1
0
Fork 0
sqlglot/sqlglot/optimizer/normalize.py

127 lines
4 KiB
Python
Raw Normal View History

from sqlglot import exp
from sqlglot.helper import while_changing
from sqlglot.optimizer.simplify import flatten, simplify, uniq_sort
def normalize(expression, dnf=False, max_distance=128):
"""
Rewrite sqlglot AST into conjunctive normal form.
Example:
>>> import sqlglot
>>> expression = sqlglot.parse_one("(x AND y) OR z")
>>> normalize(expression).sql()
'(x OR z) AND (y OR z)'
Args:
expression (sqlglot.Expression): expression to normalize
dnf (bool): rewrite in disjunctive normal form instead
max_distance (int): the maximal estimated distance from cnf to attempt conversion
Returns:
sqlglot.Expression: normalized expression
"""
expression = simplify(expression)
expression = while_changing(expression, lambda e: distributive_law(e, dnf, max_distance))
return simplify(expression)
def normalized(expression, dnf=False):
ancestor, root = (exp.And, exp.Or) if dnf else (exp.Or, exp.And)
return not any(connector.find_ancestor(ancestor) for connector in expression.find_all(root))
def normalization_distance(expression, dnf=False):
"""
The difference in the number of predicates between the current expression and the normalized form.
This is used as an estimate of the cost of the conversion which is exponential in complexity.
Example:
>>> import sqlglot
>>> expression = sqlglot.parse_one("(a AND b) OR (c AND d)")
>>> normalization_distance(expression)
4
Args:
expression (sqlglot.Expression): expression to compute distance
dnf (bool): compute to dnf distance instead
Returns:
int: difference
"""
return sum(_predicate_lengths(expression, dnf)) - (
len(list(expression.find_all(exp.Connector))) + 1
)
def _predicate_lengths(expression, dnf):
"""
Returns a list of predicate lengths when expanded to normalized form.
(A AND B) OR C -> [2, 2] because len(A OR C), len(B OR C).
"""
expression = expression.unnest()
if not isinstance(expression, exp.Connector):
return [1]
left, right = expression.args.values()
if isinstance(expression, exp.And if dnf else exp.Or):
x = [a + b for a in _predicate_lengths(left, dnf) for b in _predicate_lengths(right, dnf)]
return x
return _predicate_lengths(left, dnf) + _predicate_lengths(right, dnf)
def distributive_law(expression, dnf, max_distance):
"""
x OR (y AND z) -> (x OR y) AND (x OR z)
(x AND y) OR (y AND z) -> (x OR y) AND (x OR z) AND (y OR y) AND (y OR z)
"""
if isinstance(expression.unnest(), exp.Connector):
if normalization_distance(expression, dnf) > max_distance:
return expression
to_exp, from_exp = (exp.Or, exp.And) if dnf else (exp.And, exp.Or)
exp.replace_children(expression, lambda e: distributive_law(e, dnf, max_distance))
if isinstance(expression, from_exp):
a, b = expression.unnest_operands()
from_func = exp.and_ if from_exp == exp.And else exp.or_
to_func = exp.and_ if to_exp == exp.And else exp.or_
if isinstance(a, to_exp) and isinstance(b, to_exp):
if len(tuple(a.find_all(exp.Connector))) > len(tuple(b.find_all(exp.Connector))):
return _distribute(a, b, from_func, to_func)
return _distribute(b, a, from_func, to_func)
if isinstance(a, to_exp):
return _distribute(b, a, from_func, to_func)
if isinstance(b, to_exp):
return _distribute(a, b, from_func, to_func)
return expression
def _distribute(a, b, from_func, to_func):
if isinstance(a, exp.Connector):
exp.replace_children(
a,
lambda c: to_func(
exp.paren(from_func(c, b.left)),
exp.paren(from_func(c, b.right)),
),
)
else:
a = to_func(from_func(a, b.left), from_func(a, b.right))
return _simplify(a)
def _simplify(node):
node = uniq_sort(flatten(node))
exp.replace_children(node, _simplify)
return node