1
0
Fork 0
sqlglot/sqlglot/dialects/duckdb.py
Daniel Baumann 522374f608
Adding upstream version 26.0.0.
Signed-off-by: Daniel Baumann <daniel@debian.org>
2025-02-13 21:58:31 +01:00

1033 lines
41 KiB
Python

from __future__ import annotations
import typing as t
from sqlglot import exp, generator, parser, tokens, transforms
from sqlglot.expressions import DATA_TYPE
from sqlglot.dialects.dialect import (
Dialect,
JSON_EXTRACT_TYPE,
NormalizationStrategy,
approx_count_distinct_sql,
arrow_json_extract_sql,
binary_from_function,
bool_xor_sql,
build_default_decimal_type,
date_trunc_to_time,
datestrtodate_sql,
no_datetime_sql,
encode_decode_sql,
build_formatted_time,
inline_array_unless_query,
no_comment_column_constraint_sql,
no_safe_divide_sql,
no_time_sql,
no_timestamp_sql,
pivot_column_names,
rename_func,
str_position_sql,
str_to_time_sql,
timestamptrunc_sql,
timestrtotime_sql,
unit_to_var,
unit_to_str,
sha256_sql,
build_regexp_extract,
explode_to_unnest_sql,
no_make_interval_sql,
)
from sqlglot.generator import unsupported_args
from sqlglot.helper import seq_get
from sqlglot.tokens import TokenType
from sqlglot.parser import binary_range_parser
DATETIME_DELTA = t.Union[
exp.DateAdd, exp.TimeAdd, exp.DatetimeAdd, exp.TsOrDsAdd, exp.DateSub, exp.DatetimeSub
]
WINDOW_FUNCS_WITH_IGNORE_NULLS = (
exp.FirstValue,
exp.LastValue,
exp.Lag,
exp.Lead,
exp.NthValue,
)
def _date_delta_sql(self: DuckDB.Generator, expression: DATETIME_DELTA) -> str:
this = expression.this
unit = unit_to_var(expression)
op = (
"+"
if isinstance(expression, (exp.DateAdd, exp.TimeAdd, exp.DatetimeAdd, exp.TsOrDsAdd))
else "-"
)
to_type: t.Optional[DATA_TYPE] = None
if isinstance(expression, exp.TsOrDsAdd):
to_type = expression.return_type
elif this.is_string:
# Cast string literals (i.e function parameters) to the appropriate type for +/- interval to work
to_type = (
exp.DataType.Type.DATETIME
if isinstance(expression, (exp.DatetimeAdd, exp.DatetimeSub))
else exp.DataType.Type.DATE
)
this = exp.cast(this, to_type) if to_type else this
return f"{self.sql(this)} {op} {self.sql(exp.Interval(this=expression.expression, unit=unit))}"
# BigQuery -> DuckDB conversion for the DATE function
def _date_sql(self: DuckDB.Generator, expression: exp.Date) -> str:
result = f"CAST({self.sql(expression, 'this')} AS DATE)"
zone = self.sql(expression, "zone")
if zone:
date_str = self.func("STRFTIME", result, "'%d/%m/%Y'")
date_str = f"{date_str} || ' ' || {zone}"
# This will create a TIMESTAMP with time zone information
result = self.func("STRPTIME", date_str, "'%d/%m/%Y %Z'")
return result
# BigQuery -> DuckDB conversion for the TIME_DIFF function
def _timediff_sql(self: DuckDB.Generator, expression: exp.TimeDiff) -> str:
this = exp.cast(expression.this, exp.DataType.Type.TIME)
expr = exp.cast(expression.expression, exp.DataType.Type.TIME)
# Although the 2 dialects share similar signatures, BQ seems to inverse
# the sign of the result so the start/end time operands are flipped
return self.func("DATE_DIFF", unit_to_str(expression), expr, this)
@unsupported_args(("expression", "DuckDB's ARRAY_SORT does not support a comparator."))
def _array_sort_sql(self: DuckDB.Generator, expression: exp.ArraySort) -> str:
return self.func("ARRAY_SORT", expression.this)
def _sort_array_sql(self: DuckDB.Generator, expression: exp.SortArray) -> str:
name = "ARRAY_REVERSE_SORT" if expression.args.get("asc") == exp.false() else "ARRAY_SORT"
return self.func(name, expression.this)
def _build_sort_array_desc(args: t.List) -> exp.Expression:
return exp.SortArray(this=seq_get(args, 0), asc=exp.false())
def _build_date_diff(args: t.List) -> exp.Expression:
return exp.DateDiff(this=seq_get(args, 2), expression=seq_get(args, 1), unit=seq_get(args, 0))
def _build_generate_series(end_exclusive: bool = False) -> t.Callable[[t.List], exp.GenerateSeries]:
def _builder(args: t.List) -> exp.GenerateSeries:
# Check https://duckdb.org/docs/sql/functions/nested.html#range-functions
if len(args) == 1:
# DuckDB uses 0 as a default for the series' start when it's omitted
args.insert(0, exp.Literal.number("0"))
gen_series = exp.GenerateSeries.from_arg_list(args)
gen_series.set("is_end_exclusive", end_exclusive)
return gen_series
return _builder
def _build_make_timestamp(args: t.List) -> exp.Expression:
if len(args) == 1:
return exp.UnixToTime(this=seq_get(args, 0), scale=exp.UnixToTime.MICROS)
return exp.TimestampFromParts(
year=seq_get(args, 0),
month=seq_get(args, 1),
day=seq_get(args, 2),
hour=seq_get(args, 3),
min=seq_get(args, 4),
sec=seq_get(args, 5),
)
def _struct_sql(self: DuckDB.Generator, expression: exp.Struct) -> str:
args: t.List[str] = []
# BigQuery allows inline construction such as "STRUCT<a STRING, b INTEGER>('str', 1)" which is
# canonicalized to "ROW('str', 1) AS STRUCT(a TEXT, b INT)" in DuckDB
# The transformation to ROW will take place if:
# 1. The STRUCT itself does not have proper fields (key := value) as a "proper" STRUCT would
# 2. A cast to STRUCT / ARRAY of STRUCTs is found
ancestor_cast = expression.find_ancestor(exp.Cast)
is_bq_inline_struct = (
(expression.find(exp.PropertyEQ) is None)
and ancestor_cast
and any(
casted_type.is_type(exp.DataType.Type.STRUCT)
for casted_type in ancestor_cast.find_all(exp.DataType)
)
)
for i, expr in enumerate(expression.expressions):
is_property_eq = isinstance(expr, exp.PropertyEQ)
value = expr.expression if is_property_eq else expr
if is_bq_inline_struct:
args.append(self.sql(value))
else:
key = expr.name if is_property_eq else f"_{i}"
args.append(f"{self.sql(exp.Literal.string(key))}: {self.sql(value)}")
csv_args = ", ".join(args)
return f"ROW({csv_args})" if is_bq_inline_struct else f"{{{csv_args}}}"
def _datatype_sql(self: DuckDB.Generator, expression: exp.DataType) -> str:
if expression.is_type("array"):
return f"{self.expressions(expression, flat=True)}[{self.expressions(expression, key='values', flat=True)}]"
# Modifiers are not supported for TIME, [TIME | TIMESTAMP] WITH TIME ZONE
if expression.is_type(
exp.DataType.Type.TIME, exp.DataType.Type.TIMETZ, exp.DataType.Type.TIMESTAMPTZ
):
return expression.this.value
return self.datatype_sql(expression)
def _json_format_sql(self: DuckDB.Generator, expression: exp.JSONFormat) -> str:
sql = self.func("TO_JSON", expression.this, expression.args.get("options"))
return f"CAST({sql} AS TEXT)"
def _unix_to_time_sql(self: DuckDB.Generator, expression: exp.UnixToTime) -> str:
scale = expression.args.get("scale")
timestamp = expression.this
if scale in (None, exp.UnixToTime.SECONDS):
return self.func("TO_TIMESTAMP", timestamp)
if scale == exp.UnixToTime.MILLIS:
return self.func("EPOCH_MS", timestamp)
if scale == exp.UnixToTime.MICROS:
return self.func("MAKE_TIMESTAMP", timestamp)
return self.func("TO_TIMESTAMP", exp.Div(this=timestamp, expression=exp.func("POW", 10, scale)))
WRAPPED_JSON_EXTRACT_EXPRESSIONS = (exp.Binary, exp.Bracket, exp.In)
def _arrow_json_extract_sql(self: DuckDB.Generator, expression: JSON_EXTRACT_TYPE) -> str:
arrow_sql = arrow_json_extract_sql(self, expression)
if not expression.same_parent and isinstance(
expression.parent, WRAPPED_JSON_EXTRACT_EXPRESSIONS
):
arrow_sql = self.wrap(arrow_sql)
return arrow_sql
def _implicit_datetime_cast(
arg: t.Optional[exp.Expression], type: exp.DataType.Type = exp.DataType.Type.DATE
) -> t.Optional[exp.Expression]:
return exp.cast(arg, type) if isinstance(arg, exp.Literal) else arg
def _date_diff_sql(self: DuckDB.Generator, expression: exp.DateDiff) -> str:
this = _implicit_datetime_cast(expression.this)
expr = _implicit_datetime_cast(expression.expression)
return self.func("DATE_DIFF", unit_to_str(expression), expr, this)
def _generate_datetime_array_sql(
self: DuckDB.Generator, expression: t.Union[exp.GenerateDateArray, exp.GenerateTimestampArray]
) -> str:
is_generate_date_array = isinstance(expression, exp.GenerateDateArray)
type = exp.DataType.Type.DATE if is_generate_date_array else exp.DataType.Type.TIMESTAMP
start = _implicit_datetime_cast(expression.args.get("start"), type=type)
end = _implicit_datetime_cast(expression.args.get("end"), type=type)
# BQ's GENERATE_DATE_ARRAY & GENERATE_TIMESTAMP_ARRAY are transformed to DuckDB'S GENERATE_SERIES
gen_series: t.Union[exp.GenerateSeries, exp.Cast] = exp.GenerateSeries(
start=start, end=end, step=expression.args.get("step")
)
if is_generate_date_array:
# The GENERATE_SERIES result type is TIMESTAMP array, so to match BQ's semantics for
# GENERATE_DATE_ARRAY we must cast it back to DATE array
gen_series = exp.cast(gen_series, exp.DataType.build("ARRAY<DATE>"))
return self.sql(gen_series)
def _json_extract_value_array_sql(
self: DuckDB.Generator, expression: exp.JSONValueArray | exp.JSONExtractArray
) -> str:
json_extract = exp.JSONExtract(this=expression.this, expression=expression.expression)
data_type = "ARRAY<STRING>" if isinstance(expression, exp.JSONValueArray) else "ARRAY<JSON>"
return self.sql(exp.cast(json_extract, to=exp.DataType.build(data_type)))
class DuckDB(Dialect):
NULL_ORDERING = "nulls_are_last"
SUPPORTS_USER_DEFINED_TYPES = False
SAFE_DIVISION = True
INDEX_OFFSET = 1
CONCAT_COALESCE = True
SUPPORTS_ORDER_BY_ALL = True
SUPPORTS_FIXED_SIZE_ARRAYS = True
STRICT_JSON_PATH_SYNTAX = False
# https://duckdb.org/docs/sql/introduction.html#creating-a-new-table
NORMALIZATION_STRATEGY = NormalizationStrategy.CASE_INSENSITIVE
def to_json_path(self, path: t.Optional[exp.Expression]) -> t.Optional[exp.Expression]:
if isinstance(path, exp.Literal):
# DuckDB also supports the JSON pointer syntax, where every path starts with a `/`.
# Additionally, it allows accessing the back of lists using the `[#-i]` syntax.
# This check ensures we'll avoid trying to parse these as JSON paths, which can
# either result in a noisy warning or in an invalid representation of the path.
path_text = path.name
if path_text.startswith("/") or "[#" in path_text:
return path
return super().to_json_path(path)
class Tokenizer(tokens.Tokenizer):
BYTE_STRINGS = [("e'", "'"), ("E'", "'")]
HEREDOC_STRINGS = ["$"]
HEREDOC_TAG_IS_IDENTIFIER = True
HEREDOC_STRING_ALTERNATIVE = TokenType.PARAMETER
KEYWORDS = {
**tokens.Tokenizer.KEYWORDS,
"//": TokenType.DIV,
"**": TokenType.DSTAR,
"^@": TokenType.CARET_AT,
"@>": TokenType.AT_GT,
"<@": TokenType.LT_AT,
"ATTACH": TokenType.ATTACH,
"BINARY": TokenType.VARBINARY,
"BITSTRING": TokenType.BIT,
"BPCHAR": TokenType.TEXT,
"CHAR": TokenType.TEXT,
"CHARACTER VARYING": TokenType.TEXT,
"DETACH": TokenType.DETACH,
"EXCLUDE": TokenType.EXCEPT,
"LOGICAL": TokenType.BOOLEAN,
"ONLY": TokenType.ONLY,
"PIVOT_WIDER": TokenType.PIVOT,
"POSITIONAL": TokenType.POSITIONAL,
"SIGNED": TokenType.INT,
"STRING": TokenType.TEXT,
"SUMMARIZE": TokenType.SUMMARIZE,
"TIMESTAMP_S": TokenType.TIMESTAMP_S,
"TIMESTAMP_MS": TokenType.TIMESTAMP_MS,
"TIMESTAMP_NS": TokenType.TIMESTAMP_NS,
"TIMESTAMP_US": TokenType.TIMESTAMP,
"UBIGINT": TokenType.UBIGINT,
"UINTEGER": TokenType.UINT,
"USMALLINT": TokenType.USMALLINT,
"UTINYINT": TokenType.UTINYINT,
"VARCHAR": TokenType.TEXT,
}
KEYWORDS.pop("/*+")
SINGLE_TOKENS = {
**tokens.Tokenizer.SINGLE_TOKENS,
"$": TokenType.PARAMETER,
}
class Parser(parser.Parser):
BITWISE = {
**parser.Parser.BITWISE,
TokenType.TILDA: exp.RegexpLike,
}
BITWISE.pop(TokenType.CARET)
RANGE_PARSERS = {
**parser.Parser.RANGE_PARSERS,
TokenType.DAMP: binary_range_parser(exp.ArrayOverlaps),
TokenType.CARET_AT: binary_range_parser(exp.StartsWith),
}
EXPONENT = {
**parser.Parser.EXPONENT,
TokenType.CARET: exp.Pow,
TokenType.DSTAR: exp.Pow,
}
FUNCTIONS_WITH_ALIASED_ARGS = {*parser.Parser.FUNCTIONS_WITH_ALIASED_ARGS, "STRUCT_PACK"}
FUNCTIONS = {
**parser.Parser.FUNCTIONS,
"ARRAY_REVERSE_SORT": _build_sort_array_desc,
"ARRAY_SORT": exp.SortArray.from_arg_list,
"DATEDIFF": _build_date_diff,
"DATE_DIFF": _build_date_diff,
"DATE_TRUNC": date_trunc_to_time,
"DATETRUNC": date_trunc_to_time,
"DECODE": lambda args: exp.Decode(
this=seq_get(args, 0), charset=exp.Literal.string("utf-8")
),
"ENCODE": lambda args: exp.Encode(
this=seq_get(args, 0), charset=exp.Literal.string("utf-8")
),
"EPOCH": exp.TimeToUnix.from_arg_list,
"EPOCH_MS": lambda args: exp.UnixToTime(
this=seq_get(args, 0), scale=exp.UnixToTime.MILLIS
),
"JSON": exp.ParseJSON.from_arg_list,
"JSON_EXTRACT_PATH": parser.build_extract_json_with_path(exp.JSONExtract),
"JSON_EXTRACT_STRING": parser.build_extract_json_with_path(exp.JSONExtractScalar),
"LIST_HAS": exp.ArrayContains.from_arg_list,
"LIST_REVERSE_SORT": _build_sort_array_desc,
"LIST_SORT": exp.SortArray.from_arg_list,
"LIST_VALUE": lambda args: exp.Array(expressions=args),
"MAKE_TIME": exp.TimeFromParts.from_arg_list,
"MAKE_TIMESTAMP": _build_make_timestamp,
"QUANTILE_CONT": exp.PercentileCont.from_arg_list,
"QUANTILE_DISC": exp.PercentileDisc.from_arg_list,
"REGEXP_EXTRACT": build_regexp_extract(exp.RegexpExtract),
"REGEXP_EXTRACT_ALL": build_regexp_extract(exp.RegexpExtractAll),
"REGEXP_MATCHES": exp.RegexpLike.from_arg_list,
"REGEXP_REPLACE": lambda args: exp.RegexpReplace(
this=seq_get(args, 0),
expression=seq_get(args, 1),
replacement=seq_get(args, 2),
modifiers=seq_get(args, 3),
),
"STRFTIME": build_formatted_time(exp.TimeToStr, "duckdb"),
"STRING_SPLIT": exp.Split.from_arg_list,
"STRING_SPLIT_REGEX": exp.RegexpSplit.from_arg_list,
"STRING_TO_ARRAY": exp.Split.from_arg_list,
"STRPTIME": build_formatted_time(exp.StrToTime, "duckdb"),
"STRUCT_PACK": exp.Struct.from_arg_list,
"STR_SPLIT": exp.Split.from_arg_list,
"STR_SPLIT_REGEX": exp.RegexpSplit.from_arg_list,
"TO_TIMESTAMP": exp.UnixToTime.from_arg_list,
"UNNEST": exp.Explode.from_arg_list,
"XOR": binary_from_function(exp.BitwiseXor),
"GENERATE_SERIES": _build_generate_series(),
"RANGE": _build_generate_series(end_exclusive=True),
"EDITDIST3": exp.Levenshtein.from_arg_list,
}
FUNCTIONS.pop("DATE_SUB")
FUNCTIONS.pop("GLOB")
FUNCTION_PARSERS = parser.Parser.FUNCTION_PARSERS.copy()
FUNCTION_PARSERS.pop("DECODE")
NO_PAREN_FUNCTION_PARSERS = {
**parser.Parser.NO_PAREN_FUNCTION_PARSERS,
"MAP": lambda self: self._parse_map(),
}
TABLE_ALIAS_TOKENS = parser.Parser.TABLE_ALIAS_TOKENS - {
TokenType.SEMI,
TokenType.ANTI,
}
PLACEHOLDER_PARSERS = {
**parser.Parser.PLACEHOLDER_PARSERS,
TokenType.PARAMETER: lambda self: (
self.expression(exp.Placeholder, this=self._prev.text)
if self._match(TokenType.NUMBER) or self._match_set(self.ID_VAR_TOKENS)
else None
),
}
TYPE_CONVERTERS = {
# https://duckdb.org/docs/sql/data_types/numeric
exp.DataType.Type.DECIMAL: build_default_decimal_type(precision=18, scale=3),
# https://duckdb.org/docs/sql/data_types/text
exp.DataType.Type.TEXT: lambda dtype: exp.DataType.build("TEXT"),
}
STATEMENT_PARSERS = {
**parser.Parser.STATEMENT_PARSERS,
TokenType.ATTACH: lambda self: self._parse_attach_detach(),
TokenType.DETACH: lambda self: self._parse_attach_detach(is_attach=False),
}
def _parse_table_sample(self, as_modifier: bool = False) -> t.Optional[exp.TableSample]:
# https://duckdb.org/docs/sql/samples.html
sample = super()._parse_table_sample(as_modifier=as_modifier)
if sample and not sample.args.get("method"):
if sample.args.get("size"):
sample.set("method", exp.var("RESERVOIR"))
else:
sample.set("method", exp.var("SYSTEM"))
return sample
def _parse_bracket(
self, this: t.Optional[exp.Expression] = None
) -> t.Optional[exp.Expression]:
bracket = super()._parse_bracket(this)
if isinstance(bracket, exp.Bracket):
bracket.set("returns_list_for_maps", True)
return bracket
def _parse_map(self) -> exp.ToMap | exp.Map:
if self._match(TokenType.L_BRACE, advance=False):
return self.expression(exp.ToMap, this=self._parse_bracket())
args = self._parse_wrapped_csv(self._parse_assignment)
return self.expression(exp.Map, keys=seq_get(args, 0), values=seq_get(args, 1))
def _parse_struct_types(self, type_required: bool = False) -> t.Optional[exp.Expression]:
return self._parse_field_def()
def _pivot_column_names(self, aggregations: t.List[exp.Expression]) -> t.List[str]:
if len(aggregations) == 1:
return super()._pivot_column_names(aggregations)
return pivot_column_names(aggregations, dialect="duckdb")
def _parse_attach_detach(self, is_attach=True) -> exp.Attach | exp.Detach:
def _parse_attach_option() -> exp.AttachOption:
return self.expression(
exp.AttachOption,
this=self._parse_var(any_token=True),
expression=self._parse_field(any_token=True),
)
self._match(TokenType.DATABASE)
exists = self._parse_exists(not_=is_attach)
this = self._parse_alias(self._parse_primary_or_var(), explicit=True)
if self._match(TokenType.L_PAREN, advance=False):
expressions = self._parse_wrapped_csv(_parse_attach_option)
else:
expressions = None
return (
self.expression(exp.Attach, this=this, exists=exists, expressions=expressions)
if is_attach
else self.expression(exp.Detach, this=this, exists=exists)
)
class Generator(generator.Generator):
PARAMETER_TOKEN = "$"
NAMED_PLACEHOLDER_TOKEN = "$"
JOIN_HINTS = False
TABLE_HINTS = False
QUERY_HINTS = False
LIMIT_FETCH = "LIMIT"
STRUCT_DELIMITER = ("(", ")")
RENAME_TABLE_WITH_DB = False
NVL2_SUPPORTED = False
SEMI_ANTI_JOIN_WITH_SIDE = False
TABLESAMPLE_KEYWORDS = "USING SAMPLE"
TABLESAMPLE_SEED_KEYWORD = "REPEATABLE"
LAST_DAY_SUPPORTS_DATE_PART = False
JSON_KEY_VALUE_PAIR_SEP = ","
IGNORE_NULLS_IN_FUNC = True
JSON_PATH_BRACKETED_KEY_SUPPORTED = False
SUPPORTS_CREATE_TABLE_LIKE = False
MULTI_ARG_DISTINCT = False
CAN_IMPLEMENT_ARRAY_ANY = True
SUPPORTS_TO_NUMBER = False
COPY_HAS_INTO_KEYWORD = False
STAR_EXCEPT = "EXCLUDE"
PAD_FILL_PATTERN_IS_REQUIRED = True
ARRAY_CONCAT_IS_VAR_LEN = False
ARRAY_SIZE_DIM_REQUIRED = False
TRANSFORMS = {
**generator.Generator.TRANSFORMS,
exp.ApproxDistinct: approx_count_distinct_sql,
exp.Array: inline_array_unless_query,
exp.ArrayFilter: rename_func("LIST_FILTER"),
exp.ArraySort: _array_sort_sql,
exp.ArraySum: rename_func("LIST_SUM"),
exp.BitwiseXor: rename_func("XOR"),
exp.CommentColumnConstraint: no_comment_column_constraint_sql,
exp.CurrentDate: lambda *_: "CURRENT_DATE",
exp.CurrentTime: lambda *_: "CURRENT_TIME",
exp.CurrentTimestamp: lambda *_: "CURRENT_TIMESTAMP",
exp.DayOfMonth: rename_func("DAYOFMONTH"),
exp.DayOfWeek: rename_func("DAYOFWEEK"),
exp.DayOfWeekIso: rename_func("ISODOW"),
exp.DayOfYear: rename_func("DAYOFYEAR"),
exp.DataType: _datatype_sql,
exp.Date: _date_sql,
exp.DateAdd: _date_delta_sql,
exp.DateFromParts: rename_func("MAKE_DATE"),
exp.DateSub: _date_delta_sql,
exp.DateDiff: _date_diff_sql,
exp.DateStrToDate: datestrtodate_sql,
exp.Datetime: no_datetime_sql,
exp.DatetimeSub: _date_delta_sql,
exp.DatetimeAdd: _date_delta_sql,
exp.DateToDi: lambda self,
e: f"CAST(STRFTIME({self.sql(e, 'this')}, {DuckDB.DATEINT_FORMAT}) AS INT)",
exp.Decode: lambda self, e: encode_decode_sql(self, e, "DECODE", replace=False),
exp.DiToDate: lambda self,
e: f"CAST(STRPTIME(CAST({self.sql(e, 'this')} AS TEXT), {DuckDB.DATEINT_FORMAT}) AS DATE)",
exp.Encode: lambda self, e: encode_decode_sql(self, e, "ENCODE", replace=False),
exp.GenerateDateArray: _generate_datetime_array_sql,
exp.GenerateTimestampArray: _generate_datetime_array_sql,
exp.Explode: rename_func("UNNEST"),
exp.IntDiv: lambda self, e: self.binary(e, "//"),
exp.IsInf: rename_func("ISINF"),
exp.IsNan: rename_func("ISNAN"),
exp.JSONBExists: rename_func("JSON_EXISTS"),
exp.JSONExtract: _arrow_json_extract_sql,
exp.JSONExtractArray: _json_extract_value_array_sql,
exp.JSONExtractScalar: _arrow_json_extract_sql,
exp.JSONFormat: _json_format_sql,
exp.JSONValueArray: _json_extract_value_array_sql,
exp.Lateral: explode_to_unnest_sql,
exp.LogicalOr: rename_func("BOOL_OR"),
exp.LogicalAnd: rename_func("BOOL_AND"),
exp.MakeInterval: lambda self, e: no_make_interval_sql(self, e, sep=" "),
exp.MD5Digest: lambda self, e: self.func("UNHEX", self.func("MD5", e.this)),
exp.MonthsBetween: lambda self, e: self.func(
"DATEDIFF",
"'month'",
exp.cast(e.expression, exp.DataType.Type.TIMESTAMP, copy=True),
exp.cast(e.this, exp.DataType.Type.TIMESTAMP, copy=True),
),
exp.PercentileCont: rename_func("QUANTILE_CONT"),
exp.PercentileDisc: rename_func("QUANTILE_DISC"),
# DuckDB doesn't allow qualified columns inside of PIVOT expressions.
# See: https://github.com/duckdb/duckdb/blob/671faf92411182f81dce42ac43de8bfb05d9909e/src/planner/binder/tableref/bind_pivot.cpp#L61-L62
exp.Pivot: transforms.preprocess([transforms.unqualify_columns]),
exp.RegexpReplace: lambda self, e: self.func(
"REGEXP_REPLACE",
e.this,
e.expression,
e.args.get("replacement"),
e.args.get("modifiers"),
),
exp.RegexpLike: rename_func("REGEXP_MATCHES"),
exp.RegexpSplit: rename_func("STR_SPLIT_REGEX"),
exp.Return: lambda self, e: self.sql(e, "this"),
exp.ReturnsProperty: lambda self, e: "TABLE" if isinstance(e.this, exp.Schema) else "",
exp.Rand: rename_func("RANDOM"),
exp.SafeDivide: no_safe_divide_sql,
exp.SHA: rename_func("SHA1"),
exp.SHA2: sha256_sql,
exp.Split: rename_func("STR_SPLIT"),
exp.SortArray: _sort_array_sql,
exp.StrPosition: str_position_sql,
exp.StrToUnix: lambda self, e: self.func(
"EPOCH", self.func("STRPTIME", e.this, self.format_time(e))
),
exp.Struct: _struct_sql,
exp.Transform: rename_func("LIST_TRANSFORM"),
exp.TimeAdd: _date_delta_sql,
exp.Time: no_time_sql,
exp.TimeDiff: _timediff_sql,
exp.Timestamp: no_timestamp_sql,
exp.TimestampDiff: lambda self, e: self.func(
"DATE_DIFF", exp.Literal.string(e.unit), e.expression, e.this
),
exp.TimestampTrunc: timestamptrunc_sql(),
exp.TimeStrToDate: lambda self, e: self.sql(exp.cast(e.this, exp.DataType.Type.DATE)),
exp.TimeStrToTime: timestrtotime_sql,
exp.TimeStrToUnix: lambda self, e: self.func(
"EPOCH", exp.cast(e.this, exp.DataType.Type.TIMESTAMP)
),
exp.TimeToStr: lambda self, e: self.func("STRFTIME", e.this, self.format_time(e)),
exp.TimeToUnix: rename_func("EPOCH"),
exp.TsOrDiToDi: lambda self,
e: f"CAST(SUBSTR(REPLACE(CAST({self.sql(e, 'this')} AS TEXT), '-', ''), 1, 8) AS INT)",
exp.TsOrDsAdd: _date_delta_sql,
exp.TsOrDsDiff: lambda self, e: self.func(
"DATE_DIFF",
f"'{e.args.get('unit') or 'DAY'}'",
exp.cast(e.expression, exp.DataType.Type.TIMESTAMP),
exp.cast(e.this, exp.DataType.Type.TIMESTAMP),
),
exp.UnixToStr: lambda self, e: self.func(
"STRFTIME", self.func("TO_TIMESTAMP", e.this), self.format_time(e)
),
exp.DatetimeTrunc: lambda self, e: self.func(
"DATE_TRUNC", unit_to_str(e), exp.cast(e.this, exp.DataType.Type.DATETIME)
),
exp.UnixToTime: _unix_to_time_sql,
exp.UnixToTimeStr: lambda self, e: f"CAST(TO_TIMESTAMP({self.sql(e, 'this')}) AS TEXT)",
exp.VariancePop: rename_func("VAR_POP"),
exp.WeekOfYear: rename_func("WEEKOFYEAR"),
exp.Xor: bool_xor_sql,
exp.Levenshtein: unsupported_args("ins_cost", "del_cost", "sub_cost", "max_dist")(
rename_func("LEVENSHTEIN")
),
}
SUPPORTED_JSON_PATH_PARTS = {
exp.JSONPathKey,
exp.JSONPathRoot,
exp.JSONPathSubscript,
exp.JSONPathWildcard,
}
TYPE_MAPPING = {
**generator.Generator.TYPE_MAPPING,
exp.DataType.Type.BINARY: "BLOB",
exp.DataType.Type.BPCHAR: "TEXT",
exp.DataType.Type.CHAR: "TEXT",
exp.DataType.Type.DATETIME: "TIMESTAMP",
exp.DataType.Type.FLOAT: "REAL",
exp.DataType.Type.NCHAR: "TEXT",
exp.DataType.Type.NVARCHAR: "TEXT",
exp.DataType.Type.UINT: "UINTEGER",
exp.DataType.Type.VARBINARY: "BLOB",
exp.DataType.Type.ROWVERSION: "BLOB",
exp.DataType.Type.VARCHAR: "TEXT",
exp.DataType.Type.TIMESTAMPNTZ: "TIMESTAMP",
exp.DataType.Type.TIMESTAMP_S: "TIMESTAMP_S",
exp.DataType.Type.TIMESTAMP_MS: "TIMESTAMP_MS",
exp.DataType.Type.TIMESTAMP_NS: "TIMESTAMP_NS",
}
# https://github.com/duckdb/duckdb/blob/ff7f24fd8e3128d94371827523dae85ebaf58713/third_party/libpg_query/grammar/keywords/reserved_keywords.list#L1-L77
RESERVED_KEYWORDS = {
"array",
"analyse",
"union",
"all",
"when",
"in_p",
"default",
"create_p",
"window",
"asymmetric",
"to",
"else",
"localtime",
"from",
"end_p",
"select",
"current_date",
"foreign",
"with",
"grant",
"session_user",
"or",
"except",
"references",
"fetch",
"limit",
"group_p",
"leading",
"into",
"collate",
"offset",
"do",
"then",
"localtimestamp",
"check_p",
"lateral_p",
"current_role",
"where",
"asc_p",
"placing",
"desc_p",
"user",
"unique",
"initially",
"column",
"both",
"some",
"as",
"any",
"only",
"deferrable",
"null_p",
"current_time",
"true_p",
"table",
"case",
"trailing",
"variadic",
"for",
"on",
"distinct",
"false_p",
"not",
"constraint",
"current_timestamp",
"returning",
"primary",
"intersect",
"having",
"analyze",
"current_user",
"and",
"cast",
"symmetric",
"using",
"order",
"current_catalog",
}
UNWRAPPED_INTERVAL_VALUES = (exp.Literal, exp.Paren)
# DuckDB doesn't generally support CREATE TABLE .. properties
# https://duckdb.org/docs/sql/statements/create_table.html
PROPERTIES_LOCATION = {
prop: exp.Properties.Location.UNSUPPORTED
for prop in generator.Generator.PROPERTIES_LOCATION
}
# There are a few exceptions (e.g. temporary tables) which are supported or
# can be transpiled to DuckDB, so we explicitly override them accordingly
PROPERTIES_LOCATION[exp.LikeProperty] = exp.Properties.Location.POST_SCHEMA
PROPERTIES_LOCATION[exp.TemporaryProperty] = exp.Properties.Location.POST_CREATE
PROPERTIES_LOCATION[exp.ReturnsProperty] = exp.Properties.Location.POST_ALIAS
def fromiso8601timestamp_sql(self, expression: exp.FromISO8601Timestamp) -> str:
return self.sql(exp.cast(expression.this, exp.DataType.Type.TIMESTAMPTZ))
def strtotime_sql(self, expression: exp.StrToTime) -> str:
if expression.args.get("safe"):
formatted_time = self.format_time(expression)
return f"CAST({self.func('TRY_STRPTIME', expression.this, formatted_time)} AS TIMESTAMP)"
return str_to_time_sql(self, expression)
def strtodate_sql(self, expression: exp.StrToDate) -> str:
if expression.args.get("safe"):
formatted_time = self.format_time(expression)
return f"CAST({self.func('TRY_STRPTIME', expression.this, formatted_time)} AS DATE)"
return f"CAST({str_to_time_sql(self, expression)} AS DATE)"
def parsejson_sql(self, expression: exp.ParseJSON) -> str:
arg = expression.this
if expression.args.get("safe"):
return self.sql(exp.case().when(exp.func("json_valid", arg), arg).else_(exp.null()))
return self.func("JSON", arg)
def timefromparts_sql(self, expression: exp.TimeFromParts) -> str:
nano = expression.args.get("nano")
if nano is not None:
expression.set(
"sec", expression.args["sec"] + nano.pop() / exp.Literal.number(1000000000.0)
)
return rename_func("MAKE_TIME")(self, expression)
def timestampfromparts_sql(self, expression: exp.TimestampFromParts) -> str:
sec = expression.args["sec"]
milli = expression.args.get("milli")
if milli is not None:
sec += milli.pop() / exp.Literal.number(1000.0)
nano = expression.args.get("nano")
if nano is not None:
sec += nano.pop() / exp.Literal.number(1000000000.0)
if milli or nano:
expression.set("sec", sec)
return rename_func("MAKE_TIMESTAMP")(self, expression)
def tablesample_sql(
self,
expression: exp.TableSample,
tablesample_keyword: t.Optional[str] = None,
) -> str:
if not isinstance(expression.parent, exp.Select):
# This sample clause only applies to a single source, not the entire resulting relation
tablesample_keyword = "TABLESAMPLE"
if expression.args.get("size"):
method = expression.args.get("method")
if method and method.name.upper() != "RESERVOIR":
self.unsupported(
f"Sampling method {method} is not supported with a discrete sample count, "
"defaulting to reservoir sampling"
)
expression.set("method", exp.var("RESERVOIR"))
return super().tablesample_sql(expression, tablesample_keyword=tablesample_keyword)
def interval_sql(self, expression: exp.Interval) -> str:
multiplier: t.Optional[int] = None
unit = expression.text("unit").lower()
if unit.startswith("week"):
multiplier = 7
if unit.startswith("quarter"):
multiplier = 90
if multiplier:
return f"({multiplier} * {super().interval_sql(exp.Interval(this=expression.this, unit=exp.var('DAY')))})"
return super().interval_sql(expression)
def columndef_sql(self, expression: exp.ColumnDef, sep: str = " ") -> str:
if isinstance(expression.parent, exp.UserDefinedFunction):
return self.sql(expression, "this")
return super().columndef_sql(expression, sep)
def join_sql(self, expression: exp.Join) -> str:
if (
expression.side == "LEFT"
and not expression.args.get("on")
and isinstance(expression.this, exp.Unnest)
):
# Some dialects support `LEFT JOIN UNNEST(...)` without an explicit ON clause
# DuckDB doesn't, but we can just add a dummy ON clause that is always true
return super().join_sql(expression.on(exp.true()))
return super().join_sql(expression)
def generateseries_sql(self, expression: exp.GenerateSeries) -> str:
# GENERATE_SERIES(a, b) -> [a, b], RANGE(a, b) -> [a, b)
if expression.args.get("is_end_exclusive"):
return rename_func("RANGE")(self, expression)
return self.function_fallback_sql(expression)
def bracket_sql(self, expression: exp.Bracket) -> str:
this = expression.this
if isinstance(this, exp.Array):
this.replace(exp.paren(this))
bracket = super().bracket_sql(expression)
if not expression.args.get("returns_list_for_maps"):
if not this.type:
from sqlglot.optimizer.annotate_types import annotate_types
this = annotate_types(this)
if this.is_type(exp.DataType.Type.MAP):
bracket = f"({bracket})[1]"
return bracket
def withingroup_sql(self, expression: exp.WithinGroup) -> str:
expression_sql = self.sql(expression, "expression")
func = expression.this
if isinstance(func, exp.PERCENTILES):
# Make the order key the first arg and slide the fraction to the right
# https://duckdb.org/docs/sql/aggregates#ordered-set-aggregate-functions
order_col = expression.find(exp.Ordered)
if order_col:
func.set("expression", func.this)
func.set("this", order_col.this)
this = self.sql(expression, "this").rstrip(")")
return f"{this}{expression_sql})"
def length_sql(self, expression: exp.Length) -> str:
arg = expression.this
# Dialects like BQ and Snowflake also accept binary values as args, so
# DDB will attempt to infer the type or resort to case/when resolution
if not expression.args.get("binary") or arg.is_string:
return self.func("LENGTH", arg)
if not arg.type:
from sqlglot.optimizer.annotate_types import annotate_types
arg = annotate_types(arg)
if arg.is_type(*exp.DataType.TEXT_TYPES):
return self.func("LENGTH", arg)
# We need these casts to make duckdb's static type checker happy
blob = exp.cast(arg, exp.DataType.Type.VARBINARY)
varchar = exp.cast(arg, exp.DataType.Type.VARCHAR)
case = (
exp.case(self.func("TYPEOF", arg))
.when(
"'VARCHAR'", exp.Anonymous(this="LENGTH", expressions=[varchar])
) # anonymous to break length_sql recursion
.when("'BLOB'", self.func("OCTET_LENGTH", blob))
)
return self.sql(case)
def objectinsert_sql(self, expression: exp.ObjectInsert) -> str:
this = expression.this
key = expression.args.get("key")
key_sql = key.name if isinstance(key, exp.Expression) else ""
value_sql = self.sql(expression, "value")
kv_sql = f"{key_sql} := {value_sql}"
# If the input struct is empty e.g. transpiling OBJECT_INSERT(OBJECT_CONSTRUCT(), key, value) from Snowflake
# then we can generate STRUCT_PACK which will build it since STRUCT_INSERT({}, key := value) is not valid DuckDB
if isinstance(this, exp.Struct) and not this.expressions:
return self.func("STRUCT_PACK", kv_sql)
return self.func("STRUCT_INSERT", this, kv_sql)
def unnest_sql(self, expression: exp.Unnest) -> str:
explode_array = expression.args.get("explode_array")
if explode_array:
# In BigQuery, UNNESTing a nested array leads to explosion of the top-level array & struct
# This is transpiled to DDB by transforming "FROM UNNEST(...)" to "FROM (SELECT UNNEST(..., max_depth => 2))"
expression.expressions.append(
exp.Kwarg(this=exp.var("max_depth"), expression=exp.Literal.number(2))
)
# If BQ's UNNEST is aliased, we transform it from a column alias to a table alias in DDB
alias = expression.args.get("alias")
if alias:
expression.set("alias", None)
alias = exp.TableAlias(this=seq_get(alias.args.get("columns"), 0))
unnest_sql = super().unnest_sql(expression)
select = exp.Select(expressions=[unnest_sql]).subquery(alias)
return self.sql(select)
return super().unnest_sql(expression)
def ignorenulls_sql(self, expression: exp.IgnoreNulls) -> str:
if isinstance(expression.this, WINDOW_FUNCS_WITH_IGNORE_NULLS):
# DuckDB should render IGNORE NULLS only for the general-purpose
# window functions that accept it e.g. FIRST_VALUE(... IGNORE NULLS) OVER (...)
return super().ignorenulls_sql(expression)
return self.sql(expression, "this")
def arraytostring_sql(self, expression: exp.ArrayToString) -> str:
this = self.sql(expression, "this")
null_text = self.sql(expression, "null")
if null_text:
this = f"LIST_TRANSFORM({this}, x -> COALESCE(x, {null_text}))"
return self.func("ARRAY_TO_STRING", this, expression.expression)
@unsupported_args("position", "occurrence")
def regexpextract_sql(self, expression: exp.RegexpExtract) -> str:
group = expression.args.get("group")
params = expression.args.get("parameters")
# Do not render group if there is no following argument,
# and it's the default value for this dialect
if (
not params
and group
and group.name == str(self.dialect.REGEXP_EXTRACT_DEFAULT_GROUP)
):
group = None
return self.func(
"REGEXP_EXTRACT", expression.this, expression.expression, group, params
)
@unsupported_args("culture")
def numbertostr_sql(self, expression: exp.NumberToStr) -> str:
fmt = expression.args.get("format")
if fmt and fmt.is_int:
return self.func("FORMAT", f"'{{:,.{fmt.name}f}}'", expression.this)
self.unsupported("Only integer formats are supported by NumberToStr")
return self.function_fallback_sql(expression)