1
0
Fork 0
sqlglot/sqlglot/transforms.py
Daniel Baumann 7af32ea9ec
Adding upstream version 25.24.5.
Signed-off-by: Daniel Baumann <daniel@debian.org>
2025-02-13 21:55:31 +01:00

916 lines
35 KiB
Python

from __future__ import annotations
import typing as t
from sqlglot import expressions as exp
from sqlglot.errors import UnsupportedError
from sqlglot.helper import find_new_name, name_sequence
if t.TYPE_CHECKING:
from sqlglot._typing import E
from sqlglot.generator import Generator
def preprocess(
transforms: t.List[t.Callable[[exp.Expression], exp.Expression]],
) -> t.Callable[[Generator, exp.Expression], str]:
"""
Creates a new transform by chaining a sequence of transformations and converts the resulting
expression to SQL, using either the "_sql" method corresponding to the resulting expression,
or the appropriate `Generator.TRANSFORMS` function (when applicable -- see below).
Args:
transforms: sequence of transform functions. These will be called in order.
Returns:
Function that can be used as a generator transform.
"""
def _to_sql(self, expression: exp.Expression) -> str:
expression_type = type(expression)
try:
expression = transforms[0](expression)
for transform in transforms[1:]:
expression = transform(expression)
except UnsupportedError as unsupported_error:
self.unsupported(str(unsupported_error))
_sql_handler = getattr(self, expression.key + "_sql", None)
if _sql_handler:
return _sql_handler(expression)
transforms_handler = self.TRANSFORMS.get(type(expression))
if transforms_handler:
if expression_type is type(expression):
if isinstance(expression, exp.Func):
return self.function_fallback_sql(expression)
# Ensures we don't enter an infinite loop. This can happen when the original expression
# has the same type as the final expression and there's no _sql method available for it,
# because then it'd re-enter _to_sql.
raise ValueError(
f"Expression type {expression.__class__.__name__} requires a _sql method in order to be transformed."
)
return transforms_handler(self, expression)
raise ValueError(f"Unsupported expression type {expression.__class__.__name__}.")
return _to_sql
def unnest_generate_date_array_using_recursive_cte(expression: exp.Expression) -> exp.Expression:
if isinstance(expression, exp.Select):
count = 0
recursive_ctes = []
for unnest in expression.find_all(exp.Unnest):
if (
not isinstance(unnest.parent, (exp.From, exp.Join))
or len(unnest.expressions) != 1
or not isinstance(unnest.expressions[0], exp.GenerateDateArray)
):
continue
generate_date_array = unnest.expressions[0]
start = generate_date_array.args.get("start")
end = generate_date_array.args.get("end")
step = generate_date_array.args.get("step")
if not start or not end or not isinstance(step, exp.Interval):
continue
alias = unnest.args.get("alias")
column_name = alias.columns[0] if isinstance(alias, exp.TableAlias) else "date_value"
start = exp.cast(start, "date")
date_add = exp.func(
"date_add", column_name, exp.Literal.number(step.name), step.args.get("unit")
)
cast_date_add = exp.cast(date_add, "date")
cte_name = "_generated_dates" + (f"_{count}" if count else "")
base_query = exp.select(start.as_(column_name))
recursive_query = (
exp.select(cast_date_add)
.from_(cte_name)
.where(cast_date_add <= exp.cast(end, "date"))
)
cte_query = base_query.union(recursive_query, distinct=False)
generate_dates_query = exp.select(column_name).from_(cte_name)
unnest.replace(generate_dates_query.subquery(cte_name))
recursive_ctes.append(
exp.alias_(exp.CTE(this=cte_query), cte_name, table=[column_name])
)
count += 1
if recursive_ctes:
with_expression = expression.args.get("with") or exp.With()
with_expression.set("recursive", True)
with_expression.set("expressions", [*recursive_ctes, *with_expression.expressions])
expression.set("with", with_expression)
return expression
def unnest_generate_series(expression: exp.Expression) -> exp.Expression:
"""Unnests GENERATE_SERIES or SEQUENCE table references."""
this = expression.this
if isinstance(expression, exp.Table) and isinstance(this, exp.GenerateSeries):
unnest = exp.Unnest(expressions=[this])
if expression.alias:
return exp.alias_(unnest, alias="_u", table=[expression.alias], copy=False)
return unnest
return expression
def unalias_group(expression: exp.Expression) -> exp.Expression:
"""
Replace references to select aliases in GROUP BY clauses.
Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT a AS b FROM x GROUP BY b").transform(unalias_group).sql()
'SELECT a AS b FROM x GROUP BY 1'
Args:
expression: the expression that will be transformed.
Returns:
The transformed expression.
"""
if isinstance(expression, exp.Group) and isinstance(expression.parent, exp.Select):
aliased_selects = {
e.alias: i
for i, e in enumerate(expression.parent.expressions, start=1)
if isinstance(e, exp.Alias)
}
for group_by in expression.expressions:
if (
isinstance(group_by, exp.Column)
and not group_by.table
and group_by.name in aliased_selects
):
group_by.replace(exp.Literal.number(aliased_selects.get(group_by.name)))
return expression
def eliminate_distinct_on(expression: exp.Expression) -> exp.Expression:
"""
Convert SELECT DISTINCT ON statements to a subquery with a window function.
This is useful for dialects that don't support SELECT DISTINCT ON but support window functions.
Args:
expression: the expression that will be transformed.
Returns:
The transformed expression.
"""
if (
isinstance(expression, exp.Select)
and expression.args.get("distinct")
and expression.args["distinct"].args.get("on")
and isinstance(expression.args["distinct"].args["on"], exp.Tuple)
):
distinct_cols = expression.args["distinct"].pop().args["on"].expressions
outer_selects = expression.selects
row_number = find_new_name(expression.named_selects, "_row_number")
window = exp.Window(this=exp.RowNumber(), partition_by=distinct_cols)
order = expression.args.get("order")
if order:
window.set("order", order.pop())
else:
window.set("order", exp.Order(expressions=[c.copy() for c in distinct_cols]))
window = exp.alias_(window, row_number)
expression.select(window, copy=False)
return (
exp.select(*outer_selects, copy=False)
.from_(expression.subquery("_t", copy=False), copy=False)
.where(exp.column(row_number).eq(1), copy=False)
)
return expression
def eliminate_qualify(expression: exp.Expression) -> exp.Expression:
"""
Convert SELECT statements that contain the QUALIFY clause into subqueries, filtered equivalently.
The idea behind this transformation can be seen in Snowflake's documentation for QUALIFY:
https://docs.snowflake.com/en/sql-reference/constructs/qualify
Some dialects don't support window functions in the WHERE clause, so we need to include them as
projections in the subquery, in order to refer to them in the outer filter using aliases. Also,
if a column is referenced in the QUALIFY clause but is not selected, we need to include it too,
otherwise we won't be able to refer to it in the outer query's WHERE clause. Finally, if a
newly aliased projection is referenced in the QUALIFY clause, it will be replaced by the
corresponding expression to avoid creating invalid column references.
"""
if isinstance(expression, exp.Select) and expression.args.get("qualify"):
taken = set(expression.named_selects)
for select in expression.selects:
if not select.alias_or_name:
alias = find_new_name(taken, "_c")
select.replace(exp.alias_(select, alias))
taken.add(alias)
def _select_alias_or_name(select: exp.Expression) -> str | exp.Column:
alias_or_name = select.alias_or_name
identifier = select.args.get("alias") or select.this
if isinstance(identifier, exp.Identifier):
return exp.column(alias_or_name, quoted=identifier.args.get("quoted"))
return alias_or_name
outer_selects = exp.select(*list(map(_select_alias_or_name, expression.selects)))
qualify_filters = expression.args["qualify"].pop().this
expression_by_alias = {
select.alias: select.this
for select in expression.selects
if isinstance(select, exp.Alias)
}
select_candidates = exp.Window if expression.is_star else (exp.Window, exp.Column)
for select_candidate in qualify_filters.find_all(select_candidates):
if isinstance(select_candidate, exp.Window):
if expression_by_alias:
for column in select_candidate.find_all(exp.Column):
expr = expression_by_alias.get(column.name)
if expr:
column.replace(expr)
alias = find_new_name(expression.named_selects, "_w")
expression.select(exp.alias_(select_candidate, alias), copy=False)
column = exp.column(alias)
if isinstance(select_candidate.parent, exp.Qualify):
qualify_filters = column
else:
select_candidate.replace(column)
elif select_candidate.name not in expression.named_selects:
expression.select(select_candidate.copy(), copy=False)
return outer_selects.from_(expression.subquery(alias="_t", copy=False), copy=False).where(
qualify_filters, copy=False
)
return expression
def remove_precision_parameterized_types(expression: exp.Expression) -> exp.Expression:
"""
Some dialects only allow the precision for parameterized types to be defined in the DDL and not in
other expressions. This transforms removes the precision from parameterized types in expressions.
"""
for node in expression.find_all(exp.DataType):
node.set(
"expressions", [e for e in node.expressions if not isinstance(e, exp.DataTypeParam)]
)
return expression
def unqualify_unnest(expression: exp.Expression) -> exp.Expression:
"""Remove references to unnest table aliases, added by the optimizer's qualify_columns step."""
from sqlglot.optimizer.scope import find_all_in_scope
if isinstance(expression, exp.Select):
unnest_aliases = {
unnest.alias
for unnest in find_all_in_scope(expression, exp.Unnest)
if isinstance(unnest.parent, (exp.From, exp.Join))
}
if unnest_aliases:
for column in expression.find_all(exp.Column):
if column.table in unnest_aliases:
column.set("table", None)
elif column.db in unnest_aliases:
column.set("db", None)
return expression
def unnest_to_explode(
expression: exp.Expression,
unnest_using_arrays_zip: bool = True,
) -> exp.Expression:
"""Convert cross join unnest into lateral view explode."""
def _unnest_zip_exprs(
u: exp.Unnest, unnest_exprs: t.List[exp.Expression], has_multi_expr: bool
) -> t.List[exp.Expression]:
if has_multi_expr:
if not unnest_using_arrays_zip:
raise UnsupportedError("Cannot transpile UNNEST with multiple input arrays")
# Use INLINE(ARRAYS_ZIP(...)) for multiple expressions
zip_exprs: t.List[exp.Expression] = [
exp.Anonymous(this="ARRAYS_ZIP", expressions=unnest_exprs)
]
u.set("expressions", zip_exprs)
return zip_exprs
return unnest_exprs
def _udtf_type(u: exp.Unnest, has_multi_expr: bool) -> t.Type[exp.Func]:
if u.args.get("offset"):
return exp.Posexplode
return exp.Inline if has_multi_expr else exp.Explode
if isinstance(expression, exp.Select):
from_ = expression.args.get("from")
if from_ and isinstance(from_.this, exp.Unnest):
unnest = from_.this
alias = unnest.args.get("alias")
exprs = unnest.expressions
has_multi_expr = len(exprs) > 1
this, *expressions = _unnest_zip_exprs(unnest, exprs, has_multi_expr)
unnest.replace(
exp.Table(
this=_udtf_type(unnest, has_multi_expr)(
this=this,
expressions=expressions,
),
alias=exp.TableAlias(this=alias.this, columns=alias.columns) if alias else None,
)
)
for join in expression.args.get("joins") or []:
join_expr = join.this
is_lateral = isinstance(join_expr, exp.Lateral)
unnest = join_expr.this if is_lateral else join_expr
if isinstance(unnest, exp.Unnest):
if is_lateral:
alias = join_expr.args.get("alias")
else:
alias = unnest.args.get("alias")
exprs = unnest.expressions
# The number of unnest.expressions will be changed by _unnest_zip_exprs, we need to record it here
has_multi_expr = len(exprs) > 1
exprs = _unnest_zip_exprs(unnest, exprs, has_multi_expr)
expression.args["joins"].remove(join)
alias_cols = alias.columns if alias else []
for e, column in zip(exprs, alias_cols):
expression.append(
"laterals",
exp.Lateral(
this=_udtf_type(unnest, has_multi_expr)(this=e),
view=True,
alias=exp.TableAlias(
this=alias.this, # type: ignore
columns=alias_cols if unnest_using_arrays_zip else [column], # type: ignore
),
),
)
return expression
def explode_to_unnest(index_offset: int = 0) -> t.Callable[[exp.Expression], exp.Expression]:
"""Convert explode/posexplode into unnest."""
def _explode_to_unnest(expression: exp.Expression) -> exp.Expression:
if isinstance(expression, exp.Select):
from sqlglot.optimizer.scope import Scope
taken_select_names = set(expression.named_selects)
taken_source_names = {name for name, _ in Scope(expression).references}
def new_name(names: t.Set[str], name: str) -> str:
name = find_new_name(names, name)
names.add(name)
return name
arrays: t.List[exp.Condition] = []
series_alias = new_name(taken_select_names, "pos")
series = exp.alias_(
exp.Unnest(
expressions=[exp.GenerateSeries(start=exp.Literal.number(index_offset))]
),
new_name(taken_source_names, "_u"),
table=[series_alias],
)
# we use list here because expression.selects is mutated inside the loop
for select in list(expression.selects):
explode = select.find(exp.Explode)
if explode:
pos_alias = ""
explode_alias = ""
if isinstance(select, exp.Alias):
explode_alias = select.args["alias"]
alias = select
elif isinstance(select, exp.Aliases):
pos_alias = select.aliases[0]
explode_alias = select.aliases[1]
alias = select.replace(exp.alias_(select.this, "", copy=False))
else:
alias = select.replace(exp.alias_(select, ""))
explode = alias.find(exp.Explode)
assert explode
is_posexplode = isinstance(explode, exp.Posexplode)
explode_arg = explode.this
if isinstance(explode, exp.ExplodeOuter):
bracket = explode_arg[0]
bracket.set("safe", True)
bracket.set("offset", True)
explode_arg = exp.func(
"IF",
exp.func(
"ARRAY_SIZE", exp.func("COALESCE", explode_arg, exp.Array())
).eq(0),
exp.array(bracket, copy=False),
explode_arg,
)
# This ensures that we won't use [POS]EXPLODE's argument as a new selection
if isinstance(explode_arg, exp.Column):
taken_select_names.add(explode_arg.output_name)
unnest_source_alias = new_name(taken_source_names, "_u")
if not explode_alias:
explode_alias = new_name(taken_select_names, "col")
if is_posexplode:
pos_alias = new_name(taken_select_names, "pos")
if not pos_alias:
pos_alias = new_name(taken_select_names, "pos")
alias.set("alias", exp.to_identifier(explode_alias))
series_table_alias = series.args["alias"].this
column = exp.If(
this=exp.column(series_alias, table=series_table_alias).eq(
exp.column(pos_alias, table=unnest_source_alias)
),
true=exp.column(explode_alias, table=unnest_source_alias),
)
explode.replace(column)
if is_posexplode:
expressions = expression.expressions
expressions.insert(
expressions.index(alias) + 1,
exp.If(
this=exp.column(series_alias, table=series_table_alias).eq(
exp.column(pos_alias, table=unnest_source_alias)
),
true=exp.column(pos_alias, table=unnest_source_alias),
).as_(pos_alias),
)
expression.set("expressions", expressions)
if not arrays:
if expression.args.get("from"):
expression.join(series, copy=False, join_type="CROSS")
else:
expression.from_(series, copy=False)
size: exp.Condition = exp.ArraySize(this=explode_arg.copy())
arrays.append(size)
# trino doesn't support left join unnest with on conditions
# if it did, this would be much simpler
expression.join(
exp.alias_(
exp.Unnest(
expressions=[explode_arg.copy()],
offset=exp.to_identifier(pos_alias),
),
unnest_source_alias,
table=[explode_alias],
),
join_type="CROSS",
copy=False,
)
if index_offset != 1:
size = size - 1
expression.where(
exp.column(series_alias, table=series_table_alias)
.eq(exp.column(pos_alias, table=unnest_source_alias))
.or_(
(exp.column(series_alias, table=series_table_alias) > size).and_(
exp.column(pos_alias, table=unnest_source_alias).eq(size)
)
),
copy=False,
)
if arrays:
end: exp.Condition = exp.Greatest(this=arrays[0], expressions=arrays[1:])
if index_offset != 1:
end = end - (1 - index_offset)
series.expressions[0].set("end", end)
return expression
return _explode_to_unnest
def add_within_group_for_percentiles(expression: exp.Expression) -> exp.Expression:
"""Transforms percentiles by adding a WITHIN GROUP clause to them."""
if (
isinstance(expression, exp.PERCENTILES)
and not isinstance(expression.parent, exp.WithinGroup)
and expression.expression
):
column = expression.this.pop()
expression.set("this", expression.expression.pop())
order = exp.Order(expressions=[exp.Ordered(this=column)])
expression = exp.WithinGroup(this=expression, expression=order)
return expression
def remove_within_group_for_percentiles(expression: exp.Expression) -> exp.Expression:
"""Transforms percentiles by getting rid of their corresponding WITHIN GROUP clause."""
if (
isinstance(expression, exp.WithinGroup)
and isinstance(expression.this, exp.PERCENTILES)
and isinstance(expression.expression, exp.Order)
):
quantile = expression.this.this
input_value = t.cast(exp.Ordered, expression.find(exp.Ordered)).this
return expression.replace(exp.ApproxQuantile(this=input_value, quantile=quantile))
return expression
def add_recursive_cte_column_names(expression: exp.Expression) -> exp.Expression:
"""Uses projection output names in recursive CTE definitions to define the CTEs' columns."""
if isinstance(expression, exp.With) and expression.recursive:
next_name = name_sequence("_c_")
for cte in expression.expressions:
if not cte.args["alias"].columns:
query = cte.this
if isinstance(query, exp.SetOperation):
query = query.this
cte.args["alias"].set(
"columns",
[exp.to_identifier(s.alias_or_name or next_name()) for s in query.selects],
)
return expression
def epoch_cast_to_ts(expression: exp.Expression) -> exp.Expression:
"""Replace 'epoch' in casts by the equivalent date literal."""
if (
isinstance(expression, (exp.Cast, exp.TryCast))
and expression.name.lower() == "epoch"
and expression.to.this in exp.DataType.TEMPORAL_TYPES
):
expression.this.replace(exp.Literal.string("1970-01-01 00:00:00"))
return expression
def eliminate_semi_and_anti_joins(expression: exp.Expression) -> exp.Expression:
"""Convert SEMI and ANTI joins into equivalent forms that use EXIST instead."""
if isinstance(expression, exp.Select):
for join in expression.args.get("joins") or []:
on = join.args.get("on")
if on and join.kind in ("SEMI", "ANTI"):
subquery = exp.select("1").from_(join.this).where(on)
exists = exp.Exists(this=subquery)
if join.kind == "ANTI":
exists = exists.not_(copy=False)
join.pop()
expression.where(exists, copy=False)
return expression
def eliminate_full_outer_join(expression: exp.Expression) -> exp.Expression:
"""
Converts a query with a FULL OUTER join to a union of identical queries that
use LEFT/RIGHT OUTER joins instead. This transformation currently only works
for queries that have a single FULL OUTER join.
"""
if isinstance(expression, exp.Select):
full_outer_joins = [
(index, join)
for index, join in enumerate(expression.args.get("joins") or [])
if join.side == "FULL"
]
if len(full_outer_joins) == 1:
expression_copy = expression.copy()
expression.set("limit", None)
index, full_outer_join = full_outer_joins[0]
tables = (expression.args["from"].alias_or_name, full_outer_join.alias_or_name)
join_conditions = full_outer_join.args.get("on") or exp.and_(
*[
exp.column(col, tables[0]).eq(exp.column(col, tables[1]))
for col in full_outer_join.args.get("using")
]
)
full_outer_join.set("side", "left")
anti_join_clause = exp.select("1").from_(expression.args["from"]).where(join_conditions)
expression_copy.args["joins"][index].set("side", "right")
expression_copy = expression_copy.where(exp.Exists(this=anti_join_clause).not_())
expression_copy.args.pop("with", None) # remove CTEs from RIGHT side
expression.args.pop("order", None) # remove order by from LEFT side
return exp.union(expression, expression_copy, copy=False, distinct=False)
return expression
def move_ctes_to_top_level(expression: E) -> E:
"""
Some dialects (e.g. Hive, T-SQL, Spark prior to version 3) only allow CTEs to be
defined at the top-level, so for example queries like:
SELECT * FROM (WITH t(c) AS (SELECT 1) SELECT * FROM t) AS subq
are invalid in those dialects. This transformation can be used to ensure all CTEs are
moved to the top level so that the final SQL code is valid from a syntax standpoint.
TODO: handle name clashes whilst moving CTEs (it can get quite tricky & costly).
"""
top_level_with = expression.args.get("with")
for inner_with in expression.find_all(exp.With):
if inner_with.parent is expression:
continue
if not top_level_with:
top_level_with = inner_with.pop()
expression.set("with", top_level_with)
else:
if inner_with.recursive:
top_level_with.set("recursive", True)
parent_cte = inner_with.find_ancestor(exp.CTE)
inner_with.pop()
if parent_cte:
i = top_level_with.expressions.index(parent_cte)
top_level_with.expressions[i:i] = inner_with.expressions
top_level_with.set("expressions", top_level_with.expressions)
else:
top_level_with.set(
"expressions", top_level_with.expressions + inner_with.expressions
)
return expression
def ensure_bools(expression: exp.Expression) -> exp.Expression:
"""Converts numeric values used in conditions into explicit boolean expressions."""
from sqlglot.optimizer.canonicalize import ensure_bools
def _ensure_bool(node: exp.Expression) -> None:
if (
node.is_number
or (
not isinstance(node, exp.SubqueryPredicate)
and node.is_type(exp.DataType.Type.UNKNOWN, *exp.DataType.NUMERIC_TYPES)
)
or (isinstance(node, exp.Column) and not node.type)
):
node.replace(node.neq(0))
for node in expression.walk():
ensure_bools(node, _ensure_bool)
return expression
def unqualify_columns(expression: exp.Expression) -> exp.Expression:
for column in expression.find_all(exp.Column):
# We only wanna pop off the table, db, catalog args
for part in column.parts[:-1]:
part.pop()
return expression
def remove_unique_constraints(expression: exp.Expression) -> exp.Expression:
assert isinstance(expression, exp.Create)
for constraint in expression.find_all(exp.UniqueColumnConstraint):
if constraint.parent:
constraint.parent.pop()
return expression
def ctas_with_tmp_tables_to_create_tmp_view(
expression: exp.Expression,
tmp_storage_provider: t.Callable[[exp.Expression], exp.Expression] = lambda e: e,
) -> exp.Expression:
assert isinstance(expression, exp.Create)
properties = expression.args.get("properties")
temporary = any(
isinstance(prop, exp.TemporaryProperty)
for prop in (properties.expressions if properties else [])
)
# CTAS with temp tables map to CREATE TEMPORARY VIEW
if expression.kind == "TABLE" and temporary:
if expression.expression:
return exp.Create(
kind="TEMPORARY VIEW",
this=expression.this,
expression=expression.expression,
)
return tmp_storage_provider(expression)
return expression
def move_schema_columns_to_partitioned_by(expression: exp.Expression) -> exp.Expression:
"""
In Hive, the PARTITIONED BY property acts as an extension of a table's schema. When the
PARTITIONED BY value is an array of column names, they are transformed into a schema.
The corresponding columns are removed from the create statement.
"""
assert isinstance(expression, exp.Create)
has_schema = isinstance(expression.this, exp.Schema)
is_partitionable = expression.kind in {"TABLE", "VIEW"}
if has_schema and is_partitionable:
prop = expression.find(exp.PartitionedByProperty)
if prop and prop.this and not isinstance(prop.this, exp.Schema):
schema = expression.this
columns = {v.name.upper() for v in prop.this.expressions}
partitions = [col for col in schema.expressions if col.name.upper() in columns]
schema.set("expressions", [e for e in schema.expressions if e not in partitions])
prop.replace(exp.PartitionedByProperty(this=exp.Schema(expressions=partitions)))
expression.set("this", schema)
return expression
def move_partitioned_by_to_schema_columns(expression: exp.Expression) -> exp.Expression:
"""
Spark 3 supports both "HIVEFORMAT" and "DATASOURCE" formats for CREATE TABLE.
Currently, SQLGlot uses the DATASOURCE format for Spark 3.
"""
assert isinstance(expression, exp.Create)
prop = expression.find(exp.PartitionedByProperty)
if (
prop
and prop.this
and isinstance(prop.this, exp.Schema)
and all(isinstance(e, exp.ColumnDef) and e.kind for e in prop.this.expressions)
):
prop_this = exp.Tuple(
expressions=[exp.to_identifier(e.this) for e in prop.this.expressions]
)
schema = expression.this
for e in prop.this.expressions:
schema.append("expressions", e)
prop.set("this", prop_this)
return expression
def struct_kv_to_alias(expression: exp.Expression) -> exp.Expression:
"""Converts struct arguments to aliases, e.g. STRUCT(1 AS y)."""
if isinstance(expression, exp.Struct):
expression.set(
"expressions",
[
exp.alias_(e.expression, e.this) if isinstance(e, exp.PropertyEQ) else e
for e in expression.expressions
],
)
return expression
def eliminate_join_marks(expression: exp.Expression) -> exp.Expression:
"""
Remove join marks from an AST. This rule assumes that all marked columns are qualified.
If this does not hold for a query, consider running `sqlglot.optimizer.qualify` first.
For example,
SELECT * FROM a, b WHERE a.id = b.id(+) -- ... is converted to
SELECT * FROM a LEFT JOIN b ON a.id = b.id -- this
Args:
expression: The AST to remove join marks from.
Returns:
The AST with join marks removed.
"""
from sqlglot.optimizer.scope import traverse_scope
for scope in traverse_scope(expression):
query = scope.expression
where = query.args.get("where")
joins = query.args.get("joins")
if not where or not joins:
continue
query_from = query.args["from"]
# These keep track of the joins to be replaced
new_joins: t.Dict[str, exp.Join] = {}
old_joins = {join.alias_or_name: join for join in joins}
for column in scope.columns:
if not column.args.get("join_mark"):
continue
predicate = column.find_ancestor(exp.Predicate, exp.Select)
assert isinstance(
predicate, exp.Binary
), "Columns can only be marked with (+) when involved in a binary operation"
predicate_parent = predicate.parent
join_predicate = predicate.pop()
left_columns = [
c for c in join_predicate.left.find_all(exp.Column) if c.args.get("join_mark")
]
right_columns = [
c for c in join_predicate.right.find_all(exp.Column) if c.args.get("join_mark")
]
assert not (
left_columns and right_columns
), "The (+) marker cannot appear in both sides of a binary predicate"
marked_column_tables = set()
for col in left_columns or right_columns:
table = col.table
assert table, f"Column {col} needs to be qualified with a table"
col.set("join_mark", False)
marked_column_tables.add(table)
assert (
len(marked_column_tables) == 1
), "Columns of only a single table can be marked with (+) in a given binary predicate"
join_this = old_joins.get(col.table, query_from).this
new_join = exp.Join(this=join_this, on=join_predicate, kind="LEFT")
# Upsert new_join into new_joins dictionary
new_join_alias_or_name = new_join.alias_or_name
existing_join = new_joins.get(new_join_alias_or_name)
if existing_join:
existing_join.set("on", exp.and_(existing_join.args.get("on"), new_join.args["on"]))
else:
new_joins[new_join_alias_or_name] = new_join
# If the parent of the target predicate is a binary node, then it now has only one child
if isinstance(predicate_parent, exp.Binary):
if predicate_parent.left is None:
predicate_parent.replace(predicate_parent.right)
else:
predicate_parent.replace(predicate_parent.left)
if query_from.alias_or_name in new_joins:
only_old_joins = old_joins.keys() - new_joins.keys()
assert (
len(only_old_joins) >= 1
), "Cannot determine which table to use in the new FROM clause"
new_from_name = list(only_old_joins)[0]
query.set("from", exp.From(this=old_joins[new_from_name].this))
query.set("joins", list(new_joins.values()))
if not where.this:
where.pop()
return expression