1
0
Fork 0
sqlglot/sqlglot/optimizer/qualify_columns.py
Daniel Baumann 4118582692
Adding upstream version 26.12.0.
Signed-off-by: Daniel Baumann <daniel@debian.org>
2025-03-31 15:54:51 +02:00

988 lines
38 KiB
Python

from __future__ import annotations
import itertools
import typing as t
from sqlglot import alias, exp
from sqlglot.dialects.dialect import Dialect, DialectType
from sqlglot.errors import OptimizeError
from sqlglot.helper import seq_get, SingleValuedMapping
from sqlglot.optimizer.annotate_types import TypeAnnotator
from sqlglot.optimizer.scope import Scope, build_scope, traverse_scope, walk_in_scope
from sqlglot.optimizer.simplify import simplify_parens
from sqlglot.schema import Schema, ensure_schema
if t.TYPE_CHECKING:
from sqlglot._typing import E
def qualify_columns(
expression: exp.Expression,
schema: t.Dict | Schema,
expand_alias_refs: bool = True,
expand_stars: bool = True,
infer_schema: t.Optional[bool] = None,
allow_partial_qualification: bool = False,
) -> exp.Expression:
"""
Rewrite sqlglot AST to have fully qualified columns.
Example:
>>> import sqlglot
>>> schema = {"tbl": {"col": "INT"}}
>>> expression = sqlglot.parse_one("SELECT col FROM tbl")
>>> qualify_columns(expression, schema).sql()
'SELECT tbl.col AS col FROM tbl'
Args:
expression: Expression to qualify.
schema: Database schema.
expand_alias_refs: Whether to expand references to aliases.
expand_stars: Whether to expand star queries. This is a necessary step
for most of the optimizer's rules to work; do not set to False unless you
know what you're doing!
infer_schema: Whether to infer the schema if missing.
allow_partial_qualification: Whether to allow partial qualification.
Returns:
The qualified expression.
Notes:
- Currently only handles a single PIVOT or UNPIVOT operator
"""
schema = ensure_schema(schema)
annotator = TypeAnnotator(schema)
infer_schema = schema.empty if infer_schema is None else infer_schema
dialect = Dialect.get_or_raise(schema.dialect)
pseudocolumns = dialect.PSEUDOCOLUMNS
bigquery = dialect == "bigquery"
for scope in traverse_scope(expression):
scope_expression = scope.expression
is_select = isinstance(scope_expression, exp.Select)
if is_select and scope_expression.args.get("connect"):
# In Snowflake / Oracle queries that have a CONNECT BY clause, one can use the LEVEL
# pseudocolumn, which doesn't belong to a table, so we change it into an identifier
scope_expression.transform(
lambda n: n.this if isinstance(n, exp.Column) and n.name == "LEVEL" else n,
copy=False,
)
scope.clear_cache()
resolver = Resolver(scope, schema, infer_schema=infer_schema)
_pop_table_column_aliases(scope.ctes)
_pop_table_column_aliases(scope.derived_tables)
using_column_tables = _expand_using(scope, resolver)
if (schema.empty or dialect.FORCE_EARLY_ALIAS_REF_EXPANSION) and expand_alias_refs:
_expand_alias_refs(
scope,
resolver,
dialect,
expand_only_groupby=bigquery,
)
_convert_columns_to_dots(scope, resolver)
_qualify_columns(scope, resolver, allow_partial_qualification=allow_partial_qualification)
if not schema.empty and expand_alias_refs:
_expand_alias_refs(scope, resolver, dialect)
if is_select:
if expand_stars:
_expand_stars(
scope,
resolver,
using_column_tables,
pseudocolumns,
annotator,
)
qualify_outputs(scope)
_expand_group_by(scope, dialect)
# DISTINCT ON and ORDER BY follow the same rules (tested in DuckDB, Postgres, ClickHouse)
# https://www.postgresql.org/docs/current/sql-select.html#SQL-DISTINCT
_expand_order_by_and_distinct_on(scope, resolver)
if bigquery:
annotator.annotate_scope(scope)
return expression
def validate_qualify_columns(expression: E) -> E:
"""Raise an `OptimizeError` if any columns aren't qualified"""
all_unqualified_columns = []
for scope in traverse_scope(expression):
if isinstance(scope.expression, exp.Select):
unqualified_columns = scope.unqualified_columns
if scope.external_columns and not scope.is_correlated_subquery and not scope.pivots:
column = scope.external_columns[0]
for_table = f" for table: '{column.table}'" if column.table else ""
raise OptimizeError(f"Column '{column}' could not be resolved{for_table}")
if unqualified_columns and scope.pivots and scope.pivots[0].unpivot:
# New columns produced by the UNPIVOT can't be qualified, but there may be columns
# under the UNPIVOT's IN clause that can and should be qualified. We recompute
# this list here to ensure those in the former category will be excluded.
unpivot_columns = set(_unpivot_columns(scope.pivots[0]))
unqualified_columns = [c for c in unqualified_columns if c not in unpivot_columns]
all_unqualified_columns.extend(unqualified_columns)
if all_unqualified_columns:
raise OptimizeError(f"Ambiguous columns: {all_unqualified_columns}")
return expression
def _unpivot_columns(unpivot: exp.Pivot) -> t.Iterator[exp.Column]:
name_column = []
field = unpivot.args.get("field")
if isinstance(field, exp.In) and isinstance(field.this, exp.Column):
name_column.append(field.this)
value_columns = (c for e in unpivot.expressions for c in e.find_all(exp.Column))
return itertools.chain(name_column, value_columns)
def _pop_table_column_aliases(derived_tables: t.List[exp.CTE | exp.Subquery]) -> None:
"""
Remove table column aliases.
For example, `col1` and `col2` will be dropped in SELECT ... FROM (SELECT ...) AS foo(col1, col2)
"""
for derived_table in derived_tables:
if isinstance(derived_table.parent, exp.With) and derived_table.parent.recursive:
continue
table_alias = derived_table.args.get("alias")
if table_alias:
table_alias.args.pop("columns", None)
def _expand_using(scope: Scope, resolver: Resolver) -> t.Dict[str, t.Any]:
columns = {}
def _update_source_columns(source_name: str) -> None:
for column_name in resolver.get_source_columns(source_name):
if column_name not in columns:
columns[column_name] = source_name
joins = list(scope.find_all(exp.Join))
names = {join.alias_or_name for join in joins}
ordered = [key for key in scope.selected_sources if key not in names]
if names and not ordered:
raise OptimizeError(f"Joins {names} missing source table {scope.expression}")
# Mapping of automatically joined column names to an ordered set of source names (dict).
column_tables: t.Dict[str, t.Dict[str, t.Any]] = {}
for source_name in ordered:
_update_source_columns(source_name)
for i, join in enumerate(joins):
source_table = ordered[-1]
if source_table:
_update_source_columns(source_table)
join_table = join.alias_or_name
ordered.append(join_table)
using = join.args.get("using")
if not using:
continue
join_columns = resolver.get_source_columns(join_table)
conditions = []
using_identifier_count = len(using)
is_semi_or_anti_join = join.is_semi_or_anti_join
for identifier in using:
identifier = identifier.name
table = columns.get(identifier)
if not table or identifier not in join_columns:
if (columns and "*" not in columns) and join_columns:
raise OptimizeError(f"Cannot automatically join: {identifier}")
table = table or source_table
if i == 0 or using_identifier_count == 1:
lhs: exp.Expression = exp.column(identifier, table=table)
else:
coalesce_columns = [
exp.column(identifier, table=t)
for t in ordered[:-1]
if identifier in resolver.get_source_columns(t)
]
if len(coalesce_columns) > 1:
lhs = exp.func("coalesce", *coalesce_columns)
else:
lhs = exp.column(identifier, table=table)
conditions.append(lhs.eq(exp.column(identifier, table=join_table)))
# Set all values in the dict to None, because we only care about the key ordering
tables = column_tables.setdefault(identifier, {})
# Do not update the dict if this was a SEMI/ANTI join in
# order to avoid generating COALESCE columns for this join pair
if not is_semi_or_anti_join:
if table not in tables:
tables[table] = None
if join_table not in tables:
tables[join_table] = None
join.args.pop("using")
join.set("on", exp.and_(*conditions, copy=False))
if column_tables:
for column in scope.columns:
if not column.table and column.name in column_tables:
tables = column_tables[column.name]
coalesce_args = [exp.column(column.name, table=table) for table in tables]
replacement: exp.Expression = exp.func("coalesce", *coalesce_args)
if isinstance(column.parent, exp.Select):
# Ensure the USING column keeps its name if it's projected
replacement = alias(replacement, alias=column.name, copy=False)
elif isinstance(column.parent, exp.Struct):
# Ensure the USING column keeps its name if it's an anonymous STRUCT field
replacement = exp.PropertyEQ(
this=exp.to_identifier(column.name), expression=replacement
)
scope.replace(column, replacement)
return column_tables
def _expand_alias_refs(
scope: Scope, resolver: Resolver, dialect: Dialect, expand_only_groupby: bool = False
) -> None:
"""
Expand references to aliases.
Example:
SELECT y.foo AS bar, bar * 2 AS baz FROM y
=> SELECT y.foo AS bar, y.foo * 2 AS baz FROM y
"""
expression = scope.expression
if not isinstance(expression, exp.Select) or dialect == "oracle":
return
alias_to_expression: t.Dict[str, t.Tuple[exp.Expression, int]] = {}
projections = {s.alias_or_name for s in expression.selects}
def replace_columns(
node: t.Optional[exp.Expression], resolve_table: bool = False, literal_index: bool = False
) -> None:
is_group_by = isinstance(node, exp.Group)
is_having = isinstance(node, exp.Having)
if not node or (expand_only_groupby and not is_group_by):
return
for column in walk_in_scope(node, prune=lambda node: node.is_star):
if not isinstance(column, exp.Column):
continue
# BigQuery's GROUP BY allows alias expansion only for standalone names, e.g:
# SELECT FUNC(col) AS col FROM t GROUP BY col --> Can be expanded
# SELECT FUNC(col) AS col FROM t GROUP BY FUNC(col) --> Shouldn't be expanded, will result to FUNC(FUNC(col))
# This not required for the HAVING clause as it can evaluate expressions using both the alias & the table columns
if expand_only_groupby and is_group_by and column.parent is not node:
continue
skip_replace = False
table = resolver.get_table(column.name) if resolve_table and not column.table else None
alias_expr, i = alias_to_expression.get(column.name, (None, 1))
if alias_expr:
skip_replace = bool(
alias_expr.find(exp.AggFunc)
and column.find_ancestor(exp.AggFunc)
and not isinstance(column.find_ancestor(exp.Window, exp.Select), exp.Window)
)
# BigQuery's having clause gets confused if an alias matches a source.
# SELECT x.a, max(x.b) as x FROM x GROUP BY 1 HAVING x > 1;
# If HAVING x is expanded to max(x.b), bigquery treats x as the new projection x instead of the table
if is_having and dialect == "bigquery":
skip_replace = skip_replace or any(
node.parts[0].name in projections
for node in alias_expr.find_all(exp.Column)
)
if table and (not alias_expr or skip_replace):
column.set("table", table)
elif not column.table and alias_expr and not skip_replace:
if isinstance(alias_expr, exp.Literal) and (literal_index or resolve_table):
if literal_index:
column.replace(exp.Literal.number(i))
else:
column = column.replace(exp.paren(alias_expr))
simplified = simplify_parens(column)
if simplified is not column:
column.replace(simplified)
for i, projection in enumerate(expression.selects):
replace_columns(projection)
if isinstance(projection, exp.Alias):
alias_to_expression[projection.alias] = (projection.this, i + 1)
parent_scope = scope
while parent_scope.is_union:
parent_scope = parent_scope.parent
# We shouldn't expand aliases if they match the recursive CTE's columns
if parent_scope.is_cte:
cte = parent_scope.expression.parent
if cte.find_ancestor(exp.With).recursive:
for recursive_cte_column in cte.args["alias"].columns or cte.this.selects:
alias_to_expression.pop(recursive_cte_column.output_name, None)
replace_columns(expression.args.get("where"))
replace_columns(expression.args.get("group"), literal_index=True)
replace_columns(expression.args.get("having"), resolve_table=True)
replace_columns(expression.args.get("qualify"), resolve_table=True)
# Snowflake allows alias expansion in the JOIN ... ON clause (and almost everywhere else)
# https://docs.snowflake.com/en/sql-reference/sql/select#usage-notes
if dialect == "snowflake":
for join in expression.args.get("joins") or []:
replace_columns(join)
scope.clear_cache()
def _expand_group_by(scope: Scope, dialect: DialectType) -> None:
expression = scope.expression
group = expression.args.get("group")
if not group:
return
group.set("expressions", _expand_positional_references(scope, group.expressions, dialect))
expression.set("group", group)
def _expand_order_by_and_distinct_on(scope: Scope, resolver: Resolver) -> None:
for modifier_key in ("order", "distinct"):
modifier = scope.expression.args.get(modifier_key)
if isinstance(modifier, exp.Distinct):
modifier = modifier.args.get("on")
if not isinstance(modifier, exp.Expression):
continue
modifier_expressions = modifier.expressions
if modifier_key == "order":
modifier_expressions = [ordered.this for ordered in modifier_expressions]
for original, expanded in zip(
modifier_expressions,
_expand_positional_references(
scope, modifier_expressions, resolver.schema.dialect, alias=True
),
):
for agg in original.find_all(exp.AggFunc):
for col in agg.find_all(exp.Column):
if not col.table:
col.set("table", resolver.get_table(col.name))
original.replace(expanded)
if scope.expression.args.get("group"):
selects = {s.this: exp.column(s.alias_or_name) for s in scope.expression.selects}
for expression in modifier_expressions:
expression.replace(
exp.to_identifier(_select_by_pos(scope, expression).alias)
if expression.is_int
else selects.get(expression, expression)
)
def _expand_positional_references(
scope: Scope, expressions: t.Iterable[exp.Expression], dialect: DialectType, alias: bool = False
) -> t.List[exp.Expression]:
new_nodes: t.List[exp.Expression] = []
ambiguous_projections = None
for node in expressions:
if node.is_int:
select = _select_by_pos(scope, t.cast(exp.Literal, node))
if alias:
new_nodes.append(exp.column(select.args["alias"].copy()))
else:
select = select.this
if dialect == "bigquery":
if ambiguous_projections is None:
# When a projection name is also a source name and it is referenced in the
# GROUP BY clause, BQ can't understand what the identifier corresponds to
ambiguous_projections = {
s.alias_or_name
for s in scope.expression.selects
if s.alias_or_name in scope.selected_sources
}
ambiguous = any(
column.parts[0].name in ambiguous_projections
for column in select.find_all(exp.Column)
)
else:
ambiguous = False
if (
isinstance(select, exp.CONSTANTS)
or select.find(exp.Explode, exp.Unnest)
or ambiguous
):
new_nodes.append(node)
else:
new_nodes.append(select.copy())
else:
new_nodes.append(node)
return new_nodes
def _select_by_pos(scope: Scope, node: exp.Literal) -> exp.Alias:
try:
return scope.expression.selects[int(node.this) - 1].assert_is(exp.Alias)
except IndexError:
raise OptimizeError(f"Unknown output column: {node.name}")
def _convert_columns_to_dots(scope: Scope, resolver: Resolver) -> None:
"""
Converts `Column` instances that represent struct field lookup into chained `Dots`.
Struct field lookups look like columns (e.g. "struct"."field"), but they need to be
qualified separately and represented as Dot(Dot(...(<table>.<column>, field1), field2, ...)).
"""
converted = False
for column in itertools.chain(scope.columns, scope.stars):
if isinstance(column, exp.Dot):
continue
column_table: t.Optional[str | exp.Identifier] = column.table
if (
column_table
and column_table not in scope.sources
and (
not scope.parent
or column_table not in scope.parent.sources
or not scope.is_correlated_subquery
)
):
root, *parts = column.parts
if root.name in scope.sources:
# The struct is already qualified, but we still need to change the AST
column_table = root
root, *parts = parts
else:
column_table = resolver.get_table(root.name)
if column_table:
converted = True
column.replace(exp.Dot.build([exp.column(root, table=column_table), *parts]))
if converted:
# We want to re-aggregate the converted columns, otherwise they'd be skipped in
# a `for column in scope.columns` iteration, even though they shouldn't be
scope.clear_cache()
def _qualify_columns(scope: Scope, resolver: Resolver, allow_partial_qualification: bool) -> None:
"""Disambiguate columns, ensuring each column specifies a source"""
for column in scope.columns:
column_table = column.table
column_name = column.name
if column_table and column_table in scope.sources:
source_columns = resolver.get_source_columns(column_table)
if (
not allow_partial_qualification
and source_columns
and column_name not in source_columns
and "*" not in source_columns
):
raise OptimizeError(f"Unknown column: {column_name}")
if not column_table:
if scope.pivots and not column.find_ancestor(exp.Pivot):
# If the column is under the Pivot expression, we need to qualify it
# using the name of the pivoted source instead of the pivot's alias
column.set("table", exp.to_identifier(scope.pivots[0].alias))
continue
# column_table can be a '' because bigquery unnest has no table alias
column_table = resolver.get_table(column_name)
if column_table:
column.set("table", column_table)
for pivot in scope.pivots:
for column in pivot.find_all(exp.Column):
if not column.table and column.name in resolver.all_columns:
column_table = resolver.get_table(column.name)
if column_table:
column.set("table", column_table)
def _expand_struct_stars(
expression: exp.Dot,
) -> t.List[exp.Alias]:
"""[BigQuery] Expand/Flatten foo.bar.* where bar is a struct column"""
dot_column = t.cast(exp.Column, expression.find(exp.Column))
if not dot_column.is_type(exp.DataType.Type.STRUCT):
return []
# All nested struct values are ColumnDefs, so normalize the first exp.Column in one
dot_column = dot_column.copy()
starting_struct = exp.ColumnDef(this=dot_column.this, kind=dot_column.type)
# First part is the table name and last part is the star so they can be dropped
dot_parts = expression.parts[1:-1]
# If we're expanding a nested struct eg. t.c.f1.f2.* find the last struct (f2 in this case)
for part in dot_parts[1:]:
for field in t.cast(exp.DataType, starting_struct.kind).expressions:
# Unable to expand star unless all fields are named
if not isinstance(field.this, exp.Identifier):
return []
if field.name == part.name and field.kind.is_type(exp.DataType.Type.STRUCT):
starting_struct = field
break
else:
# There is no matching field in the struct
return []
taken_names = set()
new_selections = []
for field in t.cast(exp.DataType, starting_struct.kind).expressions:
name = field.name
# Ambiguous or anonymous fields can't be expanded
if name in taken_names or not isinstance(field.this, exp.Identifier):
return []
taken_names.add(name)
this = field.this.copy()
root, *parts = [part.copy() for part in itertools.chain(dot_parts, [this])]
new_column = exp.column(
t.cast(exp.Identifier, root),
table=dot_column.args.get("table"),
fields=t.cast(t.List[exp.Identifier], parts),
)
new_selections.append(alias(new_column, this, copy=False))
return new_selections
def _expand_stars(
scope: Scope,
resolver: Resolver,
using_column_tables: t.Dict[str, t.Any],
pseudocolumns: t.Set[str],
annotator: TypeAnnotator,
) -> None:
"""Expand stars to lists of column selections"""
new_selections: t.List[exp.Expression] = []
except_columns: t.Dict[int, t.Set[str]] = {}
replace_columns: t.Dict[int, t.Dict[str, exp.Alias]] = {}
rename_columns: t.Dict[int, t.Dict[str, str]] = {}
coalesced_columns = set()
dialect = resolver.schema.dialect
pivot_output_columns = None
pivot_exclude_columns = None
pivot = t.cast(t.Optional[exp.Pivot], seq_get(scope.pivots, 0))
if isinstance(pivot, exp.Pivot) and not pivot.alias_column_names:
if pivot.unpivot:
pivot_output_columns = [c.output_name for c in _unpivot_columns(pivot)]
field = pivot.args.get("field")
if isinstance(field, exp.In):
pivot_exclude_columns = {
c.output_name for e in field.expressions for c in e.find_all(exp.Column)
}
else:
pivot_exclude_columns = set(c.output_name for c in pivot.find_all(exp.Column))
pivot_output_columns = [c.output_name for c in pivot.args.get("columns", [])]
if not pivot_output_columns:
pivot_output_columns = [c.alias_or_name for c in pivot.expressions]
is_bigquery = dialect == "bigquery"
if is_bigquery and any(isinstance(col, exp.Dot) for col in scope.stars):
# Found struct expansion, annotate scope ahead of time
annotator.annotate_scope(scope)
for expression in scope.expression.selects:
tables = []
if isinstance(expression, exp.Star):
tables.extend(scope.selected_sources)
_add_except_columns(expression, tables, except_columns)
_add_replace_columns(expression, tables, replace_columns)
_add_rename_columns(expression, tables, rename_columns)
elif expression.is_star:
if not isinstance(expression, exp.Dot):
tables.append(expression.table)
_add_except_columns(expression.this, tables, except_columns)
_add_replace_columns(expression.this, tables, replace_columns)
_add_rename_columns(expression.this, tables, rename_columns)
elif is_bigquery:
struct_fields = _expand_struct_stars(expression)
if struct_fields:
new_selections.extend(struct_fields)
continue
if not tables:
new_selections.append(expression)
continue
for table in tables:
if table not in scope.sources:
raise OptimizeError(f"Unknown table: {table}")
columns = resolver.get_source_columns(table, only_visible=True)
columns = columns or scope.outer_columns
if pseudocolumns:
columns = [name for name in columns if name.upper() not in pseudocolumns]
if not columns or "*" in columns:
return
table_id = id(table)
columns_to_exclude = except_columns.get(table_id) or set()
renamed_columns = rename_columns.get(table_id, {})
replaced_columns = replace_columns.get(table_id, {})
if pivot:
if pivot_output_columns and pivot_exclude_columns:
pivot_columns = [c for c in columns if c not in pivot_exclude_columns]
pivot_columns.extend(pivot_output_columns)
else:
pivot_columns = pivot.alias_column_names
if pivot_columns:
new_selections.extend(
alias(exp.column(name, table=pivot.alias), name, copy=False)
for name in pivot_columns
if name not in columns_to_exclude
)
continue
for name in columns:
if name in columns_to_exclude or name in coalesced_columns:
continue
if name in using_column_tables and table in using_column_tables[name]:
coalesced_columns.add(name)
tables = using_column_tables[name]
coalesce_args = [exp.column(name, table=table) for table in tables]
new_selections.append(
alias(exp.func("coalesce", *coalesce_args), alias=name, copy=False)
)
else:
alias_ = renamed_columns.get(name, name)
selection_expr = replaced_columns.get(name) or exp.column(name, table=table)
new_selections.append(
alias(selection_expr, alias_, copy=False)
if alias_ != name
else selection_expr
)
# Ensures we don't overwrite the initial selections with an empty list
if new_selections and isinstance(scope.expression, exp.Select):
scope.expression.set("expressions", new_selections)
def _add_except_columns(
expression: exp.Expression, tables, except_columns: t.Dict[int, t.Set[str]]
) -> None:
except_ = expression.args.get("except")
if not except_:
return
columns = {e.name for e in except_}
for table in tables:
except_columns[id(table)] = columns
def _add_rename_columns(
expression: exp.Expression, tables, rename_columns: t.Dict[int, t.Dict[str, str]]
) -> None:
rename = expression.args.get("rename")
if not rename:
return
columns = {e.this.name: e.alias for e in rename}
for table in tables:
rename_columns[id(table)] = columns
def _add_replace_columns(
expression: exp.Expression, tables, replace_columns: t.Dict[int, t.Dict[str, exp.Alias]]
) -> None:
replace = expression.args.get("replace")
if not replace:
return
columns = {e.alias: e for e in replace}
for table in tables:
replace_columns[id(table)] = columns
def qualify_outputs(scope_or_expression: Scope | exp.Expression) -> None:
"""Ensure all output columns are aliased"""
if isinstance(scope_or_expression, exp.Expression):
scope = build_scope(scope_or_expression)
if not isinstance(scope, Scope):
return
else:
scope = scope_or_expression
new_selections = []
for i, (selection, aliased_column) in enumerate(
itertools.zip_longest(scope.expression.selects, scope.outer_columns)
):
if selection is None:
break
if isinstance(selection, exp.Subquery):
if not selection.output_name:
selection.set("alias", exp.TableAlias(this=exp.to_identifier(f"_col_{i}")))
elif not isinstance(selection, exp.Alias) and not selection.is_star:
selection = alias(
selection,
alias=selection.output_name or f"_col_{i}",
copy=False,
)
if aliased_column:
selection.set("alias", exp.to_identifier(aliased_column))
new_selections.append(selection)
if isinstance(scope.expression, exp.Select):
scope.expression.set("expressions", new_selections)
def quote_identifiers(expression: E, dialect: DialectType = None, identify: bool = True) -> E:
"""Makes sure all identifiers that need to be quoted are quoted."""
return expression.transform(
Dialect.get_or_raise(dialect).quote_identifier, identify=identify, copy=False
) # type: ignore
def pushdown_cte_alias_columns(expression: exp.Expression) -> exp.Expression:
"""
Pushes down the CTE alias columns into the projection,
This step is useful in Snowflake where the CTE alias columns can be referenced in the HAVING.
Example:
>>> import sqlglot
>>> expression = sqlglot.parse_one("WITH y (c) AS (SELECT SUM(a) FROM ( SELECT 1 a ) AS x HAVING c > 0) SELECT c FROM y")
>>> pushdown_cte_alias_columns(expression).sql()
'WITH y(c) AS (SELECT SUM(a) AS c FROM (SELECT 1 AS a) AS x HAVING c > 0) SELECT c FROM y'
Args:
expression: Expression to pushdown.
Returns:
The expression with the CTE aliases pushed down into the projection.
"""
for cte in expression.find_all(exp.CTE):
if cte.alias_column_names:
new_expressions = []
for _alias, projection in zip(cte.alias_column_names, cte.this.expressions):
if isinstance(projection, exp.Alias):
projection.set("alias", _alias)
else:
projection = alias(projection, alias=_alias)
new_expressions.append(projection)
cte.this.set("expressions", new_expressions)
return expression
class Resolver:
"""
Helper for resolving columns.
This is a class so we can lazily load some things and easily share them across functions.
"""
def __init__(self, scope: Scope, schema: Schema, infer_schema: bool = True):
self.scope = scope
self.schema = schema
self._source_columns: t.Optional[t.Dict[str, t.Sequence[str]]] = None
self._unambiguous_columns: t.Optional[t.Mapping[str, str]] = None
self._all_columns: t.Optional[t.Set[str]] = None
self._infer_schema = infer_schema
self._get_source_columns_cache: t.Dict[t.Tuple[str, bool], t.Sequence[str]] = {}
def get_table(self, column_name: str) -> t.Optional[exp.Identifier]:
"""
Get the table for a column name.
Args:
column_name: The column name to find the table for.
Returns:
The table name if it can be found/inferred.
"""
if self._unambiguous_columns is None:
self._unambiguous_columns = self._get_unambiguous_columns(
self._get_all_source_columns()
)
table_name = self._unambiguous_columns.get(column_name)
if not table_name and self._infer_schema:
sources_without_schema = tuple(
source
for source, columns in self._get_all_source_columns().items()
if not columns or "*" in columns
)
if len(sources_without_schema) == 1:
table_name = sources_without_schema[0]
if table_name not in self.scope.selected_sources:
return exp.to_identifier(table_name)
node, _ = self.scope.selected_sources.get(table_name)
if isinstance(node, exp.Query):
while node and node.alias != table_name:
node = node.parent
node_alias = node.args.get("alias")
if node_alias:
return exp.to_identifier(node_alias.this)
return exp.to_identifier(table_name)
@property
def all_columns(self) -> t.Set[str]:
"""All available columns of all sources in this scope"""
if self._all_columns is None:
self._all_columns = {
column for columns in self._get_all_source_columns().values() for column in columns
}
return self._all_columns
def get_source_columns(self, name: str, only_visible: bool = False) -> t.Sequence[str]:
"""Resolve the source columns for a given source `name`."""
cache_key = (name, only_visible)
if cache_key not in self._get_source_columns_cache:
if name not in self.scope.sources:
raise OptimizeError(f"Unknown table: {name}")
source = self.scope.sources[name]
if isinstance(source, exp.Table):
columns = self.schema.column_names(source, only_visible)
elif isinstance(source, Scope) and isinstance(
source.expression, (exp.Values, exp.Unnest)
):
columns = source.expression.named_selects
# in bigquery, unnest structs are automatically scoped as tables, so you can
# directly select a struct field in a query.
# this handles the case where the unnest is statically defined.
if self.schema.dialect == "bigquery":
if source.expression.is_type(exp.DataType.Type.STRUCT):
for k in source.expression.type.expressions: # type: ignore
columns.append(k.name)
else:
columns = source.expression.named_selects
node, _ = self.scope.selected_sources.get(name) or (None, None)
if isinstance(node, Scope):
column_aliases = node.expression.alias_column_names
elif isinstance(node, exp.Expression):
column_aliases = node.alias_column_names
else:
column_aliases = []
if column_aliases:
# If the source's columns are aliased, their aliases shadow the corresponding column names.
# This can be expensive if there are lots of columns, so only do this if column_aliases exist.
columns = [
alias or name
for (name, alias) in itertools.zip_longest(columns, column_aliases)
]
self._get_source_columns_cache[cache_key] = columns
return self._get_source_columns_cache[cache_key]
def _get_all_source_columns(self) -> t.Dict[str, t.Sequence[str]]:
if self._source_columns is None:
self._source_columns = {
source_name: self.get_source_columns(source_name)
for source_name, source in itertools.chain(
self.scope.selected_sources.items(), self.scope.lateral_sources.items()
)
}
return self._source_columns
def _get_unambiguous_columns(
self, source_columns: t.Dict[str, t.Sequence[str]]
) -> t.Mapping[str, str]:
"""
Find all the unambiguous columns in sources.
Args:
source_columns: Mapping of names to source columns.
Returns:
Mapping of column name to source name.
"""
if not source_columns:
return {}
source_columns_pairs = list(source_columns.items())
first_table, first_columns = source_columns_pairs[0]
if len(source_columns_pairs) == 1:
# Performance optimization - avoid copying first_columns if there is only one table.
return SingleValuedMapping(first_columns, first_table)
unambiguous_columns = {col: first_table for col in first_columns}
all_columns = set(unambiguous_columns)
for table, columns in source_columns_pairs[1:]:
unique = set(columns)
ambiguous = all_columns.intersection(unique)
all_columns.update(columns)
for column in ambiguous:
unambiguous_columns.pop(column, None)
for column in unique.difference(ambiguous):
unambiguous_columns[column] = table
return unambiguous_columns