1
0
Fork 0

Adding upstream version 18.13.0.

Signed-off-by: Daniel Baumann <daniel@debian.org>
This commit is contained in:
Daniel Baumann 2025-02-13 21:07:20 +01:00
parent e833f2baa5
commit fc6bad5705
Signed by: daniel
GPG key ID: FBB4F0E80A80222F
76 changed files with 21248 additions and 19605 deletions

View file

@ -790,3 +790,11 @@ class TestDuckDB(Validator):
"duckdb": "ALTER TABLE db.t1 RENAME TO t2",
},
)
def test_timestamps_with_units(self):
self.validate_all(
"SELECT w::TIMESTAMP_S, x::TIMESTAMP_MS, y::TIMESTAMP_US, z::TIMESTAMP_NS",
write={
"duckdb": "SELECT CAST(w AS TIMESTAMP_S), CAST(x AS TIMESTAMP_MS), CAST(y AS TIMESTAMP), CAST(z AS TIMESTAMP_NS)",
},
)

View file

@ -65,6 +65,9 @@ class TestMySQL(Validator):
self.validate_identity(
"INSERT INTO x VALUES (1, 'a', 2.0) ON DUPLICATE KEY UPDATE x.id = 1"
)
self.validate_identity(
"CREATE OR REPLACE VIEW my_view AS SELECT column1 AS `boo`, column2 AS `foo` FROM my_table WHERE column3 = 'some_value' UNION SELECT q.* FROM fruits_table, JSON_TABLE(Fruits, '$[*]' COLUMNS(id VARCHAR(255) PATH '$.$id', value VARCHAR(255) PATH '$.value')) AS q",
)
self.validate_all(
"CREATE TABLE z (a INT) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARACTER SET=utf8 COLLATE=utf8_bin COMMENT='x'",

View file

@ -234,21 +234,30 @@ MATCH_RECOGNIZE (
def test_json_table(self):
self.validate_identity(
"SELECT * FROM JSON_TABLE(foo FORMAT JSON, 'bla' ERROR ON ERROR NULL ON EMPTY COLUMNS (foo PATH 'bar'))"
"SELECT * FROM JSON_TABLE(foo FORMAT JSON, 'bla' ERROR ON ERROR NULL ON EMPTY COLUMNS(foo PATH 'bar'))"
)
self.validate_identity(
"SELECT * FROM JSON_TABLE(foo FORMAT JSON, 'bla' ERROR ON ERROR NULL ON EMPTY COLUMNS foo PATH 'bar')",
"SELECT * FROM JSON_TABLE(foo FORMAT JSON, 'bla' ERROR ON ERROR NULL ON EMPTY COLUMNS (foo PATH 'bar'))",
"SELECT * FROM JSON_TABLE(foo FORMAT JSON, 'bla' ERROR ON ERROR NULL ON EMPTY COLUMNS(foo PATH 'bar'))",
)
self.validate_identity(
"""SELECT
CASE WHEN DBMS_LOB.GETLENGTH(info) < 32000 THEN DBMS_LOB.SUBSTR(info) END AS info_txt,
info AS info_clob
FROM schemaname.tablename ar
INNER JOIN JSON_TABLE(:emps, '$[*]' COLUMNS (empno NUMBER PATH '$')) jt
INNER JOIN JSON_TABLE(:emps, '$[*]' COLUMNS(empno NUMBER PATH '$')) jt
ON ar.empno = jt.empno""",
pretty=True,
)
self.validate_identity(
"""SELECT
*
FROM JSON_TABLE(res, '$.info[*]' COLUMNS(
tempid NUMBER PATH '$.tempid',
NESTED PATH '$.calid[*]' COLUMNS(last_dt PATH '$.last_dt ')
)) src""",
pretty=True,
)
def test_connect_by(self):
start = "START WITH last_name = 'King'"

View file

@ -6,6 +6,18 @@ class TestRedshift(Validator):
dialect = "redshift"
def test_redshift(self):
self.validate_all(
"SELECT APPROXIMATE COUNT(DISTINCT y)",
read={
"spark": "SELECT APPROX_COUNT_DISTINCT(y)",
},
write={
"redshift": "SELECT APPROXIMATE COUNT(DISTINCT y)",
"spark": "SELECT APPROX_COUNT_DISTINCT(y)",
},
)
self.validate_identity("SELECT APPROXIMATE AS y")
self.validate_identity(
"SELECT 'a''b'",
"SELECT 'a\\'b'",

View file

@ -361,7 +361,18 @@ TBLPROPERTIES (
"SELECT CAST(123456 AS VARCHAR(3))",
write={
"": "SELECT TRY_CAST(123456 AS TEXT)",
"databricks": "SELECT TRY_CAST(123456 AS STRING)",
"spark": "SELECT CAST(123456 AS STRING)",
"spark2": "SELECT CAST(123456 AS STRING)",
},
)
self.validate_all(
"SELECT TRY_CAST('a' AS INT)",
write={
"": "SELECT TRY_CAST('a' AS INT)",
"databricks": "SELECT TRY_CAST('a' AS INT)",
"spark": "SELECT TRY_CAST('a' AS INT)",
"spark2": "SELECT CAST('a' AS INT)",
},
)
self.validate_all(

View file

@ -48,6 +48,14 @@ class TestTeradata(Validator):
self.validate_identity("HELP STATISTICS personnel.employee FROM my_qcd")
def test_create(self):
self.validate_identity(
"REPLACE VIEW view_b (COL1, COL2) AS LOCKING ROW FOR ACCESS SELECT COL1, COL2 FROM table_b",
"CREATE OR REPLACE VIEW view_b (COL1, COL2) AS LOCKING ROW FOR ACCESS SELECT COL1, COL2 FROM table_b",
)
self.validate_identity(
"REPLACE VIEW view_b (COL1, COL2) AS LOCKING ROW FOR ACCESS SELECT COL1, COL2 FROM table_b",
"CREATE OR REPLACE VIEW view_b (COL1, COL2) AS LOCKING ROW FOR ACCESS SELECT COL1, COL2 FROM table_b",
)
self.validate_identity("CREATE TABLE x (y INT) PRIMARY INDEX (y) PARTITION BY y INDEX (y)")
self.validate_identity("CREATE TABLE x (y INT) PARTITION BY y INDEX (y)")
self.validate_identity(

View file

@ -970,19 +970,19 @@ WHERE
self.validate_all(
"TRY_CONVERT(NVARCHAR, x, 121)",
write={
"spark": "CAST(DATE_FORMAT(x, 'yyyy-MM-dd HH:mm:ss.SSSSSS') AS VARCHAR(30))",
"spark": "TRY_CAST(DATE_FORMAT(x, 'yyyy-MM-dd HH:mm:ss.SSSSSS') AS VARCHAR(30))",
},
)
self.validate_all(
"TRY_CONVERT(INT, x)",
write={
"spark": "CAST(x AS INT)",
"spark": "TRY_CAST(x AS INT)",
},
)
self.validate_all(
"TRY_CAST(x AS INT)",
write={
"spark": "CAST(x AS INT)",
"spark": "TRY_CAST(x AS INT)",
},
)
self.validate_all(

View file

@ -15,6 +15,35 @@ SELECT
"q"."x" AS "x"
FROM UNNEST(ARRAY(1, 2)) AS "q"("x", "y");
# title: explode_outer
# dialect: spark
# execute: false
CREATE OR REPLACE TEMPORARY VIEW latest_boo AS
SELECT
TRIM(split(points, ':')[0]) as points_type,
TRIM(split(points, ':')[1]) as points_value
FROM (
SELECT
explode_outer(split(object_pointsText, ',')) as points
FROM (
SELECT
object_pointstext,
FROM boo
)
WHERE object_pointstext IS NOT NULL
);
CREATE OR REPLACE TEMPORARY VIEW `latest_boo` AS
SELECT
TRIM(SPLIT(`_q_1`.`points`, ':')[0]) AS `points_type`,
TRIM(SPLIT(`_q_1`.`points`, ':')[1]) AS `points_value`
FROM (
SELECT
EXPLODE_OUTER(SPLIT(`boo`.`object_pointstext`, ',')) AS `points`
FROM `boo` AS `boo`
WHERE
NOT `boo`.`object_pointstext` IS NULL
) AS `_q_1`;
# title: Union in CTE
WITH cte AS (
(

View file

@ -70,6 +70,15 @@ WITH cte AS (SELECT 1 AS x, 3 AS z) SELECT cte.a AS a, cte.z AS z FROM cte AS ct
WITH cte(x, y, z) AS (SELECT 1, 2, 3) SELECT a, z FROM (SELECT * FROM cte AS cte(b)) AS cte(a);
WITH cte AS (SELECT 1 AS x, 3 AS z) SELECT cte.a AS a, cte.z AS z FROM (SELECT cte.b AS a, cte.z AS z FROM cte AS cte(b)) AS cte;
WITH y AS (SELECT a FROM x) SELECT 1 FROM y;
WITH y AS (SELECT 1 AS _ FROM x AS x) SELECT 1 AS "1" FROM y;
WITH y AS (SELECT SUM(a) FROM x) SELECT 1 FROM y;
WITH y AS (SELECT MAX(1) AS _ FROM x AS x) SELECT 1 AS "1" FROM y;
WITH y AS (SELECT a FROM x GROUP BY a) SELECT 1 FROM y;
WITH y AS (SELECT 1 AS _ FROM x AS x GROUP BY x.a) SELECT 1 AS "1" FROM y;
--------------------------------------
-- Unknown Star Expansion
--------------------------------------

View file

@ -625,7 +625,7 @@ t0.x = t1.x AND t0.y < t1.y AND t0.y <= t1.y;
t0.x = t1.x AND t0.y < t1.y AND t0.y <= t1.y;
--------------------------------------
-- Coalesce
-- COALESCE
--------------------------------------
COALESCE(x);
x;
@ -669,18 +669,45 @@ a AND b AND (ROW() OVER () = 1 OR ROW() OVER () IS NULL);
CONCAT(x, y);
CONCAT(x, y);
CONCAT_WS(sep, x, y);
CONCAT_WS(sep, x, y);
CONCAT(x);
x;
CONCAT('a', 'b', 'c');
'abc';
CONCAT('a', NULL);
CONCAT('a', NULL);
CONCAT_WS('-', 'a', 'b', 'c');
'a-b-c';
CONCAT('a', x, y, 'b', 'c');
CONCAT('a', x, y, 'bc');
CONCAT_WS('-', 'a', x, y, 'b', 'c');
CONCAT_WS('-', 'a', x, y, 'b-c');
'a' || 'b';
'ab';
CONCAT_WS('-', 'a');
'a';
CONCAT_WS('-', x, y);
CONCAT_WS('-', x, y);
CONCAT_WS('', x, y);
CONCAT_WS('', x, y);
CONCAT_WS('-', x);
CONCAT_WS('-', x);
CONCAT_WS(sep, 'a', 'b');
CONCAT_WS(sep, 'a', 'b');
'a' || 'b' || x;
CONCAT('ab', x);
@ -837,3 +864,60 @@ x < CAST('2020-01-07' AS DATE);
x - INTERVAL '1' day = CAST(y AS DATE);
x - INTERVAL '1' day = CAST(y AS DATE);
--------------------------------------
-- Constant Propagation
--------------------------------------
x = 5 AND y = x;
x = 5 AND y = 5;
5 = x AND y = x;
y = 5 AND 5 = x;
x = 5 OR y = x;
x = 5 OR y = x;
(x = 5 AND y = x) OR y = 1;
(x = 5 AND y = 5) OR y = 1;
t.x = 5 AND y = x;
t.x = 5 AND y = x;
t.x = 'a' AND y = CONCAT_WS('-', t.x, 'b');
t.x = 'a' AND y = 'a-b';
x = 5 AND y = x AND y + 1 < 5;
FALSE;
x = 5 AND x = 6;
FALSE;
x = 5 AND (y = x OR z = 1);
x = 5 AND (y = x OR z = 1);
x = 5 AND x + 3 = 8;
x = 5;
x = 5 AND (SELECT x FROM t WHERE y = 1);
x = 5 AND (SELECT x FROM t WHERE y = 1);
x = 1 AND y > 0 AND (SELECT z = 5 FROM t WHERE y = 1);
x = 1 AND y > 0 AND (SELECT z = 5 FROM t WHERE y = 1);
x = 1 AND x = y AND (SELECT z FROM t WHERE a AND (b OR c));
x = 1 AND (SELECT z FROM t WHERE a AND (b OR c)) AND 1 = y;
t1.a = 39 AND t2.b = t1.a AND t3.c = t2.b;
t1.a = 39 AND t2.b = 39 AND t3.c = 39;
x = 1 AND CASE WHEN x = 5 THEN FALSE ELSE TRUE END;
x = 1 AND CASE WHEN FALSE THEN FALSE ELSE TRUE END;
x = 1 AND IF(x = 5, FALSE, TRUE);
x = 1 AND CASE WHEN FALSE THEN FALSE ELSE TRUE END;
x = y AND CASE WHEN x = 5 THEN FALSE ELSE TRUE END;
x = y AND CASE WHEN x = 5 THEN FALSE ELSE TRUE END;
x = 1 AND CASE WHEN y = 5 THEN x = z END;
x = 1 AND CASE WHEN y = 5 THEN 1 = z END;

View file

@ -2029,18 +2029,33 @@ JOIN "date_dim" AS "date_dim"
ON "date_dim"."d_year" = 2001
AND "store_sales"."ss_sold_date_sk" = "date_dim"."d_date_sk"
JOIN "household_demographics" AS "household_demographics"
ON "customer_demographics"."cd_demo_sk" = "store_sales"."ss_cdemo_sk"
AND "customer_demographics"."cd_education_status" = 'Advanced Degree'
AND "customer_demographics"."cd_education_status" = 'Primary'
AND "customer_demographics"."cd_education_status" = 'Secondary'
AND "customer_demographics"."cd_marital_status" = 'D'
AND "customer_demographics"."cd_marital_status" = 'M'
AND "customer_demographics"."cd_marital_status" = 'U'
AND "household_demographics"."hd_dep_count" = 1
AND "household_demographics"."hd_dep_count" = 3
AND "store_sales"."ss_hdemo_sk" = "household_demographics"."hd_demo_sk"
AND "store_sales"."ss_sales_price" <= 100.00
AND "store_sales"."ss_sales_price" >= 150.00
ON (
"customer_demographics"."cd_demo_sk" = "store_sales"."ss_cdemo_sk"
AND "customer_demographics"."cd_education_status" = 'Advanced Degree'
AND "customer_demographics"."cd_marital_status" = 'U'
AND "household_demographics"."hd_dep_count" = 3
AND "store_sales"."ss_hdemo_sk" = "household_demographics"."hd_demo_sk"
AND "store_sales"."ss_sales_price" <= 150.00
AND "store_sales"."ss_sales_price" >= 100.00
)
OR (
"customer_demographics"."cd_demo_sk" = "store_sales"."ss_cdemo_sk"
AND "customer_demographics"."cd_education_status" = 'Primary'
AND "customer_demographics"."cd_marital_status" = 'M'
AND "household_demographics"."hd_dep_count" = 1
AND "store_sales"."ss_hdemo_sk" = "household_demographics"."hd_demo_sk"
AND "store_sales"."ss_sales_price" <= 100.00
AND "store_sales"."ss_sales_price" >= 50.00
)
OR (
"customer_demographics"."cd_demo_sk" = "store_sales"."ss_cdemo_sk"
AND "customer_demographics"."cd_education_status" = 'Secondary'
AND "customer_demographics"."cd_marital_status" = 'D'
AND "household_demographics"."hd_dep_count" = 1
AND "store_sales"."ss_hdemo_sk" = "household_demographics"."hd_demo_sk"
AND "store_sales"."ss_sales_price" <= 200.00
AND "store_sales"."ss_sales_price" >= 150.00
)
JOIN "store" AS "store"
ON "store"."s_store_sk" = "store_sales"."ss_store_sk";

View file

@ -4,6 +4,7 @@ from datetime import date
from multiprocessing import Pool
import duckdb
import numpy as np
import pandas as pd
from pandas.testing import assert_frame_equal
@ -94,6 +95,11 @@ class TestExecutor(unittest.TestCase):
sql, _ = self.sqls[i]
a = self.cached_execute(sql)
b = pd.DataFrame(table.rows, columns=table.columns)
# The executor represents NULL values as None, whereas DuckDB represents them as NaN,
# and so the following is done to silence Pandas' "Mismatched null-like values" warnings
b = b.fillna(value=np.nan)
assert_frame_equal(a, b, check_dtype=False, check_index_type=False)
def test_execute_callable(self):

View file

@ -45,6 +45,10 @@ def normalize(expression, **kwargs):
return optimizer.simplify.simplify(expression)
def simplify(expression, **kwargs):
return optimizer.simplify.simplify(expression, constant_propagation=True, **kwargs)
class TestOptimizer(unittest.TestCase):
maxDiff = None
@ -271,7 +275,7 @@ class TestOptimizer(unittest.TestCase):
self.check_file("pushdown_projections", pushdown_projections, schema=self.schema)
def test_simplify(self):
self.check_file("simplify", optimizer.simplify.simplify)
self.check_file("simplify", simplify)
expression = parse_one("TRUE AND TRUE AND TRUE")
self.assertEqual(exp.true(), optimizer.simplify.simplify(expression))
@ -823,6 +827,11 @@ FROM READ_CSV('tests/fixtures/optimizer/tpc-h/nation.csv.gz', 'delimiter', '|')
self.assertEqual(exp.DataType.Type.ARRAY, expression.selects[0].type.this)
self.assertEqual(expression.selects[0].type.sql(), "ARRAY<INT>")
schema = MappingSchema({"t": {"c": "STRUCT<`f` STRING>"}}, dialect="bigquery")
expression = annotate_types(parse_one("SELECT t.c FROM t"), schema=schema)
self.assertEqual(expression.selects[0].type.sql(dialect="bigquery"), "STRUCT<`f` STRING>")
def test_type_annotation_cache(self):
sql = "SELECT 1 + 1"
expression = annotate_types(parse_one(sql))

View file

@ -272,3 +272,8 @@ class TestSchema(unittest.TestCase):
str(ctx.exception),
"Table z must match the schema's nesting level: 2.",
)
def test_has_column(self):
schema = MappingSchema({"x": {"c": "int"}})
self.assertTrue(schema.has_column("x", exp.column("c")))
self.assertFalse(schema.has_column("x", exp.column("k")))