150 lines
7.1 KiB
Python
150 lines
7.1 KiB
Python
|
import typing as t
|
||
|
import unittest
|
||
|
import warnings
|
||
|
|
||
|
import sqlglot
|
||
|
from tests.helpers import SKIP_INTEGRATION
|
||
|
|
||
|
if t.TYPE_CHECKING:
|
||
|
from pyspark.sql import DataFrame as SparkDataFrame
|
||
|
|
||
|
|
||
|
@unittest.skipIf(SKIP_INTEGRATION, "Skipping Integration Tests since `SKIP_INTEGRATION` is set")
|
||
|
class DataFrameValidator(unittest.TestCase):
|
||
|
spark = None
|
||
|
sqlglot = None
|
||
|
df_employee = None
|
||
|
df_store = None
|
||
|
df_district = None
|
||
|
spark_employee_schema = None
|
||
|
sqlglot_employee_schema = None
|
||
|
spark_store_schema = None
|
||
|
sqlglot_store_schema = None
|
||
|
spark_district_schema = None
|
||
|
sqlglot_district_schema = None
|
||
|
|
||
|
@classmethod
|
||
|
def setUpClass(cls):
|
||
|
from pyspark import SparkConf
|
||
|
from pyspark.sql import SparkSession, types
|
||
|
|
||
|
from sqlglot.dataframe.sql import types as sqlglotSparkTypes
|
||
|
from sqlglot.dataframe.sql.session import SparkSession as SqlglotSparkSession
|
||
|
|
||
|
# This is for test `test_branching_root_dataframes`
|
||
|
config = SparkConf().setAll([("spark.sql.analyzer.failAmbiguousSelfJoin", "false")])
|
||
|
cls.spark = SparkSession.builder.master("local[*]").appName("Unit-tests").config(conf=config).getOrCreate()
|
||
|
cls.spark.sparkContext.setLogLevel("ERROR")
|
||
|
cls.sqlglot = SqlglotSparkSession()
|
||
|
cls.spark_employee_schema = types.StructType(
|
||
|
[
|
||
|
types.StructField("employee_id", types.IntegerType(), False),
|
||
|
types.StructField("fname", types.StringType(), False),
|
||
|
types.StructField("lname", types.StringType(), False),
|
||
|
types.StructField("age", types.IntegerType(), False),
|
||
|
types.StructField("store_id", types.IntegerType(), False),
|
||
|
]
|
||
|
)
|
||
|
cls.sqlglot_employee_schema = sqlglotSparkTypes.StructType(
|
||
|
[
|
||
|
sqlglotSparkTypes.StructField("employee_id", sqlglotSparkTypes.IntegerType(), False),
|
||
|
sqlglotSparkTypes.StructField("fname", sqlglotSparkTypes.StringType(), False),
|
||
|
sqlglotSparkTypes.StructField("lname", sqlglotSparkTypes.StringType(), False),
|
||
|
sqlglotSparkTypes.StructField("age", sqlglotSparkTypes.IntegerType(), False),
|
||
|
sqlglotSparkTypes.StructField("store_id", sqlglotSparkTypes.IntegerType(), False),
|
||
|
]
|
||
|
)
|
||
|
employee_data = [
|
||
|
(1, "Jack", "Shephard", 37, 1),
|
||
|
(2, "John", "Locke", 65, 1),
|
||
|
(3, "Kate", "Austen", 37, 2),
|
||
|
(4, "Claire", "Littleton", 27, 2),
|
||
|
(5, "Hugo", "Reyes", 29, 100),
|
||
|
]
|
||
|
cls.df_employee = cls.spark.createDataFrame(data=employee_data, schema=cls.spark_employee_schema)
|
||
|
cls.dfs_employee = cls.sqlglot.createDataFrame(data=employee_data, schema=cls.sqlglot_employee_schema)
|
||
|
cls.df_employee.createOrReplaceTempView("employee")
|
||
|
|
||
|
cls.spark_store_schema = types.StructType(
|
||
|
[
|
||
|
types.StructField("store_id", types.IntegerType(), False),
|
||
|
types.StructField("store_name", types.StringType(), False),
|
||
|
types.StructField("district_id", types.IntegerType(), False),
|
||
|
types.StructField("num_sales", types.IntegerType(), False),
|
||
|
]
|
||
|
)
|
||
|
cls.sqlglot_store_schema = sqlglotSparkTypes.StructType(
|
||
|
[
|
||
|
sqlglotSparkTypes.StructField("store_id", sqlglotSparkTypes.IntegerType(), False),
|
||
|
sqlglotSparkTypes.StructField("store_name", sqlglotSparkTypes.StringType(), False),
|
||
|
sqlglotSparkTypes.StructField("district_id", sqlglotSparkTypes.IntegerType(), False),
|
||
|
sqlglotSparkTypes.StructField("num_sales", sqlglotSparkTypes.IntegerType(), False),
|
||
|
]
|
||
|
)
|
||
|
store_data = [
|
||
|
(1, "Hydra", 1, 37),
|
||
|
(2, "Arrow", 2, 2000),
|
||
|
]
|
||
|
cls.df_store = cls.spark.createDataFrame(data=store_data, schema=cls.spark_store_schema)
|
||
|
cls.dfs_store = cls.sqlglot.createDataFrame(data=store_data, schema=cls.sqlglot_store_schema)
|
||
|
cls.df_store.createOrReplaceTempView("store")
|
||
|
|
||
|
cls.spark_district_schema = types.StructType(
|
||
|
[
|
||
|
types.StructField("district_id", types.IntegerType(), False),
|
||
|
types.StructField("district_name", types.StringType(), False),
|
||
|
types.StructField("manager_name", types.StringType(), False),
|
||
|
]
|
||
|
)
|
||
|
cls.sqlglot_district_schema = sqlglotSparkTypes.StructType(
|
||
|
[
|
||
|
sqlglotSparkTypes.StructField("district_id", sqlglotSparkTypes.IntegerType(), False),
|
||
|
sqlglotSparkTypes.StructField("district_name", sqlglotSparkTypes.StringType(), False),
|
||
|
sqlglotSparkTypes.StructField("manager_name", sqlglotSparkTypes.StringType(), False),
|
||
|
]
|
||
|
)
|
||
|
district_data = [
|
||
|
(1, "Temple", "Dogen"),
|
||
|
(2, "Lighthouse", "Jacob"),
|
||
|
]
|
||
|
cls.df_district = cls.spark.createDataFrame(data=district_data, schema=cls.spark_district_schema)
|
||
|
cls.dfs_district = cls.sqlglot.createDataFrame(data=district_data, schema=cls.sqlglot_district_schema)
|
||
|
cls.df_district.createOrReplaceTempView("district")
|
||
|
sqlglot.schema.add_table("employee", cls.sqlglot_employee_schema)
|
||
|
sqlglot.schema.add_table("store", cls.sqlglot_store_schema)
|
||
|
sqlglot.schema.add_table("district", cls.sqlglot_district_schema)
|
||
|
|
||
|
def setUp(self) -> None:
|
||
|
warnings.filterwarnings("ignore", category=ResourceWarning)
|
||
|
self.df_spark_store = self.df_store.alias("df_store") # type: ignore
|
||
|
self.df_spark_employee = self.df_employee.alias("df_employee") # type: ignore
|
||
|
self.df_spark_district = self.df_district.alias("df_district") # type: ignore
|
||
|
self.df_sqlglot_store = self.dfs_store.alias("store") # type: ignore
|
||
|
self.df_sqlglot_employee = self.dfs_employee.alias("employee") # type: ignore
|
||
|
self.df_sqlglot_district = self.dfs_district.alias("district") # type: ignore
|
||
|
|
||
|
def compare_spark_with_sqlglot(
|
||
|
self, df_spark, df_sqlglot, no_empty=True, skip_schema_compare=False
|
||
|
) -> t.Tuple["SparkDataFrame", "SparkDataFrame"]:
|
||
|
def compare_schemas(schema_1, schema_2):
|
||
|
for schema in [schema_1, schema_2]:
|
||
|
for struct_field in schema.fields:
|
||
|
struct_field.metadata = {}
|
||
|
self.assertEqual(schema_1, schema_2)
|
||
|
|
||
|
for statement in df_sqlglot.sql():
|
||
|
actual_df_sqlglot = self.spark.sql(statement) # type: ignore
|
||
|
df_sqlglot_results = actual_df_sqlglot.collect()
|
||
|
df_spark_results = df_spark.collect()
|
||
|
if not skip_schema_compare:
|
||
|
compare_schemas(df_spark.schema, actual_df_sqlglot.schema)
|
||
|
self.assertEqual(df_spark_results, df_sqlglot_results)
|
||
|
if no_empty:
|
||
|
self.assertNotEqual(len(df_spark_results), 0)
|
||
|
self.assertNotEqual(len(df_sqlglot_results), 0)
|
||
|
return df_spark, actual_df_sqlglot
|
||
|
|
||
|
@classmethod
|
||
|
def get_explain_plan(cls, df: "SparkDataFrame", mode: str = "extended") -> str:
|
||
|
return df._sc._jvm.PythonSQLUtils.explainString(df._jdf.queryExecution(), mode) # type: ignore
|