    arg_types = {"this": False, "zone": False}
arg_types = {'this': False, 'zone': False}
key = 'time'
class TimeToStr(Func):
6392class TimeToStr(Func):
6393    arg_types = {"this": True, "format": True, "culture": False, "zone": False}
arg_types = {'this': True, 'format': True, 'culture': False, 'zone': False}
key = 'timetostr'
class TimeToTimeStr(Func):
6396class TimeToTimeStr(Func):
6397    pass
key = 'timetotimestr'
class TimeToUnix(Func):
6400class TimeToUnix(Func):
6401    pass
key = 'timetounix'
class TimeStrToDate(Func):
6404class TimeStrToDate(Func):
6405    pass
key = 'timestrtodate'
class TimeStrToTime(Func):
6408class TimeStrToTime(Func):
6409    arg_types = {"this": True, "zone": False}
arg_types = {'this': True, 'zone': False}
key = 'timestrtotime'
class TimeStrToUnix(Func):
6412class TimeStrToUnix(Func):
6413    pass
key = 'timestrtounix'
class Trim(Func):
6416class Trim(Func):
6417    arg_types = {
6418        "this": True,
6419        "expression": False,
6420        "position": False,
6421        "collation": False,
6422    }
arg_types = {'this': True, 'expression': False, 'position': False, 'collation': False}
key = 'trim'
class TsOrDsAdd(Func, TimeUnit):
6425class TsOrDsAdd(Func, TimeUnit):
6426    # return_type is used to correctly cast the arguments of this expression when transpiling it
6427    arg_types = {"this": True, "expression": True, "unit": False, "return_type": False}
6428
6429    @property
6430    def return_type(self) -> DataType:
6431        return DataType.build(self.args.get("return_type") or DataType.Type.DATE)
arg_types = {'this': True, 'expression': True, 'unit': False, 'return_type': False}
return_type: DataType
6429    @property
6430    def return_type(self) -> DataType:
6431        return DataType.build(self.args.get("return_type") or DataType.Type.DATE)
key = 'tsordsadd'
class TsOrDsDiff(Func, TimeUnit):
6434class TsOrDsDiff(Func, TimeUnit):
6435    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'tsordsdiff'
class TsOrDsToDateStr(Func):
6438class TsOrDsToDateStr(Func):
6439    pass
key = 'tsordstodatestr'
class TsOrDsToDate(Func):
6442class TsOrDsToDate(Func):
6443    arg_types = {"this": True, "format": False, "safe": False}
arg_types = {'this': True, 'format': False, 'safe': False}
key = 'tsordstodate'
class TsOrDsToTime(Func):
6446class TsOrDsToTime(Func):
6447    pass
key = 'tsordstotime'
class TsOrDsToTimestamp(Func):
6450class TsOrDsToTimestamp(Func):
6451    pass
key = 'tsordstotimestamp'
class TsOrDiToDi(Func):
6454class TsOrDiToDi(Func):
6455    pass
key = 'tsorditodi'
class Unhex(Func):
6458class Unhex(Func):
6459    pass
key = 'unhex'
class UnixDate(Func):
6463class UnixDate(Func):
6464    pass
key = 'unixdate'
class UnixToStr(Func):
6467class UnixToStr(Func):
6468    arg_types = {"this": True, "format": False}
arg_types = {'this': True, 'format': False}
key = 'unixtostr'
class UnixToTime(Func):
6473class UnixToTime(Func):
6474    arg_types = {
6475        "this": True,
6476        "scale": False,
6477        "zone": False,
6478        "hours": False,
6479        "minutes": False,
6480        "format": False,
6481    }
6482
6483    SECONDS = Literal.number(0)
6484    DECIS = Literal.number(1)
6485    CENTIS = Literal.number(2)
6486    MILLIS = Literal.number(3)
6487    DECIMILLIS = Literal.number(4)
6488    CENTIMILLIS = Literal.number(5)
6489    MICROS = Literal.number(6)
6490    DECIMICROS = Literal.number(7)
6491    CENTIMICROS = Literal.number(8)
6492    NANOS = Literal.number(9)
arg_types = {'this': True, 'scale': False, 'zone': False, 'hours': False, 'minutes': False, 'format': False}
SECONDS = Literal(this=0, is_string=False)
DECIS = Literal(this=1, is_string=False)
CENTIS = Literal(this=2, is_string=False)
MILLIS = Literal(this=3, is_string=False)
DECIMILLIS = Literal(this=4, is_string=False)
CENTIMILLIS = Literal(this=5, is_string=False)
MICROS = Literal(this=6, is_string=False)
DECIMICROS = Literal(this=7, is_string=False)
CENTIMICROS = Literal(this=8, is_string=False)
NANOS = Literal(this=9, is_string=False)
key = 'unixtotime'
class UnixToTimeStr(Func):
6495class UnixToTimeStr(Func):
6496    pass
key = 'unixtotimestr'
class Uuid(Func):
6499class Uuid(Func):
6500    _sql_names = ["UUID", "GEN_RANDOM_UUID", "GENERATE_UUID", "UUID_STRING"]
6501
6502    arg_types = {"this": False, "name": False}
arg_types = {'this': False, 'name': False}
key = 'uuid'
class TimestampFromParts(Func):
6505class TimestampFromParts(Func):
6506    _sql_names = ["TIMESTAMP_FROM_PARTS", "TIMESTAMPFROMPARTS"]
6507    arg_types = {
6508        "year": True,
6509        "month": True,
6510        "day": True,
6511        "hour": True,
6512        "min": True,
6513        "sec": True,
6514        "nano": False,
6515        "zone": False,
6516        "milli": False,
6517    }
arg_types = {'year': True, 'month': True, 'day': True, 'hour': True, 'min': True, 'sec': True, 'nano': False, 'zone': False, 'milli': False}
key = 'timestampfromparts'
class Upper(Func):
6520class Upper(Func):
6521    _sql_names = ["UPPER", "UCASE"]
key = 'upper'
class Corr(Binary, AggFunc):
6524class Corr(Binary, AggFunc):
6525    pass
key = 'corr'
class Variance(AggFunc):
6528class Variance(AggFunc):
6529    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
key = 'variance'
class VariancePop(AggFunc):
6532class VariancePop(AggFunc):
6533    _sql_names = ["VARIANCE_POP", "VAR_POP"]
key = 'variancepop'
class CovarSamp(Binary, AggFunc):
6536class CovarSamp(Binary, AggFunc):
6537    pass
key = 'covarsamp'
class CovarPop(Binary, AggFunc):
6540class CovarPop(Binary, AggFunc):
6541    pass
key = 'covarpop'
class Week(Func):
6544class Week(Func):
6545    arg_types = {"this": True, "mode": False}
arg_types = {'this': True, 'mode': False}
key = 'week'
class XMLTable(Func):
6548class XMLTable(Func):
6549    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
arg_types = {'this': True, 'passing': False, 'columns': False, 'by_ref': False}
key = 'xmltable'
class Year(Func):
6552class Year(Func):
6553    pass
key = 'year'
class Use(Expression):
6556class Use(Expression):
6557    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'use'
class Merge(DML):
6560class Merge(DML):
6561    arg_types = {
6562        "this": True,
6563        "using": True,
6564        "on": True,
6565        "expressions": True,
6566        "with": False,
6567        "returning": False,
6568    }
arg_types = {'this': True, 'using': True, 'on': True, 'expressions': True, 'with': False, 'returning': False}
key = 'merge'
class When(Func):
6571class When(Func):
6572    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
arg_types = {'matched': True, 'source': False, 'condition': False, 'then': True}
key = 'when'
class NextValueFor(Func):
6577class NextValueFor(Func):
6578    arg_types = {"this": True, "order": False}
arg_types = {'this': True, 'order': False}
key = 'nextvaluefor'
class Semicolon(Expression):
6583class Semicolon(Expression):
6584    arg_types = {}
arg_types = {}
key = 'semicolon'
ALL_FUNCTIONS = [<class 'Abs'>, <class 'AddMonths'>, <class 'AnonymousAggFunc'>, <class 'AnyValue'>, <class 'Apply'>, <class 'ApproxDistinct'>, <class 'ApproxQuantile'>, <class 'ApproxTopK'>, <class 'ArgMax'>, <class 'ArgMin'>, <class 'Array'>, <class 'ArrayAgg'>, <class 'ArrayAll'>, <class 'ArrayAny'>, <class 'ArrayConcat'>, <class 'ArrayConstructCompact'>, <class 'ArrayContains'>, <class 'ArrayContainsAll'>, <class 'ArrayFilter'>, <class 'ArrayOverlaps'>, <class 'ArraySize'>, <class 'ArraySort'>, <class 'ArraySum'>, <class 'ArrayToString'>, <class 'ArrayUnionAgg'>, <class 'ArrayUniqueAgg'>, <class 'Avg'>, <class 'Case'>, <class 'Cast'>, <class 'CastToStrType'>, <class 'Cbrt'>, <class 'Ceil'>, <class 'Chr'>, <class 'Coalesce'>, <class 'Collate'>, <class 'Columns'>, <class 'CombinedAggFunc'>, <class 'CombinedParameterizedAgg'>, <class 'Concat'>, <class 'ConcatWs'>, <class 'ConnectByRoot'>, <class 'Convert'>, <class 'ConvertTimezone'>, <class 'Corr'>, <class 'Count'>, <class 'CountIf'>, <class 'CovarPop'>, <class 'CovarSamp'>, <class 'CurrentDate'>, <class 'CurrentDatetime'>, <class 'CurrentTime'>, <class 'CurrentTimestamp'>, <class 'CurrentUser'>, <class 'Date'>, <class 'DateAdd'>, <class 'DateDiff'>, <class 'DateFromParts'>, <class 'DateStrToDate'>, <class 'DateSub'>, <class 'DateToDateStr'>, <class 'DateToDi'>, <class 'DateTrunc'>, <class 'Datetime'>, <class 'DatetimeAdd'>, <class 'DatetimeDiff'>, <class 'DatetimeSub'>, <class 'DatetimeTrunc'>, <class 'Day'>, <class 'DayOfMonth'>, <class 'DayOfWeek'>, <class 'DayOfWeekIso'>, <class 'DayOfYear'>, <class 'Decode'>, <class 'DiToDate'>, <class 'Encode'>, <class 'Exp'>, <class 'Explode'>, <class 'ExplodeOuter'>, <class 'ExplodingGenerateSeries'>, <class 'Extract'>, <class 'First'>, <class 'FirstValue'>, <class 'Flatten'>, <class 'Floor'>, <class 'FromBase'>, <class 'FromBase64'>, <class 'FromISO8601Timestamp'>, <class 'GapFill'>, <class 'GenerateDateArray'>, <class 'GenerateSeries'>, <class 'GenerateTimestampArray'>, <class 'Greatest'>, <class 'GroupConcat'>, <class 'Hex'>, <class 'Hll'>, <class 'If'>, <class 'Initcap'>, <class 'Inline'>, <class 'IsInf'>, <class 'IsNan'>, <class 'JSONArray'>, <class 'JSONArrayAgg'>, <class 'JSONArrayContains'>, <class 'JSONBContains'>, <class 'JSONBExtract'>, <class 'JSONBExtractScalar'>, <class 'JSONExists'>, <class 'JSONExtract'>, <class 'JSONExtractScalar'>, <class 'JSONFormat'>, <class 'JSONObject'>, <class 'JSONObjectAgg'>, <class 'JSONTable'>, <class 'Lag'>, <class 'Last'>, <class 'LastDay'>, <class 'LastValue'>, <class 'Lead'>, <class 'Least'>, <class 'Left'>, <class 'Length'>, <class 'Levenshtein'>, <class 'List'>, <class 'Ln'>, <class 'Log'>, <class 'LogicalAnd'>, <class 'LogicalOr'>, <class 'Lower'>, <class 'LowerHex'>, <class 'MD5'>, <class 'MD5Digest'>, <class 'Map'>, <class 'MapFromEntries'>, <class 'MatchAgainst'>, <class 'Max'>, <class 'Min'>, <class 'Month'>, <class 'MonthsBetween'>, <class 'NextValueFor'>, <class 'Normalize'>, <class 'NthValue'>, <class 'Nullif'>, <class 'NumberToStr'>, <class 'Nvl2'>, <class 'ObjectInsert'>, <class 'OpenJSON'>, <class 'Overlay'>, <class 'Pad'>, <class 'ParameterizedAgg'>, <class 'ParseJSON'>, <class 'PercentileCont'>, <class 'PercentileDisc'>, <class 'Posexplode'>, <class 'PosexplodeOuter'>, <class 'Pow'>, <class 'Predict'>, <class 'Quantile'>, <class 'Quarter'>, <class 'Rand'>, <class 'Randn'>, <class 'RangeN'>, <class 'ReadCSV'>, <class 'Reduce'>, <class 'RegexpExtract'>, <class 'RegexpILike'>, <class 'RegexpLike'>, <class 'RegexpReplace'>, <class 'RegexpSplit'>, <class 'Repeat'>, <class 'Right'>, <class 'Round'>, <class 'RowNumber'>, <class 'SHA'>, <class 'SHA2'>, <class 'SafeDivide'>, <class 'Sign'>, <class 'SortArray'>, <class 'Split'>, <class 'SplitPart'>, <class 'Sqrt'>, <class 'StandardHash'>, <class 'StarMap'>, <class 'StartsWith'>, <class 'Stddev'>, <class 'StddevPop'>, <class 'StddevSamp'>, <class 'StrPosition'>, <class 'StrToDate'>, <class 'StrToMap'>, <class 'StrToTime'>, <class 'StrToUnix'>, <class 'String'>, <class 'StringToArray'>, <class 'Struct'>, <class 'StructExtract'>, <class 'Stuff'>, <class 'Substring'>, <class 'Sum'>, <class 'Time'>, <class 'TimeAdd'>, <class 'TimeDiff'>, <class 'TimeFromParts'>, <class 'TimeStrToDate'>, <class 'TimeStrToTime'>, <class 'TimeStrToUnix'>, <class 'TimeSub'>, <class 'TimeToStr'>, <class 'TimeToTimeStr'>, <class 'TimeToUnix'>, <class 'TimeTrunc'>, <class 'Timestamp'>, <class 'TimestampAdd'>, <class 'TimestampDiff'>, <class 'TimestampFromParts'>, <class 'TimestampSub'>, <class 'TimestampTrunc'>, <class 'ToArray'>, <class 'ToBase64'>, <class 'ToChar'>, <class 'ToDays'>, <class 'ToDouble'>, <class 'ToMap'>, <class 'ToNumber'>, <class 'Transform'>, <class 'Trim'>, <class 'Try'>, <class 'TryCast'>, <class 'TsOrDiToDi'>, <class 'TsOrDsAdd'>, <class 'TsOrDsDiff'>, <class 'TsOrDsToDate'>, <class 'TsOrDsToDateStr'>, <class 'TsOrDsToTime'>, <class 'TsOrDsToTimestamp'>, <class 'Unhex'>, <class 'UnixDate'>, <class 'UnixToStr'>, <class 'UnixToTime'>, <class 'UnixToTimeStr'>, <class 'Unnest'>, <class 'Upper'>, <class 'Uuid'>, <class 'VarMap'>, <class 'Variance'>, <class 'VariancePop'>, <class 'Week'>, <class 'WeekOfYear'>, <class 'When'>, <class 'XMLTable'>, <class 'Xor'>, <class 'Year'>]
FUNCTION_BY_NAME = {'ABS': <class 'Abs'>, 'ADD_MONTHS': <class 'AddMonths'>, 'ANONYMOUS_AGG_FUNC': <class 'AnonymousAggFunc'>, 'ANY_VALUE': <class 'AnyValue'>, 'APPLY': <class 'Apply'>, 'APPROX_DISTINCT': <class 'ApproxDistinct'>, 'APPROX_COUNT_DISTINCT': <class 'ApproxDistinct'>, 'APPROX_QUANTILE': <class 'ApproxQuantile'>, 'APPROX_TOP_K': <class 'ApproxTopK'>, 'ARG_MAX': <class 'ArgMax'>, 'ARGMAX': <class 'ArgMax'>, 'MAX_BY': <class 'ArgMax'>, 'ARG_MIN': <class 'ArgMin'>, 'ARGMIN': <class 'ArgMin'>, 'MIN_BY': <class 'ArgMin'>, 'ARRAY': <class 'Array'>, 'ARRAY_AGG': <class 'ArrayAgg'>, 'ARRAY_ALL': <class 'ArrayAll'>, 'ARRAY_ANY': <class 'ArrayAny'>, 'ARRAY_CONCAT': <class 'ArrayConcat'>, 'ARRAY_CAT': <class 'ArrayConcat'>, 'ARRAY_CONSTRUCT_COMPACT': <class 'ArrayConstructCompact'>, 'ARRAY_CONTAINS': <class 'ArrayContains'>, 'ARRAY_HAS': <class 'ArrayContains'>, 'ARRAY_CONTAINS_ALL': <class 'ArrayContainsAll'>, 'ARRAY_HAS_ALL': <class 'ArrayContainsAll'>, 'FILTER': <class 'ArrayFilter'>, 'ARRAY_FILTER': <class 'ArrayFilter'>, 'ARRAY_OVERLAPS': <class 'ArrayOverlaps'>, 'ARRAY_SIZE': <class 'ArraySize'>, 'ARRAY_LENGTH': <class 'ArraySize'>, 'ARRAY_SORT': <class 'ArraySort'>, 'ARRAY_SUM': <class 'ArraySum'>, 'ARRAY_TO_STRING': <class 'ArrayToString'>, 'ARRAY_JOIN': <class 'ArrayToString'>, 'ARRAY_UNION_AGG': <class 'ArrayUnionAgg'>, 'ARRAY_UNIQUE_AGG': <class 'ArrayUniqueAgg'>, 'AVG': <class 'Avg'>, 'CASE': <class 'Case'>, 'CAST': <class 'Cast'>, 'CAST_TO_STR_TYPE': <class 'CastToStrType'>, 'CBRT': <class 'Cbrt'>, 'CEIL': <class 'Ceil'>, 'CEILING': <class 'Ceil'>, 'CHR': <class 'Chr'>, 'CHAR': <class 'Chr'>, 'COALESCE': <class 'Coalesce'>, 'IFNULL': <class 'Coalesce'>, 'NVL': <class 'Coalesce'>, 'COLLATE': <class 'Collate'>, 'COLUMNS': <class 'Columns'>, 'COMBINED_AGG_FUNC': <class 'CombinedAggFunc'>, 'COMBINED_PARAMETERIZED_AGG': <class 'CombinedParameterizedAgg'>, 'CONCAT': <class 'Concat'>, 'CONCAT_WS': <class 'ConcatWs'>, 'CONNECT_BY_ROOT': <class 'ConnectByRoot'>, 'CONVERT': <class 'Convert'>, 'CONVERT_TIMEZONE': <class 'ConvertTimezone'>, 'CORR': <class 'Corr'>, 'COUNT': <class 'Count'>, 'COUNT_IF': <class 'CountIf'>, 'COUNTIF': <class 'CountIf'>, 'COVAR_POP': <class 'CovarPop'>, 'COVAR_SAMP': <class 'CovarSamp'>, 'CURRENT_DATE': <class 'CurrentDate'>, 'CURRENT_DATETIME': <class 'CurrentDatetime'>, 'CURRENT_TIME': <class 'CurrentTime'>, 'CURRENT_TIMESTAMP': <class 'CurrentTimestamp'>, 'CURRENT_USER': <class 'CurrentUser'>, 'DATE': <class 'Date'>, 'DATE_ADD': <class 'DateAdd'>, 'DATEDIFF': <class 'DateDiff'>, 'DATE_DIFF': <class 'DateDiff'>, 'DATE_FROM_PARTS': <class 'DateFromParts'>, 'DATEFROMPARTS': <class 'DateFromParts'>, 'DATE_STR_TO_DATE': <class 'DateStrToDate'>, 'DATE_SUB': <class 'DateSub'>, 'DATE_TO_DATE_STR': <class 'DateToDateStr'>, 'DATE_TO_DI': <class 'DateToDi'>, 'DATE_TRUNC': <class 'DateTrunc'>, 'DATETIME': <class 'Datetime'>, 'DATETIME_ADD': <class 'DatetimeAdd'>, 'DATETIME_DIFF': <class 'DatetimeDiff'>, 'DATETIME_SUB': <class 'DatetimeSub'>, 'DATETIME_TRUNC': <class 'DatetimeTrunc'>, 'DAY': <class 'Day'>, 'DAY_OF_MONTH': <class 'DayOfMonth'>, 'DAYOFMONTH': <class 'DayOfMonth'>, 'DAY_OF_WEEK': <class 'DayOfWeek'>, 'DAYOFWEEK': <class 'DayOfWeek'>, 'DAYOFWEEK_ISO': <class 'DayOfWeekIso'>, 'ISODOW': <class 'DayOfWeekIso'>, 'DAY_OF_YEAR': <class 'DayOfYear'>, 'DAYOFYEAR': <class 'DayOfYear'>, 'DECODE': <class 'Decode'>, 'DI_TO_DATE': <class 'DiToDate'>, 'ENCODE': <class 'Encode'>, 'EXP': <class 'Exp'>, 'EXPLODE': <class 'Explode'>, 'EXPLODE_OUTER': <class 'ExplodeOuter'>, 'EXPLODING_GENERATE_SERIES': <class 'ExplodingGenerateSeries'>, 'EXTRACT': <class 'Extract'>, 'FIRST': <class 'First'>, 'FIRST_VALUE': <class 'FirstValue'>, 'FLATTEN': <class 'Flatten'>, 'FLOOR': <class 'Floor'>, 'FROM_BASE': <class 'FromBase'>, 'FROM_BASE64': <class 'FromBase64'>, 'FROM_ISO8601_TIMESTAMP': <class 'FromISO8601Timestamp'>, 'GAP_FILL': <class 'GapFill'>, 'GENERATE_DATE_ARRAY': <class 'GenerateDateArray'>, 'GENERATE_SERIES': <class 'GenerateSeries'>, 'GENERATE_TIMESTAMP_ARRAY': <class 'GenerateTimestampArray'>, 'GREATEST': <class 'Greatest'>, 'GROUP_CONCAT': <class 'GroupConcat'>, 'HEX': <class 'Hex'>, 'HLL': <class 'Hll'>, 'IF': <class 'If'>, 'IIF': <class 'If'>, 'INITCAP': <class 'Initcap'>, 'INLINE': <class 'Inline'>, 'IS_INF': <class 'IsInf'>, 'ISINF': <class 'IsInf'>, 'IS_NAN': <class 'IsNan'>, 'ISNAN': <class 'IsNan'>, 'J_S_O_N_ARRAY': <class 'JSONArray'>, 'J_S_O_N_ARRAY_AGG': <class 'JSONArrayAgg'>, 'JSON_ARRAY_CONTAINS': <class 'JSONArrayContains'>, 'JSONB_CONTAINS': <class 'JSONBContains'>, 'JSONB_EXTRACT': <class 'JSONBExtract'>, 'JSONB_EXTRACT_SCALAR': <class 'JSONBExtractScalar'>, 'J_S_O_N_EXISTS': <class 'JSONExists'>, 'JSON_EXTRACT': <class 'JSONExtract'>, 'JSON_EXTRACT_SCALAR': <class 'JSONExtractScalar'>, 'JSON_FORMAT': <class 'JSONFormat'>, 'J_S_O_N_OBJECT': <class 'JSONObject'>, 'J_S_O_N_OBJECT_AGG': <class 'JSONObjectAgg'>, 'J_S_O_N_TABLE': <class 'JSONTable'>, 'LAG': <class 'Lag'>, 'LAST': <class 'Last'>, 'LAST_DAY': <class 'LastDay'>, 'LAST_DAY_OF_MONTH': <class 'LastDay'>, 'LAST_VALUE': <class 'LastValue'>, 'LEAD': <class 'Lead'>, 'LEAST': <class 'Least'>, 'LEFT': <class 'Left'>, 'LENGTH': <class 'Length'>, 'LEN': <class 'Length'>, 'LEVENSHTEIN': <class 'Levenshtein'>, 'LIST': <class 'List'>, 'LN': <class 'Ln'>, 'LOG': <class 'Log'>, 'LOGICAL_AND': <class 'LogicalAnd'>, 'BOOL_AND': <class 'LogicalAnd'>, 'BOOLAND_AGG': <class 'LogicalAnd'>, 'LOGICAL_OR': <class 'LogicalOr'>, 'BOOL_OR': <class 'LogicalOr'>, 'BOOLOR_AGG': <class 'LogicalOr'>, 'LOWER': <class 'Lower'>, 'LCASE': <class 'Lower'>, 'LOWER_HEX': <class 'LowerHex'>, 'MD5': <class 'MD5'>, 'MD5_DIGEST': <class 'MD5Digest'>, 'MAP': <class 'Map'>, 'MAP_FROM_ENTRIES': <class 'MapFromEntries'>, 'MATCH_AGAINST': <class 'MatchAgainst'>, 'MAX': <class 'Max'>, 'MIN': <class 'Min'>, 'MONTH': <class 'Month'>, 'MONTHS_BETWEEN': <class 'MonthsBetween'>, 'NEXT_VALUE_FOR': <class 'NextValueFor'>, 'NORMALIZE': <class 'Normalize'>, 'NTH_VALUE': <class 'NthValue'>, 'NULLIF': <class 'Nullif'>, 'NUMBER_TO_STR': <class 'NumberToStr'>, 'NVL2': <class 'Nvl2'>, 'OBJECT_INSERT': <class 'ObjectInsert'>, 'OPEN_J_S_O_N': <class 'OpenJSON'>, 'OVERLAY': <class 'Overlay'>, 'PAD': <class 'Pad'>, 'PARAMETERIZED_AGG': <class 'ParameterizedAgg'>, 'PARSE_JSON': <class 'ParseJSON'>, 'JSON_PARSE': <class 'ParseJSON'>, 'PERCENTILE_CONT': <class 'PercentileCont'>, 'PERCENTILE_DISC': <class 'PercentileDisc'>, 'POSEXPLODE': <class 'Posexplode'>, 'POSEXPLODE_OUTER': <class 'PosexplodeOuter'>, 'POWER': <class 'Pow'>, 'POW': <class 'Pow'>, 'PREDICT': <class 'Predict'>, 'QUANTILE': <class 'Quantile'>, 'QUARTER': <class 'Quarter'>, 'RAND': <class 'Rand'>, 'RANDOM': <class 'Rand'>, 'RANDN': <class 'Randn'>, 'RANGE_N': <class 'RangeN'>, 'READ_CSV': <class 'ReadCSV'>, 'REDUCE': <class 'Reduce'>, 'REGEXP_EXTRACT': <class 'RegexpExtract'>, 'REGEXP_I_LIKE': <class 'RegexpILike'>, 'REGEXP_LIKE': <class 'RegexpLike'>, 'REGEXP_REPLACE': <class 'RegexpReplace'>, 'REGEXP_SPLIT': <class 'RegexpSplit'>, 'REPEAT': <class 'Repeat'>, 'RIGHT': <class 'Right'>, 'ROUND': <class 'Round'>, 'ROW_NUMBER': <class 'RowNumber'>, 'SHA': <class 'SHA'>, 'SHA1': <class 'SHA'>, 'SHA2': <class 'SHA2'>, 'SAFE_DIVIDE': <class 'SafeDivide'>, 'SIGN': <class 'Sign'>, 'SIGNUM': <class 'Sign'>, 'SORT_ARRAY': <class 'SortArray'>, 'SPLIT': <class 'Split'>, 'SPLIT_PART': <class 'SplitPart'>, 'SQRT': <class 'Sqrt'>, 'STANDARD_HASH': <class 'StandardHash'>, 'STAR_MAP': <class 'StarMap'>, 'STARTS_WITH': <class 'StartsWith'>, 'STARTSWITH': <class 'StartsWith'>, 'STDDEV': <class 'Stddev'>, 'STDEV': <class 'Stddev'>, 'STDDEV_POP': <class 'StddevPop'>, 'STDDEV_SAMP': <class 'StddevSamp'>, 'STR_POSITION': <class 'StrPosition'>, 'STR_TO_DATE': <class 'StrToDate'>, 'STR_TO_MAP': <class 'StrToMap'>, 'STR_TO_TIME': <class 'StrToTime'>, 'STR_TO_UNIX': <class 'StrToUnix'>, 'STRING': <class 'String'>, 'STRING_TO_ARRAY': <class 'StringToArray'>, 'SPLIT_BY_STRING': <class 'StringToArray'>, 'STRUCT': <class 'Struct'>, 'STRUCT_EXTRACT': <class 'StructExtract'>, 'STUFF': <class 'Stuff'>, 'INSERT': <class 'Stuff'>, 'SUBSTRING': <class 'Substring'>, 'SUBSTR': <class 'Substring'>, 'SUM': <class 'Sum'>, 'TIME': <class 'Time'>, 'TIME_ADD': <class 'TimeAdd'>, 'TIME_DIFF': <class 'TimeDiff'>, 'TIME_FROM_PARTS': <class 'TimeFromParts'>, 'TIMEFROMPARTS': <class 'TimeFromParts'>, 'TIME_STR_TO_DATE': <class 'TimeStrToDate'>, 'TIME_STR_TO_TIME': <class 'TimeStrToTime'>, 'TIME_STR_TO_UNIX': <class 'TimeStrToUnix'>, 'TIME_SUB': <class 'TimeSub'>, 'TIME_TO_STR': <class 'TimeToStr'>, 'TIME_TO_TIME_STR': <class 'TimeToTimeStr'>, 'TIME_TO_UNIX': <class 'TimeToUnix'>, 'TIME_TRUNC': <class 'TimeTrunc'>, 'TIMESTAMP': <class 'Timestamp'>, 'TIMESTAMP_ADD': <class 'TimestampAdd'>, 'TIMESTAMPDIFF': <class 'TimestampDiff'>, 'TIMESTAMP_DIFF': <class 'TimestampDiff'>, 'TIMESTAMP_FROM_PARTS': <class 'TimestampFromParts'>, 'TIMESTAMPFROMPARTS': <class 'TimestampFromParts'>, 'TIMESTAMP_SUB': <class 'TimestampSub'>, 'TIMESTAMP_TRUNC': <class 'TimestampTrunc'>, 'TO_ARRAY': <class 'ToArray'>, 'TO_BASE64': <class 'ToBase64'>, 'TO_CHAR': <class 'ToChar'>, 'TO_DAYS': <class 'ToDays'>, 'TO_DOUBLE': <class 'ToDouble'>, 'TO_MAP': <class 'ToMap'>, 'TO_NUMBER': <class 'ToNumber'>, 'TRANSFORM': <class 'Transform'>, 'TRIM': <class 'Trim'>, 'TRY': <class 'Try'>, 'TRY_CAST': <class 'TryCast'>, 'TS_OR_DI_TO_DI': <class 'TsOrDiToDi'>, 'TS_OR_DS_ADD': <class 'TsOrDsAdd'>, 'TS_OR_DS_DIFF': <class 'TsOrDsDiff'>, 'TS_OR_DS_TO_DATE': <class 'TsOrDsToDate'>, 'TS_OR_DS_TO_DATE_STR': <class 'TsOrDsToDateStr'>, 'TS_OR_DS_TO_TIME': <class 'TsOrDsToTime'>, 'TS_OR_DS_TO_TIMESTAMP': <class 'TsOrDsToTimestamp'>, 'UNHEX': <class 'Unhex'>, 'UNIX_DATE': <class 'UnixDate'>, 'UNIX_TO_STR': <class 'UnixToStr'>, 'UNIX_TO_TIME': <class 'UnixToTime'>, 'UNIX_TO_TIME_STR': <class 'UnixToTimeStr'>, 'UNNEST': <class 'Unnest'>, 'UPPER': <class 'Upper'>, 'UCASE': <class 'Upper'>, 'UUID': <class 'Uuid'>, 'GEN_RANDOM_UUID': <class 'Uuid'>, 'GENERATE_UUID': <class 'Uuid'>, 'UUID_STRING': <class 'Uuid'>, 'VAR_MAP': <class 'VarMap'>, 'VARIANCE': <class 'Variance'>, 'VARIANCE_SAMP': <class 'Variance'>, 'VAR_SAMP': <class 'Variance'>, 'VARIANCE_POP': <class 'VariancePop'>, 'VAR_POP': <class 'VariancePop'>, 'WEEK': <class 'Week'>, 'WEEK_OF_YEAR': <class 'WeekOfYear'>, 'WEEKOFYEAR': <class 'WeekOfYear'>, 'WHEN': <class 'When'>, 'X_M_L_TABLE': <class 'XMLTable'>, 'XOR': <class 'Xor'>, 'YEAR': <class 'Year'>}
JSON_PATH_PARTS = [<class 'JSONPathFilter'>, <class 'JSONPathKey'>, <class 'JSONPathRecursive'>, <class 'JSONPathRoot'>, <class 'JSONPathScript'>, <class 'JSONPathSelector'>, <class 'JSONPathSlice'>, <class 'JSONPathSubscript'>, <class 'JSONPathUnion'>, <class 'JSONPathWildcard'>]
PERCENTILES = (<class 'PercentileCont'>, <class 'PercentileDisc'>)
def maybe_parse( sql_or_expression: Union[str, Expression], *, into: Union[str, Type[Expression], Collection[Union[str, Type[Expression]]], NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, prefix: Optional[str] = None, copy: bool = False, **opts) -> Expression:
6624def maybe_parse(
6625    sql_or_expression: ExpOrStr,
6626    *,
6627    into: t.Optional[IntoType] = None,
6628    dialect: DialectType = None,
6629    prefix: t.Optional[str] = None,
6630    copy: bool = False,
6631    **opts,
6632) -> Expression:
6633    """Gracefully handle a possible string or expression.
6634
6635    Example:
6636        >>> maybe_parse("1")
6637        Literal(this=1, is_string=False)
6638        >>> maybe_parse(to_identifier("x"))
6639        Identifier(this=x, quoted=False)
6640
6641    Args:
6642        sql_or_expression: the SQL code string or an expression
6643        into: the SQLGlot Expression to parse into
6644        dialect: the dialect used to parse the input expressions (in the case that an
6645            input expression is a SQL string).
6646        prefix: a string to prefix the sql with before it gets parsed
6647            (automatically includes a space)
6648        copy: whether to copy the expression.
6649        **opts: other options to use to parse the input expressions (again, in the case
6650            that an input expression is a SQL string).
6651
6652    Returns:
6653        Expression: the parsed or given expression.
6654    """
6655    if isinstance(sql_or_expression, Expression):
6656        if copy:
6657            return sql_or_expression.copy()
6658        return sql_or_expression
6659
6660    if sql_or_expression is None:
6661        raise ParseError("SQL cannot be None")
6662
6663    import sqlglot
6664
6665    sql = str(sql_or_expression)
6666    if prefix:
6667        sql = f"{prefix} {sql}"
6668
6669    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)

Gracefully handle a possible string or expression.

Example:
>>> maybe_parse("1")
Literal(this=1, is_string=False)
>>> maybe_parse(to_identifier("x"))
Identifier(this=x, quoted=False)
Arguments:
  • sql_or_expression: the SQL code string or an expression
  • into: the SQLGlot Expression to parse into
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • prefix: a string to prefix the sql with before it gets parsed (automatically includes a space)
  • copy: whether to copy the expression.
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Expression: the parsed or given expression.

def maybe_copy(instance, copy=True):
6680def maybe_copy(instance, copy=True):
6681    return instance.copy() if copy and instance else instance
def union( *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Union:
6916def union(
6917    *expressions: ExpOrStr,
6918    distinct: bool = True,
6919    dialect: DialectType = None,
6920    copy: bool = True,
6921    **opts,
6922) -> Union:
6923    """
6924    Initializes a syntax tree for the `UNION` operation.
6925
6926    Example:
6927        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
6928        'SELECT * FROM foo UNION SELECT * FROM bla'
6929
6930    Args:
6931        expressions: the SQL code strings, corresponding to the `UNION`'s operands.
6932            If `Expression` instances are passed, they will be used as-is.
6933        distinct: set the DISTINCT flag if and only if this is true.
6934        dialect: the dialect used to parse the input expression.
6935        copy: whether to copy the expression.
6936        opts: other options to use to parse the input expressions.
6937
6938    Returns:
6939        The new Union instance.
6940    """
6941    assert len(expressions) >= 2, "At least two expressions are required by `union`."
6942    return _apply_set_operation(
6943        *expressions, set_operation=Union, distinct=distinct, dialect=dialect, copy=copy, **opts
6944    )

Initializes a syntax tree for the UNION operation.

Example:
>>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings, corresponding to the UNION's operands. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union instance.

def intersect( *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Intersect:
6947def intersect(
6948    *expressions: ExpOrStr,
6949    distinct: bool = True,
6950    dialect: DialectType = None,
6951    copy: bool = True,
6952    **opts,
6953) -> Intersect:
6954    """
6955    Initializes a syntax tree for the `INTERSECT` operation.
6956
6957    Example:
6958        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
6959        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
6960
6961    Args:
6962        expressions: the SQL code strings, corresponding to the `INTERSECT`'s operands.
6963            If `Expression` instances are passed, they will be used as-is.
6964        distinct: set the DISTINCT flag if and only if this is true.
6965        dialect: the dialect used to parse the input expression.
6966        copy: whether to copy the expression.
6967        opts: other options to use to parse the input expressions.
6968
6969    Returns:
6970        The new Intersect instance.
6971    """
6972    assert len(expressions) >= 2, "At least two expressions are required by `intersect`."
6973    return _apply_set_operation(
6974        *expressions, set_operation=Intersect, distinct=distinct, dialect=dialect, copy=copy, **opts
6975    )

Initializes a syntax tree for the INTERSECT operation.

Example:
>>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings, corresponding to the INTERSECT's operands. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect instance.

def except_( *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Except:
6978def except_(
6979    *expressions: ExpOrStr,
6980    distinct: bool = True,
6981    dialect: DialectType = None,
6982    copy: bool = True,
6983    **opts,
6984) -> Except:
6985    """
6986    Initializes a syntax tree for the `EXCEPT` operation.
6987
6988    Example:
6989        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
6990        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
6991
6992    Args:
6993        expressions: the SQL code strings, corresponding to the `EXCEPT`'s operands.
6994            If `Expression` instances are passed, they will be used as-is.
6995        distinct: set the DISTINCT flag if and only if this is true.
6996        dialect: the dialect used to parse the input expression.
6997        copy: whether to copy the expression.
6998        opts: other options to use to parse the input expressions.
6999
7000    Returns:
7001        The new Except instance.
7002    """
7003    assert len(expressions) >= 2, "At least two expressions are required by `except_`."
7004    return _apply_set_operation(
7005        *expressions, set_operation=Except, distinct=distinct, dialect=dialect, copy=copy, **opts
7006    )

Initializes a syntax tree for the EXCEPT operation.

Example:
>>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings, corresponding to the EXCEPT's operands. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except instance.

def select( *expressions: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Select:
7009def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
7010    """
7011    Initializes a syntax tree from one or multiple SELECT expressions.
7012
7013    Example:
7014        >>> select("col1", "col2").from_("tbl").sql()
7015        'SELECT col1, col2 FROM tbl'
7016
7017    Args:
7018        *expressions: the SQL code string to parse as the expressions of a
7019            SELECT statement. If an Expression instance is passed, this is used as-is.
7020        dialect: the dialect used to parse the input expressions (in the case that an
7021            input expression is a SQL string).
7022        **opts: other options to use to parse the input expressions (again, in the case
7023            that an input expression is a SQL string).
7024
7025    Returns:
7026        Select: the syntax tree for the SELECT statement.
7027    """
7028    return Select().select(*expressions, dialect=dialect, **opts)

Initializes a syntax tree from one or multiple SELECT expressions.

Example:
>>> select("col1", "col2").from_("tbl").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expressions: the SQL code string to parse as the expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def from_( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Select:
7031def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
7032    """
7033    Initializes a syntax tree from a FROM expression.
7034
7035    Example:
7036        >>> from_("tbl").select("col1", "col2").sql()
7037        'SELECT col1, col2 FROM tbl'
7038
7039    Args:
7040        *expression: the SQL code string to parse as the FROM expressions of a
7041            SELECT statement. If an Expression instance is passed, this is used as-is.
7042        dialect: the dialect used to parse the input expression (in the case that the
7043            input expression is a SQL string).
7044        **opts: other options to use to parse the input expressions (again, in the case
7045            that the input expression is a SQL string).
7046
7047    Returns:
7048        Select: the syntax tree for the SELECT statement.
7049    """
7050    return Select().from_(expression, dialect=dialect, **opts)

Initializes a syntax tree from a FROM expression.

Example:
>>> from_("tbl").select("col1", "col2").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expression: the SQL code string to parse as the FROM expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def update( table: str | Table, properties: Optional[dict] = None, where: Union[str, Expression, NoneType] = None, from_: Union[str, Expression, NoneType] = None, with_: Optional[Dict[str, Union[str, Expression]]] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Update:
7053def update(
7054    table: str | Table,
7055    properties: t.Optional[dict] = None,
7056    where: t.Optional[ExpOrStr] = None,
7057    from_: t.Optional[ExpOrStr] = None,
7058    with_: t.Optional[t.Dict[str, ExpOrStr]] = None,
7059    dialect: DialectType = None,
7060    **opts,
7061) -> Update:
7062    """
7063    Creates an update statement.
7064
7065    Example:
7066        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz_cte", where="baz_cte.id > 1 and my_table.id = baz_cte.id", with_={"baz_cte": "SELECT id FROM foo"}).sql()
7067        "WITH baz_cte AS (SELECT id FROM foo) UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz_cte WHERE baz_cte.id > 1 AND my_table.id = baz_cte.id"
7068
7069    Args:
7070        properties: dictionary of properties to SET which are
7071            auto converted to sql objects eg None -> NULL
7072        where: sql conditional parsed into a WHERE statement
7073        from_: sql statement parsed into a FROM statement
7074        with_: dictionary of CTE aliases / select statements to include in a WITH clause.
7075        dialect: the dialect used to parse the input expressions.
7076        **opts: other options to use to parse the input expressions.
7077
7078    Returns:
7079        Update: the syntax tree for the UPDATE statement.
7080    """
7081    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
7082    if properties:
7083        update_expr.set(
7084            "expressions",
7085            [
7086                EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
7087                for k, v in properties.items()
7088            ],
7089        )
7090    if from_:
7091        update_expr.set(
7092            "from",
7093            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
7094        )
7095    if isinstance(where, Condition):
7096        where = Where(this=where)
7097    if where:
7098        update_expr.set(
7099            "where",
7100            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
7101        )
7102    if with_:
7103        cte_list = [
7104            alias_(CTE(this=maybe_parse(qry, dialect=dialect, **opts)), alias, table=True)
7105            for alias, qry in with_.items()
7106        ]
7107        update_expr.set(
7108            "with",
7109            With(expressions=cte_list),
7110        )
7111    return update_expr

Creates an update statement.

Example:
>>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz_cte", where="baz_cte.id > 1 and my_table.id = baz_cte.id", with_={"baz_cte": "SELECT id FROM foo"}).sql()
"WITH baz_cte AS (SELECT id FROM foo) UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz_cte WHERE baz_cte.id > 1 AND my_table.id = baz_cte.id"
Arguments:
  • properties: dictionary of properties to SET which are auto converted to sql objects eg None -> NULL
  • where: sql conditional parsed into a WHERE statement
  • from_: sql statement parsed into a FROM statement
  • with_: dictionary of CTE aliases / select statements to include in a WITH clause.
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Update: the syntax tree for the UPDATE statement.

def delete( table: Union[str, Expression], where: Union[str, Expression, NoneType] = None, returning: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Delete:
7114def delete(
7115    table: ExpOrStr,
7116    where: t.Optional[ExpOrStr] = None,
7117    returning: t.Optional[ExpOrStr] = None,
7118    dialect: DialectType = None,
7119    **opts,
7120) -> Delete:
7121    """
7122    Builds a delete statement.
7123
7124    Example:
7125        >>> delete("my_table", where="id > 1").sql()
7126        'DELETE FROM my_table WHERE id > 1'
7127
7128    Args:
7129        where: sql conditional parsed into a WHERE statement
7130        returning: sql conditional parsed into a RETURNING statement
7131        dialect: the dialect used to parse the input expressions.
7132        **opts: other options to use to parse the input expressions.
7133
7134    Returns:
7135        Delete: the syntax tree for the DELETE statement.
7136    """
7137    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
7138    if where:
7139        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
7140    if returning:
7141        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
7142    return delete_expr

Builds a delete statement.

Example:
>>> delete("my_table", where="id > 1").sql()
'DELETE FROM my_table WHERE id > 1'
Arguments:
  • where: sql conditional parsed into a WHERE statement
  • returning: sql conditional parsed into a RETURNING statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Delete: the syntax tree for the DELETE statement.

def insert( expression: Union[str, Expression], into: Union[str, Expression], columns: Optional[Sequence[str | Identifier]] = None, overwrite: Optional[bool] = None, returning: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Insert:
7145def insert(
7146    expression: ExpOrStr,
7147    into: ExpOrStr,
7148    columns: t.Optional[t.Sequence[str | Identifier]] = None,
7149    overwrite: t.Optional[bool] = None,
7150    returning: t.Optional[ExpOrStr] = None,
7151    dialect: DialectType = None,
7152    copy: bool = True,
7153    **opts,
7154) -> Insert:
7155    """
7156    Builds an INSERT statement.
7157
7158    Example:
7159        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
7160        'INSERT INTO tbl VALUES (1, 2, 3)'
7161
7162    Args:
7163        expression: the sql string or expression of the INSERT statement
7164        into: the tbl to insert data to.
7165        columns: optionally the table's column names.
7166        overwrite: whether to INSERT OVERWRITE or not.
7167        returning: sql conditional parsed into a RETURNING statement
7168        dialect: the dialect used to parse the input expressions.
7169        copy: whether to copy the expression.
7170        **opts: other options to use to parse the input expressions.
7171
7172    Returns:
7173        Insert: the syntax tree for the INSERT statement.
7174    """
7175    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
7176    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
7177
7178    if columns:
7179        this = Schema(this=this, expressions=[to_identifier(c, copy=copy) for c in columns])
7180
7181    insert = Insert(this=this, expression=expr, overwrite=overwrite)
7182
7183    if returning:
7184        insert = insert.returning(returning, dialect=dialect, copy=False, **opts)
7185
7186    return insert

Builds an INSERT statement.

Example:
>>> insert("VALUES (1, 2, 3)", "tbl").sql()
'INSERT INTO tbl VALUES (1, 2, 3)'
Arguments:
  • expression: the sql string or expression of the INSERT statement
  • into: the tbl to insert data to.
  • columns: optionally the table's column names.
  • overwrite: whether to INSERT OVERWRITE or not.
  • returning: sql conditional parsed into a RETURNING statement
  • dialect: the dialect used to parse the input expressions.
  • copy: whether to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Insert: the syntax tree for the INSERT statement.

def merge( *when_exprs: Union[str, Expression], into: Union[str, Expression], using: Union[str, Expression], on: Union[str, Expression], returning: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Merge:
7189def merge(
7190    *when_exprs: ExpOrStr,
7191    into: ExpOrStr,
7192    using: ExpOrStr,
7193    on: ExpOrStr,
7194    returning: t.Optional[ExpOrStr] = None,
7195    dialect: DialectType = None,
7196    copy: bool = True,
7197    **opts,
7198) -> Merge:
7199    """
7200    Builds a MERGE statement.
7201
7202    Example:
7203        >>> merge("WHEN MATCHED THEN UPDATE SET col1 = source_table.col1",
7204        ...       "WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)",
7205        ...       into="my_table",
7206        ...       using="source_table",
7207        ...       on="my_table.id = source_table.id").sql()
7208        'MERGE INTO my_table USING source_table ON my_table.id = source_table.id WHEN MATCHED THEN UPDATE SET col1 = source_table.col1 WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)'
7209
7210    Args:
7211        *when_exprs: The WHEN clauses specifying actions for matched and unmatched rows.
7212        into: The target table to merge data into.
7213        using: The source table to merge data from.
7214        on: The join condition for the merge.
7215        returning: The columns to return from the merge.
7216        dialect: The dialect used to parse the input expressions.
7217        copy: Whether to copy the expression.
7218        **opts: Other options to use to parse the input expressions.
7219
7220    Returns:
7221        Merge: The syntax tree for the MERGE statement.
7222    """
7223    merge = Merge(
7224        this=maybe_parse(into, dialect=dialect, copy=copy, **opts),
7225        using=maybe_parse(using, dialect=dialect, copy=copy, **opts),
7226        on=maybe_parse(on, dialect=dialect, copy=copy, **opts),
7227        expressions=[
7228            maybe_parse(when_expr, dialect=dialect, copy=copy, into=When, **opts)
7229            for when_expr in when_exprs
7230        ],
7231    )
7232    if returning:
7233        merge = merge.returning(returning, dialect=dialect, copy=False, **opts)
7234
7235    return merge

Builds a MERGE statement.

Example:
>>> merge("WHEN MATCHED THEN UPDATE SET col1 = source_table.col1",
...       "WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)",
...       into="my_table",
...       using="source_table",
...       on="my_table.id = source_table.id").sql()
'MERGE INTO my_table USING source_table ON my_table.id = source_table.id WHEN MATCHED THEN UPDATE SET col1 = source_table.col1 WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)'
Arguments:
  • *when_exprs: The WHEN clauses specifying actions for matched and unmatched rows.
  • into: The target table to merge data into.
  • using: The source table to merge data from.
  • on: The join condition for the merge.
  • returning: The columns to return from the merge.
  • dialect: The dialect used to parse the input expressions.
  • copy: Whether to copy the expression.
  • **opts: Other options to use to parse the input expressions.
Returns:

Merge: The syntax tree for the MERGE statement.

def condition( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
7238def condition(
7239    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
7240) -> Condition:
7241    """
7242    Initialize a logical condition expression.
7243
7244    Example:
7245        >>> condition("x=1").sql()
7246        'x = 1'
7247
7248        This is helpful for composing larger logical syntax trees:
7249        >>> where = condition("x=1")
7250        >>> where = where.and_("y=1")
7251        >>> Select().from_("tbl").select("*").where(where).sql()
7252        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
7253
7254    Args:
7255        *expression: the SQL code string to parse.
7256            If an Expression instance is passed, this is used as-is.
7257        dialect: the dialect used to parse the input expression (in the case that the
7258            input expression is a SQL string).
7259        copy: Whether to copy `expression` (only applies to expressions).
7260        **opts: other options to use to parse the input expressions (again, in the case
7261            that the input expression is a SQL string).
7262
7263    Returns:
7264        The new Condition instance
7265    """
7266    return maybe_parse(
7267        expression,
7268        into=Condition,
7269        dialect=dialect,
7270        copy=copy,
7271        **opts,
7272    )

Initialize a logical condition expression.

Example:
>>> condition("x=1").sql()
'x = 1'

This is helpful for composing larger logical syntax trees:

>>> where = condition("x=1")
>>> where = where.and_("y=1")
>>> Select().from_("tbl").select("*").where(where).sql()
'SELECT * FROM tbl WHERE x = 1 AND y = 1'
Arguments:
  • *expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • copy: Whether to copy expression (only applies to expressions).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

The new Condition instance

def and_( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
7275def and_(
7276    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
7277) -> Condition:
7278    """
7279    Combine multiple conditions with an AND logical operator.
7280
7281    Example:
7282        >>> and_("x=1", and_("y=1", "z=1")).sql()
7283        'x = 1 AND (y = 1 AND z = 1)'
7284
7285    Args:
7286        *expressions: the SQL code strings to parse.
7287            If an Expression instance is passed, this is used as-is.
7288        dialect: the dialect used to parse the input expression.
7289        copy: whether to copy `expressions` (only applies to Expressions).
7290        **opts: other options to use to parse the input expressions.
7291
7292    Returns:
7293        The new condition
7294    """
7295    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))

Combine multiple conditions with an AND logical operator.

Example:
>>> and_("x=1", and_("y=1", "z=1")).sql()
'x = 1 AND (y = 1 AND z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition

def or_( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
7298def or_(
7299    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
7300) -> Condition:
7301    """
7302    Combine multiple conditions with an OR logical operator.
7303
7304    Example:
7305        >>> or_("x=1", or_("y=1", "z=1")).sql()
7306        'x = 1 OR (y = 1 OR z = 1)'
7307
7308    Args:
7309        *expressions: the SQL code strings to parse.
7310            If an Expression instance is passed, this is used as-is.
7311        dialect: the dialect used to parse the input expression.
7312        copy: whether to copy `expressions` (only applies to Expressions).
7313        **opts: other options to use to parse the input expressions.
7314
7315    Returns:
7316        The new condition
7317    """
7318    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))

Combine multiple conditions with an OR logical operator.

Example:
>>> or_("x=1", or_("y=1", "z=1")).sql()
'x = 1 OR (y = 1 OR z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition

def xor( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
7321def xor(
7322    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
7323) -> Condition:
7324    """
7325    Combine multiple conditions with an XOR logical operator.
7326
7327    Example:
7328        >>> xor("x=1", xor("y=1", "z=1")).sql()
7329        'x = 1 XOR (y = 1 XOR z = 1)'
7330
7331    Args:
7332        *expressions: the SQL code strings to parse.
7333            If an Expression instance is passed, this is used as-is.
7334        dialect: the dialect used to parse the input expression.
7335        copy: whether to copy `expressions` (only applies to Expressions).
7336        **opts: other options to use to parse the input expressions.
7337
7338    Returns:
7339        The new condition
7340    """
7341    return t.cast(Condition, _combine(expressions, Xor, dialect, copy=copy, **opts))

Combine multiple conditions with an XOR logical operator.

Example:
>>> xor("x=1", xor("y=1", "z=1")).sql()
'x = 1 XOR (y = 1 XOR z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition

def not_( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Not:
7344def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
7345    """
7346    Wrap a condition with a NOT operator.
7347
7348    Example:
7349        >>> not_("this_suit='black'").sql()
7350        "NOT this_suit = 'black'"
7351
7352    Args:
7353        expression: the SQL code string to parse.
7354            If an Expression instance is passed, this is used as-is.
7355        dialect: the dialect used to parse the input expression.
7356        copy: whether to copy the expression or not.
7357        **opts: other options to use to parse the input expressions.
7358
7359    Returns:
7360        The new condition.
7361    """
7362    this = condition(
7363        expression,
7364        dialect=dialect,
7365        copy=copy,
7366        **opts,
7367    )
7368    return Not(this=_wrap(this, Connector))

Wrap a condition with a NOT operator.

Example:
>>> not_("this_suit='black'").sql()
"NOT this_suit = 'black'"
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression or not.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition.

def paren( expression: Union[str, Expression], copy: bool = True) -> Paren:
7371def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
7372    """
7373    Wrap an expression in parentheses.
7374
7375    Example:
7376        >>> paren("5 + 3").sql()
7377        '(5 + 3)'
7378
7379    Args:
7380        expression: the SQL code string to parse.
7381            If an Expression instance is passed, this is used as-is.
7382        copy: whether to copy the expression or not.
7383
7384    Returns:
7385        The wrapped expression.
7386    """
7387    return Paren(this=maybe_parse(expression, copy=copy))

Wrap an expression in parentheses.

Example:
>>> paren("5 + 3").sql()
'(5 + 3)'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • copy: whether to copy the expression or not.
Returns:

The wrapped expression.

SAFE_IDENTIFIER_RE: Pattern[str] = re.compile('^[_a-zA-Z][\\w]*$')
def to_identifier(name, quoted=None, copy=True):
7403def to_identifier(name, quoted=None, copy=True):
7404    """Builds an identifier.
7405
7406    Args:
7407        name: The name to turn into an identifier.
7408        quoted: Whether to force quote the identifier.
7409        copy: Whether to copy name if it's an Identifier.
7410
7411    Returns:
7412        The identifier ast node.
7413    """
7414
7415    if name is None:
7416        return None
7417
7418    if isinstance(name, Identifier):
7419        identifier = maybe_copy(name, copy)
7420    elif isinstance(name, str):
7421        identifier = Identifier(
7422            this=name,
7423            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
7424        )
7425    else:
7426        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
7427    return identifier

Builds an identifier.

Arguments:
  • name: The name to turn into an identifier.
  • quoted: Whether to force quote the identifier.
  • copy: Whether to copy name if it's an Identifier.
Returns:

The identifier ast node.

def parse_identifier( name: str | Identifier, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None) -> Identifier:
7430def parse_identifier(name: str | Identifier, dialect: DialectType = None) -> Identifier:
7431    """
7432    Parses a given string into an identifier.
7433
7434    Args:
7435        name: The name to parse into an identifier.
7436        dialect: The dialect to parse against.
7437
7438    Returns:
7439        The identifier ast node.
7440    """
7441    try:
7442        expression = maybe_parse(name, dialect=dialect, into=Identifier)
7443    except (ParseError, TokenError):
7444        expression = to_identifier(name)
7445
7446    return expression

Parses a given string into an identifier.

Arguments:
  • name: The name to parse into an identifier.
  • dialect: The dialect to parse against.
Returns:

The identifier ast node.

INTERVAL_STRING_RE = re.compile('\\s*([0-9]+)\\s*([a-zA-Z]+)\\s*')
def to_interval( interval: str | Literal) -> Interval:
7452def to_interval(interval: str | Literal) -> Interval:
7453    """Builds an interval expression from a string like '1 day' or '5 months'."""
7454    if isinstance(interval, Literal):
7455        if not interval.is_string:
7456            raise ValueError("Invalid interval string.")
7457
7458        interval = interval.this
7459
7460    interval = maybe_parse(f"INTERVAL {interval}")
7461    assert isinstance(interval, Interval)
7462    return interval

Builds an interval expression from a string like '1 day' or '5 months'.

def to_table( sql_path: str | Table, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **kwargs) -> Table:
7465def to_table(
7466    sql_path: str | Table, dialect: DialectType = None, copy: bool = True, **kwargs
7467) -> Table:
7468    """
7469    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
7470    If a table is passed in then that table is returned.
7471
7472    Args:
7473        sql_path: a `[catalog].[schema].[table]` string.
7474        dialect: the source dialect according to which the table name will be parsed.
7475        copy: Whether to copy a table if it is passed in.
7476        kwargs: the kwargs to instantiate the resulting `Table` expression with.
7477
7478    Returns:
7479        A table expression.
7480    """
7481    if isinstance(sql_path, Table):
7482        return maybe_copy(sql_path, copy=copy)
7483
7484    table = maybe_parse(sql_path, into=Table, dialect=dialect)
7485
7486    for k, v in kwargs.items():
7487        table.set(k, v)
7488
7489    return table

Create a table expression from a [catalog].[schema].[table] sql path. Catalog and schema are optional. If a table is passed in then that table is returned.

Arguments:
  • sql_path: a [catalog].[schema].[table] string.
  • dialect: the source dialect according to which the table name will be parsed.
  • copy: Whether to copy a table if it is passed in.
  • kwargs: the kwargs to instantiate the resulting Table expression with.
Returns:

A table expression.

def to_column( sql_path: str | Column, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **kwargs) -> Column:
7492def to_column(
7493    sql_path: str | Column,
7494    quoted: t.Optional[bool] = None,
7495    dialect: DialectType = None,
7496    copy: bool = True,
7497    **kwargs,
7498) -> Column:
7499    """
7500    Create a column from a `[table].[column]` sql path. Table is optional.
7501    If a column is passed in then that column is returned.
7502
7503    Args:
7504        sql_path: a `[table].[column]` string.
7505        quoted: Whether or not to force quote identifiers.
7506        dialect: the source dialect according to which the column name will be parsed.
7507        copy: Whether to copy a column if it is passed in.
7508        kwargs: the kwargs to instantiate the resulting `Column` expression with.
7509
7510    Returns:
7511        A column expression.
7512    """
7513    if isinstance(sql_path, Column):
7514        return maybe_copy(sql_path, copy=copy)
7515
7516    try:
7517        col = maybe_parse(sql_path, into=Column, dialect=dialect)
7518    except ParseError:
7519        return column(*reversed(sql_path.split(".")), quoted=quoted, **kwargs)
7520
7521    for k, v in kwargs.items():
7522        col.set(k, v)
7523
7524    if quoted:
7525        for i in col.find_all(Identifier):
7526            i.set("quoted", True)
7527
7528    return col

Create a column from a [table].[column] sql path. Table is optional. If a column is passed in then that column is returned.

Arguments:
  • sql_path: a [table].[column] string.
  • quoted: Whether or not to force quote identifiers.
  • dialect: the source dialect according to which the column name will be parsed.
  • copy: Whether to copy a column if it is passed in.
  • kwargs: the kwargs to instantiate the resulting Column expression with.
Returns:

A column expression.

def alias_( expression: Union[str, Expression], alias: Union[Identifier, str, NoneType], table: Union[bool, Sequence[str | Identifier]] = False, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts):
7531def alias_(
7532    expression: ExpOrStr,
7533    alias: t.Optional[str | Identifier],
7534    table: bool | t.Sequence[str | Identifier] = False,
7535    quoted: t.Optional[bool] = None,
7536    dialect: DialectType = None,
7537    copy: bool = True,
7538    **opts,
7539):
7540    """Create an Alias expression.
7541
7542    Example:
7543        >>> alias_('foo', 'bar').sql()
7544        'foo AS bar'
7545
7546        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
7547        '(SELECT 1, 2) AS bar(a, b)'
7548
7549    Args:
7550        expression: the SQL code strings to parse.
7551            If an Expression instance is passed, this is used as-is.
7552        alias: the alias name to use. If the name has
7553            special characters it is quoted.
7554        table: Whether to create a table alias, can also be a list of columns.
7555        quoted: whether to quote the alias
7556        dialect: the dialect used to parse the input expression.
7557        copy: Whether to copy the expression.
7558        **opts: other options to use to parse the input expressions.
7559
7560    Returns:
7561        Alias: the aliased expression
7562    """
7563    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
7564    alias = to_identifier(alias, quoted=quoted)
7565
7566    if table:
7567        table_alias = TableAlias(this=alias)
7568        exp.set("alias", table_alias)
7569
7570        if not isinstance(table, bool):
7571            for column in table:
7572                table_alias.append("columns", to_identifier(column, quoted=quoted))
7573
7574        return exp
7575
7576    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
7577    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
7578    # for the complete Window expression.
7579    #
7580    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
7581
7582    if "alias" in exp.arg_types and not isinstance(exp, Window):
7583        exp.set("alias", alias)
7584        return exp
7585    return Alias(this=exp, alias=alias)

Create an Alias expression.

Example:
>>> alias_('foo', 'bar').sql()
'foo AS bar'
>>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
'(SELECT 1, 2) AS bar(a, b)'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use. If the name has special characters it is quoted.
  • table: Whether to create a table alias, can also be a list of columns.
  • quoted: whether to quote the alias
  • dialect: the dialect used to parse the input expression.
  • copy: Whether to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Alias: the aliased expression

def subquery( expression: Union[str, Expression], alias: Union[Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Select:
7588def subquery(
7589    expression: ExpOrStr,
7590    alias: t.Optional[Identifier | str] = None,
7591    dialect: DialectType = None,
7592    **opts,
7593) -> Select:
7594    """
7595    Build a subquery expression that's selected from.
7596
7597    Example:
7598        >>> subquery('select x from tbl', 'bar').select('x').sql()
7599        'SELECT x FROM (SELECT x FROM tbl) AS bar'
7600
7601    Args:
7602        expression: the SQL code strings to parse.
7603            If an Expression instance is passed, this is used as-is.
7604        alias: the alias name to use.
7605        dialect: the dialect used to parse the input expression.
7606        **opts: other options to use to parse the input expressions.
7607
7608    Returns:
7609        A new Select instance with the subquery expression included.
7610    """
7611
7612    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias, **opts)
7613    return Select().from_(expression, dialect=dialect, **opts)

Build a subquery expression that's selected from.

Example:
>>> subquery('select x from tbl', 'bar').select('x').sql()
'SELECT x FROM (SELECT x FROM tbl) AS bar'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use.
  • dialect: the dialect used to parse the input expression.
  • **opts: other options to use to parse the input expressions.
Returns:

A new Select instance with the subquery expression included.

def column( col, table=None, db=None, catalog=None, *, fields=None, quoted=None, copy=True):
7644def column(
7645    col,
7646    table=None,
7647    db=None,
7648    catalog=None,
7649    *,
7650    fields=None,
7651    quoted=None,
7652    copy=True,
7653):
7654    """
7655    Build a Column.
7656
7657    Args:
7658        col: Column name.
7659        table: Table name.
7660        db: Database name.
7661        catalog: Catalog name.
7662        fields: Additional fields using dots.
7663        quoted: Whether to force quotes on the column's identifiers.
7664        copy: Whether to copy identifiers if passed in.
7665
7666    Returns:
7667        The new Column instance.
7668    """
7669    this = Column(
7670        this=to_identifier(col, quoted=quoted, copy=copy),
7671        table=to_identifier(table, quoted=quoted, copy=copy),
7672        db=to_identifier(db, quoted=quoted, copy=copy),
7673        catalog=to_identifier(catalog, quoted=quoted, copy=copy),
7674    )
7675
7676    if fields:
7677        this = Dot.build(
7678            (this, *(to_identifier(field, quoted=quoted, copy=copy) for field in fields))
7679        )
7680    return this

Build a Column.

Arguments:
  • col: Column name.
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • fields: Additional fields using dots.
  • quoted: Whether to force quotes on the column's identifiers.
  • copy: Whether to copy identifiers if passed in.
Returns:

The new Column instance.

def cast( expression: Union[str, Expression], to: Union[str, DataType, DataType.Type], copy: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Cast:
7683def cast(
7684    expression: ExpOrStr, to: DATA_TYPE, copy: bool = True, dialect: DialectType = None, **opts
7685) -> Cast:
7686    """Cast an expression to a data type.
7687
7688    Example:
7689        >>> cast('x + 1', 'int').sql()
7690        'CAST(x + 1 AS INT)'
7691
7692    Args:
7693        expression: The expression to cast.
7694        to: The datatype to cast to.
7695        copy: Whether to copy the supplied expressions.
7696        dialect: The target dialect. This is used to prevent a re-cast in the following scenario:
7697            - The expression to be cast is already a exp.Cast expression
7698            - The existing cast is to a type that is logically equivalent to new type
7699
7700            For example, if :expression='CAST(x as DATETIME)' and :to=Type.TIMESTAMP,
7701            but in the target dialect DATETIME is mapped to TIMESTAMP, then we will NOT return `CAST(x (as DATETIME) as TIMESTAMP)`
7702            and instead just return the original expression `CAST(x as DATETIME)`.
7703
7704            This is to prevent it being output as a double cast `CAST(x (as TIMESTAMP) as TIMESTAMP)` once the DATETIME -> TIMESTAMP
7705            mapping is applied in the target dialect generator.
7706
7707    Returns:
7708        The new Cast instance.
7709    """
7710    expr = maybe_parse(expression, copy=copy, dialect=dialect, **opts)
7711    data_type = DataType.build(to, copy=copy, dialect=dialect, **opts)
7712
7713    # dont re-cast if the expression is already a cast to the correct type
7714    if isinstance(expr, Cast):
7715        from sqlglot.dialects.dialect import Dialect
7716
7717        target_dialect = Dialect.get_or_raise(dialect)
7718        type_mapping = target_dialect.generator_class.TYPE_MAPPING
7719
7720        existing_cast_type: DataType.Type = expr.to.this
7721        new_cast_type: DataType.Type = data_type.this
7722        types_are_equivalent = type_mapping.get(
7723            existing_cast_type, existing_cast_type
7724        ) == type_mapping.get(new_cast_type, new_cast_type)
7725        if expr.is_type(data_type) or types_are_equivalent:
7726            return expr
7727
7728    expr = Cast(this=expr, to=data_type)
7729    expr.type = data_type
7730
7731    return expr

Cast an expression to a data type.

Example:
>>> cast('x + 1', 'int').sql()
'CAST(x + 1 AS INT)'
Arguments:
  • expression: The expression to cast.
  • to: The datatype to cast to.
  • copy: Whether to copy the supplied expressions.
  • dialect: The target dialect. This is used to prevent a re-cast in the following scenario:

    • The expression to be cast is already a exp.Cast expression
    • The existing cast is to a type that is logically equivalent to new type

    For example, if :expression='CAST(x as DATETIME)' and :to=Type.TIMESTAMP, but in the target dialect DATETIME is mapped to TIMESTAMP, then we will NOT return CAST(x (as DATETIME) as TIMESTAMP) and instead just return the original expression CAST(x as DATETIME).

    This is to prevent it being output as a double cast CAST(x (as TIMESTAMP) as TIMESTAMP) once the DATETIME -> TIMESTAMP mapping is applied in the target dialect generator.

Returns:

The new Cast instance.

def table_( table: Identifier | str, db: Union[Identifier, str, NoneType] = None, catalog: Union[Identifier, str, NoneType] = None, quoted: Optional[bool] = None, alias: Union[Identifier, str, NoneType] = None) -> Table:
7734def table_(
7735    table: Identifier | str,
7736    db: t.Optional[Identifier | str] = None,
7737    catalog: t.Optional[Identifier | str] = None,
7738    quoted: t.Optional[bool] = None,
7739    alias: t.Optional[Identifier | str] = None,
7740) -> Table:
7741    """Build a Table.
7742
7743    Args:
7744        table: Table name.
7745        db: Database name.
7746        catalog: Catalog name.
7747        quote: Whether to force quotes on the table's identifiers.
7748        alias: Table's alias.
7749
7750    Returns:
7751        The new Table instance.
7752    """
7753    return Table(
7754        this=to_identifier(table, quoted=quoted) if table else None,
7755        db=to_identifier(db, quoted=quoted) if db else None,
7756        catalog=to_identifier(catalog, quoted=quoted) if catalog else None,
7757        alias=TableAlias(this=to_identifier(alias)) if alias else None,
7758    )

Build a Table.

Arguments:
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quote: Whether to force quotes on the table's identifiers.
  • alias: Table's alias.
Returns:

The new Table instance.

def values( values: Iterable[Tuple[Any, ...]], alias: Optional[str] = None, columns: Union[Iterable[str], Dict[str, DataType], NoneType] = None) -> Values:
7761def values(
7762    values: t.Iterable[t.Tuple[t.Any, ...]],
7763    alias: t.Optional[str] = None,
7764    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
7765) -> Values:
7766    """Build VALUES statement.
7767
7768    Example:
7769        >>> values([(1, '2')]).sql()
7770        "VALUES (1, '2')"
7771
7772    Args:
7773        values: values statements that will be converted to SQL
7774        alias: optional alias
7775        columns: Optional list of ordered column names or ordered dictionary of column names to types.
7776         If either are provided then an alias is also required.
7777
7778    Returns:
7779        Values: the Values expression object
7780    """
7781    if columns and not alias:
7782        raise ValueError("Alias is required when providing columns")
7783
7784    return Values(
7785        expressions=[convert(tup) for tup in values],
7786        alias=(
7787            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
7788            if columns
7789            else (TableAlias(this=to_identifier(alias)) if alias else None)
7790        ),
7791    )

Build VALUES statement.

Example:
>>> values([(1, '2')]).sql()
"VALUES (1, '2')"
Arguments:
  • values: values statements that will be converted to SQL
  • alias: optional alias
  • columns: Optional list of ordered column names or ordered dictionary of column names to types. If either are provided then an alias is also required.
Returns:

Values: the Values expression object

def var( name: Union[str, Expression, NoneType]) -> Var:
7794def var(name: t.Optional[ExpOrStr]) -> Var:
7795    """Build a SQL variable.
7796
7797    Example:
7798        >>> repr(var('x'))
7799        'Var(this=x)'
7800
7801        >>> repr(var(column('x', table='y')))
7802        'Var(this=x)'
7803
7804    Args:
7805        name: The name of the var or an expression who's name will become the var.
7806
7807    Returns:
7808        The new variable node.
7809    """
7810    if not name:
7811        raise ValueError("Cannot convert empty name into var.")
7812
7813    if isinstance(name, Expression):
7814        name = name.name
7815    return Var(this=name)

Build a SQL variable.

Example:
>>> repr(var('x'))
'Var(this=x)'
>>> repr(var(column('x', table='y')))
'Var(this=x)'
Arguments:
  • name: The name of the var or an expression who's name will become the var.
Returns:

The new variable node.

def rename_table( old_name: str | Table, new_name: str | Table, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None) -> Alter:
7818def rename_table(
7819    old_name: str | Table,
7820    new_name: str | Table,
7821    dialect: DialectType = None,
7822) -> Alter:
7823    """Build ALTER TABLE... RENAME... expression
7824
7825    Args:
7826        old_name: The old name of the table
7827        new_name: The new name of the table
7828        dialect: The dialect to parse the table.
7829
7830    Returns:
7831        Alter table expression
7832    """
7833    old_table = to_table(old_name, dialect=dialect)
7834    new_table = to_table(new_name, dialect=dialect)
7835    return Alter(
7836        this=old_table,
7837        kind="TABLE",
7838        actions=[
7839            AlterRename(this=new_table),
7840        ],
7841    )

Build ALTER TABLE... RENAME... expression

Arguments:
  • old_name: The old name of the table
  • new_name: The new name of the table
  • dialect: The dialect to parse the table.
Returns:

Alter table expression

def rename_column( table_name: str | Table, old_column_name: str | Column, new_column_name: str | Column, exists: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None) -> Alter:
7844def rename_column(
7845    table_name: str | Table,
7846    old_column_name: str | Column,
7847    new_column_name: str | Column,
7848    exists: t.Optional[bool] = None,
7849    dialect: DialectType = None,
7850) -> Alter:
7851    """Build ALTER TABLE... RENAME COLUMN... expression
7852
7853    Args:
7854        table_name: Name of the table
7855        old_column: The old name of the column
7856        new_column: The new name of the column
7857        exists: Whether to add the `IF EXISTS` clause
7858        dialect: The dialect to parse the table/column.
7859
7860    Returns:
7861        Alter table expression
7862    """
7863    table = to_table(table_name, dialect=dialect)
7864    old_column = to_column(old_column_name, dialect=dialect)
7865    new_column = to_column(new_column_name, dialect=dialect)
7866    return Alter(
7867        this=table,
7868        kind="TABLE",
7869        actions=[
7870            RenameColumn(this=old_column, to=new_column, exists=exists),
7871        ],
7872    )

Build ALTER TABLE... RENAME COLUMN... expression

Arguments:
  • table_name: Name of the table
  • old_column: The old name of the column
  • new_column: The new name of the column
  • exists: Whether to add the IF EXISTS clause
  • dialect: The dialect to parse the table/column.
Returns:

Alter table expression

def convert(value: Any, copy: bool = False) -> Expression:
7875def convert(value: t.Any, copy: bool = False) -> Expression:
7876    """Convert a python value into an expression object.
7877
7878    Raises an error if a conversion is not possible.
7879
7880    Args:
7881        value: A python object.
7882        copy: Whether to copy `value` (only applies to Expressions and collections).
7883
7884    Returns:
7885        The equivalent expression object.
7886    """
7887    if isinstance(value, Expression):
7888        return maybe_copy(value, copy)
7889    if isinstance(value, str):
7890        return Literal.string(value)
7891    if isinstance(value, bool):
7892        return Boolean(this=value)
7893    if value is None or (isinstance(value, float) and math.isnan(value)):
7894        return null()
7895    if isinstance(value, numbers.Number):
7896        return Literal.number(value)
7897    if isinstance(value, bytes):
7898        return HexString(this=value.hex())
7899    if isinstance(value, datetime.datetime):
7900        datetime_literal = Literal.string(value.isoformat(sep=" "))
7901
7902        tz = None
7903        if value.tzinfo:
7904            # this works for zoneinfo.ZoneInfo, pytz.timezone and datetime.datetime.utc to return IANA timezone names like "America/Los_Angeles"
7905            # instead of abbreviations like "PDT". This is for consistency with other timezone handling functions in SQLGlot
7906            tz = Literal.string(str(value.tzinfo))
7907
7908        return TimeStrToTime(this=datetime_literal, zone=tz)
7909    if isinstance(value, datetime.date):
7910        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
7911        return DateStrToDate(this=date_literal)
7912    if isinstance(value, tuple):
7913        if hasattr(value, "_fields"):
7914            return Struct(
7915                expressions=[
7916                    PropertyEQ(
7917                        this=to_identifier(k), expression=convert(getattr(value, k), copy=copy)
7918                    )
7919                    for k in value._fields
7920                ]
7921            )
7922        return Tuple(expressions=[convert(v, copy=copy) for v in value])
7923    if isinstance(value, list):
7924        return Array(expressions=[convert(v, copy=copy) for v in value])
7925    if isinstance(value, dict):
7926        return Map(
7927            keys=Array(expressions=[convert(k, copy=copy) for k in value]),
7928            values=Array(expressions=[convert(v, copy=copy) for v in value.values()]),
7929        )
7930    if hasattr(value, "__dict__"):
7931        return Struct(
7932            expressions=[
7933                PropertyEQ(this=to_identifier(k), expression=convert(v, copy=copy))
7934                for k, v in value.__dict__.items()
7935            ]
7936        )
7937    raise ValueError(f"Cannot convert {value}")

Convert a python value into an expression object.

Raises an error if a conversion is not possible.

Arguments:
  • value: A python object.
  • copy: Whether to copy value (only applies to Expressions and collections).
Returns:

The equivalent expression object.

def replace_children( expression: Expression, fun: Callable, *args, **kwargs) -> None:
7940def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
7941    """
7942    Replace children of an expression with the result of a lambda fun(child) -> exp.
7943    """
7944    for k, v in tuple(expression.args.items()):
7945        is_list_arg = type(v) is list
7946
7947        child_nodes = v if is_list_arg else [v]
7948        new_child_nodes = []
7949
7950        for cn in child_nodes:
7951            if isinstance(cn, Expression):
7952                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
7953                    new_child_nodes.append(child_node)
7954            else:
7955                new_child_nodes.append(cn)
7956
7957        expression.set(k, new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0))

Replace children of an expression with the result of a lambda fun(child) -> exp.

def replace_tree( expression: Expression, fun: Callable, prune: Optional[Callable[[Expression], bool]] = None) -> Expression:
7960def replace_tree(
7961    expression: Expression,
7962    fun: t.Callable,
7963    prune: t.Optional[t.Callable[[Expression], bool]] = None,
7964) -> Expression:
7965    """
7966    Replace an entire tree with the result of function calls on each node.
7967
7968    This will be traversed in reverse dfs, so leaves first.
7969    If new nodes are created as a result of function calls, they will also be traversed.
7970    """
7971    stack = list(expression.dfs(prune=prune))
7972
7973    while stack:
7974        node = stack.pop()
7975        new_node = fun(node)
7976
7977        if new_node is not node:
7978            node.replace(new_node)
7979
7980            if isinstance(new_node, Expression):
7981                stack.append(new_node)
7982
7983    return new_node

Replace an entire tree with the result of function calls on each node.

This will be traversed in reverse dfs, so leaves first. If new nodes are created as a result of function calls, they will also be traversed.

def column_table_names( expression: Expression, exclude: str = '') -> Set[str]:
7986def column_table_names(expression: Expression, exclude: str = "") -> t.Set[str]:
7987    """
7988    Return all table names referenced through columns in an expression.
7989
7990    Example:
7991        >>> import sqlglot
7992        >>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
7993        ['a', 'c']
7994
7995    Args:
7996        expression: expression to find table names.
7997        exclude: a table name to exclude
7998
7999    Returns:
8000        A list of unique names.
8001    """
8002    return {
8003        table
8004        for table in (column.table for column in expression.find_all(Column))
8005        if table and table != exclude
8006    }

Return all table names referenced through columns in an expression.

Example:
>>> import sqlglot
>>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
['a', 'c']
Arguments:
  • expression: expression to find table names.
  • exclude: a table name to exclude
Returns:

A list of unique names.

def table_name( table: Table | str, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, identify: bool = False) -> str:
8009def table_name(table: Table | str, dialect: DialectType = None, identify: bool = False) -> str:
8010    """Get the full name of a table as a string.
8011
8012    Args:
8013        table: Table expression node or string.
8014        dialect: The dialect to generate the table name for.
8015        identify: Determines when an identifier should be quoted. Possible values are:
8016            False (default): Never quote, except in cases where it's mandatory by the dialect.
8017            True: Always quote.
8018
8019    Examples:
8020        >>> from sqlglot import exp, parse_one
8021        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
8022        'a.b.c'
8023
8024    Returns:
8025        The table name.
8026    """
8027
8028    table = maybe_parse(table, into=Table, dialect=dialect)
8029
8030    if not table:
8031        raise ValueError(f"Cannot parse {table}")
8032
8033    return ".".join(
8034        (
8035            part.sql(dialect=dialect, identify=True, copy=False)
8036            if identify or not SAFE_IDENTIFIER_RE.match(part.name)
8037            else part.name
8038        )
8039        for part in table.parts
8040    )

Get the full name of a table as a string.

Arguments:
  • table: Table expression node or string.
  • dialect: The dialect to generate the table name for.
  • identify: Determines when an identifier should be quoted. Possible values are: False (default): Never quote, except in cases where it's mandatory by the dialect. True: Always quote.
Examples:
>>> from sqlglot import exp, parse_one
>>> table_name(parse_one("select * from a.b.c").find(exp.Table))
'a.b.c'
Returns:

The table name.

def normalize_table_name( table: str | Table, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True) -> str:
8043def normalize_table_name(table: str | Table, dialect: DialectType = None, copy: bool = True) -> str:
8044    """Returns a case normalized table name without quotes.
8045
8046    Args:
8047        table: the table to normalize
8048        dialect: the dialect to use for normalization rules
8049        copy: whether to copy the expression.
8050
8051    Examples:
8052        >>> normalize_table_name("`A-B`.c", dialect="bigquery")
8053        'A-B.c'
8054    """
8055    from sqlglot.optimizer.normalize_identifiers import normalize_identifiers
8056
8057    return ".".join(
8058        p.name
8059        for p in normalize_identifiers(
8060            to_table(table, dialect=dialect, copy=copy), dialect=dialect
8061        ).parts
8062    )

Returns a case normalized table name without quotes.

Arguments:
  • table: the table to normalize
  • dialect: the dialect to use for normalization rules
  • copy: whether to copy the expression.
Examples:
>>> normalize_table_name("`A-B`.c", dialect="bigquery")
'A-B.c'
def replace_tables( expression: ~E, mapping: Dict[str, str], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True) -> ~E:
8065def replace_tables(
8066    expression: E, mapping: t.Dict[str, str], dialect: DialectType = None, copy: bool = True
8067) -> E:
8068    """Replace all tables in expression according to the mapping.
8069
8070    Args:
8071        expression: expression node to be transformed and replaced.
8072        mapping: mapping of table names.
8073        dialect: the dialect of the mapping table
8074        copy: whether to copy the expression.
8075
8076    Examples:
8077        >>> from sqlglot import exp, parse_one
8078        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
8079        'SELECT * FROM c /* a.b */'
8080
8081    Returns:
8082        The mapped expression.
8083    """
8084
8085    mapping = {normalize_table_name(k, dialect=dialect): v for k, v in mapping.items()}
8086
8087    def _replace_tables(node: Expression) -> Expression:
8088        if isinstance(node, Table):
8089            original = normalize_table_name(node, dialect=dialect)
8090            new_name = mapping.get(original)
8091
8092            if new_name:
8093                table = to_table(
8094                    new_name,
8095                    **{k: v for k, v in node.args.items() if k not in TABLE_PARTS},
8096                    dialect=dialect,
8097                )
8098                table.add_comments([original])
8099                return table
8100        return node
8101
8102    return expression.transform(_replace_tables, copy=copy)  # type: ignore

Replace all tables in expression according to the mapping.

Arguments:
  • expression: expression node to be transformed and replaced.
  • mapping: mapping of table names.
  • dialect: the dialect of the mapping table
  • copy: whether to copy the expression.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
'SELECT * FROM c /* a.b */'
Returns:

The mapped expression.

def replace_placeholders( expression: Expression, *args, **kwargs) -> Expression:
8105def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
8106    """Replace placeholders in an expression.
8107
8108    Args:
8109        expression: expression node to be transformed and replaced.
8110        args: positional names that will substitute unnamed placeholders in the given order.
8111        kwargs: keyword arguments that will substitute named placeholders.
8112
8113    Examples:
8114        >>> from sqlglot import exp, parse_one
8115        >>> replace_placeholders(
8116        ...     parse_one("select * from :tbl where ? = ?"),
8117        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
8118        ... ).sql()
8119        "SELECT * FROM foo WHERE str_col = 'b'"
8120
8121    Returns:
8122        The mapped expression.
8123    """
8124
8125    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
8126        if isinstance(node, Placeholder):
8127            if node.this:
8128                new_name = kwargs.get(node.this)
8129                if new_name is not None:
8130                    return convert(new_name)
8131            else:
8132                try:
8133                    return convert(next(args))
8134                except StopIteration:
8135                    pass
8136        return node
8137
8138    return expression.transform(_replace_placeholders, iter(args), **kwargs)

Replace placeholders in an expression.

Arguments:
  • expression: expression node to be transformed and replaced.
  • args: positional names that will substitute unnamed placeholders in the given order.
  • kwargs: keyword arguments that will substitute named placeholders.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_placeholders(
...     parse_one("select * from :tbl where ? = ?"),
...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
... ).sql()
"SELECT * FROM foo WHERE str_col = 'b'"
Returns:

The mapped expression.

def expand( expression: Expression, sources: Dict[str, Query], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True) -> Expression:
8141def expand(
8142    expression: Expression,
8143    sources: t.Dict[str, Query],
8144    dialect: DialectType = None,
8145    copy: bool = True,
8146) -> Expression:
8147    """Transforms an expression by expanding all referenced sources into subqueries.
8148
8149    Examples:
8150        >>> from sqlglot import parse_one
8151        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
8152        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
8153
8154        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
8155        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
8156
8157    Args:
8158        expression: The expression to expand.
8159        sources: A dictionary of name to Queries.
8160        dialect: The dialect of the sources dict.
8161        copy: Whether to copy the expression during transformation. Defaults to True.
8162
8163    Returns:
8164        The transformed expression.
8165    """
8166    sources = {normalize_table_name(k, dialect=dialect): v for k, v in sources.items()}
8167
8168    def _expand(node: Expression):
8169        if isinstance(node, Table):
8170            name = normalize_table_name(node, dialect=dialect)
8171            source = sources.get(name)
8172            if source:
8173                subquery = source.subquery(node.alias or name)
8174                subquery.comments = [f"source: {name}"]
8175                return subquery.transform(_expand, copy=False)
8176        return node
8177
8178    return expression.transform(_expand, copy=copy)

Transforms an expression by expanding all referenced sources into subqueries.

Examples:
>>> from sqlglot import parse_one
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
Arguments:
  • expression: The expression to expand.
  • sources: A dictionary of name to Queries.
  • dialect: The dialect of the sources dict.
  • copy: Whether to copy the expression during transformation. Defaults to True.
Returns:

The transformed expression.

def func( name: str, *args, copy: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Func:
8181def func(name: str, *args, copy: bool = True, dialect: DialectType = None, **kwargs) -> Func:
8182    """
8183    Returns a Func expression.
8184
8185    Examples:
8186        >>> func("abs", 5).sql()
8187        'ABS(5)'
8188
8189        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
8190        'CAST(5 AS DOUBLE)'
8191
8192    Args:
8193        name: the name of the function to build.
8194        args: the args used to instantiate the function of interest.
8195        copy: whether to copy the argument expressions.
8196        dialect: the source dialect.
8197        kwargs: the kwargs used to instantiate the function of interest.
8198
8199    Note:
8200        The arguments `args` and `kwargs` are mutually exclusive.
8201
8202    Returns:
8203        An instance of the function of interest, or an anonymous function, if `name` doesn't
8204        correspond to an existing `sqlglot.expressions.Func` class.
8205    """
8206    if args and kwargs:
8207        raise ValueError("Can't use both args and kwargs to instantiate a function.")
8208
8209    from sqlglot.dialects.dialect import Dialect
8210
8211    dialect = Dialect.get_or_raise(dialect)
8212
8213    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect, copy=copy) for arg in args]
8214    kwargs = {key: maybe_parse(value, dialect=dialect, copy=copy) for key, value in kwargs.items()}
8215
8216    constructor = dialect.parser_class.FUNCTIONS.get(name.upper())
8217    if constructor:
8218        if converted:
8219            if "dialect" in constructor.__code__.co_varnames:
8220                function = constructor(converted, dialect=dialect)
8221            else:
8222                function = constructor(converted)
8223        elif constructor.__name__ == "from_arg_list":
8224            function = constructor.__self__(**kwargs)  # type: ignore
8225        else:
8226            constructor = FUNCTION_BY_NAME.get(name.upper())
8227            if constructor:
8228                function = constructor(**kwargs)
8229            else:
8230                raise ValueError(
8231                    f"Unable to convert '{name}' into a Func. Either manually construct "
8232                    "the Func expression of interest or parse the function call."
8233                )
8234    else:
8235        kwargs = kwargs or {"expressions": converted}
8236        function = Anonymous(this=name, **kwargs)
8237
8238    for error_message in function.error_messages(converted):
8239        raise ValueError(error_message)
8240
8241    return function

Returns a Func expression.

Examples:
>>> func("abs", 5).sql()
'ABS(5)'
>>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
'CAST(5 AS DOUBLE)'
Arguments:
  • name: the name of the function to build.
  • args: the args used to instantiate the function of interest.
  • copy: whether to copy the argument expressions.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Note:

The arguments args and kwargs are mutually exclusive.

Returns:

An instance of the function of interest, or an anonymous function, if name doesn't correspond to an existing sqlglot.expressions.Func class.

def case( expression: Union[str, Expression, NoneType] = None, **opts) -> Case:
8244def case(
8245    expression: t.Optional[ExpOrStr] = None,
8246    **opts,
8247) -> Case:
8248    """
8249    Initialize a CASE statement.
8250
8251    Example:
8252        case().when("a = 1", "foo").else_("bar")
8253
8254    Args:
8255        expression: Optionally, the input expression (not all dialects support this)
8256        **opts: Extra keyword arguments for parsing `expression`
8257    """
8258    if expression is not None:
8259        this = maybe_parse(expression, **opts)
8260    else:
8261        this = None
8262    return Case(this=this, ifs=[])

Initialize a CASE statement.

Example:

case().when("a = 1", "foo").else_("bar")

Arguments:
  • expression: Optionally, the input expression (not all dialects support this)
  • **opts: Extra keyword arguments for parsing expression
def array( *expressions: Union[str, Expression], copy: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Array:
8265def array(
8266    *expressions: ExpOrStr, copy: bool = True, dialect: DialectType = None, **kwargs
8267) -> Array:
8268    """
8269    Returns an array.
8270
8271    Examples:
8272        >>> array(1, 'x').sql()
8273        'ARRAY(1, x)'
8274
8275    Args:
8276        expressions: the expressions to add to the array.
8277        copy: whether to copy the argument expressions.
8278        dialect: the source dialect.
8279        kwargs: the kwargs used to instantiate the function of interest.
8280
8281    Returns:
8282        An array expression.
8283    """
8284    return Array(
8285        expressions=[
8286            maybe_parse(expression, copy=copy, dialect=dialect, **kwargs)
8287            for expression in expressions
8288        ]
8289    )

Returns an array.

Examples:
>>> array(1, 'x').sql()
'ARRAY(1, x)'
Arguments:
  • expressions: the expressions to add to the array.
  • copy: whether to copy the argument expressions.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Returns:

An array expression.

def tuple_( *expressions: Union[str, Expression], copy: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Tuple:
8292def tuple_(
8293    *expressions: ExpOrStr, copy: bool = True, dialect: DialectType = None, **kwargs
8294) -> Tuple:
8295    """
8296    Returns an tuple.
8297
8298    Examples:
8299        >>> tuple_(1, 'x').sql()
8300        '(1, x)'
8301
8302    Args:
8303        expressions: the expressions to add to the tuple.
8304        copy: whether to copy the argument expressions.
8305        dialect: the source dialect.
8306        kwargs: the kwargs used to instantiate the function of interest.
8307
8308    Returns:
8309        A tuple expression.
8310    """
8311    return Tuple(
8312        expressions=[
8313            maybe_parse(expression, copy=copy, dialect=dialect, **kwargs)
8314            for expression in expressions
8315        ]
8316    )

Returns an tuple.

Examples:
>>> tuple_(1, 'x').sql()
'(1, x)'
Arguments:
  • expressions: the expressions to add to the tuple.
  • copy: whether to copy the argument expressions.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Returns:

A tuple expression.

def true() -> Boolean:
8319def true() -> Boolean:
8320    """
8321    Returns a true Boolean expression.
8322    """
8323    return Boolean(this=True)

Returns a true Boolean expression.

def false() -> Boolean:
8326def false() -> Boolean:
8327    """
8328    Returns a false Boolean expression.
8329    """
8330    return Boolean(this=False)

Returns a false Boolean expression.

def null() -> Null:
8333def null() -> Null:
8334    """
8335    Returns a Null expression.
8336    """
8337    return Null()

Returns a Null expression.

NONNULL_CONSTANTS = (<class 'Literal'>, <class 'Boolean'>)
CONSTANTS = (<class 'Literal'>, <class 'Boolean'>, <class 'Null'>)