1
0
Fork 0
sqlglot/tests/dataframe/integration/test_dataframe.py

1201 lines
48 KiB
Python
Raw Normal View History

from pyspark.sql import functions as F
from sqlglot.dataframe.sql import functions as SF
from tests.dataframe.integration.dataframe_validator import DataFrameValidator
class TestDataframeFunc(DataFrameValidator):
def test_simple_select(self):
df_employee = self.df_spark_employee.select(F.col("employee_id"))
dfs_employee = self.df_sqlglot_employee.select(SF.col("employee_id"))
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_simple_select_from_table(self):
df = self.df_spark_employee
dfs = self.sqlglot.read.table("employee")
self.compare_spark_with_sqlglot(df, dfs)
def test_simple_select_df_attribute(self):
df_employee = self.df_spark_employee.select(self.df_spark_employee.employee_id)
dfs_employee = self.df_sqlglot_employee.select(self.df_sqlglot_employee.employee_id)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_simple_select_df_dict(self):
df_employee = self.df_spark_employee.select(self.df_spark_employee["employee_id"])
dfs_employee = self.df_sqlglot_employee.select(self.df_sqlglot_employee["employee_id"])
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_multiple_selects(self):
df_employee = self.df_spark_employee.select(
self.df_spark_employee["employee_id"], F.col("fname"), self.df_spark_employee.lname
)
dfs_employee = self.df_sqlglot_employee.select(
self.df_sqlglot_employee["employee_id"], SF.col("fname"), self.df_sqlglot_employee.lname
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_alias_no_op(self):
df_employee = self.df_spark_employee.alias("df_employee")
dfs_employee = self.df_sqlglot_employee.alias("dfs_employee")
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_alias_with_select(self):
df_employee = self.df_spark_employee.alias("df_employee").select(
self.df_spark_employee["employee_id"],
F.col("df_employee.fname"),
self.df_spark_employee.lname,
)
dfs_employee = self.df_sqlglot_employee.alias("dfs_employee").select(
self.df_sqlglot_employee["employee_id"],
SF.col("dfs_employee.fname"),
self.df_sqlglot_employee.lname,
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_case_when_otherwise(self):
df = self.df_spark_employee.select(
F.when(
(F.col("age") >= F.lit(40)) & (F.col("age") <= F.lit(60)),
F.lit("between 40 and 60"),
)
.when(F.col("age") < F.lit(40), "less than 40")
.otherwise("greater than 60")
)
dfs = self.df_sqlglot_employee.select(
SF.when(
(SF.col("age") >= SF.lit(40)) & (SF.col("age") <= SF.lit(60)),
SF.lit("between 40 and 60"),
)
.when(SF.col("age") < SF.lit(40), "less than 40")
.otherwise("greater than 60")
)
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_case_when_no_otherwise(self):
df = self.df_spark_employee.select(
F.when(
(F.col("age") >= F.lit(40)) & (F.col("age") <= F.lit(60)),
F.lit("between 40 and 60"),
).when(F.col("age") < F.lit(40), "less than 40")
)
dfs = self.df_sqlglot_employee.select(
SF.when(
(SF.col("age") >= SF.lit(40)) & (SF.col("age") <= SF.lit(60)),
SF.lit("between 40 and 60"),
).when(SF.col("age") < SF.lit(40), "less than 40")
)
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_where_clause_single(self):
df_employee = self.df_spark_employee.where(F.col("age") == F.lit(37))
dfs_employee = self.df_sqlglot_employee.where(SF.col("age") == SF.lit(37))
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_where_clause_multiple_and(self):
df_employee = self.df_spark_employee.where(
(F.col("age") == F.lit(37)) & (F.col("fname") == F.lit("Jack"))
)
dfs_employee = self.df_sqlglot_employee.where(
(SF.col("age") == SF.lit(37)) & (SF.col("fname") == SF.lit("Jack"))
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_where_many_and(self):
df_employee = self.df_spark_employee.where(
(F.col("age") == F.lit(37))
& (F.col("fname") == F.lit("Jack"))
& (F.col("lname") == F.lit("Shephard"))
& (F.col("employee_id") == F.lit(1))
)
dfs_employee = self.df_sqlglot_employee.where(
(SF.col("age") == SF.lit(37))
& (SF.col("fname") == SF.lit("Jack"))
& (SF.col("lname") == SF.lit("Shephard"))
& (SF.col("employee_id") == SF.lit(1))
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_where_clause_multiple_or(self):
df_employee = self.df_spark_employee.where(
(F.col("age") == F.lit(37)) | (F.col("fname") == F.lit("Kate"))
)
dfs_employee = self.df_sqlglot_employee.where(
(SF.col("age") == SF.lit(37)) | (SF.col("fname") == SF.lit("Kate"))
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_where_many_or(self):
df_employee = self.df_spark_employee.where(
(F.col("age") == F.lit(37))
| (F.col("fname") == F.lit("Kate"))
| (F.col("lname") == F.lit("Littleton"))
| (F.col("employee_id") == F.lit(2))
)
dfs_employee = self.df_sqlglot_employee.where(
(SF.col("age") == SF.lit(37))
| (SF.col("fname") == SF.lit("Kate"))
| (SF.col("lname") == SF.lit("Littleton"))
| (SF.col("employee_id") == SF.lit(2))
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_where_mixed_and_or(self):
df_employee = self.df_spark_employee.where(
((F.col("age") == F.lit(65)) & (F.col("fname") == F.lit("John")))
| ((F.col("lname") == F.lit("Shephard")) & (F.col("age") == F.lit(37)))
)
dfs_employee = self.df_sqlglot_employee.where(
((SF.col("age") == SF.lit(65)) & (SF.col("fname") == SF.lit("John")))
| ((SF.col("lname") == SF.lit("Shephard")) & (SF.col("age") == SF.lit(37)))
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_where_multiple_chained(self):
df_employee = self.df_spark_employee.where(F.col("age") == F.lit(37)).where(
self.df_spark_employee.fname == F.lit("Jack")
)
dfs_employee = self.df_sqlglot_employee.where(SF.col("age") == SF.lit(37)).where(
self.df_sqlglot_employee.fname == SF.lit("Jack")
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_operators(self):
df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] < F.lit(50))
dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] < SF.lit(50))
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] <= F.lit(37))
dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] <= SF.lit(37))
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] > F.lit(50))
dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] > SF.lit(50))
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] >= F.lit(37))
dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] >= SF.lit(37))
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] != F.lit(50))
dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] != SF.lit(50))
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] == F.lit(37))
dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] == SF.lit(37))
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
df_employee = self.df_spark_employee.where(
self.df_spark_employee["age"] % F.lit(5) == F.lit(0)
)
dfs_employee = self.df_sqlglot_employee.where(
self.df_sqlglot_employee["age"] % SF.lit(5) == SF.lit(0)
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
df_employee = self.df_spark_employee.where(
self.df_spark_employee["age"] + F.lit(5) > F.lit(28)
)
dfs_employee = self.df_sqlglot_employee.where(
self.df_sqlglot_employee["age"] + SF.lit(5) > SF.lit(28)
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
df_employee = self.df_spark_employee.where(
self.df_spark_employee["age"] - F.lit(5) > F.lit(28)
)
dfs_employee = self.df_sqlglot_employee.where(
self.df_sqlglot_employee["age"] - SF.lit(5) > SF.lit(28)
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
df_employee = self.df_spark_employee.where(
self.df_spark_employee["age"] * F.lit(0.5) == self.df_spark_employee["age"] / F.lit(2)
)
dfs_employee = self.df_sqlglot_employee.where(
self.df_sqlglot_employee["age"] * SF.lit(0.5)
== self.df_sqlglot_employee["age"] / SF.lit(2)
)
self.compare_spark_with_sqlglot(df_employee, dfs_employee)
def test_join_inner(self):
df_joined = self.df_spark_employee.join(
self.df_spark_store, on=["store_id"], how="inner"
).select(
self.df_spark_employee.employee_id,
self.df_spark_employee["fname"],
F.col("lname"),
F.col("age"),
F.col("store_id"),
self.df_spark_store.store_name,
self.df_spark_store["num_sales"],
)
dfs_joined = self.df_sqlglot_employee.join(
self.df_sqlglot_store, on=["store_id"], how="inner"
).select(
self.df_sqlglot_employee.employee_id,
self.df_sqlglot_employee["fname"],
SF.col("lname"),
SF.col("age"),
SF.col("store_id"),
self.df_sqlglot_store.store_name,
self.df_sqlglot_store["num_sales"],
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)
def test_join_inner_no_select(self):
df_joined = self.df_spark_employee.select(
F.col("store_id"), F.col("fname"), F.col("lname")
).join(
self.df_spark_store.select(F.col("store_id"), F.col("store_name")),
on=["store_id"],
how="inner",
)
dfs_joined = self.df_sqlglot_employee.select(
SF.col("store_id"), SF.col("fname"), SF.col("lname")
).join(
self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name")),
on=["store_id"],
how="inner",
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)
def test_join_inner_equality_single(self):
df_joined = self.df_spark_employee.join(
self.df_spark_store,
on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
how="inner",
).select(
self.df_spark_employee.employee_id,
self.df_spark_employee["fname"],
F.col("lname"),
F.col("age"),
self.df_spark_employee.store_id,
self.df_spark_store.store_name,
self.df_spark_store["num_sales"],
)
dfs_joined = self.df_sqlglot_employee.join(
self.df_sqlglot_store,
on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
how="inner",
).select(
self.df_sqlglot_employee.employee_id,
self.df_sqlglot_employee["fname"],
SF.col("lname"),
SF.col("age"),
self.df_sqlglot_employee.store_id,
self.df_sqlglot_store.store_name,
self.df_sqlglot_store["num_sales"],
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)
def test_join_inner_equality_multiple(self):
df_joined = self.df_spark_employee.join(
self.df_spark_store,
on=[
self.df_spark_employee.store_id == self.df_spark_store.store_id,
self.df_spark_employee.age == self.df_spark_store.num_sales,
],
how="inner",
).select(
self.df_spark_employee.employee_id,
self.df_spark_employee["fname"],
F.col("lname"),
F.col("age"),
self.df_spark_employee.store_id,
self.df_spark_store.store_name,
self.df_spark_store["num_sales"],
)
dfs_joined = self.df_sqlglot_employee.join(
self.df_sqlglot_store,
on=[
self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
self.df_sqlglot_employee.age == self.df_sqlglot_store.num_sales,
],
how="inner",
).select(
self.df_sqlglot_employee.employee_id,
self.df_sqlglot_employee["fname"],
SF.col("lname"),
SF.col("age"),
self.df_sqlglot_employee.store_id,
self.df_sqlglot_store.store_name,
self.df_sqlglot_store["num_sales"],
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)
def test_join_inner_equality_multiple_bitwise_and(self):
df_joined = self.df_spark_employee.join(
self.df_spark_store,
on=(self.df_spark_employee.store_id == self.df_spark_store.store_id)
& (self.df_spark_employee.age == self.df_spark_store.num_sales),
how="inner",
).select(
self.df_spark_employee.employee_id,
self.df_spark_employee["fname"],
F.col("lname"),
F.col("age"),
self.df_spark_employee.store_id,
self.df_spark_store.store_name,
self.df_spark_store["num_sales"],
)
dfs_joined = self.df_sqlglot_employee.join(
self.df_sqlglot_store,
on=(self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id)
& (self.df_sqlglot_employee.age == self.df_sqlglot_store.num_sales),
how="inner",
).select(
self.df_sqlglot_employee.employee_id,
self.df_sqlglot_employee["fname"],
SF.col("lname"),
SF.col("age"),
self.df_sqlglot_employee.store_id,
self.df_sqlglot_store.store_name,
self.df_sqlglot_store["num_sales"],
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)
def test_join_left_outer(self):
df_joined = (
self.df_spark_employee.join(self.df_spark_store, on=["store_id"], how="left_outer")
.select(
self.df_spark_employee.employee_id,
self.df_spark_employee["fname"],
F.col("lname"),
F.col("age"),
F.col("store_id"),
self.df_spark_store.store_name,
self.df_spark_store["num_sales"],
)
.orderBy(F.col("employee_id"))
)
dfs_joined = (
self.df_sqlglot_employee.join(self.df_sqlglot_store, on=["store_id"], how="left_outer")
.select(
self.df_sqlglot_employee.employee_id,
self.df_sqlglot_employee["fname"],
SF.col("lname"),
SF.col("age"),
SF.col("store_id"),
self.df_sqlglot_store.store_name,
self.df_sqlglot_store["num_sales"],
)
.orderBy(SF.col("employee_id"))
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)
def test_join_full_outer(self):
df_joined = self.df_spark_employee.join(
self.df_spark_store, on=["store_id"], how="full_outer"
).select(
self.df_spark_employee.employee_id,
self.df_spark_employee["fname"],
F.col("lname"),
F.col("age"),
F.col("store_id"),
self.df_spark_store.store_name,
self.df_spark_store["num_sales"],
)
dfs_joined = self.df_sqlglot_employee.join(
self.df_sqlglot_store, on=["store_id"], how="full_outer"
).select(
self.df_sqlglot_employee.employee_id,
self.df_sqlglot_employee["fname"],
SF.col("lname"),
SF.col("age"),
SF.col("store_id"),
self.df_sqlglot_store.store_name,
self.df_sqlglot_store["num_sales"],
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)
def test_triple_join(self):
df = (
self.df_employee.join(
self.df_store, on=self.df_employee.employee_id == self.df_store.store_id
)
.join(self.df_district, on=self.df_store.store_id == self.df_district.district_id)
.select(
self.df_employee.employee_id,
self.df_store.store_id,
self.df_district.district_id,
self.df_employee.fname,
self.df_store.store_name,
self.df_district.district_name,
)
)
dfs = (
self.dfs_employee.join(
self.dfs_store, on=self.dfs_employee.employee_id == self.dfs_store.store_id
)
.join(self.dfs_district, on=self.dfs_store.store_id == self.dfs_district.district_id)
.select(
self.dfs_employee.employee_id,
self.dfs_store.store_id,
self.dfs_district.district_id,
self.dfs_employee.fname,
self.dfs_store.store_name,
self.dfs_district.district_name,
)
)
self.compare_spark_with_sqlglot(df, dfs)
def test_join_select_and_select_start(self):
df = self.df_spark_employee.select(
F.col("fname"), F.col("lname"), F.col("age"), F.col("store_id")
).join(self.df_spark_store, "store_id", "inner")
dfs = self.df_sqlglot_employee.select(
SF.col("fname"), SF.col("lname"), SF.col("age"), SF.col("store_id")
).join(self.df_sqlglot_store, "store_id", "inner")
self.compare_spark_with_sqlglot(df, dfs)
def test_branching_root_dataframes(self):
"""
Test a pattern that has non-intuitive behavior in spark
Scenario: You do a self-join in a dataframe using an original dataframe and then a modified version
of it. You then reference the columns by the dataframe name instead of the column function.
Spark will use the root dataframe's column in the result.
"""
df_hydra_employees_only = self.df_spark_employee.where(F.col("store_id") == F.lit(1))
df_joined = (
self.df_spark_employee.where(F.col("store_id") == F.lit(2))
.alias("df_arrow_employees_only")
.join(
df_hydra_employees_only.alias("df_hydra_employees_only"),
on=["store_id"],
how="full_outer",
)
.select(
self.df_spark_employee.fname,
F.col("df_arrow_employees_only.fname"),
df_hydra_employees_only.fname,
F.col("df_hydra_employees_only.fname"),
)
)
dfs_hydra_employees_only = self.df_sqlglot_employee.where(SF.col("store_id") == SF.lit(1))
dfs_joined = (
self.df_sqlglot_employee.where(SF.col("store_id") == SF.lit(2))
.alias("dfs_arrow_employees_only")
.join(
dfs_hydra_employees_only.alias("dfs_hydra_employees_only"),
on=["store_id"],
how="full_outer",
)
.select(
self.df_sqlglot_employee.fname,
SF.col("dfs_arrow_employees_only.fname"),
dfs_hydra_employees_only.fname,
SF.col("dfs_hydra_employees_only.fname"),
)
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)
def test_basic_union(self):
df_unioned = self.df_spark_employee.select(F.col("employee_id"), F.col("age")).union(
self.df_spark_store.select(F.col("store_id"), F.col("num_sales"))
)
dfs_unioned = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age")).union(
self.df_sqlglot_store.select(SF.col("store_id"), SF.col("num_sales"))
)
self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
def test_union_with_join(self):
df_joined = self.df_spark_employee.join(
self.df_spark_store,
on="store_id",
how="inner",
)
df_unioned = df_joined.select(F.col("store_id"), F.col("store_name")).union(
self.df_spark_district.select(F.col("district_id"), F.col("district_name"))
)
dfs_joined = self.df_sqlglot_employee.join(
self.df_sqlglot_store,
on="store_id",
how="inner",
)
dfs_unioned = dfs_joined.select(SF.col("store_id"), SF.col("store_name")).union(
self.df_sqlglot_district.select(SF.col("district_id"), SF.col("district_name"))
)
self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
def test_double_union_all(self):
df_unioned = (
self.df_spark_employee.select(F.col("employee_id"), F.col("fname"))
.unionAll(self.df_spark_store.select(F.col("store_id"), F.col("store_name")))
.unionAll(self.df_spark_district.select(F.col("district_id"), F.col("district_name")))
)
dfs_unioned = (
self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("fname"))
.unionAll(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name")))
.unionAll(
self.df_sqlglot_district.select(SF.col("district_id"), SF.col("district_name"))
)
)
self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
def test_union_by_name(self):
df = self.df_spark_employee.select(
F.col("employee_id"), F.col("fname"), F.col("lname")
).unionByName(
self.df_spark_store.select(
F.col("store_name").alias("lname"),
F.col("store_id").alias("employee_id"),
F.col("store_name").alias("fname"),
)
)
dfs = self.df_sqlglot_employee.select(
SF.col("employee_id"), SF.col("fname"), SF.col("lname")
).unionByName(
self.df_sqlglot_store.select(
SF.col("store_name").alias("lname"),
SF.col("store_id").alias("employee_id"),
SF.col("store_name").alias("fname"),
)
)
self.compare_spark_with_sqlglot(df, dfs)
def test_union_by_name_allow_missing(self):
df = self.df_spark_employee.select(
F.col("age"), F.col("employee_id"), F.col("fname"), F.col("lname")
).unionByName(
self.df_spark_store.select(
F.col("store_name").alias("lname"),
F.col("store_id").alias("employee_id"),
F.col("store_name").alias("fname"),
F.col("num_sales"),
),
allowMissingColumns=True,
)
dfs = self.df_sqlglot_employee.select(
SF.col("age"), SF.col("employee_id"), SF.col("fname"), SF.col("lname")
).unionByName(
self.df_sqlglot_store.select(
SF.col("store_name").alias("lname"),
SF.col("store_id").alias("employee_id"),
SF.col("store_name").alias("fname"),
SF.col("num_sales"),
),
allowMissingColumns=True,
)
self.compare_spark_with_sqlglot(df, dfs)
def test_order_by_default(self):
df = (
self.df_spark_store.groupBy(F.col("district_id"))
.agg(F.min("num_sales"))
.orderBy(F.col("district_id"))
)
dfs = (
self.df_sqlglot_store.groupBy(SF.col("district_id"))
.agg(SF.min("num_sales"))
.orderBy(SF.col("district_id"))
)
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_order_by_array_bool(self):
df = (
self.df_spark_store.groupBy(F.col("district_id"))
.agg(F.min("num_sales").alias("total_sales"))
.orderBy(F.col("total_sales"), F.col("district_id"), ascending=[1, 0])
)
dfs = (
self.df_sqlglot_store.groupBy(SF.col("district_id"))
.agg(SF.min("num_sales").alias("total_sales"))
.orderBy(SF.col("total_sales"), SF.col("district_id"), ascending=[1, 0])
)
self.compare_spark_with_sqlglot(df, dfs)
def test_order_by_single_bool(self):
df = (
self.df_spark_store.groupBy(F.col("district_id"))
.agg(F.min("num_sales").alias("total_sales"))
.orderBy(F.col("total_sales"), F.col("district_id"), ascending=False)
)
dfs = (
self.df_sqlglot_store.groupBy(SF.col("district_id"))
.agg(SF.min("num_sales").alias("total_sales"))
.orderBy(SF.col("total_sales"), SF.col("district_id"), ascending=False)
)
self.compare_spark_with_sqlglot(df, dfs)
def test_order_by_column_sort_method(self):
df = (
self.df_spark_store.groupBy(F.col("district_id"))
.agg(F.min("num_sales").alias("total_sales"))
.orderBy(F.col("total_sales").asc(), F.col("district_id").desc())
)
dfs = (
self.df_sqlglot_store.groupBy(SF.col("district_id"))
.agg(SF.min("num_sales").alias("total_sales"))
.orderBy(SF.col("total_sales").asc(), SF.col("district_id").desc())
)
self.compare_spark_with_sqlglot(df, dfs)
def test_order_by_column_sort_method_nulls_last(self):
df = (
self.df_spark_store.groupBy(F.col("district_id"))
.agg(F.min("num_sales").alias("total_sales"))
.orderBy(
F.when(F.col("district_id") == F.lit(2), F.col("district_id")).asc_nulls_last()
)
)
dfs = (
self.df_sqlglot_store.groupBy(SF.col("district_id"))
.agg(SF.min("num_sales").alias("total_sales"))
.orderBy(
SF.when(SF.col("district_id") == SF.lit(2), SF.col("district_id")).asc_nulls_last()
)
)
self.compare_spark_with_sqlglot(df, dfs)
def test_order_by_column_sort_method_nulls_first(self):
df = (
self.df_spark_store.groupBy(F.col("district_id"))
.agg(F.min("num_sales").alias("total_sales"))
.orderBy(
F.when(F.col("district_id") == F.lit(1), F.col("district_id")).desc_nulls_first()
)
)
dfs = (
self.df_sqlglot_store.groupBy(SF.col("district_id"))
.agg(SF.min("num_sales").alias("total_sales"))
.orderBy(
SF.when(
SF.col("district_id") == SF.lit(1), SF.col("district_id")
).desc_nulls_first()
)
)
self.compare_spark_with_sqlglot(df, dfs)
def test_intersect(self):
df_employee_duplicate = self.df_spark_employee.select(
F.col("employee_id"), F.col("store_id")
).union(self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")))
df_store_duplicate = self.df_spark_store.select(
F.col("store_id"), F.col("district_id")
).union(self.df_spark_store.select(F.col("store_id"), F.col("district_id")))
df = df_employee_duplicate.intersect(df_store_duplicate)
dfs_employee_duplicate = self.df_sqlglot_employee.select(
SF.col("employee_id"), SF.col("store_id")
).union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")))
dfs_store_duplicate = self.df_sqlglot_store.select(
SF.col("store_id"), SF.col("district_id")
).union(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")))
dfs = dfs_employee_duplicate.intersect(dfs_store_duplicate)
self.compare_spark_with_sqlglot(df, dfs)
def test_intersect_all(self):
df_employee_duplicate = self.df_spark_employee.select(
F.col("employee_id"), F.col("store_id")
).union(self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")))
df_store_duplicate = self.df_spark_store.select(
F.col("store_id"), F.col("district_id")
).union(self.df_spark_store.select(F.col("store_id"), F.col("district_id")))
df = df_employee_duplicate.intersectAll(df_store_duplicate)
dfs_employee_duplicate = self.df_sqlglot_employee.select(
SF.col("employee_id"), SF.col("store_id")
).union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")))
dfs_store_duplicate = self.df_sqlglot_store.select(
SF.col("store_id"), SF.col("district_id")
).union(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")))
dfs = dfs_employee_duplicate.intersectAll(dfs_store_duplicate)
self.compare_spark_with_sqlglot(df, dfs)
def test_except_all(self):
df_employee_duplicate = self.df_spark_employee.select(
F.col("employee_id"), F.col("store_id")
).union(self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")))
df_store_duplicate = self.df_spark_store.select(
F.col("store_id"), F.col("district_id")
).union(self.df_spark_store.select(F.col("store_id"), F.col("district_id")))
df = df_employee_duplicate.exceptAll(df_store_duplicate)
dfs_employee_duplicate = self.df_sqlglot_employee.select(
SF.col("employee_id"), SF.col("store_id")
).union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")))
dfs_store_duplicate = self.df_sqlglot_store.select(
SF.col("store_id"), SF.col("district_id")
).union(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")))
dfs = dfs_employee_duplicate.exceptAll(dfs_store_duplicate)
self.compare_spark_with_sqlglot(df, dfs)
def test_distinct(self):
df = self.df_spark_employee.select(F.col("age")).distinct()
dfs = self.df_sqlglot_employee.select(SF.col("age")).distinct()
self.compare_spark_with_sqlglot(df, dfs)
def test_union_distinct(self):
df_unioned = (
self.df_spark_employee.select(F.col("employee_id"), F.col("age"))
.union(self.df_spark_employee.select(F.col("employee_id"), F.col("age")))
.distinct()
)
dfs_unioned = (
self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age"))
.union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age")))
.distinct()
)
self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
def test_drop_duplicates_no_subset(self):
df = self.df_spark_employee.select("age").dropDuplicates()
dfs = self.df_sqlglot_employee.select("age").dropDuplicates()
self.compare_spark_with_sqlglot(df, dfs)
def test_drop_duplicates_subset(self):
df = self.df_spark_employee.dropDuplicates(["age"])
dfs = self.df_sqlglot_employee.dropDuplicates(["age"])
self.compare_spark_with_sqlglot(df, dfs)
def test_drop_na_default(self):
df = self.df_spark_employee.select(
F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
).dropna()
dfs = self.df_sqlglot_employee.select(
SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
).dropna()
self.compare_spark_with_sqlglot(df, dfs)
def test_dropna_how(self):
df = self.df_spark_employee.select(
F.lit(None), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
).dropna(how="all")
dfs = self.df_sqlglot_employee.select(
SF.lit(None), SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
).dropna(how="all")
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_dropna_thresh(self):
df = self.df_spark_employee.select(
F.lit(None), F.lit(1), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
).dropna(how="any", thresh=2)
dfs = self.df_sqlglot_employee.select(
SF.lit(None),
SF.lit(1),
SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age"),
).dropna(how="any", thresh=2)
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_dropna_subset(self):
df = self.df_spark_employee.select(
F.lit(None), F.lit(1), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
).dropna(thresh=1, subset="the_age")
dfs = self.df_sqlglot_employee.select(
SF.lit(None),
SF.lit(1),
SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age"),
).dropna(thresh=1, subset="the_age")
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_dropna_na_function(self):
df = self.df_spark_employee.select(
F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
).na.drop()
dfs = self.df_sqlglot_employee.select(
SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
).na.drop()
self.compare_spark_with_sqlglot(df, dfs)
def test_fillna_default(self):
df = self.df_spark_employee.select(
F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
).fillna(100)
dfs = self.df_sqlglot_employee.select(
SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
).fillna(100)
self.compare_spark_with_sqlglot(df, dfs)
def test_fillna_dict_replacement(self):
df = self.df_spark_employee.select(
F.col("fname"),
F.when(F.col("lname").startswith("L"), F.col("lname")).alias("l_lname"),
F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age"),
).fillna({"fname": "Jacob", "l_lname": "NOT_LNAME"})
dfs = self.df_sqlglot_employee.select(
SF.col("fname"),
SF.when(SF.col("lname").startswith("L"), SF.col("lname")).alias("l_lname"),
SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age"),
).fillna({"fname": "Jacob", "l_lname": "NOT_LNAME"})
# For some reason the sqlglot results sets a column as nullable when it doesn't need to
# This seems to be a nuance in how spark dataframe from sql works so we can ignore
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_fillna_na_func(self):
df = self.df_spark_employee.select(
F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
).na.fill(100)
dfs = self.df_sqlglot_employee.select(
SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
).na.fill(100)
self.compare_spark_with_sqlglot(df, dfs)
def test_replace_basic(self):
df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace(
to_replace=37, value=100
)
dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace(
to_replace=37, value=100
)
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_replace_basic_subset(self):
df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace(
to_replace=37, value=100, subset="age"
)
dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace(
to_replace=37, value=100, subset="age"
)
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_replace_mapping(self):
df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace(
{37: 100}
)
dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace(
{37: 100}
)
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_replace_mapping_subset(self):
df = self.df_spark_employee.select(
F.col("age"), F.lit(37).alias("test_col"), F.lit(50).alias("test_col_2")
).replace({37: 100, 50: 1}, subset=["age", "test_col_2"])
dfs = self.df_sqlglot_employee.select(
SF.col("age"), SF.lit(37).alias("test_col"), SF.lit(50).alias("test_col_2")
).replace({37: 100, 50: 1}, subset=["age", "test_col_2"])
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_replace_na_func_basic(self):
df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).na.replace(
to_replace=37, value=100
)
dfs = self.df_sqlglot_employee.select(
SF.col("age"), SF.lit(37).alias("test_col")
).na.replace(to_replace=37, value=100)
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_with_column(self):
df = self.df_spark_employee.withColumn("test", F.col("age"))
dfs = self.df_sqlglot_employee.withColumn("test", SF.col("age"))
self.compare_spark_with_sqlglot(df, dfs)
def test_with_column_existing_name(self):
df = self.df_spark_employee.withColumn("fname", F.lit("blah"))
dfs = self.df_sqlglot_employee.withColumn("fname", SF.lit("blah"))
self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
def test_with_column_renamed(self):
df = self.df_spark_employee.withColumnRenamed("fname", "first_name")
dfs = self.df_sqlglot_employee.withColumnRenamed("fname", "first_name")
self.compare_spark_with_sqlglot(df, dfs)
def test_with_column_renamed_double(self):
df = self.df_spark_employee.select(F.col("fname").alias("first_name")).withColumnRenamed(
"first_name", "first_name_again"
)
dfs = self.df_sqlglot_employee.select(
SF.col("fname").alias("first_name")
).withColumnRenamed("first_name", "first_name_again")
self.compare_spark_with_sqlglot(df, dfs)
def test_drop_column_single(self):
df = self.df_spark_employee.select(F.col("fname"), F.col("lname"), F.col("age")).drop("age")
dfs = self.df_sqlglot_employee.select(SF.col("fname"), SF.col("lname"), SF.col("age")).drop(
"age"
)
self.compare_spark_with_sqlglot(df, dfs)
def test_drop_column_reference_join(self):
df_spark_employee_cols = self.df_spark_employee.select(
F.col("fname"), F.col("lname"), F.col("age"), F.col("store_id")
)
df_spark_store_cols = self.df_spark_store.select(F.col("store_id"), F.col("store_name"))
df = df_spark_employee_cols.join(df_spark_store_cols, on="store_id", how="inner").drop(
df_spark_employee_cols.age,
)
df_sqlglot_employee_cols = self.df_sqlglot_employee.select(
SF.col("fname"), SF.col("lname"), SF.col("age"), SF.col("store_id")
)
df_sqlglot_store_cols = self.df_sqlglot_store.select(
SF.col("store_id"), SF.col("store_name")
)
dfs = df_sqlglot_employee_cols.join(df_sqlglot_store_cols, on="store_id", how="inner").drop(
df_sqlglot_employee_cols.age,
)
self.compare_spark_with_sqlglot(df, dfs)
def test_limit(self):
df = self.df_spark_employee.limit(1)
dfs = self.df_sqlglot_employee.limit(1)
self.compare_spark_with_sqlglot(df, dfs)
def test_hint_broadcast_alias(self):
df_joined = self.df_spark_employee.join(
self.df_spark_store.alias("store").hint("broadcast", "store"),
on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
how="inner",
).select(
self.df_spark_employee.employee_id,
self.df_spark_employee["fname"],
F.col("lname"),
F.col("age"),
self.df_spark_employee.store_id,
self.df_spark_store.store_name,
self.df_spark_store["num_sales"],
)
dfs_joined = self.df_sqlglot_employee.join(
self.df_sqlglot_store.alias("store").hint("broadcast", "store"),
on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
how="inner",
).select(
self.df_sqlglot_employee.employee_id,
self.df_sqlglot_employee["fname"],
SF.col("lname"),
SF.col("age"),
self.df_sqlglot_employee.store_id,
self.df_sqlglot_store.store_name,
self.df_sqlglot_store["num_sales"],
)
df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined)
self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df))
self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs))
def test_hint_broadcast_no_alias(self):
df_joined = self.df_spark_employee.join(
self.df_spark_store.hint("broadcast"),
on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
how="inner",
).select(
self.df_spark_employee.employee_id,
self.df_spark_employee["fname"],
F.col("lname"),
F.col("age"),
self.df_spark_employee.store_id,
self.df_spark_store.store_name,
self.df_spark_store["num_sales"],
)
dfs_joined = self.df_sqlglot_employee.join(
self.df_sqlglot_store.hint("broadcast"),
on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
how="inner",
).select(
self.df_sqlglot_employee.employee_id,
self.df_sqlglot_employee["fname"],
SF.col("lname"),
SF.col("age"),
self.df_sqlglot_employee.store_id,
self.df_sqlglot_store.store_name,
self.df_sqlglot_store["num_sales"],
)
df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined)
self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df))
self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs))
# TODO: Add test to make sure with and without alias are the same once ids are deterministic
def test_broadcast_func(self):
df_joined = self.df_spark_employee.join(
F.broadcast(self.df_spark_store),
on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
how="inner",
).select(
self.df_spark_employee.employee_id,
self.df_spark_employee["fname"],
F.col("lname"),
F.col("age"),
self.df_spark_employee.store_id,
self.df_spark_store.store_name,
self.df_spark_store["num_sales"],
)
dfs_joined = self.df_sqlglot_employee.join(
SF.broadcast(self.df_sqlglot_store),
on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
how="inner",
).select(
self.df_sqlglot_employee.employee_id,
self.df_sqlglot_employee["fname"],
SF.col("lname"),
SF.col("age"),
self.df_sqlglot_employee.store_id,
self.df_sqlglot_store.store_name,
self.df_sqlglot_store["num_sales"],
)
df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined)
self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df))
self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs))
def test_repartition_by_num(self):
"""
The results are different when doing the repartition on a table created using VALUES in SQL.
So I just use the views instead for these tests
"""
df = self.df_spark_employee.repartition(63)
dfs = self.sqlglot.read.table("employee").repartition(63)
df, dfs = self.compare_spark_with_sqlglot(df, dfs)
spark_num_partitions = df.rdd.getNumPartitions()
sqlglot_num_partitions = dfs.rdd.getNumPartitions()
self.assertEqual(spark_num_partitions, 63)
self.assertEqual(spark_num_partitions, sqlglot_num_partitions)
def test_repartition_name_only(self):
"""
We use the view here to help ensure the explain plans are similar enough to compare
"""
df = self.df_spark_employee.repartition("age")
dfs = self.sqlglot.read.table("employee").repartition("age")
df, dfs = self.compare_spark_with_sqlglot(df, dfs)
self.assertIn("RepartitionByExpression [age", self.get_explain_plan(df))
self.assertIn("RepartitionByExpression [age", self.get_explain_plan(dfs))
def test_repartition_num_and_multiple_names(self):
"""
We use the view here to help ensure the explain plans are similar enough to compare
"""
df = self.df_spark_employee.repartition(53, "age", "fname")
dfs = self.sqlglot.read.table("employee").repartition(53, "age", "fname")
df, dfs = self.compare_spark_with_sqlglot(df, dfs)
spark_num_partitions = df.rdd.getNumPartitions()
sqlglot_num_partitions = dfs.rdd.getNumPartitions()
self.assertEqual(spark_num_partitions, 53)
self.assertEqual(spark_num_partitions, sqlglot_num_partitions)
self.assertIn("RepartitionByExpression [age#3, fname#1], 53", self.get_explain_plan(df))
self.assertIn("RepartitionByExpression [age#3, fname#1], 53", self.get_explain_plan(dfs))
def test_coalesce(self):
df = self.df_spark_employee.coalesce(1)
dfs = self.df_sqlglot_employee.coalesce(1)
df, dfs = self.compare_spark_with_sqlglot(df, dfs)
spark_num_partitions = df.rdd.getNumPartitions()
sqlglot_num_partitions = dfs.rdd.getNumPartitions()
self.assertEqual(spark_num_partitions, 1)
self.assertEqual(spark_num_partitions, sqlglot_num_partitions)
def test_cache_select(self):
df_employee = (
self.df_spark_employee.groupBy("store_id")
.agg(F.countDistinct("employee_id").alias("num_employees"))
.cache()
)
df_joined = df_employee.join(self.df_spark_store, on="store_id").select(
self.df_spark_store.store_id, df_employee.num_employees
)
dfs_employee = (
self.df_sqlglot_employee.groupBy("store_id")
.agg(SF.countDistinct("employee_id").alias("num_employees"))
.cache()
)
dfs_joined = dfs_employee.join(self.df_sqlglot_store, on="store_id").select(
self.df_sqlglot_store.store_id, dfs_employee.num_employees
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)
def test_persist_select(self):
df_employee = (
self.df_spark_employee.groupBy("store_id")
.agg(F.countDistinct("employee_id").alias("num_employees"))
.persist()
)
df_joined = df_employee.join(self.df_spark_store, on="store_id").select(
self.df_spark_store.store_id, df_employee.num_employees
)
dfs_employee = (
self.df_sqlglot_employee.groupBy("store_id")
.agg(SF.countDistinct("employee_id").alias("num_employees"))
.persist()
)
dfs_joined = dfs_employee.join(self.df_sqlglot_store, on="store_id").select(
self.df_sqlglot_store.store_id, dfs_employee.num_employees
)
self.compare_spark_with_sqlglot(df_joined, dfs_joined)