Merging upstream version 0.7.1 (Closes: #991419).

Signed-off-by: Daniel Baumann <daniel@debian.org>
This commit is contained in:
Daniel Baumann 2025-02-09 07:39:31 +01:00
parent 05c588e9d7
commit 9e09e0ef69
Signed by: daniel
GPG key ID: FBB4F0E80A80222F
99 changed files with 6727 additions and 943 deletions

14
.cirrus.yml Normal file
View file

@ -0,0 +1,14 @@
env:
CIRRUS_CLONE_DEPTH: 1
ARCH: amd64
task:
freebsd_instance:
matrix:
image: freebsd-12-0-release-amd64
image: freebsd-11-2-release-amd64
script:
- cc --version
- export CFLAGS="-DITERATE=400 -DPAIRS_S=100 -DITERATIONS=24"
- ./tools/ci-build.sh --cores=$(sysctl -n hw.ncpu)
- make check

29
.drone.yml Normal file
View file

@ -0,0 +1,29 @@
kind: pipeline
name: gcc/amd64/linux
platform:
arch: amd64
steps:
- name: build
image: gcc
pull: true
commands:
- ./tools/ci-build.sh --cores=4
- make check
---
kind: pipeline
name: gcc/arm64/linux
platform:
arch: arm64
steps:
- name: build
image: gcc
pull: true
commands:
- ./tools/ci-build.sh --cores=4
- make check

71
.github/workflows/codeql-analysis.yml vendored Normal file
View file

@ -0,0 +1,71 @@
# For most projects, this workflow file will not need changing; you simply need
# to commit it to your repository.
#
# You may wish to alter this file to override the set of languages analyzed,
# or to provide custom queries or build logic.
name: "CodeQL"
on:
push:
branches: [master]
pull_request:
# The branches below must be a subset of the branches above
branches: [master]
schedule:
- cron: '0 11 * * 5'
jobs:
analyze:
name: Analyze
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
# Override automatic language detection by changing the below list
# Supported options are ['csharp', 'cpp', 'go', 'java', 'javascript', 'python']
language: ['cpp']
# Learn more...
# https://docs.github.com/en/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#overriding-automatic-language-detection
steps:
- name: Checkout repository
uses: actions/checkout@v2
with:
# We must fetch at least the immediate parents so that if this is
# a pull request then we can checkout the head.
fetch-depth: 2
# If this run was triggered by a pull request event, then checkout
# the head of the pull request instead of the merge commit.
- run: git checkout HEAD^2
if: ${{ github.event_name == 'pull_request' }}
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v1
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# queries: ./path/to/local/query, your-org/your-repo/queries@main
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
# If this step fails, then you should remove it and run the build manually (see below)
- name: Autobuild
uses: github/codeql-action/autobuild@v1
# Command-line programs to run using the OS shell.
# 📚 https://git.io/JvXDl
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
# and modify them (or add more) to build your code if your project
# uses a compiled language
#- run: |
# make bootstrap
# make release
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v1

55
.gitignore vendored
View file

@ -1,27 +1,25 @@
/Makefile
*.a
build/ck.build
build/ck.pc
build/regressions.build
build/ck.spec
include/ck_md.h
src/Makefile
doc/Makefile
doc/*.3
build/Makefile
build/regressions.build
doc/*.3
doc/Makefile
.DS_Store
LOG
*.log
*.html
*.gz
*.o
*.a
*.so
*.dSYM
.*.sw[op]
GPATH
GRTAGS
GTAGS
*.gz
*.html
ID
include/ck_md.h
include/freebsd/ck_md.h
*.log
LOG
/Makefile
*.o
regressions/ck_array/validate/serial
regressions/ck_backoff/validate/validate
regressions/ck_bag/validate/order
@ -37,17 +35,28 @@ regressions/ck_brlock/benchmark/throughput
regressions/ck_brlock/validate/validate
regressions/ck_bytelock/benchmark/latency
regressions/ck_bytelock/validate/validate
regressions/ck_cc/validate/ck_cc
regressions/ck_cc/validate/ck_cc_nobuiltin
regressions/ck_cohort/benchmark/ck_cohort.LATENCY
regressions/ck_cohort/benchmark/ck_cohort.THROUGHPUT
regressions/ck_cohort/validate/validate
regressions/ck_ec/benchmark/ck_ec
regressions/ck_ec/validate/ck_ec_smoke_test
regressions/ck_ec/validate/prop_test_slow_wakeup
regressions/ck_ec/validate/prop_test_timeutil_add
regressions/ck_ec/validate/prop_test_timeutil_add_ns
regressions/ck_ec/validate/prop_test_timeutil_cmp
regressions/ck_ec/validate/prop_test_timeutil_scale
regressions/ck_ec/validate/prop_test_value
regressions/ck_ec/validate/prop_test_wakeup
regressions/ck_epoch/validate/ck_epoch_call
regressions/ck_epoch/validate/ck_epoch_poll
regressions/ck_epoch/validate/ck_epoch_section
regressions/ck_epoch/validate/ck_epoch_section_2
regressions/ck_epoch/validate/torture
regressions/ck_epoch/validate/ck_epoch_synchronize
regressions/ck_epoch/validate/ck_stack
regressions/ck_epoch/validate/ck_stack_read
regressions/ck_epoch/validate/torture
regressions/ck_fifo/benchmark/latency
regressions/ck_fifo/validate/ck_fifo_mpmc
regressions/ck_fifo/validate/ck_fifo_mpmc_iterator
@ -75,11 +84,15 @@ regressions/ck_ht/validate/serial.delete
regressions/ck_pflock/benchmark/latency
regressions/ck_pflock/benchmark/throughput
regressions/ck_pflock/validate/validate
regressions/ck_pr/benchmark/ck_pr_add_64
regressions/ck_pr/benchmark/ck_pr_cas_64
regressions/ck_pr/benchmark/ck_pr_cas_64_2
regressions/ck_pr/benchmark/ck_pr_faa_64
regressions/ck_pr/benchmark/ck_pr_fas_64
regressions/ck_pr/benchmark/ck_pr_neg_64
regressions/ck_pr/benchmark/fp
regressions/ck_pr/validate/ck_pr_add
regressions/ck_pr/validate/ck_pr_add
regressions/ck_pr/validate/ck_pr_and
regressions/ck_pr/validate/ck_pr_bin
regressions/ck_pr/validate/ck_pr_btc
@ -88,10 +101,13 @@ regressions/ck_pr/validate/ck_pr_bts
regressions/ck_pr/validate/ck_pr_btx
regressions/ck_pr/validate/ck_pr_cas
regressions/ck_pr/validate/ck_pr_dec
regressions/ck_pr/validate/ck_pr_dec_zero
regressions/ck_pr/validate/ck_pr_faa
regressions/ck_pr/validate/ck_pr_fas
regressions/ck_pr/validate/ck_pr_fax
regressions/ck_pr/validate/ck_pr_fence
regressions/ck_pr/validate/ck_pr_inc
regressions/ck_pr/validate/ck_pr_inc_zero
regressions/ck_pr/validate/ck_pr_load
regressions/ck_pr/validate/ck_pr_n
regressions/ck_pr/validate/ck_pr_or
@ -106,12 +122,12 @@ regressions/ck_rhs/benchmark/parallel_bytestring
regressions/ck_rhs/benchmark/serial
regressions/ck_rhs/validate/serial
regressions/ck_ring/benchmark/latency
regressions/ck_ring/validate/ck_ring_mpmc
regressions/ck_ring/validate/ck_ring_mpmc_template
regressions/ck_ring/validate/ck_ring_spmc
regressions/ck_ring/validate/ck_ring_spmc_template
regressions/ck_ring/validate/ck_ring_spsc
regressions/ck_ring/validate/ck_ring_spsc_template
regressions/ck_ring/validate/ck_ring_mpmc
regressions/ck_ring/validate/ck_ring_mpmc_template
regressions/ck_rwcohort/benchmark/ck_neutral.LATENCY
regressions/ck_rwcohort/benchmark/ck_neutral.THROUGHPUT
regressions/ck_rwcohort/benchmark/ck_rp.LATENCY
@ -143,9 +159,9 @@ regressions/ck_spinlock/benchmark/ck_mcs.THROUGHPUT
regressions/ck_spinlock/benchmark/ck_spinlock.LATENCY
regressions/ck_spinlock/benchmark/ck_spinlock.THROUGHPUT
regressions/ck_spinlock/benchmark/ck_ticket.LATENCY
regressions/ck_spinlock/benchmark/ck_ticket.THROUGHPUT
regressions/ck_spinlock/benchmark/ck_ticket_pb.LATENCY
regressions/ck_spinlock/benchmark/ck_ticket_pb.THROUGHPUT
regressions/ck_spinlock/benchmark/ck_ticket.THROUGHPUT
regressions/ck_spinlock/benchmark/linux_spinlock.LATENCY
regressions/ck_spinlock/benchmark/linux_spinlock.THROUGHPUT
regressions/ck_spinlock/validate/ck_anderson
@ -185,3 +201,6 @@ regressions/ck_swlock/validate/validate
regressions/ck_tflock/benchmark/latency
regressions/ck_tflock/benchmark/throughput
regressions/ck_tflock/validate/validate
*.so
src/Makefile
.*.sw[op]

39
.travis.yml Normal file
View file

@ -0,0 +1,39 @@
# sudo required as tests set cpu affinity
sudo: false
os:
- linux
- linux-ppc64le
- osx
language:
- c
compiler:
- gcc
- clang
matrix:
exclude:
- os: osx
compiler: gcc
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- gcc-8
- clang-6.0
script:
- >
if [[ $TRAVIS_OS_NAME == linux ]]; then
case "$CC" in
gcc) export CC=gcc-8 ;;
clang) export CC=clang-6.0 ;;
esac
fi
- ${CC} --version
- export CFLAGS="-DITERATE=400 -DPAIRS_S=100 -DITERATIONS=24"
- ./tools/ci-build.sh --cores=4
- make check

1
CNAME Normal file
View file

@ -0,0 +1 @@
concurrencykit.org

76
CODE_OF_CONDUCT.md Normal file
View file

@ -0,0 +1,76 @@
# Contributor Covenant Code of Conduct
## Our Pledge
In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.
## Our Standards
Examples of behavior that contributes to creating a positive environment
include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
* Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or
advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or electronic
address, without explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.
## Scope
This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at sbahra@repnop.org. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

View file

@ -36,12 +36,12 @@ install-headers:
mkdir -p $(DESTDIR)/$(HEADERS) || exit
cp $(SRC_DIR)/include/*.h $(DESTDIR)/$(HEADERS) || exit
chmod 644 $(DESTDIR)/$(HEADERS)/ck_*.h || exit
mkdir -p $(DESTDIR)$(HEADERS)/gcc || exit
mkdir -p $(DESTDIR)/$(HEADERS)/gcc || exit
cp -r $(SRC_DIR)/include/gcc/* $(DESTDIR)/$(HEADERS)/gcc || exit
cp include/ck_md.h $(DESTDIR)/$(HEADERS)/ck_md.h || exit
chmod 755 $(DESTDIR)/$(HEADERS)/gcc
chmod 644 $(DESTDIR)/$(HEADERS)/gcc/ck_*.h $(DESTDIR)/$(HEADERS)/gcc/*/ck_*.h || exit
mkdir -p $(DESTDIR)$(HEADERS)/spinlock || exit
mkdir -p $(DESTDIR)/$(HEADERS)/spinlock || exit
cp -r $(SRC_DIR)/include/spinlock/* $(DESTDIR)/$(HEADERS)/spinlock || exit
chmod 755 $(DESTDIR)/$(HEADERS)/spinlock
chmod 644 $(DESTDIR)/$(HEADERS)/spinlock/*.h || exit

21
README
View file

@ -1,21 +0,0 @@
____ _ ___ _
/ ___|___ _ __ ___ _ _ _ __ _ __ ___ _ __ ___ _ _ | |/ (_) |_
| | / _ \| '_ \ / __| | | | '__| '__/ _ \ '_ \ / __| | | | | ' /| | __|
| |__| (_) | | | | (__| |_| | | | | | __/ | | | (__| |_| | | . \| | |_
\____\___/|_| |_|\___|\__,_|_| |_| \___|_| |_|\___|\__, | |_|\_\_|\__|
|___/
Step 1.
./configure
For additional options try ./configure --help
Step 2.
In order to compile regressions (requires POSIX threads) use
"make regressions". In order to compile libck use "make all" or "make".
Step 3.
In order to install use "make install"
To uninstall use "make uninstall".
See http://concurrencykit.org/ for more information.

204
README.md Normal file
View file

@ -0,0 +1,204 @@
### Continuous Integration
| Drone | Travis | Cirrus |
| -------- | ------ | ------- |
| [![Build Status](https://cloud.drone.io/api/badges/concurrencykit/ck/status.svg)](https://cloud.drone.io/concurrencykit/ck) | [![Build Status](https://travis-ci.org/concurrencykit/ck.svg)](https://travis-ci.org/concurrencykit/ck) | [![Build Status](https://api.cirrus-ci.com/github/concurrencykit/ck.svg?branch=master)](https://cirrus-ci.com/github/concurrencykit/ck) |
Compilers tested in the past include gcc, clang, cygwin, icc, mingw32, mingw64 and suncc across all supported architectures. All new architectures are required to pass the integration test and under-go extensive code review.
Continuous integration is currently enabled for the following targets:
* `darwin/clang/x86-64`
* `freebsd/clang/x86-64`
* `linux/gcc/arm64`
* `linux/gcc/x86-64`
* `linux/clang/x86-64`
* `linux/clang/ppc64le`
### Compile and Build
* Step 1.
`./configure`
For additional options try `./configure --help`
* Step 2.
In order to compile regressions (requires POSIX threads) use
`make regressions`. In order to compile libck use `make all` or `make`.
* Step 3.
In order to install use `make install`
To uninstall use `make uninstall`.
See http://concurrencykit.org/ for more information.
### Supported Architectures
Concurrency Kit supports any architecture using compiler built-ins as a fallback. There is usually a performance degradation associated with this.
Concurrency Kit has specialized assembly for the following architectures:
* `aarch64`
* `arm`
* `ppc`
* `ppc64`
* `s390x`
* `sparcv9+`
* `x86`
* `x86_64`
### Features
#### Concurrency Primitives
##### ck_pr
Concurrency primitives as made available by the underlying architecture, includes support for all atomic operations (natively), transactional memory, pipeline control, read-for-ownership and more.
##### ck_backoff
A simple and efficient (minimal noise) backoff function.
##### ck_cc
Abstracted compiler builtins when writing efficient concurrent data structures.
#### Safe Memory Reclamation
##### ck_epoch
A scalable safe memory reclamation mechanism with support idle threads and various optimizations that make it better than or competitive with many state-of-the-art solutions.
##### ck_hp
Implements support for hazard pointers, a simple and efficient lock-free safe memory reclamation mechanism.
#### Data Structures
##### ck_array
A simple concurrently-readable pointer array structure.
##### ck_bitmap
An efficient multi-reader and multi-writer concurrent bitmap structure.
##### ck_ring
Efficient concurrent bounded FIFO data structures with various performance trade-off. This includes specialization for single-reader, many-reader, single-writer and many-writer.
##### ck_fifo
A reference implementation of the first published lock-free FIFO algorithm, with specialization for single-enqueuer-single-dequeuer and many-enqueuer-single-dequeuer and extensions to allow for node re-use.
##### ck_hp_fifo
A reference implementation of the above algorithm, implemented with safe memory reclamation using hazard pointers.
##### ck_hp_stack
A reference implementation of a Treiber stack with support for hazard pointers.
##### ck_stack
A reference implementation of an efficient lock-free stack, with specialized variants for a variety of memory management strategies and bounded concurrency.
##### ck_queue
A concurrently readable friendly derivative of the BSD-queue interface. Coupled with a safe memory reclamation mechanism, implement scalable read-side queues with a simple search and replace.
##### ck_hs
An extremely efficient single-writer-many-reader hash set, that satisfies lock-freedom with bounded concurrency without any usage of atomic operations and allows for recycling of unused or deleted slots. This data structure is recommended for use as a general hash-set if it is possible to compute values from keys. Learn more at https://engineering.backtrace.io/workload-specialization/ and http://concurrencykit.org/articles/ck_hs.html.
##### ck_ht
A specialization of the `ck_hs` algorithm allowing for disjunct key-value pairs.
##### ck_rhs
A variant of `ck_hs` that utilizes robin-hood hashing to allow for improved performance with higher load factors and high deletion rates.
#### Synchronization Primitives
##### ck_ec
An extremely efficient event counter implementation, a better alternative to condition variables.
##### ck_barrier
A plethora of execution barriers including: centralized barriers, combining barriers, dissemination barriers, MCS barriers, tournament barriers.
##### ck_brlock
A simple big-reader lock implementation, write-biased reader-writer lock with scalable read-side locking.
##### ck_bytelock
An implementation of bytelocks, for research purposes, allowing for (in theory), fast read-side acquisition without the use of atomic operations. In reality, memory barriers are required on the fast path.
##### ck_cohort
A generic lock cohorting interface, allows you to turn any lock into a NUMA-friendly scalable NUMA lock. There is a significant trade-off in fast path acquisition cost. Specialization is included for all relevant lock implementations in Concurrency Kit. Learn more by reading "Lock Cohorting: A General Technique for Designing NUMA Locks".
##### ck_elide
A generic lock elision framework, allows you to turn any lock implementation into an elision-aware implementation. This requires support for restricted transactional memory by the underlying hardware.
##### ck_pflock
Phase-fair reader-writer mutex that provides strong fairness guarantees between readers and writers. Learn more by reading "Spin-Based Reader-Writer Synchronization for Multiprocessor Real-Time Systems".
##### ck_rwcohort
A generic read-write lock cohorting interface, allows you to turn any read-write lock into a NUMA-friendly scalable NUMA lock. There is a significant trade-off in fast path acquisition cost. Specialization is included for all relevant lock implementations in Concurrency Kit. Learn more by reading "Lock Cohorting: A General Technique for Designing NUMA Locks".
##### ck_rwlock
A simple centralized write-biased read-write lock.
##### ck_sequence
A sequence counter lock, popularized by the Linux kernel, allows for very fast read and write synchronization for simple data structures where deep copy is permitted.
##### ck_swlock
A single-writer specialized read-lock that is copy-safe, useful for data structures that must remain small, be copied and contain in-band mutexes.
##### ck_tflock
Task-fair locks are fair read-write locks, derived from "Scalable reader-writer synchronization for shared-memory multiprocessors".
##### ck_spinlock
A basic but very fast spinlock implementation.
##### ck_spinlock_anderson
Scalable and fast anderson spinlocks. This is here for reference, one of the earliest scalable and fair lock implementations.
##### ck_spinlock_cas
A basic spinlock utilizing compare_and_swap.
##### ck_spinlock_dec
A basic spinlock, a C adaption of the older optimized Linux kernel spinlock for x86. Primarily here for reference.
##### ck_spinlock_fas
A basic spinlock utilizing atomic exchange.
##### ck_spinlock_clh
An efficient implementation of the scalable CLH lock, providing many of the same performance properties of MCS with a better fast-path.
##### ck_spinlock_hclh
A NUMA-friendly CLH lock.
##### ck_spinlock_mcs
An implementation of the seminal scalable and fair MCS lock.
##### ck_spinlock_ticket
An implementation of fair centralized locks.

1
_config.yml Normal file
View file

@ -0,0 +1 @@
theme: jekyll-theme-cayman

1
build/ck.build.s390x Normal file
View file

@ -0,0 +1 @@
CFLAGS+=-O2 -D__s390x__

0
build/ck.build.unknown Normal file
View file

227
configure vendored
View file

@ -34,7 +34,7 @@ WANT_PIC=yes
P_PWD=`pwd`
MAINTAINER='sbahra@repnop.org'
VERSION=${VERSION:-'0.6.0'}
VERSION=${VERSION:-'0.7.1'}
VERSION_MAJOR='0'
BUILD="$PWD/build/ck.build"
PREFIX=${PREFIX:-"/usr/local"}
@ -119,6 +119,9 @@ generate()
-e "s#@GZIP_SUFFIX@#$GZIP_SUFFIX#g" \
-e "s#@POINTER_PACK_ENABLE@#$POINTER_PACK_ENABLE#g" \
-e "s#@DISABLE_DOUBLE@#$DISABLE_DOUBLE#g" \
-e "s#@DISABLE_STATIC@#$DISABLE_STATIC#g" \
-e "s#@SSE_DISABLE@#$SSE_DISABLE#g" \
-e "s#@PPC32_LWSYNC_ENABLE@#$PPC32_LWSYNC_ENABLE#g" \
-e "s#@RTM_ENABLE@#$RTM_ENABLE#g" \
-e "s#@LSE_ENABLE@#$LSE_ENABLE#g" \
-e "s#@VMA_BITS@#$VMA_BITS_R#g" \
@ -144,6 +147,7 @@ generate_stdout()
echo " SRC_DIR = $BUILD_DIR"
echo " SYSTEM = $SYSTEM"
echo " PROFILE = $PROFILE"
echo " AR = $AR"
echo " CC = $CC"
echo " COMPILER = $COMPILER"
echo " CFLAGS = $CFLAGS"
@ -153,13 +157,16 @@ generate_stdout()
echo " LDNAME_VERSION = $LDNAME_VERSION"
echo " LDNAME_MAJOR = $LDNAME_MAJOR"
echo " LDFLAGS = $LDFLAGS"
echo " STATIC_LIB = $DISABLE_STATIC"
echo " GZIP = $GZIP"
echo " CORES = $CORES"
echo " POINTER_PACK = $POINTER_PACK_ENABLE"
echo " PPC32_LWSYNC = $PPC32_LWSYNC_ENABLE"
echo " VMA_BITS = $VMA_BITS"
echo " MEMORY_MODEL = $MM"
echo " RTM = $RTM_ENABLE"
echo " LSE = $LSE_ENABLE"
echo " SSE = $SSE_DISABLE"
echo
echo "Headers will be installed in $HEADERS"
echo "Libraries will be installed in $LIBRARY"
@ -169,7 +176,8 @@ generate_stdout()
for option; do
case "$option" in
*=?*)
value=`expr -- "$option" : '[^=]*=\(.*\)'`
optname=`echo $option|cut -c 3-`
value=`expr "$optname" : '[^=]*=\(.*\)'`
;;
*=)
value=
@ -194,18 +202,24 @@ for option; do
echo
echo "The following options will affect generated code."
echo " --enable-pointer-packing Assumes address encoding is subset of pointer range"
echo " --enable-rtm Enable restricted transactional memory (power, x86_64)"
echo " --enable-lse Enable large system extensions (arm64)"
echo " --memory-model=N Specify memory model (currently tso, pso or rmo)"
echo " --vma-bits=N Specify valid number of VMA bits"
echo " --platform=N Force the platform type, instead of relying on autodetection"
echo " --use-cc-builtins Use the compiler atomic bultin functions, instead of the CK implementation"
echo " --use-cc-builtins Use the compiler atomic builtin functions, instead of the CK implementation"
echo " --disable-double Don't generate any of the functions using the \"double\" type"
echo " --disable-static Don't compile a static version of the ck lib"
echo
echo "The following options will affect specific platform-dependent generated code."
echo " --disable-sse Do not use any SSE instructions (x86)"
echo " --enable-lse Enable large system extensions (arm64)"
echo " --enable-ppc32-lwsync Enable lwsync instruction usage (32-bit Power ISA)"
echo " --enable-rtm Enable restricted transactional memory (Power ISA, x86_64)"
echo
echo "The following options affect regression testing."
echo " --cores=N Specify number of cores available on target machine"
echo
echo "The following environment variables may be used:"
echo " AR AR archiver command"
echo " CC C compiler command"
echo " CFLAGS C compiler flags"
echo " LDFLAGS Linker flags"
@ -237,12 +251,18 @@ for option; do
--enable-pointer-packing)
POINTER_PACK_ENABLE="CK_MD_POINTER_PACK_ENABLE"
;;
--enable-ppc32-lwsync)
PPC32_LWSYNC_ENABLE="CK_MD_PPC32_LWSYNC"
;;
--enable-rtm)
RTM_ENABLE_SET="CK_MD_RTM_ENABLE"
;;
--enable-lse)
LSE_ENABLE_SET="CK_MD_LSE_ENABLE"
;;
--disable-sse)
SSE_DISABLE="CK_MD_SSE_DISABLE"
;;
--cores=*)
CORES=$value
;;
@ -276,6 +296,9 @@ for option; do
--disable-double)
DISABLE_DOUBLE="CK_PR_DISABLE_DOUBLE"
;;
--disable-static)
DISABLE_STATIC=1
;;
--platform=*)
PLATFORM=$value
;;
@ -294,7 +317,8 @@ for option; do
fi
;;
*=*)
NAME=`expr -- "$option" : '\([^=]*\)='`
optname=`echo $option|cut -c 3-`
NAME=`expr "$optname" : '\([^=]*\)='`
eval "$NAME='$value'"
export $NAME
;;
@ -309,10 +333,13 @@ done
HEADERS=${HEADERS:-"${PREFIX}/include"}
LIBRARY=${LIBRARY:-"${PREFIX}/lib"}
MANDIR=${MANDIR:-"${PREFIX}/share/man"}
GZIP=${GZIP:-"gzip -c"}
GZIP=${GZIP-"gzip -c"}
POINTER_PACK_ENABLE=${POINTER_PACK_ENABLE:-"CK_MD_POINTER_PACK_DISABLE"}
DISABLE_DOUBLE=${DISABLE_DOUBLE:-"CK_PR_ENABLE_DOUBLE"}
DISABLE_STATIC=${DISABLE_STATIC:-"0"}
PPC32_LWSYNC_ENABLE=${PPC32_LWSYNC_ENABLE:-"CK_MD_PPC32_LWSYNC_DISABLE"}
RTM_ENABLE=${RTM_ENABLE_SET:-"CK_MD_RTM_DISABLE"}
SSE_DISABLE=${SSE_DISABLE:-"CK_MD_SSE_ENABLE"}
LSE_ENABLE=${LSE_ENABLE_SET:-"CK_MD_LSE_DISABLE"}
VMA_BITS=${VMA_BITS:-"unknown"}
@ -347,14 +374,18 @@ case "$SYSTEM" in
DCORES=`sysctl -n hw.ncpu`
SYSTEM=darwin
;;
MINGW32*)
MINGW32*|MSYS_NT*)
SYSTEM=mingw32
LDFLAGS="-mthreads $LDFLAGS"
;;
CYGWIN_NT*)
SYSTEM=cygwin
LDFLAGS="-mthreads $LDFLAGS"
;;
MINGW64*)
SYSTEM=mingw64
LDFLAGS="-mthreads $LDFLAGS"
;;
CYGWIN_NT*)
SYSTEM=cygwin
LDFLAGS="-mthreads $LDFLAGS"
;;
*)
SYSTEM=
;;
@ -365,11 +396,18 @@ assert "$SYSTEM" "$SYSTEM" "unsupported"
CORES=${CORES:-${DCORES}}
printf "Detecting machine architecture..."
if test "x$PLATFORM" = "x"; then
PLATFORM=`uname -m 2> /dev/null`
case $SYSTEM in
"freebsd")
PLATFORM=`uname -p 2> /dev/null`
;;
*)
PLATFORM=`uname -m 2> /dev/null`
;;
esac
fi
case $PLATFORM in
"macppc"|"Power Macintosh"|"powerpc")
"macppc"|"Power Macintosh"|"powerpc"|"powerpcspe")
RTM_ENABLE="CK_MD_RTM_DISABLE"
LSE_ENABLE="CK_MD_LSE_DISABLE"
MM="${MM:-"CK_MD_RMO"}"
@ -457,19 +495,22 @@ case $PLATFORM in
;;
esac
;;
"ppc64"|"ppc64le")
"ppc64"|"ppc64le"|"powerpc64")
RTM_ENABLE="CK_MD_RTM_DISABLE"
LSE_ENABLE="CK_MD_LSE_DISABLE"
MM="${MM:-"CK_MD_RMO"}"
PLATFORM=ppc64
ENVIRONMENT=64
;;
arm|armv6l|armv7l)
if test "$PLATFORM" = "armv6l"; then
CFLAGS="$CFLAGS -march=armv6k";
elif test "$PLATFORM" = "armv7l"; then
CFLAGS="$CFLAGS -march=armv7-a";
fi
arm|armv6|armv6l|armv7|armv7l)
case "$PLATFORM" in
"armv6"|"armv6l")
CFLAGS="$CFLAGS -march=armv6k";
;;
"armv7"|"armv7l")
CFLAGS="$CFLAGS -march=armv7-a";
;;
esac
RTM_ENABLE="CK_MD_RTM_DISABLE"
LSE_ENABLE="CK_MD_LSE_DISABLE"
MM="${MM:-"CK_MD_RMO"}"
@ -482,11 +523,19 @@ case $PLATFORM in
PLATFORM=aarch64
ENVIRONMENT=64
;;
"s390x")
RTM_ENABLE="CK_MD_RTM_DISABLE"
LSE_ENABLE="CK_MD_LSE_DISABLE"
MM="${MM:-"CK_MD_RMO"}"
PLATFORM=s390x
ENVIRONMENT=64
;;
*)
RTM_ENABLE="CK_MD_RTM_DISABLE"
LSE_ENABLE="CK_MD_LSE_DISABLE"
PLATFORM=
PLATFORM=unknown
MM="${MM:-"CK_MD_RMO"}"
USE_CC_BUILTINS=1
;;
esac
@ -543,27 +592,65 @@ else
echo "success [$BUILD_DIR]"
fi
printf "Finding gzip tool................"
GZIP=`pathsearch "${GZIP:-gzip}"`
if test -z "$GZIP" -o ! -x "$GZIP"; then
if test -n "$GZIP"; then
printf "Finding gzip tool................"
GZIP=`pathsearch "${GZIP:-gzip}"`
GZIP="$GZIP"
if test -z "$GZIP" -o ! -x "$GZIP"; then
GZIP=`pathsearch "${GZIP:-gzip}"`
GZIP="$GZIP"
fi
if test -z "$GZIP"; then
echo "not found"
else
echo "success [$GZIP]"
GZIP="$GZIP -c"
GZIP_SUFFIX=".gz"
fi
fi
if test -z "$GZIP"; then
echo "not found"
GZIP=cat
GZIP_SUFFIX=""
else
echo "success [$GZIP]"
GZIP="$GZIP -c"
GZIP_SUFFIX=".gz"
fi
if test "$PROFILE"; then
printf "Using user-specified profile....."
if test -z "$CC"; then
echo "failed [specify compiler]"
exit $EXIT_FAILURE
fi
if test ! -f build/ck.build.$PROFILE; then
echo "failed [$PROFILE]"
exit $EXIT_FAILURE
fi
echo "success [$PROFILE]"
printf "Generating header files.........."
generate include/ck_md.h.in include/ck_md.h
generate include/freebsd/ck_md.h.in include/freebsd/ck_md.h
echo "success"
printf "Generating build files..........."
generate src/Makefile.in src/Makefile
generate doc/Makefile.in doc/Makefile
generate build/ck.build.in build/ck.build
generate build/regressions.build.in build/regressions.build
generate build/ck.pc.in build/ck.pc
generate build/ck.spec.in build/ck.spec
generate Makefile.in Makefile
echo "success"
generate_stdout
exit $EXIT_SUCCESS
fi
printf "Finding suitable compiler........"
CC=`pathsearch "${CC:-cc}"`
if test -z "$CC" -o ! -x "$CC"; then
CC=`pathsearch "${CC:-gcc}"`
if test ! -x "${CC}"; then
CC=`pathsearch "${CC:-cc}"`
if test -z "$CC" -o ! -x "$CC"; then
CC=`pathsearch "${CC:-gcc}"`
fi
fi
assert "$CC" "not found"
@ -596,7 +683,7 @@ int main(void) {
EOF
$CC -o .1 .1.c
COMPILER=`./.1`
COMPILER=`./.1 2> /dev/null`
r=$?
rm -f .1.c .1
@ -628,13 +715,24 @@ elif test "$COMPILER" = "gcc" || test "$COMPILER" = "clang" || test "$COMPILER"
if test "$WANT_PIC" = "yes"; then
LDFLAGS="$LDFLAGS -shared -fPIC"
CFLAGS="$CFLAGS -fPIC"
ALL_LIBS="libck.so libck.a"
INSTALL_LIBS="install-so install-lib"
if [ "$DISABLE_STATIC" -eq 1 ]; then
ALL_LIBS="libck.so"
INSTALL_LIBS="install-so"
else
ALL_LIBS="libck.so libck.a"
INSTALL_LIBS="install-so install-lib"
fi
else
LDFLAGS="$LDFLAGS -fno-PIC"
CFLAGS="$CFLAGS -fno-PIC"
ALL_LIBS="libck.a"
INSTALL_LIBS="install-lib"
if [ "$DISABLE_STATIC" -eq 1 ]; then
echo "Error: You have choosen to disable PIC, yet you also disabled the static lib." 1>&2
exit $EXIT_FAILURE
else
ALL_LIBS="libck.a"
INSTALL_LIBS="install-lib"
fi
fi
CFLAGS="-D_XOPEN_SOURCE=600 -D_BSD_SOURCE -D_DEFAULT_SOURCE -std=gnu99 -pedantic -Wall -W -Wundef -Wendif-labels -Wshadow -Wpointer-arith -Wcast-align -Wcast-qual -Wwrite-strings -Wstrict-prototypes -Wmissing-prototypes -Wnested-externs -Winline -Wdisabled-optimization -fstrict-aliasing -O2 -pipe -Wno-parentheses $CFLAGS"
@ -647,6 +745,17 @@ else
assert "" "unknown compiler"
fi
printf "Finding suitable archiver........"
if test ! -x "${AR}"; then
AR=`pathsearch "${AR:-ar}"`
if test -z "$AR" -o ! -x "$AR"; then
AR=`pathsearch "${AR:-ar}"`
else
echo "success [$AR]"
fi
fi
assert "$AR" "not found"
printf "Detecting VMA bits..............."
VMA="unknown"
if test "$VMA_BITS" = "unknown"; then
@ -732,42 +841,13 @@ printf "Detecting git SHA................"
get_git_sha
echo "$GIT_MSG [$GIT_SHA]"
if test "$PROFILE"; then
printf "Using user-specified profile....."
if test -z "$CC"; then
echo "failed [specify compiler]"
exit $EXIT_FAILURE
fi
if test ! -f build/ck.build.$PROFILE; then
echo "failed [$PROFILE]"
exit $EXIT_FAILURE
fi
echo "success [$PROFILE]"
printf "Generating header files.........."
generate include/ck_md.h.in include/ck_md.h
echo "success"
printf "Generating build files..........."
generate src/Makefile.in src/Makefile
generate doc/Makefile.in doc/Makefile
generate build/ck.build.in build/ck.build
generate build/regressions.build.in build/regressions.build
generate build/ck.pc.in build/ck.pc
generate build/ck.spec.in build/ck.spec
generate Makefile.in Makefile
echo "success"
generate_stdout
exit $EXIT_SUCCESS
fi
# Platform will be used as a macro.
PROFILE="${PROFILE:-$PLATFORM}"
PLATFORM="__${PLATFORM}__"
printf "Generating header files.........."
generate include/ck_md.h.in include/ck_md.h
generate include/freebsd/ck_md.h.in include/freebsd/ck_md.h
echo "success"
printf "Generating build files..........."
@ -794,3 +874,12 @@ generate Makefile.in $P_PWD/Makefile
touch src/*.c
echo "success"
generate_stdout
if test "$PROFILE" = "unknown"; then
echo
echo "WARNING: your target architecture is not a first-class citizen."
echo
echo "The test suite may not work as intended. Consider reaching out "
echo "to the mailing list about having the project add first-class "
echo "support for your architecture."
fi

View file

@ -47,10 +47,9 @@ if deemed safe. This function is meant to be used in cases epoch
reclamation cost must be amortized over time in a manner that does
not affect caller progress.
.Sh RETURN VALUES
This function will return true if at least one function was dispatched.
This function will return false if it has determined not all threads have
observed the latest generation of epoch-protected objects. Neither value
indicates an error.
This functions returns false if the following conditions are met:
no memory was reclaimed, the records are not in a grace period and no forward
progress was made.
.Sh ERRORS
Behavior is undefined if the object pointed to by
.Fa record

View file

@ -34,7 +34,7 @@ Concurrency Kit (libck, \-lck)
.Sh SYNOPSIS
.In ck_epoch.h
.Ft void
.Fn ck_epoch_register "ck_epoch_t *epoch" "ck_epoch_record_t *record"
.Fn ck_epoch_register "ck_epoch_t *epoch" "ck_epoch_record_t *record" "void *cl"
.Sh DESCRIPTION
The
.Fn ck_epoch_register 3
@ -49,7 +49,11 @@ object pointed to by the
argument will have lifetime managed by the underlying epoch sub-system.
The record object must not be destroyed after it is associated with a
.Fn ck_epoch_register 3
call.
call. An optional context pointer
.Fa cl
may be passed that is retrievable with the
.Fn ck_epoch_record_ct 3
function.
.Sh RETURN VALUES
This function has no return value.
.Sh SEE ALSO

View file

@ -40,6 +40,8 @@ The
.Fn ck_epoch_synchronize 3
function will block the caller until a grace period has been
detected, according to the semantics of epoch reclamation.
It is not safe to call this function on a record that is
in an active section.
Any objects requiring safe memory reclamation which are logically
deleted are safe for physical deletion following a call to
.Fn ck_epoch_synchronize 3 .

View file

@ -29,22 +29,31 @@
.Sh NAME
.Nm ck_pr_dec_ptr ,
.Nm ck_pr_dec_ptr_zero ,
.Nm ck_pr_dec_ptr_is_zero ,
.Nm ck_pr_dec_double ,
.Nm ck_pr_dec_double_zero ,
.Nm ck_pr_dec_double_is_zero ,
.Nm ck_pr_dec_char ,
.Nm ck_pr_dec_char_zero ,
.Nm ck_pr_dec_char_is_zero ,
.Nm ck_pr_dec_uint ,
.Nm ck_pr_dec_uint_zero ,
.Nm ck_pr_dec_char_is_zero ,
.Nm ck_pr_dec_int ,
.Nm ck_pr_dec_int_zero ,
.Nm ck_pr_dec_int_is_zero ,
.Nm ck_pr_dec_64 ,
.Nm ck_pr_dec_64_zero ,
.Nm ck_pr_dec_64_is_zero ,
.Nm ck_pr_dec_32 ,
.Nm ck_pr_dec_32_zero ,
.Nm ck_pr_dec_32_is_zero ,
.Nm ck_pr_dec_16 ,
.Nm ck_pr_dec_16_zero ,
.Nm ck_pr_dec_32_is_zero ,
.Nm ck_pr_dec_8 ,
.Nm ck_pr_dec_8_zero
.Nm ck_pr_dec_8_zero ,
.Nm ck_pr_dec_8_is_zero
.Nd atomic decrement operations
.Sh LIBRARY
Concurrency Kit (libck, \-lck)
@ -54,38 +63,56 @@ Concurrency Kit (libck, \-lck)
.Fn ck_pr_dec_ptr "void *target"
.Ft void
.Fn ck_pr_dec_ptr_zero "void *target" "bool *z"
.Ft bool
.Fn ck_pr_dec_ptr_is_zero "void *target"
.Ft void
.Fn ck_pr_dec_double "double *target"
.Ft void
.Fn ck_pr_dec_double_zero "double *target" "bool *z"
.Ft bool
.Fn ck_pr_dec_double_is_zero "double *target"
.Ft void
.Fn ck_pr_dec_char "char *target"
.Ft void
.Fn ck_pr_dec_char_zero "char *target" "bool *z"
.Ft bool
.Fn ck_pr_dec_char_is_zero "char *target"
.Ft void
.Fn ck_pr_dec_uint "unsigned int *target"
.Ft void
.Fn ck_pr_dec_uint_zero "unsigned int *target" "bool *z"
.Ft bool
.Fn ck_pr_dec_uint_is_zero "unsigned int *target"
.Ft void
.Fn ck_pr_dec_int "int *target"
.Ft void
.Fn ck_pr_dec_int_zero "int *target" "bool *z"
.Ft bool
.Fn ck_pr_dec_int_is_zero "int *target"
.Ft void
.Fn ck_pr_dec_64 "uint64_t *target"
.Ft void
.Fn ck_pr_dec_64_zero "uint64_t *target" "bool *z"
.Ft bool
.Fn ck_pr_dec_64_is_zero "uint64_t *target"
.Ft void
.Fn ck_pr_dec_32 "uint32_t *target"
.Ft void
.Fn ck_pr_dec_32_zero "uint32_t *target" "bool *z"
.Ft bool
.Fn ck_pr_dec_32_is_zero "uint32_t *target"
.Ft void
.Fn ck_pr_dec_16 "uint16_t *target"
.Ft void
.Fn ck_pr_dec_16_zero "uint16_t *target" "bool *z"
.Ft bool
.Fn ck_pr_dec_16_is_zero "uint16_t *target"
.Ft void
.Fn ck_pr_dec_8 "uint8_t *target"
.Ft void
.Fn ck_pr_dec_8_zero "uint8_t *target" "bool *z"
.Ft bool
.Fn ck_pr_dec_8_is_zero "uint8_t *target"
.Sh DESCRIPTION
The
.Fn ck_pr_dec 3
@ -99,6 +126,8 @@ to true if the result
of the decrement operation was 0. They set the value pointed to by
.Fa z
to false otherwise.
The ck_pr_dec_is_zero family of function return true if the result
of the decrement operation was 0 and false otherwise.
.Sh SEE ALSO
.Xr ck_pr_fence_load 3 ,
.Xr ck_pr_fence_load_depends 3 ,

View file

@ -29,22 +29,31 @@
.Sh NAME
.Nm ck_pr_inc_ptr ,
.Nm ck_pr_inc_ptr_zero ,
.Nm ck_pr_inc_ptr_is_zero ,
.Nm ck_pr_inc_double ,
.Nm ck_pr_inc_double_zero ,
.Nm ck_pr_inc_double_is_zero ,
.Nm ck_pr_inc_char ,
.Nm ck_pr_inc_char_zero ,
.Nm ck_pr_inc_char_is_zero ,
.Nm ck_pr_inc_uint ,
.Nm ck_pr_inc_uint_zero ,
.Nm ck_pr_inc_uint_is_zero ,
.Nm ck_pr_inc_int ,
.Nm ck_pr_inc_int_zero ,
.Nm ck_pr_inc_int_is_zero ,
.Nm ck_pr_inc_64 ,
.Nm ck_pr_inc_64_zero ,
.Nm ck_pr_inc_64_is_zero ,
.Nm ck_pr_inc_32 ,
.Nm ck_pr_inc_32_zero ,
.Nm ck_pr_inc_32_is_zero ,
.Nm ck_pr_inc_16 ,
.Nm ck_pr_inc_16_zero ,
.Nm ck_pr_inc_16_is_zero ,
.Nm ck_pr_inc_8 ,
.Nm ck_pr_inc_8_zero
.Nm ck_pr_inc_8_zero ,
.Nm ck_pr_inc_8_is_zero
.Nd atomic increment operations
.Sh LIBRARY
Concurrency Kit (libck, \-lck)
@ -54,38 +63,56 @@ Concurrency Kit (libck, \-lck)
.Fn ck_pr_inc_ptr "void *target"
.Ft void
.Fn ck_pr_inc_ptr_zero "void *target" "bool *z"
.Ft bool
.Fn ck_pr_inc_ptr_is_zero "void *target"
.Ft void
.Fn ck_pr_inc_double "double *target"
.Ft void
.Fn ck_pr_inc_double_zero "double *target" "bool *z"
.Ft bool
.Fn ck_pr_inc_double_is_zero "double *target"
.Ft void
.Fn ck_pr_inc_char "char *target"
.Ft void
.Fn ck_pr_inc_char_zero "char *target" "bool *z"
.Ft bool
.Fn ck_pr_inc_char_is_zero "char *target"
.Ft void
.Fn ck_pr_inc_uint "unsigned int *target"
.Ft void
.Fn ck_pr_inc_uint_zero "unsigned int *target" "bool *z"
.Ft bool
.Fn ck_pr_inc_uint_is_zero "unsigned int *target"
.Ft void
.Fn ck_pr_inc_int "int *target"
.Ft void
.Fn ck_pr_inc_int_zero "int *target" "bool *z"
.Ft bool
.Fn ck_pr_inc_int_is_zero "int *target"
.Ft void
.Fn ck_pr_inc_64 "uint64_t *target"
.Ft void
.Fn ck_pr_inc_64_zero "uint64_t *target" "bool *z"
.Ft bool
.Fn ck_pr_inc_64_is_zero "uint64_t *target"
.Ft void
.Fn ck_pr_inc_32 "uint32_t *target"
.Ft void
.Fn ck_pr_inc_32_zero "uint32_t *target" "bool *z"
.Ft bool
.Fn ck_pr_inc_32_is_zero "uint32_t *target"
.Ft void
.Fn ck_pr_inc_16 "uint16_t *target"
.Ft void
.Fn ck_pr_inc_16_zero "uint16_t *target" "bool *z"
.Ft bool
.Fn ck_pr_inc_16_is_zero "uint16_t *target"
.Ft void
.Fn ck_pr_inc_8 "uint8_t *target"
.Ft void
.Fn ck_pr_inc_8_zero "uint8_t *target" "bool *z"
.Ft bool
.Fn ck_pr_inc_8_is_zero "uint8_t *target"
.Sh DESCRIPTION
The
.Fn ck_pr_inc 3
@ -99,6 +126,8 @@ to true if the result of the increment operation was 0. The functions set
the value pointed to by
.Fa z
false otherwise.
The ck_pr_inc_is_zero family of function return true if the result
of the decrement operation was 0 and false otherwise.
.Sh SEE ALSO
.Xr ck_pr_fence_load 3 ,
.Xr ck_pr_fence_load_depends 3 ,

View file

@ -50,7 +50,7 @@ ck_backoff_eb(unsigned int *c)
for (i = 0; i < ceiling; i++)
ck_pr_barrier();
*c = ceiling <<= ceiling < CK_BACKOFF_CEILING;
*c = ceiling << (ceiling < CK_BACKOFF_CEILING);
return;
}

View file

@ -50,6 +50,7 @@
* Container function.
* This relies on (compiler) implementation-defined behavior.
*/
#ifndef CK_CC_CONTAINER
#define CK_CC_CONTAINER(F, T, M, N) \
CK_CC_INLINE static T * \
N(F *p) \
@ -57,6 +58,7 @@
F *n = p; \
return (T *)(void *)(((char *)n) - ((size_t)&((T *)0)->M)); \
}
#endif
#define CK_CC_PAD(x) union { char pad[x]; }
@ -104,41 +106,35 @@
#define CK_CC_TYPEOF(X, DEFAULT) (DEFAULT)
#endif
#define CK_F_CC_FFS_G(L, T) \
CK_CC_INLINE static int \
ck_cc_##L(T v) \
{ \
unsigned int i; \
\
if (v == 0) \
return 0; \
\
for (i = 1; (v & 1) == 0; i++, v >>= 1); \
return i; \
}
#ifndef CK_F_CC_FFS
#define CK_F_CC_FFS
CK_CC_INLINE static int
ck_cc_ffs(unsigned int x)
{
unsigned int i;
CK_F_CC_FFS_G(ffs, unsigned int)
#endif /* CK_F_CC_FFS */
if (x == 0)
return 0;
#ifndef CK_F_CC_FFSL
#define CK_F_CC_FFSL
CK_F_CC_FFS_G(ffsl, unsigned long)
#endif /* CK_F_CC_FFSL */
for (i = 1; (x & 1) == 0; i++, x >>= 1);
#ifndef CK_F_CC_FFSLL
#define CK_F_CC_FFSLL
CK_F_CC_FFS_G(ffsll, unsigned long long)
#endif /* CK_F_CC_FFSLL */
return i;
}
#endif
#ifndef CK_F_CC_CLZ
#define CK_F_CC_CLZ
#include <ck_limits.h>
CK_CC_INLINE static int
ck_cc_clz(unsigned int x)
{
unsigned int count, i;
for (count = 0, i = sizeof(unsigned int) * CHAR_BIT; i > 0; count++) {
unsigned int bit = 1U << --i;
if (x & bit)
break;
}
return count;
}
#endif
#undef CK_F_CC_FFS_G
#ifndef CK_F_CC_CTZ
#define CK_F_CC_CTZ
@ -151,7 +147,6 @@ ck_cc_ctz(unsigned int x)
return 0;
for (i = 0; (x & 1) == 0; i++, x >>= 1);
return i;
}
#endif

945
include/ck_ec.h Normal file
View file

@ -0,0 +1,945 @@
/*
* Copyright 2018 Paul Khuong, Google LLC.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Overview
* ========
*
* ck_ec implements 32- and 64- bit event counts. Event counts let us
* easily integrate OS-level blocking (e.g., futexes) in lock-free
* protocols. Waiters block conditionally, if the event count's value
* is still equal to some old value.
*
* Event counts come in four variants: 32 and 64 bit (with one bit
* stolen for internal signaling, so 31 and 63 bit counters), and
* single or multiple producers (wakers). Waiters are always multiple
* consumers. The 32 bit variants are smaller, and more efficient,
* especially in single producer mode. The 64 bit variants are larger,
* but practically invulnerable to ABA.
*
* The 32 bit variant is always available. The 64 bit variant is only
* available if CK supports 64-bit atomic operations. Currently,
* specialization for single producer is only implemented for x86 and
* x86-64, on compilers that support GCC extended inline assembly;
* other platforms fall back to the multiple producer code path.
*
* A typical usage pattern is:
*
* 1. On the producer side:
*
* - Make changes to some shared data structure, without involving
* the event count at all.
* - After each change, call ck_ec_inc on the event count. The call
* acts as a write-write barrier, and wakes up any consumer blocked
* on the event count (waiting for new changes).
*
* 2. On the consumer side:
*
* - Snapshot ck_ec_value of the event count. The call acts as a
* read barrier.
* - Read and process the shared data structure.
* - Wait for new changes by calling ck_ec_wait with the snapshot value.
*
* Some data structures may opt for tighter integration with their
* event count. For example, an SPMC ring buffer or disruptor might
* use the event count's value as the write pointer. If the buffer is
* regularly full, it might also make sense to store the read pointer
* in an MP event count.
*
* This event count implementation supports tighter integration in two
* ways.
*
* Producers may opt to increment by an arbitrary value (less than
* INT32_MAX / INT64_MAX), in order to encode, e.g., byte
* offsets. Larger increment values make wraparound more likely, so
* the increments should still be relatively small.
*
* Consumers may pass a predicate to ck_ec_wait_pred. This predicate
* can make `ck_ec_wait_pred` return early, before the event count's
* value changes, and can override the deadline passed to futex_wait.
* This lets consumer block on one eventcount, while optimistically
* looking at other waking conditions.
*
* API Reference
* =============
*
* When compiled as C11 or later, this header defines type-generic
* macros for ck_ec32 and ck_ec64; the reference describes this
* type-generic API.
*
* ck_ec needs additional OS primitives to determine the current time,
* to wait on an address, and to wake all threads waiting on a given
* address. These are defined with fields in a struct ck_ec_ops. Each
* ck_ec_ops may additionally define the number of spin loop
* iterations in the slow path, as well as the initial wait time in
* the internal exponential backoff, the exponential scale factor, and
* the right shift count (< 32).
*
* The ops, in addition to the single/multiple producer flag, are
* encapsulated in a struct ck_ec_mode, passed to most ck_ec
* operations.
*
* ec is a struct ck_ec32 *, or a struct ck_ec64 *.
*
* value is an uint32_t for ck_ec32, and an uint64_t for ck_ec64. It
* never exceeds INT32_MAX and INT64_MAX respectively.
*
* mode is a struct ck_ec_mode *.
*
* deadline is either NULL, or a `const struct timespec *` that will
* be treated as an absolute deadline.
*
* `void ck_ec_init(ec, value)`: initializes the event count to value.
*
* `value ck_ec_value(ec)`: returns the current value of the event
* counter. This read acts as a read (acquire) barrier.
*
* `bool ck_ec_has_waiters(ec)`: returns whether some thread has
* marked the event count as requiring an OS wakeup.
*
* `void ck_ec_inc(ec, mode)`: increments the value of the event
* counter by one. This writes acts as a write barrier. Wakes up
* any waiting thread.
*
* `value ck_ec_add(ec, mode, value)`: increments the event counter by
* `value`, and returns the event counter's previous value. This
* write acts as a write barrier. Wakes up any waiting thread.
*
* `int ck_ec_deadline(struct timespec *new_deadline,
* mode,
* const struct timespec *timeout)`:
* computes a deadline `timeout` away from the current time. If
* timeout is NULL, computes a deadline in the infinite future. The
* resulting deadline is written to `new_deadline`. Returns 0 on
* success, and -1 if ops->gettime failed (without touching errno).
*
* `int ck_ec_wait(ec, mode, value, deadline)`: waits until the event
* counter's value differs from `value`, or, if `deadline` is
* provided and non-NULL, until the current time is after that
* deadline. Use a deadline with tv_sec = 0 for a non-blocking
* execution. Returns 0 if the event counter has changed, and -1 on
* timeout. This function acts as a read (acquire) barrier.
*
* `int ck_ec_wait_pred(ec, mode, value, pred, data, deadline)`: waits
* until the event counter's value differs from `value`, or until
* `pred` returns non-zero, or, if `deadline` is provided and
* non-NULL, until the current time is after that deadline. Use a
* deadline with tv_sec = 0 for a non-blocking execution. Returns 0 if
* the event counter has changed, `pred`'s return value if non-zero,
* and -1 on timeout. This function acts as a read (acquire) barrier.
*
* `pred` is always called as `pred(data, iteration_deadline, now)`,
* where `iteration_deadline` is a timespec of the deadline for this
* exponential backoff iteration, and `now` is the current time. If
* `pred` returns a non-zero value, that value is immediately returned
* to the waiter. Otherwise, `pred` is free to modify
* `iteration_deadline` (moving it further in the future is a bad
* idea).
*
* Implementation notes
* ====================
*
* The multiple producer implementation is a regular locked event
* count, with a single flag bit to denote the need to wake up waiting
* threads.
*
* The single producer specialization is heavily tied to
* [x86-TSO](https://www.cl.cam.ac.uk/~pes20/weakmemory/cacm.pdf), and
* to non-atomic read-modify-write instructions (e.g., `inc mem`);
* these non-atomic RMW let us write to the same memory locations with
* atomic and non-atomic instructions, without suffering from process
* scheduling stalls.
*
* The reason we can mix atomic and non-atomic writes to the `counter`
* word is that every non-atomic write obviates the need for the
* atomically flipped flag bit: we only use non-atomic writes to
* update the event count, and the atomic flag only informs the
* producer that we would like a futex_wake, because of the update.
* We only require the non-atomic RMW counter update to prevent
* preemption from introducing arbitrarily long worst case delays.
*
* Correctness does not rely on the usual ordering argument: in the
* absence of fences, there is no strict ordering between atomic and
* non-atomic writes. The key is instead x86-TSO's guarantee that a
* read is satisfied from the most recent buffered write in the local
* store queue if there is one, or from memory if there is no write to
* that address in the store queue.
*
* x86-TSO's constraint on reads suffices to guarantee that the
* producer will never forget about a counter update. If the last
* update is still queued, the new update will be based on the queued
* value. Otherwise, the new update will be based on the value in
* memory, which may or may not have had its flag flipped. In either
* case, the value of the counter (modulo flag) is correct.
*
* When the producer forwards the counter's value from its store
* queue, the new update might not preserve a flag flip. Any waiter
* thus has to check from time to time to determine if it wasn't
* woken up because the flag bit was silently cleared.
*
* In reality, the store queue in x86-TSO stands for in-flight
* instructions in the chip's out-of-order backend. In the vast
* majority of cases, instructions will only remain in flight for a
* few hundred or thousand of cycles. That's why ck_ec_wait spins on
* the `counter` word for ~100 iterations after flipping its flag bit:
* if the counter hasn't changed after that many iterations, it is
* very likely that the producer's next counter update will observe
* the flag flip.
*
* That's still not a hard guarantee of correctness. Conservatively,
* we can expect that no instruction will remain in flight for more
* than 1 second... if only because some interrupt will have forced
* the chip to store its architectural state in memory, at which point
* an instruction is either fully retired or rolled back. Interrupts,
* particularly the pre-emption timer, are why single-producer updates
* must happen in a single non-atomic read-modify-write instruction.
* Having a single instruction as the critical section means we only
* have to consider the worst-case execution time for that
* instruction. That's easier than doing the same for a pair of
* instructions, which an unlucky pre-emption could delay for
* arbitrarily long.
*
* Thus, after a short spin loop, ck_ec_wait enters an exponential
* backoff loop, where each "sleep" is instead a futex_wait. The
* backoff is only necessary to handle rare cases where the flag flip
* was overwritten after the spin loop. Eventually, more than one
* second will have elapsed since the flag flip, and the sleep timeout
* becomes infinite: since the flag bit has been set for much longer
* than the time for which an instruction may remain in flight, the
* flag will definitely be observed at the next counter update.
*
* The 64 bit ck_ec_wait pulls another trick: futexes only handle 32
* bit ints, so we must treat the 64 bit counter's low 32 bits as an
* int in futex_wait. That's a bit dodgy, but fine in practice, given
* that the OS's futex code will always read whatever value is
* currently in memory: even if the producer thread were to wait on
* its own event count, the syscall and ring transition would empty
* the store queue (the out-of-order execution backend).
*
* Finally, what happens when the producer is migrated to another core
* or otherwise pre-empted? Migration must already incur a barrier, so
* that thread always sees its own writes, so that's safe. As for
* pre-emption, that requires storing the architectural state, which
* means every instruction must either be executed fully or not at
* all when pre-emption happens.
*/
#ifndef CK_EC_H
#define CK_EC_H
#include <ck_cc.h>
#include <ck_pr.h>
#include <ck_stdbool.h>
#include <ck_stdint.h>
#include <ck_stddef.h>
#include <sys/time.h>
/*
* If we have ck_pr_faa_64 (and, presumably, ck_pr_load_64), we
* support 63 bit counters.
*/
#ifdef CK_F_PR_FAA_64
#define CK_F_EC64
#endif /* CK_F_PR_FAA_64 */
/*
* GCC inline assembly lets us exploit non-atomic read-modify-write
* instructions on x86/x86_64 for a fast single-producer mode.
*
* If we CK_F_EC_SP is not defined, CK_EC always uses the slower
* multiple producer code.
*/
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
#define CK_F_EC_SP
#endif /* GNUC && (__i386__ || __x86_64__) */
struct ck_ec_ops;
struct ck_ec_wait_state {
struct timespec start; /* Time when we entered ck_ec_wait. */
struct timespec now; /* Time now. */
const struct ck_ec_ops *ops;
void *data; /* Opaque pointer for the predicate's internal state. */
};
/*
* ck_ec_ops define system-specific functions to get the current time,
* atomically wait on an address if it still has some expected value,
* and to wake all threads waiting on an address.
*
* Each platform is expected to have few (one) opaque pointer to a
* const ops struct, and reuse it for all ck_ec_mode structs.
*/
struct ck_ec_ops {
/* Populates out with the current time. Returns non-zero on failure. */
int (*gettime)(const struct ck_ec_ops *, struct timespec *out);
/*
* Waits on address if its value is still `expected`. If
* deadline is non-NULL, stops waiting once that deadline is
* reached. May return early for any reason.
*/
void (*wait32)(const struct ck_ec_wait_state *, const uint32_t *,
uint32_t expected, const struct timespec *deadline);
/*
* Same as wait32, but for a 64 bit counter. Only used if
* CK_F_EC64 is defined.
*
* If underlying blocking primitive only supports 32 bit
* control words, it should be safe to block on the least
* significant half of the 64 bit address.
*/
void (*wait64)(const struct ck_ec_wait_state *, const uint64_t *,
uint64_t expected, const struct timespec *deadline);
/* Wakes up all threads waiting on address. */
void (*wake32)(const struct ck_ec_ops *, const uint32_t *address);
/*
* Same as wake32, but for a 64 bit counter. Only used if
* CK_F_EC64 is defined.
*
* When wait64 truncates the control word at address to `only`
* consider its least significant half, wake64 should perform
* any necessary fixup (e.g., on big endian platforms).
*/
void (*wake64)(const struct ck_ec_ops *, const uint64_t *address);
/*
* Number of iterations for the initial busy wait. 0 defaults
* to 100 (not ABI stable).
*/
uint32_t busy_loop_iter;
/*
* Delay in nanoseconds for the first iteration of the
* exponential backoff. 0 defaults to 2 ms (not ABI stable).
*/
uint32_t initial_wait_ns;
/*
* Scale factor for the exponential backoff. 0 defaults to 8x
* (not ABI stable).
*/
uint32_t wait_scale_factor;
/*
* Right shift count for the exponential backoff. The update
* after each iteration is
* wait_ns = (wait_ns * wait_scale_factor) >> wait_shift_count,
* until one second has elapsed. After that, the deadline goes
* to infinity.
*/
uint32_t wait_shift_count;
};
/*
* ck_ec_mode wraps the ops table, and informs the fast path whether
* it should attempt to specialize for single producer mode.
*
* mode structs are expected to be exposed by value, e.g.,
*
* extern const struct ck_ec_ops system_ec_ops;
*
* static const struct ck_ec_mode ec_sp = {
* .ops = &system_ec_ops,
* .single_producer = true
* };
*
* static const struct ck_ec_mode ec_mp = {
* .ops = &system_ec_ops,
* .single_producer = false
* };
*
* ck_ec_mode structs are only passed to inline functions defined in
* this header, and never escape to their slow paths, so they should
* not result in any object file size increase.
*/
struct ck_ec_mode {
const struct ck_ec_ops *ops;
/*
* If single_producer is true, the event count has a unique
* incrementer. The implementation will specialize ck_ec_inc
* and ck_ec_add if possible (if CK_F_EC_SP is defined).
*/
bool single_producer;
};
struct ck_ec32 {
/* Flag is "sign" bit, value in bits 0:30. */
uint32_t counter;
};
typedef struct ck_ec32 ck_ec32_t;
#ifdef CK_F_EC64
struct ck_ec64 {
/*
* Flag is bottom bit, value in bits 1:63. Eventcount only
* works on x86-64 (i.e., little endian), so the futex int
* lies in the first 4 (bottom) bytes.
*/
uint64_t counter;
};
typedef struct ck_ec64 ck_ec64_t;
#endif /* CK_F_EC64 */
#define CK_EC_INITIALIZER { .counter = 0 }
/*
* Initializes the event count to `value`. The value must not
* exceed INT32_MAX.
*/
static void ck_ec32_init(struct ck_ec32 *ec, uint32_t value);
#ifndef CK_F_EC64
#define ck_ec_init ck_ec32_init
#else
/*
* Initializes the event count to `value`. The value must not
* exceed INT64_MAX.
*/
static void ck_ec64_init(struct ck_ec64 *ec, uint64_t value);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_init(EC, VALUE) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_init, \
struct ck_ec64 : ck_ec64_init)((EC), (VALUE)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Returns the counter value in the event count. The value is at most
* INT32_MAX.
*/
static uint32_t ck_ec32_value(const struct ck_ec32* ec);
#ifndef CK_F_EC64
#define ck_ec_value ck_ec32_value
#else
/*
* Returns the counter value in the event count. The value is at most
* INT64_MAX.
*/
static uint64_t ck_ec64_value(const struct ck_ec64* ec);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_value(EC) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_value, \
struct ck_ec64 : ck_ec64_value)((EC)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Returns whether there may be slow pathed waiters that need an
* explicit OS wakeup for this event count.
*/
static bool ck_ec32_has_waiters(const struct ck_ec32 *ec);
#ifndef CK_F_EC64
#define ck_ec_has_waiters ck_ec32_has_waiters
#else
static bool ck_ec64_has_waiters(const struct ck_ec64 *ec);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_has_waiters(EC) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_has_waiters, \
struct ck_ec64 : ck_ec64_has_waiters)((EC)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Increments the counter value in the event count by one, and wakes
* up any waiter.
*/
static void ck_ec32_inc(struct ck_ec32 *ec, const struct ck_ec_mode *mode);
#ifndef CK_F_EC64
#define ck_ec_inc ck_ec32_inc
#else
static void ck_ec64_inc(struct ck_ec64 *ec, const struct ck_ec_mode *mode);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_inc(EC, MODE) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_inc, \
struct ck_ec64 : ck_ec64_inc)((EC), (MODE)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Increments the counter value in the event count by delta, wakes
* up any waiter, and returns the previous counter value.
*/
static uint32_t ck_ec32_add(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t delta);
#ifndef CK_F_EC64
#define ck_ec_add ck_ec32_add
#else
static uint64_t ck_ec64_add(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t delta);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_add(EC, MODE, DELTA) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_add, \
struct ck_ec64 : ck_ec64_add)((EC), (MODE), (DELTA)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Populates `new_deadline` with a deadline `timeout` in the future.
* Returns 0 on success, and -1 if clock_gettime failed, in which
* case errno is left as is.
*/
static int ck_ec_deadline(struct timespec *new_deadline,
const struct ck_ec_mode *mode,
const struct timespec *timeout);
/*
* Waits until the counter value in the event count differs from
* old_value, or, if deadline is non-NULL, until CLOCK_MONOTONIC is
* past the deadline.
*
* Returns 0 on success, and -1 on timeout.
*/
static int ck_ec32_wait(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old_value,
const struct timespec *deadline);
#ifndef CK_F_EC64
#define ck_ec_wait ck_ec32_wait
#else
static int ck_ec64_wait(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old_value,
const struct timespec *deadline);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_wait(EC, MODE, OLD_VALUE, DEADLINE) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_wait, \
struct ck_ec64 : ck_ec64_wait)((EC), (MODE), \
(OLD_VALUE), (DEADLINE)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Waits until the counter value in the event count differs from
* old_value, pred returns non-zero, or, if deadline is non-NULL,
* until CLOCK_MONOTONIC is past the deadline.
*
* Returns 0 on success, -1 on timeout, and the return value of pred
* if it returns non-zero.
*
* A NULL pred represents a function that always returns 0.
*/
static int ck_ec32_wait_pred(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old_value,
int (*pred)(const struct ck_ec_wait_state *,
struct timespec *deadline),
void *data,
const struct timespec *deadline);
#ifndef CK_F_EC64
#define ck_ec_wait_pred ck_ec32_wait_pred
#else
static int ck_ec64_wait_pred(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old_value,
int (*pred)(const struct ck_ec_wait_state *,
struct timespec *deadline),
void *data,
const struct timespec *deadline);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_wait_pred(EC, MODE, OLD_VALUE, PRED, DATA, DEADLINE) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_wait_pred, \
struct ck_ec64 : ck_ec64_wait_pred) \
((EC), (MODE), (OLD_VALUE), (PRED), (DATA), (DEADLINE)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Inline implementation details. 32 bit first, then 64 bit
* conditionally.
*/
CK_CC_FORCE_INLINE void ck_ec32_init(struct ck_ec32 *ec, uint32_t value)
{
ec->counter = value & ~(1UL << 31);
return;
}
CK_CC_FORCE_INLINE uint32_t ck_ec32_value(const struct ck_ec32 *ec)
{
uint32_t ret = ck_pr_load_32(&ec->counter) & ~(1UL << 31);
ck_pr_fence_acquire();
return ret;
}
CK_CC_FORCE_INLINE bool ck_ec32_has_waiters(const struct ck_ec32 *ec)
{
return ck_pr_load_32(&ec->counter) & (1UL << 31);
}
/* Slow path for ck_ec{32,64}_{inc,add} */
void ck_ec32_wake(struct ck_ec32 *ec, const struct ck_ec_ops *ops);
CK_CC_FORCE_INLINE void ck_ec32_inc(struct ck_ec32 *ec,
const struct ck_ec_mode *mode)
{
#if !defined(CK_F_EC_SP)
/* Nothing to specialize if we don't have EC_SP. */
ck_ec32_add(ec, mode, 1);
return;
#else
char flagged;
#if __GNUC__ >= 6
/*
* We don't want to wake if the sign bit is 0. We do want to
* wake if the sign bit just flipped from 1 to 0. We don't
* care what happens when our increment caused the sign bit to
* flip from 0 to 1 (that's once per 2^31 increment).
*
* This leaves us with four cases:
*
* old sign bit | new sign bit | SF | OF | ZF
* -------------------------------------------
* 0 | 0 | 0 | 0 | ?
* 0 | 1 | 1 | 0 | ?
* 1 | 1 | 1 | 0 | ?
* 1 | 0 | 0 | 0 | 1
*
* In the first case, we don't want to hit ck_ec32_wake. In
* the last two cases, we do want to call ck_ec32_wake. In the
* second case, we don't care, so we arbitrarily choose to
* call ck_ec32_wake.
*
* The "le" condition checks if SF != OF, or ZF == 1, which
* meets our requirements.
*/
#define CK_EC32_INC_ASM(PREFIX) \
__asm__ volatile(PREFIX " incl %0" \
: "+m"(ec->counter), "=@ccle"(flagged) \
:: "cc", "memory")
#else
#define CK_EC32_INC_ASM(PREFIX) \
__asm__ volatile(PREFIX " incl %0; setle %1" \
: "+m"(ec->counter), "=r"(flagged) \
:: "cc", "memory")
#endif /* __GNUC__ */
if (mode->single_producer == true) {
ck_pr_fence_store();
CK_EC32_INC_ASM("");
} else {
ck_pr_fence_store_atomic();
CK_EC32_INC_ASM("lock");
}
#undef CK_EC32_INC_ASM
if (CK_CC_UNLIKELY(flagged)) {
ck_ec32_wake(ec, mode->ops);
}
return;
#endif /* CK_F_EC_SP */
}
CK_CC_FORCE_INLINE uint32_t ck_ec32_add_epilogue(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old)
{
const uint32_t flag_mask = 1U << 31;
uint32_t ret;
ret = old & ~flag_mask;
/* These two only differ if the flag bit is set. */
if (CK_CC_UNLIKELY(old != ret)) {
ck_ec32_wake(ec, mode->ops);
}
return ret;
}
static CK_CC_INLINE uint32_t ck_ec32_add_mp(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t delta)
{
uint32_t old;
ck_pr_fence_store_atomic();
old = ck_pr_faa_32(&ec->counter, delta);
return ck_ec32_add_epilogue(ec, mode, old);
}
#ifdef CK_F_EC_SP
static CK_CC_INLINE uint32_t ck_ec32_add_sp(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t delta)
{
uint32_t old;
/*
* Correctness of this racy write depends on actually
* having an update to write. Exit here if the update
* is a no-op.
*/
if (CK_CC_UNLIKELY(delta == 0)) {
return ck_ec32_value(ec);
}
ck_pr_fence_store();
old = delta;
__asm__ volatile("xaddl %1, %0"
: "+m"(ec->counter), "+r"(old)
:: "cc", "memory");
return ck_ec32_add_epilogue(ec, mode, old);
}
#endif /* CK_F_EC_SP */
CK_CC_FORCE_INLINE uint32_t ck_ec32_add(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t delta)
{
#ifdef CK_F_EC_SP
if (mode->single_producer == true) {
return ck_ec32_add_sp(ec, mode, delta);
}
#endif
return ck_ec32_add_mp(ec, mode, delta);
}
int ck_ec_deadline_impl(struct timespec *new_deadline,
const struct ck_ec_ops *ops,
const struct timespec *timeout);
CK_CC_FORCE_INLINE int ck_ec_deadline(struct timespec *new_deadline,
const struct ck_ec_mode *mode,
const struct timespec *timeout)
{
return ck_ec_deadline_impl(new_deadline, mode->ops, timeout);
}
int ck_ec32_wait_slow(struct ck_ec32 *ec,
const struct ck_ec_ops *ops,
uint32_t old_value,
const struct timespec *deadline);
CK_CC_FORCE_INLINE int ck_ec32_wait(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old_value,
const struct timespec *deadline)
{
if (ck_ec32_value(ec) != old_value) {
return 0;
}
return ck_ec32_wait_slow(ec, mode->ops, old_value, deadline);
}
int ck_ec32_wait_pred_slow(struct ck_ec32 *ec,
const struct ck_ec_ops *ops,
uint32_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline);
CK_CC_FORCE_INLINE int
ck_ec32_wait_pred(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline)
{
if (ck_ec32_value(ec) != old_value) {
return 0;
}
return ck_ec32_wait_pred_slow(ec, mode->ops, old_value,
pred, data, deadline);
}
#ifdef CK_F_EC64
CK_CC_FORCE_INLINE void ck_ec64_init(struct ck_ec64 *ec, uint64_t value)
{
ec->counter = value << 1;
return;
}
CK_CC_FORCE_INLINE uint64_t ck_ec64_value(const struct ck_ec64 *ec)
{
uint64_t ret = ck_pr_load_64(&ec->counter) >> 1;
ck_pr_fence_acquire();
return ret;
}
CK_CC_FORCE_INLINE bool ck_ec64_has_waiters(const struct ck_ec64 *ec)
{
return ck_pr_load_64(&ec->counter) & 1;
}
void ck_ec64_wake(struct ck_ec64 *ec, const struct ck_ec_ops *ops);
CK_CC_FORCE_INLINE void ck_ec64_inc(struct ck_ec64 *ec,
const struct ck_ec_mode *mode)
{
/* We always xadd, so there's no special optimization here. */
(void)ck_ec64_add(ec, mode, 1);
return;
}
CK_CC_FORCE_INLINE uint64_t ck_ec_add64_epilogue(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old)
{
uint64_t ret = old >> 1;
if (CK_CC_UNLIKELY(old & 1)) {
ck_ec64_wake(ec, mode->ops);
}
return ret;
}
static CK_CC_INLINE uint64_t ck_ec64_add_mp(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t delta)
{
uint64_t inc = 2 * delta; /* The low bit is the flag bit. */
ck_pr_fence_store_atomic();
return ck_ec_add64_epilogue(ec, mode, ck_pr_faa_64(&ec->counter, inc));
}
#ifdef CK_F_EC_SP
/* Single-producer specialisation. */
static CK_CC_INLINE uint64_t ck_ec64_add_sp(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t delta)
{
uint64_t old;
/*
* Correctness of this racy write depends on actually
* having an update to write. Exit here if the update
* is a no-op.
*/
if (CK_CC_UNLIKELY(delta == 0)) {
return ck_ec64_value(ec);
}
ck_pr_fence_store();
old = 2 * delta; /* The low bit is the flag bit. */
__asm__ volatile("xaddq %1, %0"
: "+m"(ec->counter), "+r"(old)
:: "cc", "memory");
return ck_ec_add64_epilogue(ec, mode, old);
}
#endif /* CK_F_EC_SP */
/*
* Dispatch on mode->single_producer in this FORCE_INLINE function:
* the end result is always small, but not all compilers have enough
* foresight to inline and get the reduction.
*/
CK_CC_FORCE_INLINE uint64_t ck_ec64_add(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t delta)
{
#ifdef CK_F_EC_SP
if (mode->single_producer == true) {
return ck_ec64_add_sp(ec, mode, delta);
}
#endif
return ck_ec64_add_mp(ec, mode, delta);
}
int ck_ec64_wait_slow(struct ck_ec64 *ec,
const struct ck_ec_ops *ops,
uint64_t old_value,
const struct timespec *deadline);
CK_CC_FORCE_INLINE int ck_ec64_wait(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old_value,
const struct timespec *deadline)
{
if (ck_ec64_value(ec) != old_value) {
return 0;
}
return ck_ec64_wait_slow(ec, mode->ops, old_value, deadline);
}
int ck_ec64_wait_pred_slow(struct ck_ec64 *ec,
const struct ck_ec_ops *ops,
uint64_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline);
CK_CC_FORCE_INLINE int
ck_ec64_wait_pred(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline)
{
if (ck_ec64_value(ec) != old_value) {
return 0;
}
return ck_ec64_wait_pred_slow(ec, mode->ops, old_value,
pred, data, deadline);
}
#endif /* CK_F_EC64 */
#endif /* !CK_EC_H */

View file

@ -83,6 +83,7 @@ struct ck_epoch_ref {
};
struct ck_epoch_record {
ck_stack_entry_t record_next;
struct ck_epoch *global;
unsigned int state;
unsigned int epoch;
@ -92,17 +93,16 @@ struct ck_epoch_record {
} local CK_CC_CACHELINE;
unsigned int n_pending;
unsigned int n_peak;
unsigned long n_dispatch;
unsigned int n_dispatch;
void *ct;
ck_stack_t pending[CK_EPOCH_LENGTH];
ck_stack_entry_t record_next;
} CK_CC_CACHELINE;
typedef struct ck_epoch_record ck_epoch_record_t;
struct ck_epoch {
unsigned int epoch;
char pad[CK_MD_CACHELINE - sizeof(unsigned int)];
ck_stack_t records;
unsigned int n_free;
ck_stack_t records;
};
typedef struct ck_epoch ck_epoch_t;
@ -110,7 +110,14 @@ typedef struct ck_epoch ck_epoch_t;
* Internal functions.
*/
void _ck_epoch_addref(ck_epoch_record_t *, ck_epoch_section_t *);
void _ck_epoch_delref(ck_epoch_record_t *, ck_epoch_section_t *);
bool _ck_epoch_delref(ck_epoch_record_t *, ck_epoch_section_t *);
CK_CC_FORCE_INLINE static void *
ck_epoch_record_ct(const ck_epoch_record_t *record)
{
return ck_pr_load_ptr(&record->ct);
}
/*
* Marks the beginning of an epoch-protected section.
@ -160,9 +167,10 @@ ck_epoch_begin(ck_epoch_record_t *record, ck_epoch_section_t *section)
}
/*
* Marks the end of an epoch-protected section.
* Marks the end of an epoch-protected section. Returns true if no more
* sections exist for the caller.
*/
CK_CC_FORCE_INLINE static void
CK_CC_FORCE_INLINE static bool
ck_epoch_end(ck_epoch_record_t *record, ck_epoch_section_t *section)
{
@ -170,15 +178,19 @@ ck_epoch_end(ck_epoch_record_t *record, ck_epoch_section_t *section)
ck_pr_store_uint(&record->active, record->active - 1);
if (section != NULL)
_ck_epoch_delref(record, section);
return _ck_epoch_delref(record, section);
return;
return record->active == 0;
}
/*
* Defers the execution of the function pointed to by the "cb"
* argument until an epoch counter loop. This allows for a
* non-blocking deferral.
*
* We can get away without a fence here due to the monotonic nature
* of the epoch counter. Worst case, this will result in some delays
* before object destruction.
*/
CK_CC_FORCE_INLINE static void
ck_epoch_call(ck_epoch_record_t *record,
@ -195,13 +207,75 @@ ck_epoch_call(ck_epoch_record_t *record,
return;
}
/*
* Same as ck_epoch_call, but allows for records to be shared and is reentrant.
*/
CK_CC_FORCE_INLINE static void
ck_epoch_call_strict(ck_epoch_record_t *record,
ck_epoch_entry_t *entry,
ck_epoch_cb_t *function)
{
struct ck_epoch *epoch = record->global;
unsigned int e = ck_pr_load_uint(&epoch->epoch);
unsigned int offset = e & (CK_EPOCH_LENGTH - 1);
ck_pr_inc_uint(&record->n_pending);
entry->function = function;
/* Store fence is implied by push operation. */
ck_stack_push_upmc(&record->pending[offset], &entry->stack_entry);
return;
}
/*
* This callback is used for synchronize_wait to allow for custom blocking
* behavior.
*/
typedef void ck_epoch_wait_cb_t(ck_epoch_t *, ck_epoch_record_t *,
void *);
/*
* Return latest epoch value. This operation provides load ordering.
*/
CK_CC_FORCE_INLINE static unsigned int
ck_epoch_value(const ck_epoch_t *ep)
{
ck_pr_fence_load();
return ck_pr_load_uint(&ep->epoch);
}
void ck_epoch_init(ck_epoch_t *);
ck_epoch_record_t *ck_epoch_recycle(ck_epoch_t *);
void ck_epoch_register(ck_epoch_t *, ck_epoch_record_t *);
/*
* Attempts to recycle an unused epoch record. If one is successfully
* allocated, the record context pointer is also updated.
*/
ck_epoch_record_t *ck_epoch_recycle(ck_epoch_t *, void *);
/*
* Registers an epoch record. An optional context pointer may be passed that
* is retrievable with ck_epoch_record_ct.
*/
void ck_epoch_register(ck_epoch_t *, ck_epoch_record_t *, void *);
/*
* Marks a record as available for re-use by a subsequent recycle operation.
* Note that the record cannot be physically destroyed.
*/
void ck_epoch_unregister(ck_epoch_record_t *);
bool ck_epoch_poll(ck_epoch_record_t *);
bool ck_epoch_poll_deferred(struct ck_epoch_record *record, ck_stack_t *deferred);
void ck_epoch_synchronize(ck_epoch_record_t *);
void ck_epoch_synchronize_wait(ck_epoch_t *, ck_epoch_wait_cb_t *, void *);
void ck_epoch_barrier(ck_epoch_record_t *);
void ck_epoch_barrier_wait(ck_epoch_record_t *, ck_epoch_wait_cb_t *, void *);
/*
* Reclaim entries associated with a record. This is safe to call only on
* the caller's record or records that are using call_strict.
*/
void ck_epoch_reclaim(ck_epoch_record_t *);
#endif /* CK_EPOCH_H */

View file

@ -115,7 +115,7 @@ CK_CC_INLINE static void
ck_fifo_spsc_deinit(struct ck_fifo_spsc *fifo, struct ck_fifo_spsc_entry **garbage)
{
*garbage = fifo->head;
*garbage = fifo->garbage;
fifo->head = fifo->tail = NULL;
return;
}

View file

@ -100,18 +100,28 @@ struct ck_hs_stat {
struct ck_hs_iterator {
void **cursor;
unsigned long offset;
struct ck_hs_map *map;
};
typedef struct ck_hs_iterator ck_hs_iterator_t;
#define CK_HS_ITERATOR_INITIALIZER { NULL, 0 }
#define CK_HS_ITERATOR_INITIALIZER { NULL, 0, NULL }
/* Convenience wrapper to table hash function. */
#define CK_HS_HASH(T, F, K) F((K), (T)->seed)
/* Computes the hash of n bytes of k for the specified hash map. */
static inline unsigned long
ck_hs_hash(const struct ck_hs *hs, const void *k)
{
return hs->hf(k, hs->seed);
}
typedef void *ck_hs_apply_fn_t(void *, void *);
bool ck_hs_apply(ck_hs_t *, unsigned long, const void *, ck_hs_apply_fn_t *, void *);
void ck_hs_iterator_init(ck_hs_iterator_t *);
bool ck_hs_next(ck_hs_t *, ck_hs_iterator_t *, void **);
bool ck_hs_next_spmc(ck_hs_t *, ck_hs_iterator_t *, void **);
bool ck_hs_move(ck_hs_t *, ck_hs_t *, ck_hs_hash_cb_t *,
ck_hs_compare_cb_t *, struct ck_malloc *);
bool ck_hs_init(ck_hs_t *, unsigned int, ck_hs_hash_cb_t *,

View file

@ -47,7 +47,15 @@
#define @POINTER_PACK_ENABLE@
#endif /* @POINTER_PACK_ENABLE@ */
#ifndef @VMA_BITS@
#ifndef @SSE_DISABLE@
#define @SSE_DISABLE@
#endif /* @SSE_DISABLE@ */
#ifndef @PPC32_LWSYNC_ENABLE@
#define @PPC32_LWSYNC_ENABLE@
#endif /* @PPC32_LWSYNC_ENABLE@ */
#ifndef @VMA_BITS@
#define @VMA_BITS@ @VMA_BITS_VALUE@
#endif /* @VMA_BITS@ */

View file

@ -34,7 +34,20 @@
#include <ck_stdint.h>
#include <ck_stdbool.h>
#ifndef CK_USE_CC_BUILTINS
/*
* Default to using builtins for clang analyzer, coverity, and sparse:
* inline assembly is often too opaque for useful analysis. Override
* the defaults by defining CK_USE_CC_BUILTINS=0 or 1.
*/
#if !defined(CK_USE_CC_BUILTINS)
#if defined(__clang_analyzer__) || defined(__COVERITY__) || defined(__CHECKER__)
#define CK_USE_CC_BUILTINS 1
#else
#define CK_USE_CC_BUILTINS 0
#endif
#endif
#if !CK_USE_CC_BUILTINS
#if defined(__x86_64__)
#include "gcc/x86_64/ck_pr.h"
#elif defined(__x86__)
@ -43,6 +56,8 @@
#include "gcc/sparcv9/ck_pr.h"
#elif defined(__ppc64__)
#include "gcc/ppc64/ck_pr.h"
#elif defined(__s390x__)
#include "gcc/s390x/ck_pr.h"
#elif defined(__ppc__)
#include "gcc/ppc/ck_pr.h"
#elif defined(__arm__)
@ -613,8 +628,8 @@ CK_PR_BTX_S(bts, 16, uint16_t, |,)
}
#define CK_PR_UNARY_Z(K, S, M, T, P, C, Z) \
CK_CC_INLINE static void \
ck_pr_##K##_##S##_zero(M *target, bool *zero) \
CK_CC_INLINE static bool \
ck_pr_##K##_##S##_is_zero(M *target) \
{ \
T previous; \
C punt; \
@ -625,12 +640,21 @@ CK_PR_BTX_S(bts, 16, uint16_t, |,)
(C)(previous P 1), \
&previous) == false) \
ck_pr_stall(); \
*zero = previous == (T)Z; \
return previous == (T)Z; \
}
#define CK_PR_UNARY_Z_STUB(K, S, M) \
CK_CC_INLINE static void \
ck_pr_##K##_##S##_zero(M *target, bool *zero) \
{ \
*zero = ck_pr_##K##_##S##_is_zero(target); \
return; \
}
#define CK_PR_UNARY_S(K, X, S, M) CK_PR_UNARY(K, X, S, M, M)
#define CK_PR_UNARY_Z_S(K, S, M, P, Z) CK_PR_UNARY_Z(K, S, M, M, P, M, Z)
#define CK_PR_UNARY_Z_S(K, S, M, P, Z) \
CK_PR_UNARY_Z(K, S, M, M, P, M, Z) \
CK_PR_UNARY_Z_STUB(K, S, M)
#if defined(CK_F_PR_LOAD_CHAR) && defined(CK_F_PR_CAS_CHAR_VALUE)
@ -642,6 +666,8 @@ CK_PR_UNARY_S(inc, add, char, char)
#ifndef CK_F_PR_INC_CHAR_ZERO
#define CK_F_PR_INC_CHAR_ZERO
CK_PR_UNARY_Z_S(inc, char, char, +, -1)
#else
CK_PR_UNARY_Z_STUB(inc, char, char)
#endif /* CK_F_PR_INC_CHAR_ZERO */
#ifndef CK_F_PR_DEC_CHAR
@ -652,6 +678,8 @@ CK_PR_UNARY_S(dec, sub, char, char)
#ifndef CK_F_PR_DEC_CHAR_ZERO
#define CK_F_PR_DEC_CHAR_ZERO
CK_PR_UNARY_Z_S(dec, char, char, -, 1)
#else
CK_PR_UNARY_Z_STUB(dec, char, char)
#endif /* CK_F_PR_DEC_CHAR_ZERO */
#endif /* CK_F_PR_LOAD_CHAR && CK_F_PR_CAS_CHAR_VALUE */
@ -666,6 +694,8 @@ CK_PR_UNARY_S(inc, add, int, int)
#ifndef CK_F_PR_INC_INT_ZERO
#define CK_F_PR_INC_INT_ZERO
CK_PR_UNARY_Z_S(inc, int, int, +, -1)
#else
CK_PR_UNARY_Z_STUB(inc, int, int)
#endif /* CK_F_PR_INC_INT_ZERO */
#ifndef CK_F_PR_DEC_INT
@ -676,6 +706,8 @@ CK_PR_UNARY_S(dec, sub, int, int)
#ifndef CK_F_PR_DEC_INT_ZERO
#define CK_F_PR_DEC_INT_ZERO
CK_PR_UNARY_Z_S(dec, int, int, -, 1)
#else
CK_PR_UNARY_Z_STUB(dec, int, int)
#endif /* CK_F_PR_DEC_INT_ZERO */
#endif /* CK_F_PR_LOAD_INT && CK_F_PR_CAS_INT_VALUE */
@ -705,6 +737,8 @@ CK_PR_UNARY_S(inc, add, uint, unsigned int)
#ifndef CK_F_PR_INC_UINT_ZERO
#define CK_F_PR_INC_UINT_ZERO
CK_PR_UNARY_Z_S(inc, uint, unsigned int, +, UINT_MAX)
#else
CK_PR_UNARY_Z_STUB(inc, uint, unsigned int)
#endif /* CK_F_PR_INC_UINT_ZERO */
#ifndef CK_F_PR_DEC_UINT
@ -715,6 +749,8 @@ CK_PR_UNARY_S(dec, sub, uint, unsigned int)
#ifndef CK_F_PR_DEC_UINT_ZERO
#define CK_F_PR_DEC_UINT_ZERO
CK_PR_UNARY_Z_S(dec, uint, unsigned int, -, 1)
#else
CK_PR_UNARY_Z_STUB(dec, uint, unsigned int)
#endif /* CK_F_PR_DEC_UINT_ZERO */
#endif /* CK_F_PR_LOAD_UINT && CK_F_PR_CAS_UINT_VALUE */
@ -729,6 +765,8 @@ CK_PR_UNARY(inc, add, ptr, void, uintptr_t)
#ifndef CK_F_PR_INC_PTR_ZERO
#define CK_F_PR_INC_PTR_ZERO
CK_PR_UNARY_Z(inc, ptr, void, uintptr_t, +, void *, UINT_MAX)
#else
CK_PR_UNARY_Z_STUB(inc, ptr, void)
#endif /* CK_F_PR_INC_PTR_ZERO */
#ifndef CK_F_PR_DEC_PTR
@ -739,6 +777,8 @@ CK_PR_UNARY(dec, sub, ptr, void, uintptr_t)
#ifndef CK_F_PR_DEC_PTR_ZERO
#define CK_F_PR_DEC_PTR_ZERO
CK_PR_UNARY_Z(dec, ptr, void, uintptr_t, -, void *, 1)
#else
CK_PR_UNARY_Z_STUB(dec, ptr, void)
#endif /* CK_F_PR_DEC_PTR_ZERO */
#endif /* CK_F_PR_LOAD_PTR && CK_F_PR_CAS_PTR_VALUE */
@ -753,6 +793,8 @@ CK_PR_UNARY_S(inc, add, 64, uint64_t)
#ifndef CK_F_PR_INC_64_ZERO
#define CK_F_PR_INC_64_ZERO
CK_PR_UNARY_Z_S(inc, 64, uint64_t, +, UINT64_MAX)
#else
CK_PR_UNARY_Z_STUB(inc, 64, uint64_t)
#endif /* CK_F_PR_INC_64_ZERO */
#ifndef CK_F_PR_DEC_64
@ -763,6 +805,8 @@ CK_PR_UNARY_S(dec, sub, 64, uint64_t)
#ifndef CK_F_PR_DEC_64_ZERO
#define CK_F_PR_DEC_64_ZERO
CK_PR_UNARY_Z_S(dec, 64, uint64_t, -, 1)
#else
CK_PR_UNARY_Z_STUB(dec, 64, uint64_t)
#endif /* CK_F_PR_DEC_64_ZERO */
#endif /* CK_F_PR_LOAD_64 && CK_F_PR_CAS_64_VALUE */
@ -777,6 +821,8 @@ CK_PR_UNARY_S(inc, add, 32, uint32_t)
#ifndef CK_F_PR_INC_32_ZERO
#define CK_F_PR_INC_32_ZERO
CK_PR_UNARY_Z_S(inc, 32, uint32_t, +, UINT32_MAX)
#else
CK_PR_UNARY_Z_STUB(inc, 32, uint32_t)
#endif /* CK_F_PR_INC_32_ZERO */
#ifndef CK_F_PR_DEC_32
@ -787,6 +833,8 @@ CK_PR_UNARY_S(dec, sub, 32, uint32_t)
#ifndef CK_F_PR_DEC_32_ZERO
#define CK_F_PR_DEC_32_ZERO
CK_PR_UNARY_Z_S(dec, 32, uint32_t, -, 1)
#else
CK_PR_UNARY_Z_STUB(dec, 32, uint32_t)
#endif /* CK_F_PR_DEC_32_ZERO */
#endif /* CK_F_PR_LOAD_32 && CK_F_PR_CAS_32_VALUE */
@ -801,6 +849,8 @@ CK_PR_UNARY_S(inc, add, 16, uint16_t)
#ifndef CK_F_PR_INC_16_ZERO
#define CK_F_PR_INC_16_ZERO
CK_PR_UNARY_Z_S(inc, 16, uint16_t, +, UINT16_MAX)
#else
CK_PR_UNARY_Z_STUB(inc, 16, uint16_t)
#endif /* CK_F_PR_INC_16_ZERO */
#ifndef CK_F_PR_DEC_16
@ -811,6 +861,8 @@ CK_PR_UNARY_S(dec, sub, 16, uint16_t)
#ifndef CK_F_PR_DEC_16_ZERO
#define CK_F_PR_DEC_16_ZERO
CK_PR_UNARY_Z_S(dec, 16, uint16_t, -, 1)
#else
CK_PR_UNARY_Z_STUB(dec, 16, uint16_t)
#endif /* CK_F_PR_DEC_16_ZERO */
#endif /* CK_F_PR_LOAD_16 && CK_F_PR_CAS_16_VALUE */
@ -825,6 +877,8 @@ CK_PR_UNARY_S(inc, add, 8, uint8_t)
#ifndef CK_F_PR_INC_8_ZERO
#define CK_F_PR_INC_8_ZERO
CK_PR_UNARY_Z_S(inc, 8, uint8_t, +, UINT8_MAX)
#else
CK_PR_UNARY_Z_STUB(inc, 8, uint8_t)
#endif /* CK_F_PR_INC_8_ZERO */
#ifndef CK_F_PR_DEC_8
@ -835,6 +889,8 @@ CK_PR_UNARY_S(dec, sub, 8, uint8_t)
#ifndef CK_F_PR_DEC_8_ZERO
#define CK_F_PR_DEC_8_ZERO
CK_PR_UNARY_Z_S(dec, 8, uint8_t, -, 1)
#else
CK_PR_UNARY_Z_STUB(dec, 8, uint8_t)
#endif /* CK_F_PR_DEC_8_ZERO */
#endif /* CK_F_PR_LOAD_8 && CK_F_PR_CAS_8_VALUE */

View file

@ -125,7 +125,7 @@
*/
#define CK_SLIST_HEAD(name, type) \
struct name { \
struct type *slh_first; /* first element */ \
struct type *cslh_first; /* first element */ \
}
#define CK_SLIST_HEAD_INITIALIZER(head) \
@ -133,85 +133,95 @@ struct name { \
#define CK_SLIST_ENTRY(type) \
struct { \
struct type *sle_next; /* next element */ \
struct type *csle_next; /* next element */ \
}
/*
* Singly-linked List functions.
*/
#define CK_SLIST_EMPTY(head) \
(ck_pr_load_ptr(&(head)->slh_first) == NULL)
(ck_pr_load_ptr(&(head)->cslh_first) == NULL)
#define CK_SLIST_FIRST(head) \
(ck_pr_load_ptr(&(head)->slh_first))
(ck_pr_load_ptr(&(head)->cslh_first))
#define CK_SLIST_NEXT(elm, field) \
ck_pr_load_ptr(&((elm)->field.sle_next))
ck_pr_load_ptr(&((elm)->field.csle_next))
#define CK_SLIST_FOREACH(var, head, field) \
for ((var) = CK_SLIST_FIRST((head)); \
(var) && (ck_pr_fence_load(), 1); \
(var); \
(var) = CK_SLIST_NEXT((var), field))
#define CK_SLIST_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = CK_SLIST_FIRST(head); \
(var) && (ck_pr_fence_load(), (tvar) = CK_SLIST_NEXT(var, field), 1);\
#define CK_SLIST_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = CK_SLIST_FIRST(head); \
(var) && ((tvar) = CK_SLIST_NEXT(var, field), 1); \
(var) = (tvar))
#define CK_SLIST_FOREACH_PREVPTR(var, varp, head, field) \
for ((varp) = &(head)->slh_first; \
((var) = ck_pr_load_ptr(varp)) != NULL && (ck_pr_fence_load(), 1); \
(varp) = &(var)->field.sle_next)
for ((varp) = &(head)->cslh_first; \
((var) = ck_pr_load_ptr(varp)) != NULL; \
(varp) = &(var)->field.csle_next)
#define CK_SLIST_INIT(head) do { \
ck_pr_store_ptr(&(head)->slh_first, NULL); \
ck_pr_store_ptr(&(head)->cslh_first, NULL); \
ck_pr_fence_store(); \
} while (0)
#define CK_SLIST_INSERT_AFTER(a, b, field) do { \
(b)->field.sle_next = (a)->field.sle_next; \
(b)->field.csle_next = (a)->field.csle_next; \
ck_pr_fence_store(); \
ck_pr_store_ptr(&(a)->field.sle_next, b); \
ck_pr_store_ptr(&(a)->field.csle_next, b); \
} while (0)
#define CK_SLIST_INSERT_HEAD(head, elm, field) do { \
(elm)->field.sle_next = (head)->slh_first; \
(elm)->field.csle_next = (head)->cslh_first; \
ck_pr_fence_store(); \
ck_pr_store_ptr(&(head)->slh_first, elm); \
ck_pr_store_ptr(&(head)->cslh_first, elm); \
} while (0)
#define CK_SLIST_INSERT_PREVPTR(prevp, slistelm, elm, field) do { \
(elm)->field.csle_next = (slistelm); \
ck_pr_fence_store(); \
ck_pr_store_ptr(prevp, elm); \
} while (0)
#define CK_SLIST_REMOVE_AFTER(elm, field) do { \
ck_pr_store_ptr(&(elm)->field.sle_next, \
(elm)->field.sle_next->field.sle_next); \
ck_pr_store_ptr(&(elm)->field.csle_next, \
(elm)->field.csle_next->field.csle_next); \
} while (0)
#define CK_SLIST_REMOVE(head, elm, type, field) do { \
if ((head)->slh_first == (elm)) { \
if ((head)->cslh_first == (elm)) { \
CK_SLIST_REMOVE_HEAD((head), field); \
} else { \
struct type *curelm = (head)->slh_first; \
while (curelm->field.sle_next != (elm)) \
curelm = curelm->field.sle_next; \
struct type *curelm = (head)->cslh_first; \
while (curelm->field.csle_next != (elm)) \
curelm = curelm->field.csle_next; \
CK_SLIST_REMOVE_AFTER(curelm, field); \
} \
} while (0)
#define CK_SLIST_REMOVE_HEAD(head, field) do { \
ck_pr_store_ptr(&(head)->slh_first, \
(head)->slh_first->field.sle_next); \
ck_pr_store_ptr(&(head)->cslh_first, \
(head)->cslh_first->field.csle_next); \
} while (0)
#define CK_SLIST_REMOVE_PREVPTR(prevp, elm, field) do { \
ck_pr_store_ptr(prevptr, (elm)->field.csle_next); \
} while (0)
#define CK_SLIST_MOVE(head1, head2, field) do { \
ck_pr_store_ptr(&(head1)->slh_first, (head2)->slh_first); \
ck_pr_store_ptr(&(head1)->cslh_first, (head2)->cslh_first); \
} while (0)
/*
* This operation is not applied atomically.
*/
#define CK_SLIST_SWAP(a, b, type) do { \
struct type *swap_first = (a)->slh_first; \
(a)->slh_first = (b)->slh_first; \
(b)->slh_first = swap_first; \
struct type *swap_first = (a)->cslh_first; \
(a)->cslh_first = (b)->cslh_first; \
(b)->cslh_first = swap_first; \
} while (0)
/*
@ -219,107 +229,107 @@ struct { \
*/
#define CK_STAILQ_HEAD(name, type) \
struct name { \
struct type *stqh_first;/* first element */ \
struct type **stqh_last;/* addr of last next element */ \
struct type *cstqh_first;/* first element */ \
struct type **cstqh_last;/* addr of last next element */ \
}
#define CK_STAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).stqh_first }
{ NULL, &(head).cstqh_first }
#define CK_STAILQ_ENTRY(type) \
struct { \
struct type *stqe_next; /* next element */ \
struct type *cstqe_next; /* next element */ \
}
/*
* Singly-linked Tail queue functions.
*/
#define CK_STAILQ_CONCAT(head1, head2) do { \
if ((head2)->stqh_first == NULL) { \
ck_pr_store_ptr((head1)->stqh_last, (head2)->stqh_first); \
if ((head2)->cstqh_first != NULL) { \
ck_pr_store_ptr((head1)->cstqh_last, (head2)->cstqh_first); \
ck_pr_fence_store(); \
(head1)->stqh_last = (head2)->stqh_last; \
(head1)->cstqh_last = (head2)->cstqh_last; \
CK_STAILQ_INIT((head2)); \
} \
} while (0)
#define CK_STAILQ_EMPTY(head) (ck_pr_load_ptr(&(head)->stqh_first) == NULL)
#define CK_STAILQ_EMPTY(head) (ck_pr_load_ptr(&(head)->cstqh_first) == NULL)
#define CK_STAILQ_FIRST(head) (ck_pr_load_ptr(&(head)->stqh_first))
#define CK_STAILQ_FIRST(head) (ck_pr_load_ptr(&(head)->cstqh_first))
#define CK_STAILQ_FOREACH(var, head, field) \
for((var) = CK_STAILQ_FIRST((head)); \
(var) && (ck_pr_fence_load(), 1); \
(var); \
(var) = CK_STAILQ_NEXT((var), field))
#define CK_STAILQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = CK_STAILQ_FIRST((head)); \
(var) && (ck_pr_fence_load(), (tvar) = \
(var) && ((tvar) = \
CK_STAILQ_NEXT((var), field), 1); \
(var) = (tvar))
#define CK_STAILQ_INIT(head) do { \
ck_pr_store_ptr(&(head)->stqh_first, NULL); \
ck_pr_store_ptr(&(head)->cstqh_first, NULL); \
ck_pr_fence_store(); \
(head)->stqh_last = &(head)->stqh_first; \
(head)->cstqh_last = &(head)->cstqh_first; \
} while (0)
#define CK_STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
(elm)->field.stqe_next = (tqelm)->field.stqe_next; \
(elm)->field.cstqe_next = (tqelm)->field.cstqe_next; \
ck_pr_fence_store(); \
ck_pr_store_ptr(&(tqelm)->field.stqe_next, elm); \
if ((elm)->field.stqe_next == NULL) \
(head)->stqh_last = &(elm)->field.stqe_next; \
ck_pr_store_ptr(&(tqelm)->field.cstqe_next, elm); \
if ((elm)->field.cstqe_next == NULL) \
(head)->cstqh_last = &(elm)->field.cstqe_next; \
} while (0)
#define CK_STAILQ_INSERT_HEAD(head, elm, field) do { \
(elm)->field.stqe_next = (head)->stqh_first; \
(elm)->field.cstqe_next = (head)->cstqh_first; \
ck_pr_fence_store(); \
ck_pr_store_ptr(&(head)->stqh_first, elm); \
if ((elm)->field.stqe_next == NULL) \
(head)->stqh_last = &(elm)->field.stqe_next; \
ck_pr_store_ptr(&(head)->cstqh_first, elm); \
if ((elm)->field.cstqe_next == NULL) \
(head)->cstqh_last = &(elm)->field.cstqe_next; \
} while (0)
#define CK_STAILQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.stqe_next = NULL; \
(elm)->field.cstqe_next = NULL; \
ck_pr_fence_store(); \
ck_pr_store_ptr((head)->stqh_last, (elm)); \
(head)->stqh_last = &(elm)->field.stqe_next; \
ck_pr_store_ptr((head)->cstqh_last, (elm)); \
(head)->cstqh_last = &(elm)->field.cstqe_next; \
} while (0)
#define CK_STAILQ_NEXT(elm, field) \
(ck_pr_load_ptr(&(elm)->field.stqe_next))
(ck_pr_load_ptr(&(elm)->field.cstqe_next))
#define CK_STAILQ_REMOVE(head, elm, type, field) do { \
if ((head)->stqh_first == (elm)) { \
if ((head)->cstqh_first == (elm)) { \
CK_STAILQ_REMOVE_HEAD((head), field); \
} else { \
struct type *curelm = (head)->stqh_first; \
while (curelm->field.stqe_next != (elm)) \
curelm = curelm->field.stqe_next; \
struct type *curelm = (head)->cstqh_first; \
while (curelm->field.cstqe_next != (elm)) \
curelm = curelm->field.cstqe_next; \
CK_STAILQ_REMOVE_AFTER(head, curelm, field); \
} \
} while (0)
#define CK_STAILQ_REMOVE_AFTER(head, elm, field) do { \
ck_pr_store_ptr(&(elm)->field.stqe_next, \
(elm)->field.stqe_next->field.stqe_next); \
if ((elm)->field.stqe_next == NULL) \
(head)->stqh_last = &(elm)->field.stqe_next; \
ck_pr_store_ptr(&(elm)->field.cstqe_next, \
(elm)->field.cstqe_next->field.cstqe_next); \
if ((elm)->field.cstqe_next == NULL) \
(head)->cstqh_last = &(elm)->field.cstqe_next; \
} while (0)
#define CK_STAILQ_REMOVE_HEAD(head, field) do { \
ck_pr_store_ptr(&(head)->stqh_first, \
(head)->stqh_first->field.stqe_next); \
if ((head)->stqh_first == NULL) \
(head)->stqh_last = &(head)->stqh_first; \
ck_pr_store_ptr(&(head)->cstqh_first, \
(head)->cstqh_first->field.cstqe_next); \
if ((head)->cstqh_first == NULL) \
(head)->cstqh_last = &(head)->cstqh_first; \
} while (0)
#define CK_STAILQ_MOVE(head1, head2, field) do { \
ck_pr_store_ptr(&(head1)->stqh_first, (head2)->stqh_first); \
(head1)->stqh_last = (head2)->stqh_last; \
if ((head2)->stqh_last == &(head2)->stqh_first) \
(head1)->stqh_last = &(head1)->stqh_first; \
ck_pr_store_ptr(&(head1)->cstqh_first, (head2)->cstqh_first); \
(head1)->cstqh_last = (head2)->cstqh_last; \
if ((head2)->cstqh_last == &(head2)->cstqh_first) \
(head1)->cstqh_last = &(head1)->cstqh_first; \
} while (0)
/*
@ -327,15 +337,15 @@ struct { \
*/
#define CK_STAILQ_SWAP(head1, head2, type) do { \
struct type *swap_first = CK_STAILQ_FIRST(head1); \
struct type **swap_last = (head1)->stqh_last; \
struct type **swap_last = (head1)->cstqh_last; \
CK_STAILQ_FIRST(head1) = CK_STAILQ_FIRST(head2); \
(head1)->stqh_last = (head2)->stqh_last; \
(head1)->cstqh_last = (head2)->cstqh_last; \
CK_STAILQ_FIRST(head2) = swap_first; \
(head2)->stqh_last = swap_last; \
(head2)->cstqh_last = swap_last; \
if (CK_STAILQ_EMPTY(head1)) \
(head1)->stqh_last = &(head1)->stqh_first; \
(head1)->cstqh_last = &(head1)->cstqh_first; \
if (CK_STAILQ_EMPTY(head2)) \
(head2)->stqh_last = &(head2)->stqh_first; \
(head2)->cstqh_last = &(head2)->cstqh_first; \
} while (0)
/*
@ -343,7 +353,7 @@ struct { \
*/
#define CK_LIST_HEAD(name, type) \
struct name { \
struct type *lh_first; /* first element */ \
struct type *clh_first; /* first element */ \
}
#define CK_LIST_HEAD_INITIALIZER(head) \
@ -351,78 +361,78 @@ struct name { \
#define CK_LIST_ENTRY(type) \
struct { \
struct type *le_next; /* next element */ \
struct type **le_prev; /* address of previous next element */ \
struct type *cle_next; /* next element */ \
struct type **cle_prev; /* address of previous next element */ \
}
#define CK_LIST_FIRST(head) ck_pr_load_ptr(&(head)->lh_first)
#define CK_LIST_FIRST(head) ck_pr_load_ptr(&(head)->clh_first)
#define CK_LIST_EMPTY(head) (CK_LIST_FIRST(head) == NULL)
#define CK_LIST_NEXT(elm, field) ck_pr_load_ptr(&(elm)->field.le_next)
#define CK_LIST_NEXT(elm, field) ck_pr_load_ptr(&(elm)->field.cle_next)
#define CK_LIST_FOREACH(var, head, field) \
for ((var) = CK_LIST_FIRST((head)); \
(var) && (ck_pr_fence_load(), 1); \
(var); \
(var) = CK_LIST_NEXT((var), field))
#define CK_LIST_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = CK_LIST_FIRST((head)); \
(var) && (ck_pr_fence_load(), (tvar) = CK_LIST_NEXT((var), field), 1);\
(var) && ((tvar) = CK_LIST_NEXT((var), field), 1); \
(var) = (tvar))
#define CK_LIST_INIT(head) do { \
ck_pr_store_ptr(&(head)->lh_first, NULL); \
ck_pr_store_ptr(&(head)->clh_first, NULL); \
ck_pr_fence_store(); \
} while (0)
#define CK_LIST_INSERT_AFTER(listelm, elm, field) do { \
(elm)->field.le_next = (listelm)->field.le_next; \
(elm)->field.le_prev = &(listelm)->field.le_next; \
(elm)->field.cle_next = (listelm)->field.cle_next; \
(elm)->field.cle_prev = &(listelm)->field.cle_next; \
ck_pr_fence_store(); \
if ((listelm)->field.le_next != NULL) \
(listelm)->field.le_next->field.le_prev = &(elm)->field.le_next;\
ck_pr_store_ptr(&(listelm)->field.le_next, elm); \
if ((listelm)->field.cle_next != NULL) \
(listelm)->field.cle_next->field.cle_prev = &(elm)->field.cle_next;\
ck_pr_store_ptr(&(listelm)->field.cle_next, elm); \
} while (0)
#define CK_LIST_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.le_prev = (listelm)->field.le_prev; \
(elm)->field.le_next = (listelm); \
(elm)->field.cle_prev = (listelm)->field.cle_prev; \
(elm)->field.cle_next = (listelm); \
ck_pr_fence_store(); \
ck_pr_store_ptr((listelm)->field.le_prev, (elm)); \
(listelm)->field.le_prev = &(elm)->field.le_next; \
ck_pr_store_ptr((listelm)->field.cle_prev, (elm)); \
(listelm)->field.cle_prev = &(elm)->field.cle_next; \
} while (0)
#define CK_LIST_INSERT_HEAD(head, elm, field) do { \
(elm)->field.le_next = (head)->lh_first; \
(elm)->field.cle_next = (head)->clh_first; \
ck_pr_fence_store(); \
if ((elm)->field.le_next != NULL) \
(head)->lh_first->field.le_prev = &(elm)->field.le_next; \
ck_pr_store_ptr(&(head)->lh_first, elm); \
(elm)->field.le_prev = &(head)->lh_first; \
if ((elm)->field.cle_next != NULL) \
(head)->clh_first->field.cle_prev = &(elm)->field.cle_next; \
ck_pr_store_ptr(&(head)->clh_first, elm); \
(elm)->field.cle_prev = &(head)->clh_first; \
} while (0)
#define CK_LIST_REMOVE(elm, field) do { \
ck_pr_store_ptr((elm)->field.le_prev, (elm)->field.le_next); \
if ((elm)->field.le_next != NULL) \
(elm)->field.le_next->field.le_prev = (elm)->field.le_prev; \
ck_pr_store_ptr((elm)->field.cle_prev, (elm)->field.cle_next); \
if ((elm)->field.cle_next != NULL) \
(elm)->field.cle_next->field.cle_prev = (elm)->field.cle_prev; \
} while (0)
#define CK_LIST_MOVE(head1, head2, field) do { \
ck_pr_store_ptr(&(head1)->lh_first, (head2)->lh_first); \
if ((head1)->lh_first != NULL) \
(head1)->lh_first->field.le_prev = &(head1)->lh_first; \
ck_pr_store_ptr(&(head1)->clh_first, (head2)->clh_first); \
if ((head1)->clh_first != NULL) \
(head1)->clh_first->field.cle_prev = &(head1)->clh_first; \
} while (0)
/*
* This operation is not applied atomically.
*/
#define CK_LIST_SWAP(head1, head2, type, field) do { \
struct type *swap_tmp = (head1)->lh_first; \
(head1)->lh_first = (head2)->lh_first; \
(head2)->lh_first = swap_tmp; \
if ((swap_tmp = (head1)->lh_first) != NULL) \
swap_tmp->field.le_prev = &(head1)->lh_first; \
if ((swap_tmp = (head2)->lh_first) != NULL) \
swap_tmp->field.le_prev = &(head2)->lh_first; \
struct type *swap_tmp = (head1)->clh_first; \
(head1)->clh_first = (head2)->clh_first; \
(head2)->clh_first = swap_tmp; \
if ((swap_tmp = (head1)->clh_first) != NULL) \
swap_tmp->field.cle_prev = &(head1)->clh_first; \
if ((swap_tmp = (head2)->clh_first) != NULL) \
swap_tmp->field.cle_prev = &(head2)->clh_first; \
} while (0)
#endif /* CK_QUEUE_H */

View file

@ -66,9 +66,56 @@ ck_ring_size(const struct ck_ring *ring)
CK_CC_INLINE static unsigned int
ck_ring_capacity(const struct ck_ring *ring)
{
return ring->size;
}
/*
* This function is only safe to call when there are no concurrent operations
* on the ring. This is primarily meant for persistent ck_ring use-cases. The
* function returns true if any mutations were performed on the ring.
*/
CK_CC_INLINE static bool
ck_ring_repair(struct ck_ring *ring)
{
bool r = false;
if (ring->p_tail != ring->p_head) {
ring->p_tail = ring->p_head;
r = true;
}
return r;
}
/*
* This can be called when no concurrent updates are occurring on the ring
* structure to check for consistency. This is primarily meant to be used for
* persistent storage of the ring. If this functions returns false, the ring
* is in an inconsistent state.
*/
CK_CC_INLINE static bool
ck_ring_valid(const struct ck_ring *ring)
{
unsigned int size = ring->size;
unsigned int c_head = ring->c_head;
unsigned int p_head = ring->p_head;
/* The ring must be a power of 2. */
if (size & (size - 1))
return false;
/* The consumer counter must always be smaller than the producer. */
if (c_head > p_head)
return false;
/* The producer may only be up to size slots ahead of consumer. */
if (p_head - c_head >= size)
return false;
return true;
}
CK_CC_INLINE static void
ck_ring_init(struct ck_ring *ring, unsigned int size)
{
@ -84,6 +131,45 @@ ck_ring_init(struct ck_ring *ring, unsigned int size)
/*
* The _ck_ring_* namespace is internal only and must not used externally.
*/
/*
* This function will return a region of memory to write for the next value
* for a single producer.
*/
CK_CC_FORCE_INLINE static void *
_ck_ring_enqueue_reserve_sp(struct ck_ring *ring,
void *CK_CC_RESTRICT buffer,
unsigned int ts,
unsigned int *size)
{
const unsigned int mask = ring->mask;
unsigned int consumer, producer, delta;
consumer = ck_pr_load_uint(&ring->c_head);
producer = ring->p_tail;
delta = producer + 1;
if (size != NULL)
*size = (producer - consumer) & mask;
if (CK_CC_UNLIKELY((delta & mask) == (consumer & mask)))
return NULL;
return (char *)buffer + ts * (producer & mask);
}
/*
* This is to be called to commit and make visible a region of previously
* reserved with reverse_sp.
*/
CK_CC_FORCE_INLINE static void
_ck_ring_enqueue_commit_sp(struct ck_ring *ring)
{
ck_pr_fence_store();
ck_pr_store_uint(&ring->p_tail, ring->p_tail + 1);
return;
}
CK_CC_FORCE_INLINE static bool
_ck_ring_enqueue_sp(struct ck_ring *ring,
void *CK_CC_RESTRICT buffer,
@ -163,6 +249,65 @@ _ck_ring_dequeue_sc(struct ck_ring *ring,
return true;
}
CK_CC_FORCE_INLINE static void *
_ck_ring_enqueue_reserve_mp(struct ck_ring *ring,
void *buffer,
unsigned int ts,
unsigned int *ticket,
unsigned int *size)
{
const unsigned int mask = ring->mask;
unsigned int producer, consumer, delta;
producer = ck_pr_load_uint(&ring->p_head);
for (;;) {
ck_pr_fence_load();
consumer = ck_pr_load_uint(&ring->c_head);
delta = producer + 1;
if (CK_CC_LIKELY((producer - consumer) < mask)) {
if (ck_pr_cas_uint_value(&ring->p_head,
producer, delta, &producer) == true) {
break;
}
} else {
unsigned int new_producer;
ck_pr_fence_load();
new_producer = ck_pr_load_uint(&ring->p_head);
if (producer == new_producer) {
if (size != NULL)
*size = (producer - consumer) & mask;
return false;
}
producer = new_producer;
}
}
*ticket = producer;
if (size != NULL)
*size = (producer - consumer) & mask;
return (char *)buffer + ts * (producer & mask);
}
CK_CC_FORCE_INLINE static void
_ck_ring_enqueue_commit_mp(struct ck_ring *ring, unsigned int producer)
{
while (ck_pr_load_uint(&ring->p_tail) != producer)
ck_pr_stall();
ck_pr_fence_store();
ck_pr_store_uint(&ring->p_tail, producer + 1);
return;
}
CK_CC_FORCE_INLINE static bool
_ck_ring_enqueue_mp(struct ck_ring *ring,
void *buffer,
@ -176,23 +321,54 @@ _ck_ring_enqueue_mp(struct ck_ring *ring,
producer = ck_pr_load_uint(&ring->p_head);
do {
for (;;) {
/*
* The snapshot of producer must be up to date with
* respect to consumer.
* The snapshot of producer must be up to date with respect to
* consumer.
*/
ck_pr_fence_load();
consumer = ck_pr_load_uint(&ring->c_head);
delta = producer + 1;
if (CK_CC_UNLIKELY((delta & mask) == (consumer & mask))) {
r = false;
goto leave;
/*
* Only try to CAS if the producer is not clearly stale (not
* less than consumer) and the buffer is definitely not full.
*/
if (CK_CC_LIKELY((producer - consumer) < mask)) {
if (ck_pr_cas_uint_value(&ring->p_head,
producer, delta, &producer) == true) {
break;
}
} else {
unsigned int new_producer;
/*
* Slow path. Either the buffer is full or we have a
* stale snapshot of p_head. Execute a second read of
* p_read that must be ordered wrt the snapshot of
* c_head.
*/
ck_pr_fence_load();
new_producer = ck_pr_load_uint(&ring->p_head);
/*
* Only fail if we haven't made forward progress in
* production: the buffer must have been full when we
* read new_producer (or we wrapped around UINT_MAX
* during this iteration).
*/
if (producer == new_producer) {
r = false;
goto leave;
}
/*
* p_head advanced during this iteration. Try again.
*/
producer = new_producer;
}
} while (ck_pr_cas_uint_value(&ring->p_head,
producer,
delta,
&producer) == false);
}
buffer = (char *)buffer + ts * (producer & mask);
memcpy(buffer, entry, ts);
@ -323,6 +499,33 @@ ck_ring_enqueue_spsc(struct ck_ring *ring,
&entry, sizeof(entry), NULL);
}
CK_CC_INLINE static void *
ck_ring_enqueue_reserve_spsc_size(struct ck_ring *ring,
struct ck_ring_buffer *buffer,
unsigned int *size)
{
return _ck_ring_enqueue_reserve_sp(ring, buffer, sizeof(void *),
size);
}
CK_CC_INLINE static void *
ck_ring_enqueue_reserve_spsc(struct ck_ring *ring,
struct ck_ring_buffer *buffer)
{
return _ck_ring_enqueue_reserve_sp(ring, buffer, sizeof(void *),
NULL);
}
CK_CC_INLINE static void
ck_ring_enqueue_commit_spsc(struct ck_ring *ring)
{
_ck_ring_enqueue_commit_sp(ring);
return;
}
CK_CC_INLINE static bool
ck_ring_dequeue_spsc(struct ck_ring *ring,
const struct ck_ring_buffer *buffer,
@ -344,8 +547,7 @@ ck_ring_enqueue_mpmc(struct ck_ring *ring,
const void *entry)
{
return _ck_ring_enqueue_mp(ring, buffer, &entry,
sizeof(entry), NULL);
return _ck_ring_enqueue_mp(ring, buffer, &entry, sizeof(entry), NULL);
}
CK_CC_INLINE static bool
@ -355,8 +557,37 @@ ck_ring_enqueue_mpmc_size(struct ck_ring *ring,
unsigned int *size)
{
return _ck_ring_enqueue_mp_size(ring, buffer, &entry,
sizeof(entry), size);
return _ck_ring_enqueue_mp_size(ring, buffer, &entry, sizeof(entry),
size);
}
CK_CC_INLINE static void *
ck_ring_enqueue_reserve_mpmc(struct ck_ring *ring,
struct ck_ring_buffer *buffer,
unsigned int *ticket)
{
return _ck_ring_enqueue_reserve_mp(ring, buffer, sizeof(void *),
ticket, NULL);
}
CK_CC_INLINE static void *
ck_ring_enqueue_reserve_mpmc_size(struct ck_ring *ring,
struct ck_ring_buffer *buffer,
unsigned int *ticket,
unsigned int *size)
{
return _ck_ring_enqueue_reserve_mp(ring, buffer, sizeof(void *),
ticket, size);
}
CK_CC_INLINE static void
ck_ring_enqueue_commit_mpmc(struct ck_ring *ring, unsigned int ticket)
{
_ck_ring_enqueue_commit_mp(ring, ticket);
return;
}
CK_CC_INLINE static bool
@ -384,6 +615,31 @@ ck_ring_dequeue_mpmc(struct ck_ring *ring,
* ring buffer containing pointers. Correctness is provided for any number of
* consumers with up to one concurrent producer.
*/
CK_CC_INLINE static void *
ck_ring_enqueue_reserve_spmc_size(struct ck_ring *ring,
struct ck_ring_buffer *buffer,
unsigned int *size)
{
return _ck_ring_enqueue_reserve_sp(ring, buffer, sizeof(void *), size);
}
CK_CC_INLINE static void *
ck_ring_enqueue_reserve_spmc(struct ck_ring *ring,
struct ck_ring_buffer *buffer)
{
return _ck_ring_enqueue_reserve_sp(ring, buffer, sizeof(void *), NULL);
}
CK_CC_INLINE static void
ck_ring_enqueue_commit_spmc(struct ck_ring *ring)
{
_ck_ring_enqueue_commit_sp(ring);
return;
}
CK_CC_INLINE static bool
ck_ring_enqueue_spmc_size(struct ck_ring *ring,
struct ck_ring_buffer *buffer,
@ -428,6 +684,35 @@ ck_ring_dequeue_spmc(struct ck_ring *ring,
* ring buffer containing pointers. Correctness is provided for any number of
* producers with up to one concurrent consumers.
*/
CK_CC_INLINE static void *
ck_ring_enqueue_reserve_mpsc(struct ck_ring *ring,
struct ck_ring_buffer *buffer,
unsigned int *ticket)
{
return _ck_ring_enqueue_reserve_mp(ring, buffer, sizeof(void *),
ticket, NULL);
}
CK_CC_INLINE static void *
ck_ring_enqueue_reserve_mpsc_size(struct ck_ring *ring,
struct ck_ring_buffer *buffer,
unsigned int *ticket,
unsigned int *size)
{
return _ck_ring_enqueue_reserve_mp(ring, buffer, sizeof(void *),
ticket, size);
}
CK_CC_INLINE static void
ck_ring_enqueue_commit_mpsc(struct ck_ring *ring, unsigned int ticket)
{
_ck_ring_enqueue_commit_mp(ring, ticket);
return;
}
CK_CC_INLINE static bool
ck_ring_enqueue_mpsc(struct ck_ring *ring,
struct ck_ring_buffer *buffer,
@ -463,194 +748,290 @@ ck_ring_dequeue_mpsc(struct ck_ring *ring,
* CK_RING_PROTOTYPE is used to define a type-safe interface for inlining
* values of a particular type in the ring the buffer.
*/
#define CK_RING_PROTOTYPE(name, type) \
CK_CC_INLINE static bool \
ck_ring_enqueue_spsc_size_##name(struct ck_ring *a, \
struct type *b, \
struct type *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_sp_size(a, b, c, \
sizeof(struct type), d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_spsc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_enqueue_sp(a, b, c, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static bool \
ck_ring_dequeue_spsc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_dequeue_sc(a, b, c, \
sizeof(struct type)); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_spmc_size_##name(struct ck_ring *a, \
struct type *b, \
struct type *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_sp_size(a, b, c, \
sizeof(struct type), d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_spmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_enqueue_sp(a, b, c, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static bool \
ck_ring_trydequeue_spmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_trydequeue_mc(a, \
b, c, sizeof(struct type)); \
} \
\
CK_CC_INLINE static bool \
ck_ring_dequeue_spmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_dequeue_mc(a, b, c, \
sizeof(struct type)); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_mpsc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_enqueue_mp(a, b, c, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_mpsc_size_##name(struct ck_ring *a, \
struct type *b, \
struct type *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_mp_size(a, b, c, \
sizeof(struct type), d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_dequeue_mpsc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_dequeue_sc(a, b, c, \
sizeof(struct type)); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_mpmc_size_##name(struct ck_ring *a, \
struct type *b, \
struct type *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_mp_size(a, b, c, \
sizeof(struct type), d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_mpmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_enqueue_mp(a, b, c, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static bool \
ck_ring_trydequeue_mpmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_trydequeue_mc(a, \
b, c, sizeof(struct type)); \
} \
\
CK_CC_INLINE static bool \
ck_ring_dequeue_mpmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_dequeue_mc(a, b, c, \
sizeof(struct type)); \
#define CK_RING_PROTOTYPE(name, type) \
CK_CC_INLINE static struct type * \
ck_ring_enqueue_reserve_spsc_##name(struct ck_ring *a, \
struct type *b) \
{ \
\
return _ck_ring_enqueue_reserve_sp(a, b, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static struct type * \
ck_ring_enqueue_reserve_spsc_size_##name(struct ck_ring *a, \
struct type *b, \
unsigned int *c) \
{ \
\
return _ck_ring_enqueue_reserve_sp(a, b, \
sizeof(struct type), c); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_spsc_size_##name(struct ck_ring *a, \
struct type *b, \
struct type *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_sp_size(a, b, c, \
sizeof(struct type), d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_spsc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_enqueue_sp(a, b, c, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static bool \
ck_ring_dequeue_spsc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_dequeue_sc(a, b, c, \
sizeof(struct type)); \
} \
\
CK_CC_INLINE static struct type * \
ck_ring_enqueue_reserve_spmc_##name(struct ck_ring *a, \
struct type *b) \
{ \
\
return _ck_ring_enqueue_reserve_sp(a, b, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static struct type * \
ck_ring_enqueue_reserve_spmc_size_##name(struct ck_ring *a, \
struct type *b, \
unsigned int *c) \
{ \
\
return _ck_ring_enqueue_reserve_sp(a, b, \
sizeof(struct type), c); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_spmc_size_##name(struct ck_ring *a, \
struct type *b, \
struct type *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_sp_size(a, b, c, \
sizeof(struct type), d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_spmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_enqueue_sp(a, b, c, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static bool \
ck_ring_trydequeue_spmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_trydequeue_mc(a, \
b, c, sizeof(struct type)); \
} \
\
CK_CC_INLINE static bool \
ck_ring_dequeue_spmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_dequeue_mc(a, b, c, \
sizeof(struct type)); \
} \
\
CK_CC_INLINE static struct type * \
ck_ring_enqueue_reserve_mpsc_##name(struct ck_ring *a, \
struct type *b, \
unsigned int *c) \
{ \
\
return _ck_ring_enqueue_reserve_mp(a, b, \
sizeof(struct type), c, NULL); \
} \
\
CK_CC_INLINE static struct type * \
ck_ring_enqueue_reserve_mpsc_size_##name(struct ck_ring *a, \
struct type *b, \
unsigned int *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_reserve_mp(a, b, \
sizeof(struct type), c, d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_mpsc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_enqueue_mp(a, b, c, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_mpsc_size_##name(struct ck_ring *a, \
struct type *b, \
struct type *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_mp_size(a, b, c, \
sizeof(struct type), d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_dequeue_mpsc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_dequeue_sc(a, b, c, \
sizeof(struct type)); \
} \
\
CK_CC_INLINE static struct type * \
ck_ring_enqueue_reserve_mpmc_##name(struct ck_ring *a, \
struct type *b, \
unsigned int *c) \
{ \
\
return _ck_ring_enqueue_reserve_mp(a, b, \
sizeof(struct type), c, NULL); \
} \
\
CK_CC_INLINE static struct type * \
ck_ring_enqueue_reserve_mpmc_size_##name(struct ck_ring *a, \
struct type *b, \
unsigned int *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_reserve_mp(a, b, \
sizeof(struct type), c, d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_mpmc_size_##name(struct ck_ring *a, \
struct type *b, \
struct type *c, \
unsigned int *d) \
{ \
\
return _ck_ring_enqueue_mp_size(a, b, c, \
sizeof(struct type), d); \
} \
\
CK_CC_INLINE static bool \
ck_ring_enqueue_mpmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_enqueue_mp(a, b, c, \
sizeof(struct type), NULL); \
} \
\
CK_CC_INLINE static bool \
ck_ring_trydequeue_mpmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_trydequeue_mc(a, \
b, c, sizeof(struct type)); \
} \
\
CK_CC_INLINE static bool \
ck_ring_dequeue_mpmc_##name(struct ck_ring *a, \
struct type *b, \
struct type *c) \
{ \
\
return _ck_ring_dequeue_mc(a, b, c, \
sizeof(struct type)); \
}
/*
* A single producer with one concurrent consumer.
*/
#define CK_RING_ENQUEUE_SPSC(name, a, b, c) \
#define CK_RING_ENQUEUE_SPSC(name, a, b, c) \
ck_ring_enqueue_spsc_##name(a, b, c)
#define CK_RING_ENQUEUE_SPSC_SIZE(name, a, b, c, d) \
#define CK_RING_ENQUEUE_SPSC_SIZE(name, a, b, c, d) \
ck_ring_enqueue_spsc_size_##name(a, b, c, d)
#define CK_RING_DEQUEUE_SPSC(name, a, b, c) \
#define CK_RING_ENQUEUE_RESERVE_SPSC(name, a, b, c) \
ck_ring_enqueue_reserve_spsc_##name(a, b, c)
#define CK_RING_ENQUEUE_RESERVE_SPSC_SIZE(name, a, b, c, d) \
ck_ring_enqueue_reserve_spsc_size_##name(a, b, c, d)
#define CK_RING_DEQUEUE_SPSC(name, a, b, c) \
ck_ring_dequeue_spsc_##name(a, b, c)
/*
* A single producer with any number of concurrent consumers.
*/
#define CK_RING_ENQUEUE_SPMC(name, a, b, c) \
#define CK_RING_ENQUEUE_SPMC(name, a, b, c) \
ck_ring_enqueue_spmc_##name(a, b, c)
#define CK_RING_ENQUEUE_SPMC_SIZE(name, a, b, c, d) \
#define CK_RING_ENQUEUE_SPMC_SIZE(name, a, b, c, d) \
ck_ring_enqueue_spmc_size_##name(a, b, c, d)
#define CK_RING_TRYDEQUEUE_SPMC(name, a, b, c) \
#define CK_RING_ENQUEUE_RESERVE_SPMC(name, a, b, c) \
ck_ring_enqueue_reserve_spmc_##name(a, b, c)
#define CK_RING_ENQUEUE_RESERVE_SPMC_SIZE(name, a, b, c, d) \
ck_ring_enqueue_reserve_spmc_size_##name(a, b, c, d)
#define CK_RING_TRYDEQUEUE_SPMC(name, a, b, c) \
ck_ring_trydequeue_spmc_##name(a, b, c)
#define CK_RING_DEQUEUE_SPMC(name, a, b, c) \
#define CK_RING_DEQUEUE_SPMC(name, a, b, c) \
ck_ring_dequeue_spmc_##name(a, b, c)
/*
* Any number of concurrent producers with up to one
* concurrent consumer.
*/
#define CK_RING_ENQUEUE_MPSC(name, a, b, c) \
#define CK_RING_ENQUEUE_MPSC(name, a, b, c) \
ck_ring_enqueue_mpsc_##name(a, b, c)
#define CK_RING_ENQUEUE_MPSC_SIZE(name, a, b, c, d) \
#define CK_RING_ENQUEUE_MPSC_SIZE(name, a, b, c, d) \
ck_ring_enqueue_mpsc_size_##name(a, b, c, d)
#define CK_RING_DEQUEUE_MPSC(name, a, b, c) \
#define CK_RING_ENQUEUE_RESERVE_MPSC(name, a, b, c) \
ck_ring_enqueue_reserve_mpsc_##name(a, b, c)
#define CK_RING_ENQUEUE_RESERVE_MPSC_SIZE(name, a, b, c, d) \
ck_ring_enqueue_reserve_mpsc_size_##name(a, b, c, d)
#define CK_RING_DEQUEUE_MPSC(name, a, b, c) \
ck_ring_dequeue_mpsc_##name(a, b, c)
/*
* Any number of concurrent producers and consumers.
*/
#define CK_RING_ENQUEUE_MPMC(name, a, b, c) \
#define CK_RING_ENQUEUE_MPMC(name, a, b, c) \
ck_ring_enqueue_mpmc_##name(a, b, c)
#define CK_RING_ENQUEUE_MPMC_SIZE(name, a, b, c, d) \
#define CK_RING_ENQUEUE_MPMC_SIZE(name, a, b, c, d) \
ck_ring_enqueue_mpmc_size_##name(a, b, c, d)
#define CK_RING_TRYDEQUEUE_MPMC(name, a, b, c) \
#define CK_RING_ENQUEUE_RESERVE_MPMC(name, a, b, c) \
ck_ring_enqueue_reserve_mpmc_##name(a, b, c)
#define CK_RING_ENQUEUE_RESERVE_MPMC_SIZE(name, a, b, c, d) \
ck_ring_enqueue_reserve_mpmc_size_##name(a, b, c, d)
#define CK_RING_TRYDEQUEUE_MPMC(name, a, b, c) \
ck_ring_trydequeue_mpmc_##name(a, b, c)
#define CK_RING_DEQUEUE_MPMC(name, a, b, c) \
#define CK_RING_DEQUEUE_MPMC(name, a, b, c) \
ck_ring_dequeue_mpmc_##name(a, b, c)
#endif /* CK_RING_H */

133
include/freebsd/ck_md.h.in Normal file
View file

@ -0,0 +1,133 @@
/*
* Copyright 2018 Samy Al Bahra.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* This header file is meant for use of Concurrency Kit in the FreeBSD kernel.
*/
#ifndef CK_MD_H
#define CK_MD_H
#include <sys/param.h>
#ifndef _KERNEL
#error This header file is meant for the FreeBSD kernel.
#endif /* _KERNEL */
#ifndef CK_MD_CACHELINE
/*
* FreeBSD's CACHE_LINE macro is a compile-time maximum cache-line size for an
* architecture, defined to be 128 bytes by default on x86*. Even in presence
* of adjacent sector prefetch, this doesn't make sense from a modeling
* perspective.
*/
#if defined(__amd64__) || defined(__i386__)
#define CK_MD_CACHELINE (64)
#else
#define CK_MD_CACHELINE (CACHE_LINE_SIZE)
#endif /* !__amd64__ && !__i386__ */
#endif /* CK_MD_CACHELINE */
#ifndef CK_MD_PAGESIZE
#define CK_MD_PAGESIZE (PAGE_SIZE)
#endif
/*
* Once FreeBSD has a mechanism to detect RTM, this can be enabled and RTM
* facilities can be called. These facilities refer to TSX.
*/
#ifndef CK_MD_RTM_DISABLE
#define CK_MD_RTM_DISABLE
#endif /* CK_MD_RTM_DISABLE */
/*
* Do not enable pointer-packing-related (VMA) optimizations in kernel-space.
*/
#ifndef CK_MD_POINTER_PACK_DISABLE
#define CK_MD_POINTER_PACK_DISABLE
#endif /* CK_MD_POINTER_PACK_DISABLE */
/*
* The following would be used for pointer-packing tricks, disabled for the
* kernel.
*/
#ifndef CK_MD_VMA_BITS_UNKNOWN
#define CK_MD_VMA_BITS_UNKNOWN
#endif /* CK_MD_VMA_BITS_UNKNOWN */
/*
* Do not enable double operations in kernel-space.
*/
#ifndef CK_PR_DISABLE_DOUBLE
#define CK_PR_DISABLE_DOUBLE
#endif /* CK_PR_DISABLE_DOUBLE */
/*
* If building for a uni-processor target, then enable the uniprocessor
* feature flag. This, among other things, will remove the lock prefix.
*/
#ifndef SMP
#define CK_MD_UMP
#endif /* SMP */
/*
* Disable the use of compiler builtin functions.
*/
#define CK_MD_CC_BUILTIN_DISABLE 1
/*
* CK expects those, which are normally defined by the build system.
*/
#if defined(__i386__) && !defined(__x86__)
#define __x86__
/*
* If x86 becomes more relevant, we may want to consider importing in
* __mbk() to avoid potential issues around false sharing.
*/
#define CK_MD_TSO
#define CK_MD_SSE_DISABLE 1
#elif defined(__amd64__)
#define CK_MD_TSO
#elif defined(__sparc64__) && !defined(__sparcv9__)
#define __sparcv9__
#define CK_MD_TSO
#elif defined(__powerpc64__) && !defined(__ppc64__)
#define __ppc64__
#elif defined(__powerpc__) && !defined(__ppc__)
#define __ppc__
#endif
/* If no memory model has been defined, assume RMO. */
#if !defined(CK_MD_RMO) && !defined(CK_MD_TSO) && !defined(CK_MD_PSO)
#define CK_MD_RMO
#endif
#define CK_VERSION "@VERSION@"
#define CK_GIT_SHA "@GIT_SHA@"
#endif /* CK_MD_H */

View file

@ -92,7 +92,7 @@ CK_PR_FENCE(unlock, CK_DMB_SY)
ck_pr_md_load_##S(const M *target) \
{ \
long r = 0; \
__asm__ __volatile__(I " %w0, [%1];" \
__asm__ __volatile__(I " %w0, [%1]\n" \
: "=r" (r) \
: "r" (target) \
: "memory"); \
@ -103,7 +103,7 @@ CK_PR_FENCE(unlock, CK_DMB_SY)
ck_pr_md_load_##S(const M *target) \
{ \
long r = 0; \
__asm__ __volatile__(I " %0, [%1];" \
__asm__ __volatile__(I " %0, [%1]\n" \
: "=r" (r) \
: "r" (target) \
: "memory"); \
@ -195,10 +195,10 @@ CK_PR_STORE_S_64(double, double, "str")
T previous = 0; \
T tmp = 0; \
__asm__ __volatile__("1:" \
"ldxr" W " %" R "0, [%2];" \
"neg %" R "0, %" R "0;" \
"stxr" W " %w1, %" R "0, [%2];" \
"cbnz %w1, 1b;" \
"ldxr" W " %" R "0, [%2]\n"\
"neg %" R "0, %" R "0\n" \
"stxr" W " %w1, %" R "0, [%2]\n" \
"cbnz %w1, 1b\n" \
: "=&r" (previous), \
"=&r" (tmp) \
: "r" (target) \

View file

@ -38,17 +38,17 @@ ck_pr_cas_64_2_value(uint64_t target[2], uint64_t compare[2], uint64_t set[2], u
uint64_t tmp1, tmp2;
__asm__ __volatile__("1:"
"ldxp %0, %1, [%4];"
"mov %2, %0;"
"mov %3, %1;"
"eor %0, %0, %5;"
"eor %1, %1, %6;"
"orr %1, %0, %1;"
"mov %w0, #0;"
"cbnz %1, 2f;"
"stxp %w0, %7, %8, [%4];"
"cbnz %w0, 1b;"
"mov %w0, #1;"
"ldxp %0, %1, [%4]\n"
"mov %2, %0\n"
"mov %3, %1\n"
"eor %0, %0, %5\n"
"eor %1, %1, %6\n"
"orr %1, %0, %1\n"
"mov %w0, #0\n"
"cbnz %1, 2f\n"
"stxp %w0, %7, %8, [%4]\n"
"cbnz %w0, 1b\n"
"mov %w0, #1\n"
"2:"
: "=&r" (tmp1), "=&r" (tmp2), "=&r" (value[0]), "=&r" (value[1])
: "r" (target), "r" (compare[0]), "r" (compare[1]), "r" (set[0]), "r" (set[1])
@ -72,15 +72,15 @@ ck_pr_cas_64_2(uint64_t target[2], uint64_t compare[2], uint64_t set[2])
uint64_t tmp1, tmp2;
__asm__ __volatile__("1:"
"ldxp %0, %1, [%2];"
"eor %0, %0, %3;"
"eor %1, %1, %4;"
"orr %1, %0, %1;"
"mov %w0, #0;"
"cbnz %1, 2f;"
"stxp %w0, %5, %6, [%2];"
"cbnz %w0, 1b;"
"mov %w0, #1;"
"ldxp %0, %1, [%2]\n"
"eor %0, %0, %3\n"
"eor %1, %1, %4\n"
"orr %1, %0, %1\n"
"mov %w0, #0\n"
"cbnz %1, 2f\n"
"stxp %w0, %5, %6, [%2]\n"
"cbnz %w0, 1b\n"
"mov %w0, #1\n"
"2:"
: "=&r" (tmp1), "=&r" (tmp2)
: "r" (target), "r" (compare[0]), "r" (compare[1]), "r" (set[0]), "r" (set[1])
@ -103,12 +103,12 @@ ck_pr_cas_ptr_2(void *target, void *compare, void *set)
{ \
T previous; \
T tmp; \
__asm__ __volatile__("1:" \
"ldxr" W " %" R "0, [%2];" \
"cmp %" R "0, %" R "4;" \
"b.ne 2f;" \
"stxr" W " %w1, %" R "3, [%2];" \
"cbnz %w1, 1b;" \
__asm__ __volatile__("1:\n" \
"ldxr" W " %" R "0, [%2]\n" \
"cmp %" R "0, %" R "4\n" \
"b.ne 2f\n" \
"stxr" W " %w1, %" R "3, [%2]\n" \
"cbnz %w1, 1b\n" \
"2:" \
: "=&r" (previous), \
"=&r" (tmp) \
@ -126,11 +126,11 @@ ck_pr_cas_ptr_2(void *target, void *compare, void *set)
T tmp; \
__asm__ __volatile__( \
"1:" \
"ldxr" W " %" R "0, [%2];" \
"cmp %" R "0, %" R "4;" \
"b.ne 2f;" \
"stxr" W " %w1, %" R "3, [%2];" \
"cbnz %w1, 1b;" \
"ldxr" W " %" R "0, [%2]\n" \
"cmp %" R "0, %" R "4\n" \
"b.ne 2f\n" \
"stxr" W " %w1, %" R "3, [%2]\n" \
"cbnz %w1, 1b\n" \
"2:" \
: "=&r" (previous), \
"=&r" (tmp) \
@ -167,9 +167,9 @@ CK_PR_CAS_S(char, char, "b", "w")
T previous; \
T tmp; \
__asm__ __volatile__("1:" \
"ldxr" W " %" R "0, [%2];" \
"stxr" W " %w1, %" R "3, [%2];"\
"cbnz %w1, 1b;" \
"ldxr" W " %" R "0, [%2]\n"\
"stxr" W " %w1, %" R "3, [%2]\n"\
"cbnz %w1, 1b\n" \
: "=&r" (previous), \
"=&r" (tmp) \
: "r" (target), \
@ -198,10 +198,10 @@ CK_PR_FAS(char, char, char, "b", "w")
T previous = 0; \
T tmp = 0; \
__asm__ __volatile__("1:" \
"ldxr" W " %" R "0, [%2];" \
I ";" \
"stxr" W " %w1, %" R "0, [%2];" \
"cbnz %w1, 1b;" \
"ldxr" W " %" R "0, [%2]\n"\
I "\n" \
"stxr" W " %w1, %" R "0, [%2]\n" \
"cbnz %w1, 1b\n" \
: "=&r" (previous), \
"=&r" (tmp) \
: "r" (target) \
@ -239,10 +239,10 @@ CK_PR_UNARY_S(char, char, "b")
T previous; \
T tmp; \
__asm__ __volatile__("1:" \
"ldxr" W " %" R "0, [%2];"\
I " %" R "0, %" R "0, %" R "3;" \
"stxr" W " %w1, %" R "0, [%2];" \
"cbnz %w1, 1b;" \
"ldxr" W " %" R "0, [%2]\n"\
I " %" R "0, %" R "0, %" R "3\n" \
"stxr" W " %w1, %" R "0, [%2]\n" \
"cbnz %w1, 1b\n" \
: "=&r" (previous), \
"=&r" (tmp) \
: "r" (target), \
@ -286,10 +286,10 @@ ck_pr_faa_ptr(void *target, uintptr_t delta)
uintptr_t previous, r, tmp;
__asm__ __volatile__("1:"
"ldxr %0, [%3];"
"add %1, %4, %0;"
"stxr %w2, %1, [%3];"
"cbnz %w2, 1b;"
"ldxr %0, [%3]\n"
"add %1, %4, %0\n"
"stxr %w2, %1, [%3]\n"
"cbnz %w2, 1b\n"
: "=&r" (previous),
"=&r" (r),
"=&r" (tmp)
@ -306,9 +306,9 @@ ck_pr_faa_64(uint64_t *target, uint64_t delta)
uint64_t previous, r, tmp;
__asm__ __volatile__("1:"
"ldxr %0, [%3];"
"add %1, %4, %0;"
"stxr %w2, %1, [%3];"
"ldxr %0, [%3]\n"
"add %1, %4, %0\n"
"stxr %w2, %1, [%3]\n"
"cbnz %w2, 1b;"
: "=&r" (previous),
"=&r" (r),
@ -326,10 +326,10 @@ ck_pr_faa_64(uint64_t *target, uint64_t delta)
{ \
T previous, r, tmp; \
__asm__ __volatile__("1:" \
"ldxr" W " %w0, [%3];" \
"add %w1, %w4, %w0;" \
"stxr" W " %w2, %w1, [%3];" \
"cbnz %w2, 1b;" \
"ldxr" W " %w0, [%3]\n" \
"add %w1, %w4, %w0\n" \
"stxr" W " %w2, %w1, [%3]\n" \
"cbnz %w2, 1b\n" \
: "=&r" (previous), \
"=&r" (r), \
"=&r" (tmp) \

View file

@ -29,6 +29,7 @@
#ifndef CK_PR_AARCH64_LSE_H
#define CK_PR_AARCH64_LSE_H
#error bite
#ifndef CK_PR_H
#error Do not include this file directly, use ck_pr.h
#endif
@ -43,10 +44,10 @@ ck_pr_cas_64_2_value(uint64_t target[2], uint64_t compare[2], uint64_t set[2], u
register uint64_t x2 __asm__ ("x2") = set[0];
register uint64_t x3 __asm__ ("x3") = set[1];
__asm__ __volatile__("casp %0, %1, %4, %5, [%6];"
"eor %2, %0, %7;"
"eor %3, %1, %8;"
"orr %2, %2, %3;"
__asm__ __volatile__("casp %0, %1, %4, %5, [%6]\n"
"eor %2, %0, %7\n"
"eor %3, %1, %8\n"
"orr %2, %2, %3\n"
: "+&r" (x0), "+&r" (x1), "=&r" (tmp1), "=&r" (tmp2)
: "r" (x2), "r" (x3), "r" (target), "r" (compare[0]), "r" (compare[1])
: "memory");
@ -74,10 +75,10 @@ ck_pr_cas_64_2(uint64_t target[2], uint64_t compare[2], uint64_t set[2])
register uint64_t x2 __asm__ ("x2") = set[0];
register uint64_t x3 __asm__ ("x3") = set[1];
__asm__ __volatile__("casp %0, %1, %2, %3, [%4];"
"eor %0, %0, %5;"
"eor %1, %1, %6;"
"orr %0, %0, %1;"
__asm__ __volatile__("casp %0, %1, %2, %3, [%4]\n"
"eor %0, %0, %5\n"
"eor %1, %1, %6\n"
"orr %0, %0, %1\n"
: "+&r" (x0), "+&r" (x1)
: "r" (x2), "r" (x3), "r" (target), "r" (compare[0]), "r" (compare[1])
: "memory");
@ -99,7 +100,7 @@ ck_pr_cas_ptr_2(void *target, void *compare, void *set)
{ \
*(T *)value = compare; \
__asm__ __volatile__( \
"cas" W " %" R "0, %" R "2, [%1];" \
"cas" W " %" R "0, %" R "2, [%1]\n"\
: "+&r" (*(T *)value) \
: "r" (target), \
"r" (set) \
@ -111,7 +112,7 @@ ck_pr_cas_ptr_2(void *target, void *compare, void *set)
{ \
T previous = compare; \
__asm__ __volatile__( \
"cas" W " %" R "0, %" R "2, [%1];" \
"cas" W " %" R "0, %" R "2, [%1]\n"\
: "+&r" (previous) \
: "r" (target), \
"r" (set) \
@ -144,7 +145,7 @@ CK_PR_CAS_S(char, char, "b", "w")
{ \
T previous; \
__asm__ __volatile__( \
"swp" W " %" R "2, %" R "0, [%1];" \
"swp" W " %" R "2, %" R "0, [%1]\n"\
: "=&r" (previous) \
: "r" (target), \
"r" (v) \
@ -169,8 +170,8 @@ CK_PR_FAS(char, char, char, "b", "w")
CK_CC_INLINE static void \
ck_pr_##O##_##N(M *target) \
{ \
__asm__ __volatile__(I ";" \
"st" S W " " R "0, [%0];" \
__asm__ __volatile__(I "\n" \
"st" S W " " R "0, [%0]\n" \
: \
: "r" (target) \
: "x0", "memory"); \
@ -204,8 +205,8 @@ CK_PR_UNARY_S(char, char, "b")
CK_CC_INLINE static void \
ck_pr_##O##_##N(M *target, T delta) \
{ \
__asm__ __volatile__(I ";" \
"st" S W " %" R "0, [%1];" \
__asm__ __volatile__(I "\n" \
"st" S W " %" R "0, [%1]\n"\
: "+&r" (delta) \
: "r" (target) \
: "memory"); \
@ -247,7 +248,7 @@ ck_pr_faa_ptr(void *target, uintptr_t delta)
uintptr_t previous;
__asm__ __volatile__(
"ldadd %2, %0, [%1];"
"ldadd %2, %0, [%1]\n"
: "=r" (previous)
: "r" (target),
"r" (delta)
@ -262,7 +263,7 @@ ck_pr_faa_64(uint64_t *target, uint64_t delta)
uint64_t previous;
__asm__ __volatile__(
"ldadd %2, %0, [%1];"
"ldadd %2, %0, [%1]\n"
: "=r" (previous)
: "r" (target),
"r" (delta)
@ -277,7 +278,7 @@ ck_pr_faa_64(uint64_t *target, uint64_t delta)
{ \
T previous; \
__asm__ __volatile__( \
"ldadd" W " %w2, %w0, [%1];" \
"ldadd" W " %w2, %w0, [%1]\n" \
: "=r" (previous) \
: "r" (target), \
"r" (delta) \

View file

@ -39,6 +39,15 @@
#define CK_CC_UNUSED __attribute__((unused))
#define CK_CC_USED __attribute__((used))
#define CK_CC_IMM "i"
#define CK_CC_CONTAINER(F, T, M, N) \
CK_CC_INLINE static T * \
N(F *p) \
{ \
\
return (T *)(void *)((char *)p - __builtin_offsetof(T, M)); \
}
#if defined(__x86_64__) || defined(__x86__)
#define CK_CC_IMM_U32 "Z"
#define CK_CC_IMM_S32 "e"
@ -103,28 +112,26 @@
#define CK_CC_TYPEOF(X, DEFAULT) __typeof__(X)
/*
* Portability wrappers for bitwise ops.
* Portability wrappers for bitwise operations.
*/
#ifndef CK_MD_CC_BUILTIN_DISABLE
#define CK_F_CC_FFS
#define CK_F_CC_CLZ
#define CK_F_CC_CTZ
#define CK_F_CC_POPCOUNT
CK_CC_INLINE static int
ck_cc_ffs(unsigned int x)
{
return __builtin_ffs(x);
return __builtin_ffsl(x);
}
#define CK_F_CC_FFSL
CK_CC_INLINE static int
ck_cc_clz(unsigned int x)
ck_cc_ffsl(unsigned long x)
{
return __builtin_clz(x);
return __builtin_ffsll(x);
}
#define CK_F_CC_CTZ
CK_CC_INLINE static int
ck_cc_ctz(unsigned int x)
{
@ -132,11 +139,12 @@ ck_cc_ctz(unsigned int x)
return __builtin_ctz(x);
}
#define CK_F_CC_POPCOUNT
CK_CC_INLINE static int
ck_cc_popcount(unsigned int x)
{
return __builtin_popcount(x);
}
#endif /* CK_MD_CC_BUILTIN_DISABLE */
#endif /* CK_GCC_CC_H */

View file

@ -80,7 +80,7 @@ ck_pr_md_load_ptr(const void *target)
void *r;
ck_pr_barrier();
r = CK_CC_DECONST_PTR(CK_PR_ACCESS(target));
r = CK_CC_DECONST_PTR(*(volatile void *const*)(target));
ck_pr_barrier();
return r;
@ -91,7 +91,7 @@ ck_pr_md_store_ptr(void *target, const void *v)
{
ck_pr_barrier();
CK_PR_ACCESS(target) = CK_CC_DECONST_PTR(v);
*(volatile void **)target = CK_CC_DECONST_PTR(v);
ck_pr_barrier();
return;
}

View file

@ -67,21 +67,29 @@ ck_pr_stall(void)
__asm__ __volatile__(I ::: "memory"); \
}
CK_PR_FENCE(atomic, "lwsync")
CK_PR_FENCE(atomic_store, "lwsync")
#ifdef CK_MD_PPC32_LWSYNC
#define CK_PR_LWSYNCOP "lwsync"
#else /* CK_MD_PPC32_LWSYNC_DISABLE */
#define CK_PR_LWSYNCOP "sync"
#endif
CK_PR_FENCE(atomic, CK_PR_LWSYNCOP)
CK_PR_FENCE(atomic_store, CK_PR_LWSYNCOP)
CK_PR_FENCE(atomic_load, "sync")
CK_PR_FENCE(store_atomic, "lwsync")
CK_PR_FENCE(load_atomic, "lwsync")
CK_PR_FENCE(store, "lwsync")
CK_PR_FENCE(store_atomic, CK_PR_LWSYNCOP)
CK_PR_FENCE(load_atomic, CK_PR_LWSYNCOP)
CK_PR_FENCE(store, CK_PR_LWSYNCOP)
CK_PR_FENCE(store_load, "sync")
CK_PR_FENCE(load, "lwsync")
CK_PR_FENCE(load_store, "lwsync")
CK_PR_FENCE(load, CK_PR_LWSYNCOP)
CK_PR_FENCE(load_store, CK_PR_LWSYNCOP)
CK_PR_FENCE(memory, "sync")
CK_PR_FENCE(acquire, "lwsync")
CK_PR_FENCE(release, "lwsync")
CK_PR_FENCE(acqrel, "lwsync")
CK_PR_FENCE(lock, "lwsync")
CK_PR_FENCE(unlock, "lwsync")
CK_PR_FENCE(acquire, CK_PR_LWSYNCOP)
CK_PR_FENCE(release, CK_PR_LWSYNCOP)
CK_PR_FENCE(acqrel, CK_PR_LWSYNCOP)
CK_PR_FENCE(lock, CK_PR_LWSYNCOP)
CK_PR_FENCE(unlock, CK_PR_LWSYNCOP)
#undef CK_PR_LWSYNCOP
#undef CK_PR_FENCE

View file

@ -0,0 +1,97 @@
/* DO NOT EDIT. This is auto-generated from feature.sh */
#define CK_F_PR_ADD_32
#define CK_F_PR_ADD_64
#define CK_F_PR_ADD_INT
#define CK_F_PR_ADD_PTR
#define CK_F_PR_ADD_UINT
#define CK_F_PR_AND_32
#define CK_F_PR_AND_64
#define CK_F_PR_AND_INT
#define CK_F_PR_AND_PTR
#define CK_F_PR_AND_UINT
#define CK_F_PR_CAS_32
#define CK_F_PR_CAS_32_VALUE
#define CK_F_PR_CAS_64
#define CK_F_PR_CAS_64_VALUE
#define CK_F_PR_CAS_INT
#define CK_F_PR_CAS_INT_VALUE
#define CK_F_PR_CAS_PTR
#define CK_F_PR_CAS_PTR_VALUE
#define CK_F_PR_CAS_UINT
#define CK_F_PR_CAS_UINT_VALUE
#define CK_F_PR_DEC_32
#define CK_F_PR_DEC_64
#define CK_F_PR_DEC_INT
#define CK_F_PR_DEC_PTR
#define CK_F_PR_DEC_UINT
#define CK_F_PR_FAA_32
#define CK_F_PR_FAA_64
#define CK_F_PR_FAA_INT
#define CK_F_PR_FAA_PTR
#define CK_F_PR_FAA_UINT
#define CK_F_PR_FAS_32
#define CK_F_PR_FAS_64
#define CK_F_PR_FAS_INT
#define CK_F_PR_FAS_PTR
#define CK_F_PR_FAS_UINT
#define CK_F_PR_FAS_DOUBLE
#define CK_F_PR_FENCE_LOAD
#define CK_F_PR_FENCE_LOAD_DEPENDS
#define CK_F_PR_FENCE_MEMORY
#define CK_F_PR_FENCE_STORE
#define CK_F_PR_FENCE_STRICT_LOAD
#define CK_F_PR_FENCE_STRICT_LOAD_DEPENDS
#define CK_F_PR_FENCE_STRICT_MEMORY
#define CK_F_PR_FENCE_STRICT_STORE
#define CK_F_PR_INC_32
#define CK_F_PR_INC_64
#define CK_F_PR_INC_INT
#define CK_F_PR_INC_PTR
#define CK_F_PR_INC_UINT
#define CK_F_PR_LOAD_16
#define CK_F_PR_LOAD_32
#define CK_F_PR_LOAD_64
#define CK_F_PR_LOAD_8
#define CK_F_PR_LOAD_CHAR
#define CK_F_PR_LOAD_DOUBLE
#define CK_F_PR_LOAD_INT
#define CK_F_PR_LOAD_PTR
#define CK_F_PR_LOAD_SHORT
#define CK_F_PR_LOAD_UINT
#define CK_F_PR_NEG_32
#define CK_F_PR_NEG_64
#define CK_F_PR_NEG_INT
#define CK_F_PR_NEG_PTR
#define CK_F_PR_NEG_UINT
#define CK_F_PR_NOT_32
#define CK_F_PR_NOT_64
#define CK_F_PR_NOT_INT
#define CK_F_PR_NOT_PTR
#define CK_F_PR_NOT_UINT
#define CK_F_PR_OR_32
#define CK_F_PR_OR_64
#define CK_F_PR_OR_INT
#define CK_F_PR_OR_PTR
#define CK_F_PR_OR_UINT
#define CK_F_PR_STALL
#define CK_F_PR_STORE_16
#define CK_F_PR_STORE_32
#define CK_F_PR_STORE_64
#define CK_F_PR_STORE_8
#define CK_F_PR_STORE_CHAR
#define CK_F_PR_STORE_DOUBLE
#define CK_F_PR_STORE_INT
#define CK_F_PR_STORE_PTR
#define CK_F_PR_STORE_SHORT
#define CK_F_PR_STORE_UINT
#define CK_F_PR_SUB_32
#define CK_F_PR_SUB_64
#define CK_F_PR_SUB_INT
#define CK_F_PR_SUB_PTR
#define CK_F_PR_SUB_UINT
#define CK_F_PR_XOR_32
#define CK_F_PR_XOR_64
#define CK_F_PR_XOR_INT
#define CK_F_PR_XOR_PTR
#define CK_F_PR_XOR_UINT

373
include/gcc/s390x/ck_pr.h Normal file
View file

@ -0,0 +1,373 @@
/*
* Copyright 2009-2015 Samy Al Bahra.
* Copyright 2017 Neale Ferguson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef CK_PR_S390X_H
#define CK_PR_S390X_H
#ifndef CK_PR_H
#error Do not include this file directly, use ck_pr.h
#endif
#include <ck_cc.h>
#include <ck_md.h>
/*
* The following represent supported atomic operations.
* These operations may be emulated.
*/
#include "ck_f_pr.h"
/*
* Minimum interface requirement met.
*/
#define CK_F_PR
/*
* This bounces the hardware thread from low to medium
* priority. I am unsure of the benefits of this approach
* but it is used by the Linux kernel.
*/
CK_CC_INLINE static void
ck_pr_stall(void)
{
__sync_synchronize();
return;
}
#define CK_PR_FENCE(T) \
CK_CC_INLINE static void \
ck_pr_fence_strict_##T(void) \
{ \
__sync_synchronize(); \
}
/*
* These are derived from:
* http://www.ibm.com/developerworks/systems/articles/powerpc.html
*/
CK_PR_FENCE(atomic)
CK_PR_FENCE(atomic_store)
CK_PR_FENCE(atomic_load)
CK_PR_FENCE(store_atomic)
CK_PR_FENCE(load_atomic)
CK_PR_FENCE(store)
CK_PR_FENCE(store_load)
CK_PR_FENCE(load)
CK_PR_FENCE(load_store)
CK_PR_FENCE(memory)
CK_PR_FENCE(acquire)
CK_PR_FENCE(release)
CK_PR_FENCE(acqrel)
CK_PR_FENCE(lock)
CK_PR_FENCE(unlock)
#undef CK_PR_FENCE
#define CK_PR_LOAD(S, M, T, C, I) \
CK_CC_INLINE static T \
ck_pr_md_load_##S(const M *target) \
{ \
T r; \
__asm__ __volatile__(I "\t%0, %1\n" \
: "=r" (r) \
: "Q" (*(const C *)target) \
: "memory"); \
return (r); \
}
CK_PR_LOAD(ptr, void, void *, uint64_t, "lg")
#define CK_PR_LOAD_S(S, T, I) CK_PR_LOAD(S, T, T, T, I)
CK_PR_LOAD_S(64, uint64_t, "lg")
CK_PR_LOAD_S(32, uint32_t, "llgf")
CK_PR_LOAD_S(16, uint16_t, "llgh")
CK_PR_LOAD_S(8, uint8_t, "llgc")
CK_PR_LOAD_S(uint, unsigned int, "llgf")
CK_PR_LOAD_S(int, int, "llgf")
CK_PR_LOAD_S(short, short, "lgh")
CK_PR_LOAD_S(char, char, "lgb")
#ifndef CK_PR_DISABLE_DOUBLE
CK_CC_INLINE static double
ck_pr_md_load_double(const double *target)
{
double r;
__asm__ __volatile__("ld %0, %1\n"
: "=f" (r)
: "Q" (*(const double *)target)
: "memory");
return (r);
}
#endif
#undef CK_PR_LOAD_S
#undef CK_PR_LOAD
#define CK_PR_STORE(S, M, T, C, I) \
CK_CC_INLINE static void \
ck_pr_md_store_##S(M *target, T v) \
{ \
__asm__ __volatile__(I "\t%1, %0\n" \
: "=Q" (*(C *)target) \
: "r" (v) \
: "memory"); \
return; \
}
CK_PR_STORE(ptr, void, const void *, uint64_t, "stg")
#define CK_PR_STORE_S(S, T, I) CK_PR_STORE(S, T, T, T, I)
CK_PR_STORE_S(64, uint64_t, "stg")
CK_PR_STORE_S(32, uint32_t, "st")
CK_PR_STORE_S(16, uint16_t, "sth")
CK_PR_STORE_S(8, uint8_t, "stc")
CK_PR_STORE_S(uint, unsigned int, "st")
CK_PR_STORE_S(int, int, "st")
CK_PR_STORE_S(short, short, "sth")
CK_PR_STORE_S(char, char, "stc")
#ifndef CK_PR_DISABLE_DOUBLE
CK_CC_INLINE static void
ck_pr_md_store_double(double *target, double v)
{
__asm__ __volatile__(" std %1, %0\n"
: "=Q" (*(double *)target)
: "f" (v)
: "0", "memory");
}
#endif
#undef CK_PR_STORE_S
#undef CK_PR_STORE
CK_CC_INLINE static bool
ck_pr_cas_64_value(uint64_t *target, uint64_t compare, uint64_t set, uint64_t *value)
{
*value = __sync_val_compare_and_swap(target,compare,set);
return (*value == compare);
}
CK_CC_INLINE static bool
ck_pr_cas_ptr_value(void *target, void *compare, void *set, void *value)
{
uintptr_t previous;
previous = __sync_val_compare_and_swap((uintptr_t *) target,
(uintptr_t) compare,
(uintptr_t) set);
*((uintptr_t *) value) = previous;
return (previous == (uintptr_t) compare);
}
CK_CC_INLINE static bool
ck_pr_cas_64(uint64_t *target, uint64_t compare, uint64_t set)
{
return(__sync_bool_compare_and_swap(target,compare,set));
}
CK_CC_INLINE static bool
ck_pr_cas_ptr(void *target, void *compare, void *set)
{
return(__sync_bool_compare_and_swap((uintptr_t *) target,
(uintptr_t) compare,
(uintptr_t) set));
}
#define CK_PR_CAS(N, T) \
CK_CC_INLINE static bool \
ck_pr_cas_##N##_value(T *target, T compare, T set, T *value) \
{ \
*value = __sync_val_compare_and_swap(target, \
compare, \
set); \
return(*value == compare); \
} \
CK_CC_INLINE static bool \
ck_pr_cas_##N(T *target, T compare, T set) \
{ \
return(__sync_bool_compare_and_swap(target, \
compare, \
set)); \
}
CK_PR_CAS(32, uint32_t)
CK_PR_CAS(uint, unsigned int)
CK_PR_CAS(int, int)
#undef CK_PR_CAS
CK_CC_INLINE static void *
ck_pr_fas_ptr(void *target, void *v)
{
return((void *)__atomic_exchange_n((uintptr_t *) target, (uintptr_t) v, __ATOMIC_ACQUIRE));
}
#define CK_PR_FAS(N, M, T) \
CK_CC_INLINE static T \
ck_pr_fas_##N(M *target, T v) \
{ \
return(__atomic_exchange_n(target, v, __ATOMIC_ACQUIRE)); \
}
CK_PR_FAS(64, uint64_t, uint64_t)
CK_PR_FAS(32, uint32_t, uint32_t)
CK_PR_FAS(int, int, int)
CK_PR_FAS(uint, unsigned int, unsigned int)
#ifndef CK_PR_DISABLE_DOUBLE
CK_CC_INLINE static double
ck_pr_fas_double(double *target, double *v)
{
double previous;
__asm__ __volatile__ (" lg 1,%2\n"
"0: lg 0,%1\n"
" csg 0,1,%1\n"
" jnz 0b\n"
" ldgr %0,0\n"
: "=f" (previous)
: "Q" (target), "Q" (v)
: "0", "1", "cc", "memory");
return (previous);
}
#endif
#undef CK_PR_FAS
/*
* Atomic store-only binary operations.
*/
#define CK_PR_BINARY(K, S, M, T) \
CK_CC_INLINE static void \
ck_pr_##K##_##S(M *target, T d) \
{ \
d = __sync_fetch_and_##K((T *)target, d); \
return; \
}
#define CK_PR_BINARY_S(K, S, T) CK_PR_BINARY(K, S, T, T)
#define CK_PR_GENERATE(K) \
CK_PR_BINARY(K, ptr, void, void *) \
CK_PR_BINARY_S(K, char, char) \
CK_PR_BINARY_S(K, int, int) \
CK_PR_BINARY_S(K, uint, unsigned int) \
CK_PR_BINARY_S(K, 64, uint64_t) \
CK_PR_BINARY_S(K, 32, uint32_t) \
CK_PR_BINARY_S(K, 16, uint16_t) \
CK_PR_BINARY_S(K, 8, uint8_t)
CK_PR_GENERATE(add)
CK_PR_GENERATE(sub)
CK_PR_GENERATE(and)
CK_PR_GENERATE(or)
CK_PR_GENERATE(xor)
#undef CK_PR_GENERATE
#undef CK_PR_BINARY_S
#undef CK_PR_BINARY
#define CK_PR_UNARY(S, M, T) \
CK_CC_INLINE static void \
ck_pr_inc_##S(M *target) \
{ \
ck_pr_add_##S(target, (T)1); \
return; \
} \
CK_CC_INLINE static void \
ck_pr_dec_##S(M *target) \
{ \
ck_pr_sub_##S(target, (T)1); \
return; \
}
#define CK_PR_UNARY_X(S, M) \
CK_CC_INLINE static void \
ck_pr_not_##S(M *target) \
{ \
M newval; \
do { \
newval = ~(*target); \
} while (!__sync_bool_compare_and_swap(target, \
*target, \
newval)); \
} \
CK_CC_INLINE static void \
ck_pr_neg_##S(M *target) \
{ \
M newval; \
do { \
newval = -(*target); \
} while (!__sync_bool_compare_and_swap(target, \
*target, \
newval)); \
}
#define CK_PR_UNARY_S(S, M) CK_PR_UNARY(S, M, M) \
CK_PR_UNARY_X(S, M)
CK_PR_UNARY(ptr, void, void *)
CK_PR_UNARY_S(char, char)
CK_PR_UNARY_S(int, int)
CK_PR_UNARY_S(uint, unsigned int)
CK_PR_UNARY_S(64, uint64_t)
CK_PR_UNARY_S(32, uint32_t)
CK_PR_UNARY_S(16, uint16_t)
CK_PR_UNARY_S(8, uint8_t)
#undef CK_PR_UNARY_S
#undef CK_PR_UNARY
CK_CC_INLINE static void *
ck_pr_faa_ptr(void *target, uintptr_t delta)
{
uintptr_t previous;
previous = __sync_fetch_and_add((uintptr_t *) target, delta);
return (void *)(previous);
}
#define CK_PR_FAA(S, T) \
CK_CC_INLINE static T \
ck_pr_faa_##S(T *target, T delta) \
{ \
T previous; \
\
previous = __sync_fetch_and_add(target, delta); \
\
return (previous); \
}
CK_PR_FAA(64, uint64_t)
CK_PR_FAA(32, uint32_t)
CK_PR_FAA(uint, unsigned int)
CK_PR_FAA(int, int)
#undef CK_PR_FAA
#endif /* CK_PR_S390X_H */

View file

@ -76,7 +76,7 @@ CK_PR_FENCE(store, "membar #StoreStore")
CK_PR_FENCE(store_load, "membar #StoreLoad")
CK_PR_FENCE(load, "membar #LoadLoad")
CK_PR_FENCE(load_store, "membar #LoadStore")
CK_PR_FENCE(memory, "membar #LoadLoad | #LoadStore | #StoreStore | #StoreLoad")
CK_PR_FENCE(memory, "membar #MemIssue")
CK_PR_FENCE(acquire, "membar #LoadLoad | #LoadStore")
CK_PR_FENCE(release, "membar #LoadStore | #StoreStore")
CK_PR_FENCE(acqrel, "membar #LoadLoad | #LoadStore | #StoreStore")
@ -136,11 +136,26 @@ CK_PR_STORE_S(int, int, "stsw")
#undef CK_PR_STORE_S
#undef CK_PR_STORE
/* Use the appropriate address space for atomics within the FreeBSD kernel. */
#if defined(__FreeBSD__) && defined(_KERNEL)
#include <sys/cdefs.h>
#include <machine/atomic.h>
#define CK_PR_INS_CAS "casa"
#define CK_PR_INS_CASX "casxa"
#define CK_PR_INS_SWAP "swapa"
#define CK_PR_ASI_ATOMIC __XSTRING(__ASI_ATOMIC)
#else
#define CK_PR_INS_CAS "cas"
#define CK_PR_INS_CASX "casx"
#define CK_PR_INS_SWAP "swap"
#define CK_PR_ASI_ATOMIC ""
#endif
CK_CC_INLINE static bool
ck_pr_cas_64_value(uint64_t *target, uint64_t compare, uint64_t set, uint64_t *value)
{
__asm__ __volatile__("casx [%1], %2, %0"
__asm__ __volatile__(CK_PR_INS_CASX " [%1] " CK_PR_ASI_ATOMIC ", %2, %0"
: "+&r" (set)
: "r" (target),
"r" (compare)
@ -154,7 +169,7 @@ CK_CC_INLINE static bool
ck_pr_cas_64(uint64_t *target, uint64_t compare, uint64_t set)
{
__asm__ __volatile__("casx [%1], %2, %0"
__asm__ __volatile__(CK_PR_INS_CASX " [%1] " CK_PR_ASI_ATOMIC ", %2, %0"
: "+&r" (set)
: "r" (target),
"r" (compare)
@ -181,7 +196,7 @@ ck_pr_cas_ptr_value(void *target, void *compare, void *set, void *previous)
CK_CC_INLINE static bool \
ck_pr_cas_##N##_value(T *target, T compare, T set, T *value) \
{ \
__asm__ __volatile__("cas [%1], %2, %0" \
__asm__ __volatile__(CK_PR_INS_CAS " [%1] " CK_PR_ASI_ATOMIC ", %2, %0" \
: "+&r" (set) \
: "r" (target), \
"r" (compare) \
@ -192,7 +207,7 @@ ck_pr_cas_ptr_value(void *target, void *compare, void *set, void *previous)
CK_CC_INLINE static bool \
ck_pr_cas_##N(T *target, T compare, T set) \
{ \
__asm__ __volatile__("cas [%1], %2, %0" \
__asm__ __volatile__(CK_PR_INS_CAS " [%1] " CK_PR_ASI_ATOMIC ", %2, %0" \
: "+&r" (set) \
: "r" (target), \
"r" (compare) \
@ -211,7 +226,7 @@ CK_PR_CAS(int, int)
ck_pr_fas_##N(T *target, T update) \
{ \
\
__asm__ __volatile__("swap [%1], %0" \
__asm__ __volatile__(CK_PR_INS_SWAP " [%1] " CK_PR_ASI_ATOMIC ", %0" \
: "+&r" (update) \
: "r" (target) \
: "memory"); \
@ -224,5 +239,10 @@ CK_PR_FAS(32, uint32_t)
#undef CK_PR_FAS
#undef CK_PR_INS_CAS
#undef CK_PR_INS_CASX
#undef CK_PR_INS_SWAP
#undef CK_PR_ASI_ATOMIC
#endif /* CK_PR_SPARCV9_H */

View file

@ -45,15 +45,9 @@
/* Minimum requirements for the CK_PR interface are met. */
#define CK_F_PR
#ifdef CK_MD_UMP
#define CK_PR_LOCK_PREFIX
#else
#define CK_PR_LOCK_PREFIX "lock "
#endif
/*
* Prevent speculative execution in busy-wait loops (P4 <=)
* or "predefined delay".
* Prevent speculative execution in busy-wait loops (P4 <=) or "predefined
* delay".
*/
CK_CC_INLINE static void
ck_pr_stall(void)
@ -62,28 +56,52 @@ ck_pr_stall(void)
return;
}
#ifdef CK_MD_UMP
#define CK_PR_LOCK_PREFIX
#define CK_PR_FENCE(T, I) \
CK_CC_INLINE static void \
ck_pr_fence_strict_##T(void) \
{ \
__asm__ __volatile__("" ::: "memory"); \
return; \
}
#else
#define CK_PR_LOCK_PREFIX "lock "
#define CK_PR_FENCE(T, I) \
CK_CC_INLINE static void \
ck_pr_fence_strict_##T(void) \
{ \
__asm__ __volatile__(I ::: "memory"); \
return; \
}
#endif /* CK_MD_UMP */
CK_PR_FENCE(atomic, "sfence")
CK_PR_FENCE(atomic_store, "sfence")
CK_PR_FENCE(atomic_load, "mfence")
CK_PR_FENCE(store_atomic, "sfence")
CK_PR_FENCE(load_atomic, "mfence")
CK_PR_FENCE(load, "lfence")
CK_PR_FENCE(load_store, "mfence")
CK_PR_FENCE(store, "sfence")
CK_PR_FENCE(store_load, "mfence")
CK_PR_FENCE(memory, "mfence")
CK_PR_FENCE(release, "mfence")
CK_PR_FENCE(acquire, "mfence")
CK_PR_FENCE(acqrel, "mfence")
CK_PR_FENCE(lock, "mfence")
CK_PR_FENCE(unlock, "mfence")
#if defined(CK_MD_SSE_DISABLE)
/* If SSE is disabled, then use atomic operations for serialization. */
#define CK_MD_X86_MFENCE "lock addl $0, (%%esp)"
#define CK_MD_X86_SFENCE CK_MD_X86_MFENCE
#define CK_MD_X86_LFENCE CK_MD_X86_MFENCE
#else
#define CK_MD_X86_SFENCE "sfence"
#define CK_MD_X86_LFENCE "lfence"
#define CK_MD_X86_MFENCE "mfence"
#endif /* !CK_MD_SSE_DISABLE */
CK_PR_FENCE(atomic, "")
CK_PR_FENCE(atomic_store, "")
CK_PR_FENCE(atomic_load, "")
CK_PR_FENCE(store_atomic, "")
CK_PR_FENCE(load_atomic, "")
CK_PR_FENCE(load, CK_MD_X86_LFENCE)
CK_PR_FENCE(load_store, CK_MD_X86_MFENCE)
CK_PR_FENCE(store, CK_MD_X86_SFENCE)
CK_PR_FENCE(store_load, CK_MD_X86_MFENCE)
CK_PR_FENCE(memory, CK_MD_X86_MFENCE)
CK_PR_FENCE(release, CK_MD_X86_MFENCE)
CK_PR_FENCE(acquire, CK_MD_X86_MFENCE)
CK_PR_FENCE(acqrel, CK_MD_X86_MFENCE)
CK_PR_FENCE(lock, CK_MD_X86_MFENCE)
CK_PR_FENCE(unlock, CK_MD_X86_MFENCE)
#undef CK_PR_FENCE
@ -215,18 +233,18 @@ CK_PR_FAA_S(8, uint8_t, "xaddb")
}
#define CK_PR_UNARY_V(K, S, T, C, I) \
CK_CC_INLINE static void \
ck_pr_##K##_##S##_zero(T *target, bool *r) \
CK_CC_INLINE static bool \
ck_pr_##K##_##S##_is_zero(T *target) \
{ \
bool ret; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0; setz %1" \
: "+m" (*(C *)target), \
"=m" (*r) \
"=qm" (ret) \
: \
: "memory", "cc"); \
return; \
return ret; \
}
#define CK_PR_UNARY_S(K, S, T, I) CK_PR_UNARY(K, S, T, T, I)
#define CK_PR_GENERATE(K) \
@ -289,8 +307,38 @@ CK_PR_GENERATE(xor)
#undef CK_PR_BINARY
/*
* Atomic compare and swap.
* Atomic compare and swap, with a variant that sets *v to the old value of target.
*/
#ifdef __GCC_ASM_FLAG_OUTPUTS__
#define CK_PR_CAS(S, M, T, C, I) \
CK_CC_INLINE static bool \
ck_pr_cas_##S(M *target, T compare, T set) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0" \
: "+m" (*(C *)target), \
"=@ccz" (z), \
/* RAX is clobbered by cmpxchg. */ \
"+a" (compare) \
: "q" (set) \
: "memory", "cc"); \
return z; \
} \
\
CK_CC_INLINE static bool \
ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \
: "+m" (*(C *)target), \
"=@ccz" (z), \
"+a" (compare) \
: "q" (set) \
: "memory", "cc"); \
*(T *)v = compare; \
return z; \
}
#else
#define CK_PR_CAS(S, M, T, C, I) \
CK_CC_INLINE static bool \
ck_pr_cas_##S(M *target, T compare, T set) \
@ -303,7 +351,23 @@ CK_PR_GENERATE(xor)
"a" (compare) \
: "memory", "cc"); \
return z; \
} \
\
CK_CC_INLINE static bool \
ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \
"setz %1;" \
: "+m" (*(C *)target), \
"=q" (z), \
"+a" (compare) \
: "q" (set) \
: "memory", "cc"); \
*(T *)v = compare; \
return z; \
}
#endif
CK_PR_CAS(ptr, void, void *, char, "cmpxchgl")
@ -319,41 +383,6 @@ CK_PR_CAS_S(8, uint8_t, "cmpxchgb")
#undef CK_PR_CAS_S
#undef CK_PR_CAS
/*
* Compare and swap, set *v to old value of target.
*/
#define CK_PR_CAS_O(S, M, T, C, I, R) \
CK_CC_INLINE static bool \
ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX "cmpxchg" I " %3, %0;" \
"mov %% " R ", %2;" \
"setz %1;" \
: "+m" (*(C *)target), \
"=a" (z), \
"=m" (*(C *)v) \
: "q" (set), \
"a" (compare) \
: "memory", "cc"); \
return (bool)z; \
}
CK_PR_CAS_O(ptr, void, void *, char, "l", "eax")
#define CK_PR_CAS_O_S(S, T, I, R) \
CK_PR_CAS_O(S, T, T, T, I, R)
CK_PR_CAS_O_S(char, char, "b", "al")
CK_PR_CAS_O_S(int, int, "l", "eax")
CK_PR_CAS_O_S(uint, unsigned int, "l", "eax")
CK_PR_CAS_O_S(32, uint32_t, "l", "eax")
CK_PR_CAS_O_S(16, uint16_t, "w", "ax")
CK_PR_CAS_O_S(8, uint8_t, "b", "al")
#undef CK_PR_CAS_O_S
#undef CK_PR_CAS_O
/*
* Atomic bit test operations.
*/

View file

@ -58,8 +58,8 @@
#endif
/*
* Prevent speculative execution in busy-wait loops (P4 <=)
* or "predefined delay".
* Prevent speculative execution in busy-wait loops (P4 <=) or "predefined
* delay".
*/
CK_CC_INLINE static void
ck_pr_stall(void)
@ -75,18 +75,39 @@ ck_pr_stall(void)
__asm__ __volatile__(I ::: "memory"); \
}
CK_PR_FENCE(atomic, "sfence")
CK_PR_FENCE(atomic_store, "sfence")
CK_PR_FENCE(atomic_load, "mfence")
CK_PR_FENCE(store_atomic, "sfence")
CK_PR_FENCE(load_atomic, "mfence")
/* Atomic operations are always serializing. */
CK_PR_FENCE(atomic, "")
CK_PR_FENCE(atomic_store, "")
CK_PR_FENCE(atomic_load, "")
CK_PR_FENCE(store_atomic, "")
CK_PR_FENCE(load_atomic, "")
/* Traditional fence interface. */
CK_PR_FENCE(load, "lfence")
CK_PR_FENCE(load_store, "mfence")
CK_PR_FENCE(store, "sfence")
CK_PR_FENCE(store_load, "mfence")
CK_PR_FENCE(memory, "mfence")
/* Below are stdatomic-style fences. */
/*
* Provides load-store and store-store ordering. However, Intel specifies that
* the WC memory model is relaxed. It is likely an sfence *is* sufficient (in
* particular, stores are not re-ordered with respect to prior loads and it is
* really just the stores that are subject to re-ordering). However, we take
* the conservative route as the manuals are too ambiguous for my taste.
*/
CK_PR_FENCE(release, "mfence")
/*
* Provides load-load and load-store ordering. The lfence instruction ensures
* all prior load operations are complete before any subsequent instructions
* actually begin execution. However, the manual also ends up going to describe
* WC memory as a relaxed model.
*/
CK_PR_FENCE(acquire, "mfence")
CK_PR_FENCE(acqrel, "mfence")
CK_PR_FENCE(lock, "mfence")
CK_PR_FENCE(unlock, "mfence")
@ -311,18 +332,18 @@ CK_PR_FAA_S(8, uint8_t, "xaddb")
}
#define CK_PR_UNARY_V(K, S, T, C, I) \
CK_CC_INLINE static void \
ck_pr_##K##_##S##_zero(T *target, bool *r) \
CK_CC_INLINE static bool \
ck_pr_##K##_##S##_is_zero(T *target) \
{ \
bool ret; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0; setz %1" \
: "+m" (*(C *)target), \
"=m" (*r) \
"=rm" (ret) \
: \
: "memory", "cc"); \
return; \
return ret; \
}
#define CK_PR_UNARY_S(K, S, T, I) CK_PR_UNARY(K, S, T, T, I)
#define CK_PR_GENERATE(K) \
@ -387,8 +408,38 @@ CK_PR_GENERATE(xor)
#undef CK_PR_BINARY
/*
* Atomic compare and swap.
* Atomic compare and swap, with a variant that sets *v to the old value of target.
*/
#ifdef __GCC_ASM_FLAG_OUTPUTS__
#define CK_PR_CAS(S, M, T, C, I) \
CK_CC_INLINE static bool \
ck_pr_cas_##S(M *target, T compare, T set) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0" \
: "+m" (*(C *)target), \
"=@ccz" (z), \
/* RAX is clobbered by cmpxchg. */ \
"+a" (compare) \
: "q" (set) \
: "memory", "cc"); \
return z; \
} \
\
CK_CC_INLINE static bool \
ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \
: "+m" (*(C *)target), \
"=@ccz" (z), \
"+a" (compare) \
: "q" (set) \
: "memory", "cc"); \
*(T *)v = compare; \
return z; \
}
#else
#define CK_PR_CAS(S, M, T, C, I) \
CK_CC_INLINE static bool \
ck_pr_cas_##S(M *target, T compare, T set) \
@ -401,7 +452,23 @@ CK_PR_GENERATE(xor)
"a" (compare) \
: "memory", "cc"); \
return z; \
} \
\
CK_CC_INLINE static bool \
ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \
"setz %1;" \
: "+m" (*(C *)target), \
"=q" (z), \
"+a" (compare) \
: "q" (set) \
: "memory", "cc"); \
*(T *)v = compare; \
return z; \
}
#endif
CK_PR_CAS(ptr, void, void *, char, "cmpxchgq")
@ -421,45 +488,6 @@ CK_PR_CAS_S(8, uint8_t, "cmpxchgb")
#undef CK_PR_CAS_S
#undef CK_PR_CAS
/*
* Compare and swap, set *v to old value of target.
*/
#define CK_PR_CAS_O(S, M, T, C, I, R) \
CK_CC_INLINE static bool \
ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX "cmpxchg" I " %3, %0;" \
"mov %% " R ", %2;" \
"setz %1;" \
: "+m" (*(C *)target), \
"=a" (z), \
"=m" (*(C *)v) \
: "q" (set), \
"a" (compare) \
: "memory", "cc"); \
return z; \
}
CK_PR_CAS_O(ptr, void, void *, char, "q", "rax")
#define CK_PR_CAS_O_S(S, T, I, R) \
CK_PR_CAS_O(S, T, T, T, I, R)
CK_PR_CAS_O_S(char, char, "b", "al")
CK_PR_CAS_O_S(int, int, "l", "eax")
CK_PR_CAS_O_S(uint, unsigned int, "l", "eax")
#ifndef CK_PR_DISABLE_DOUBLE
CK_PR_CAS_O_S(double, double, "q", "rax")
#endif
CK_PR_CAS_O_S(64, uint64_t, "q", "rax")
CK_PR_CAS_O_S(32, uint32_t, "l", "eax")
CK_PR_CAS_O_S(16, uint16_t, "w", "ax")
CK_PR_CAS_O_S(8, uint8_t, "b", "al")
#undef CK_PR_CAS_O_S
#undef CK_PR_CAS_O
/*
* Contrary to C-interface, alignment requirements are that of uint64_t[2].
*/

View file

@ -111,7 +111,8 @@ ck_spinlock_dec_lock_eb(struct ck_spinlock_dec *lock)
if (r == true)
break;
ck_backoff_eb(&backoff);
while (ck_pr_load_uint(&lock->value) != 1)
ck_backoff_eb(&backoff);
}
ck_pr_fence_lock();

View file

@ -77,10 +77,11 @@ CK_CC_INLINE static void
ck_spinlock_fas_lock(struct ck_spinlock_fas *lock)
{
while (ck_pr_fas_uint(&lock->value, true) == true) {
while (ck_pr_load_uint(&lock->value) == true)
ck_pr_stall();
}
while (CK_CC_UNLIKELY(ck_pr_fas_uint(&lock->value, true) == true)) {
do {
ck_pr_stall();
} while (ck_pr_load_uint(&lock->value) == true);
}
ck_pr_fence_lock();
return;

View file

@ -81,6 +81,8 @@ ck_spinlock_hclh_lock(struct ck_spinlock_hclh **glob_queue,
thread->wait = true;
thread->splice = false;
thread->cluster_id = (*local_queue)->cluster_id;
/* Make sure previous->previous doesn't appear to be NULL */
thread->previous = *local_queue;
/* Serialize with respect to update of local queue. */
ck_pr_fence_store_atomic();
@ -91,13 +93,15 @@ ck_spinlock_hclh_lock(struct ck_spinlock_hclh **glob_queue,
/* Wait until previous thread from the local queue is done with lock. */
ck_pr_fence_load();
if (previous->previous != NULL &&
previous->cluster_id == thread->cluster_id) {
while (ck_pr_load_uint(&previous->wait) == true)
if (previous->previous != NULL) {
while (ck_pr_load_uint(&previous->wait) == true &&
ck_pr_load_int(&previous->cluster_id) == thread->cluster_id &&
ck_pr_load_uint(&previous->splice) == false)
ck_pr_stall();
/* We're head of the global queue, we're done */
if (ck_pr_load_uint(&previous->splice) == false)
if (ck_pr_load_int(&previous->cluster_id) == thread->cluster_id &&
ck_pr_load_uint(&previous->splice) == false)
return;
}

View file

@ -4,7 +4,9 @@ DIR=array \
bitmap \
brlock \
bytelock \
cc \
cohort \
ec \
epoch \
fifo \
hp \
@ -27,6 +29,7 @@ DIR=array \
all:
$(MAKE) -C ./ck_array/validate all
$(MAKE) -C ./ck_cc/validate all
$(MAKE) -C ./ck_cohort/validate all
$(MAKE) -C ./ck_cohort/benchmark all
$(MAKE) -C ./ck_bitmap/validate all
@ -69,9 +72,12 @@ all:
$(MAKE) -C ./ck_pflock/benchmark all
$(MAKE) -C ./ck_hp/validate all
$(MAKE) -C ./ck_hp/benchmark all
$(MAKE) -C ./ck_ec/validate all
$(MAKE) -C ./ck_ec/benchmark all
clean:
$(MAKE) -C ./ck_array/validate clean
$(MAKE) -C ./ck_cc/validate clean
$(MAKE) -C ./ck_pflock/validate clean
$(MAKE) -C ./ck_pflock/benchmark clean
$(MAKE) -C ./ck_tflock/validate clean
@ -116,6 +122,8 @@ clean:
$(MAKE) -C ./ck_pflock/benchmark clean
$(MAKE) -C ./ck_hp/validate clean
$(MAKE) -C ./ck_hp/benchmark clean
$(MAKE) -C ./ck_ec/validate clean
$(MAKE) -C ./ck_ec/benchmark clean
check: all
rc=0; \

View file

@ -159,7 +159,7 @@ test_init(bool init)
bytes = ck_bitmap_size(length);
bitmap = malloc(bytes);
memset(bitmap, random(), bytes);
memset(bitmap, common_rand(), bytes);
ck_bitmap_init(bitmap, length, init);
@ -188,7 +188,7 @@ random_init(void)
ck_bitmap_init(bitmap, length, false);
for (i = 0; i < length; i++) {
if (random() & 1) {
if (common_rand() & 1) {
ck_bitmap_set(bitmap, i);
}
}
@ -259,7 +259,7 @@ random_test(unsigned int seed)
ck_bitmap_t *x, *x_copy, *y;
unsigned int i;
srandom(seed);
common_srand(seed);
test_init(false);
test_init(true);

View file

@ -0,0 +1,17 @@
.PHONY: check clean distribution
OBJECTS=ck_cc
all: $(OBJECTS)
ck_cc: ck_cc.c ../../../include/ck_cc.h
$(CC) $(CFLAGS) -g2 -o ck_cc ck_cc.c
check: all
./ck_cc
clean:
rm -rf *~ *.o $(OBJECTS) *.dSYM *.exe
include ../../../build/regressions.build
CFLAGS+=-D_GNU_SOURCE

View file

@ -0,0 +1,37 @@
#include <ck_pr.h>
#include <limits.h>
#include <stdio.h>
#include "../../common.h"
int
main(void)
{
unsigned int x;
ck_pr_store_uint(&x, 0x10110);
if (ck_cc_ffs(0) != 0)
ck_error("ffs(0) = %d\n", ck_cc_ffs(0));
if (ck_cc_ffs(4) != 3)
ck_error("ffs(4) = %d\n", ck_cc_ffs(4));
if (ck_cc_ffs(UINT_MAX) != 1)
ck_error("ffs(UINT_MAX) = %d\n", ck_cc_ffs(UINT_MAX));
if (ck_cc_ffs(x) != 5)
ck_error("ffs(%u) = %d\n", x, ck_cc_ffs(x));
if (ck_cc_ffs(x) != ck_cc_ffsl(x) ||
ck_cc_ffsl(x) != ck_cc_ffsll(x) ||
ck_cc_ffs(x) != ck_cc_ffsll(x)) {
ck_error(" ffs = %d, ffsl = %d, ffsll = %d\n",
ck_cc_ffs(x), ck_cc_ffsl(x), ck_cc_ffsll(x));
}
if (ck_cc_ctz(x) != 4)
ck_error("ctz = %d\n", ck_cc_ctz(x));
if (ck_cc_popcount(x) != 3)
ck_error("popcount = %d\n", ck_cc_popcount(x));
return 0;
}

View file

@ -0,0 +1,18 @@
.PHONY: check clean distribution
OBJECTS=ck_ec
all: $(OBJECTS)
ck_ec: ck_ec.c ../../../include/ck_ec.h
$(CC) $(CFLAGS) ../../../src/ck_ec.c -o ck_ec ck_ec.c
check: all
./ck_ec $(CORES) 1
clean:
rm -rf *~ *.o $(OBJECTS) *.dSYM *.exe
include ../../../build/regressions.build
CFLAGS+=-D_GNU_SOURCE

View file

@ -0,0 +1,484 @@
/*
* Copyright 2018 Paul Khuong.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <assert.h>
#include <ck_cc.h>
#include <ck_ec.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include "../../common.h"
#ifndef STEPS
#define STEPS (65536 * 64)
#endif
static int gettime(const struct ck_ec_ops *, struct timespec *out);
static void wake32(const struct ck_ec_ops *, const uint32_t *);
static void wait32(const struct ck_ec_wait_state *,
const uint32_t *, uint32_t, const struct timespec *);
static void wake64(const struct ck_ec_ops *, const uint64_t *);
static void wait64(const struct ck_ec_wait_state *,
const uint64_t *, uint64_t, const struct timespec *);
static const struct ck_ec_ops test_ops = {
.gettime = gettime,
.wait32 = wait32,
.wait64 = wait64,
.wake32 = wake32,
.wake64 = wake64
};
#ifndef __linux__
static int gettime(const struct ck_ec_ops *ops, struct timespec *out)
{
(void)out;
assert(ops == &test_ops);
return -1;
}
static void wait32(const struct ck_ec_wait_state *state,
const uint32_t *address, uint32_t expected,
const struct timespec *deadline)
{
(void)address;
(void)expected;
(void)deadline;
assert(state->ops == &test_ops);
return;
}
static void wait64(const struct ck_ec_wait_state *state,
const uint64_t *address, uint64_t expected,
const struct timespec *deadline)
{
(void)address;
(void)expected;
(void)deadline;
assert(state->ops == &test_ops);
return;
}
static void wake32(const struct ck_ec_ops *ops, const uint32_t *address)
{
(void)address;
assert(ops == &test_ops);
return;
}
static void wake64(const struct ck_ec_ops *ops, const uint64_t *address)
{
(void)address;
assert(ops == &test_ops);
return;
}
#else
#include <linux/futex.h>
#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>
static int gettime(const struct ck_ec_ops *ops, struct timespec *out)
{
assert(ops == &test_ops);
return clock_gettime(CLOCK_MONOTONIC, out);
}
static void wait32(const struct ck_ec_wait_state *state,
const uint32_t *address, uint32_t expected,
const struct timespec *deadline)
{
assert(state->ops == &test_ops);
syscall(SYS_futex, address,
FUTEX_WAIT_BITSET, expected, deadline,
NULL, FUTEX_BITSET_MATCH_ANY, 0);
return;
}
static void wait64(const struct ck_ec_wait_state *state,
const uint64_t *address, uint64_t expected,
const struct timespec *deadline)
{
const void *low_half;
assert(state->ops == &test_ops);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
low_half = address;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
low_half = (uintptr_t)address + sizeof(uint32_t);
#else
# error "__BYTE_ORDER__ must be defined."
#endif
syscall(SYS_futex, low_half,
FUTEX_WAIT_BITSET, (uint32_t)expected, deadline,
NULL, FUTEX_BITSET_MATCH_ANY, 0);
return;
}
static void wake32(const struct ck_ec_ops *ops, const uint32_t *address)
{
assert(ops == &test_ops);
syscall(SYS_futex, address,
FUTEX_WAKE, INT_MAX,
/* ignored arguments */NULL, NULL, 0);
return;
}
static void wake64(const struct ck_ec_ops *ops, const uint64_t *address)
{
const void *low_half;
assert(ops == &test_ops);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
low_half = address;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
low_half = (uintptr_t)address + sizeof(uint32_t);
#else
# error "__BYTE_ORDER__ must be defined."
#endif
syscall(SYS_futex, low_half,
FUTEX_WAKE, INT_MAX,
/* ignored arguments */NULL, NULL, 0);
return;
}
#endif /* __linux__ */
static const struct ck_ec_mode sp = {
.ops = &test_ops,
.single_producer = true
};
static const struct ck_ec_mode mp = {
.ops = &test_ops,
.single_producer = false
};
static CK_CC_FORCE_INLINE void bench32(const struct ck_ec_mode mode)
{
ck_ec32_t ec CK_CC_CACHELINE = CK_EC_INITIALIZER;
uint64_t a;
uint64_t baseline = 1000 * 1000;
uint32_t value;
for (size_t i = 0; i < STEPS; i++) {
uint64_t s = rdtsc();
uint64_t elapsed = rdtsc() - s;
if (elapsed < baseline) {
baseline = elapsed;
}
}
/* Read value. */
a = 0;
value = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
uint64_t s = rdtsc();
value ^= ck_ec32_value(&ec);
value ^= ck_ec32_value(&ec);
value ^= ck_ec32_value(&ec);
value ^= ck_ec32_value(&ec);
__asm__ volatile("" :: "r"(value));
a += rdtsc() - s - baseline;
}
printf("%s ec32_value: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* Wait (fast path). */
a = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
uint64_t s = rdtsc();
ck_ec32_wait(&ec, &mode, 1, NULL);
ck_ec32_wait(&ec, &mode, 1, NULL);
ck_ec32_wait(&ec, &mode, 1, NULL);
ck_ec32_wait(&ec, &mode, 1, NULL);
a += rdtsc() - s - baseline;
}
printf("%s ec32_wait fast: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* trywait. */
a = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
struct timespec past = { .tv_sec = 0 };
uint64_t s = rdtsc();
ck_ec32_wait(&ec, &mode, 0, &past);
ck_ec32_wait(&ec, &mode, 0, &past);
ck_ec32_wait(&ec, &mode, 0, &past);
ck_ec32_wait(&ec, &mode, 0, &past);
a += rdtsc() - s - baseline;
}
printf("%s ec32_wait timeout: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* Inc (no waiter). */
assert(!ck_ec32_has_waiters(&ec));
a = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
uint64_t s = rdtsc();
ck_ec32_inc(&ec, &mode);
ck_ec32_inc(&ec, &mode);
ck_ec32_inc(&ec, &mode);
ck_ec32_inc(&ec, &mode);
a += rdtsc() - s - baseline;
}
printf("%s ec32_inc: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* Inc (with waiter). */
assert(!ck_ec32_has_waiters(&ec));
a = 0;
for (size_t i = 0; i < STEPS; i++) {
struct timespec past = { .tv_sec = 1 };
uint64_t s;
ck_ec32_wait(&ec, &mode, ck_ec32_value(&ec), &past);
assert(ck_ec32_has_waiters(&ec));
s = rdtsc();
ck_ec32_inc(&ec, &mode);
a += rdtsc() - s - baseline;
}
printf("%s ec32_inc slow: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* Add (no waiter). */
assert(!ck_ec32_has_waiters(&ec));
a = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
uint64_t s = rdtsc();
ck_ec32_add(&ec, &mode, i + 1);
ck_ec32_add(&ec, &mode, i + 2);
ck_ec32_add(&ec, &mode, i + 3);
ck_ec32_add(&ec, &mode, i + 4);
a += rdtsc() - s - baseline;
}
printf("%s ec32_add: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
assert(!ck_ec32_has_waiters(&ec));
a = 0;
for (size_t i = 0; i < STEPS; i++) {
struct timespec past = { .tv_sec = 1 };
uint64_t s;
ck_ec32_wait(&ec, &mode, ck_ec32_value(&ec), &past);
assert(ck_ec32_has_waiters(&ec));
s = rdtsc();
ck_ec32_add(&ec, &mode, i + 1);
a += rdtsc() - s - baseline;
}
printf("%s ec32_add slow: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
return;
}
#ifdef CK_F_EC64
static CK_CC_FORCE_INLINE void bench64(const struct ck_ec_mode mode)
{
ck_ec64_t ec CK_CC_CACHELINE = CK_EC_INITIALIZER;
uint64_t a;
uint64_t baseline = 1000 * 1000;
uint64_t value;
for (size_t i = 0; i < STEPS; i++) {
uint64_t s = rdtsc();
uint64_t elapsed = rdtsc() - s;
if (elapsed < baseline) {
baseline = elapsed;
}
}
/* Read value. */
a = 0;
value = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
uint64_t s = rdtsc();
value ^= ck_ec64_value(&ec);
value ^= ck_ec64_value(&ec);
value ^= ck_ec64_value(&ec);
value ^= ck_ec64_value(&ec);
__asm__ volatile("" :: "r"(value));
a += rdtsc() - s - baseline;
}
printf("%s ec64_value: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* Wait (fast path). */
a = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
uint64_t s = rdtsc();
ck_ec64_wait(&ec, &mode, 1, NULL);
ck_ec64_wait(&ec, &mode, 1, NULL);
ck_ec64_wait(&ec, &mode, 1, NULL);
ck_ec64_wait(&ec, &mode, 1, NULL);
a += rdtsc() - s - baseline;
}
printf("%s ec64_wait fast: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* trywait. */
a = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
struct timespec past = { .tv_sec = 0 };
uint64_t s = rdtsc();
ck_ec64_wait(&ec, &mode, 0, &past);
ck_ec64_wait(&ec, &mode, 0, &past);
ck_ec64_wait(&ec, &mode, 0, &past);
ck_ec64_wait(&ec, &mode, 0, &past);
a += rdtsc() - s - baseline;
}
printf("%s ec64_wait timeout: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* Inc (no waiter). */
assert(!ck_ec64_has_waiters(&ec));
a = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
uint64_t s = rdtsc();
ck_ec64_inc(&ec, &mode);
ck_ec64_inc(&ec, &mode);
ck_ec64_inc(&ec, &mode);
ck_ec64_inc(&ec, &mode);
a += rdtsc() - s - baseline;
}
printf("%s ec64_inc: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* Inc (with waiter). */
assert(!ck_ec64_has_waiters(&ec));
a = 0;
for (size_t i = 0; i < STEPS; i++) {
struct timespec past = { .tv_sec = 1 };
uint64_t s;
ck_ec64_wait(&ec, &mode, ck_ec64_value(&ec), &past);
assert(ck_ec64_has_waiters(&ec));
s = rdtsc();
ck_ec64_inc(&ec, &mode);
a += rdtsc() - s - baseline;
}
printf("%s ec64_inc slow: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
/* Add (no waiter). */
assert(!ck_ec64_has_waiters(&ec));
a = 0;
for (size_t i = 0; i < STEPS / 4; i++) {
uint64_t s = rdtsc();
ck_ec64_add(&ec, &mode, i + 1);
ck_ec64_add(&ec, &mode, i + 2);
ck_ec64_add(&ec, &mode, i + 3);
ck_ec64_add(&ec, &mode, i + 4);
a += rdtsc() - s - baseline;
}
printf("%s ec64_add: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
assert(!ck_ec64_has_waiters(&ec));
a = 0;
for (size_t i = 0; i < STEPS; i++) {
struct timespec past = { .tv_sec = 1 };
uint64_t s;
ck_ec64_wait(&ec, &mode, ck_ec64_value(&ec), &past);
assert(ck_ec64_has_waiters(&ec));
s = rdtsc();
ck_ec64_add(&ec, &mode, i + 1);
a += rdtsc() - s - baseline;
}
printf("%s ec64_add slow: %" PRIu64 "\n",
(mode.single_producer ? "SP" : "MP"), a / STEPS);
return;
}
#endif /* CK_F_EC64 */
int
main(void)
{
printf("SP ec32\n");
bench32(sp);
printf("\nMP ec32\n");
bench32(mp);
#ifdef CK_F_EC64
printf("\nSP ec64\n");
bench64(sp);
printf("\nMP ec64\n");
bench64(mp);
#endif /* CK_F_EC64 */
return 0;
}

View file

@ -0,0 +1,73 @@
.PHONY: check clean distribution
FUZZER ?= none
FUZZ_CFLAGS ?=
# See http://gallium.inria.fr/blog/portable-conditionals-in-makefiles/ for
# the portable conditional technique below.
none_fuzz_cflags =
libfuzzer_fuzz_cflags = -DUSE_LIBFUZZER -fsanitize=fuzzer,memory,undefined
FUZZ_CFLAGS += ${${FUZZER}_fuzz_cflags}
OBJECTS = ck_ec_smoke_test \
prop_test_timeutil_add \
prop_test_timeutil_add_ns \
prop_test_timeutil_cmp \
prop_test_timeutil_scale \
prop_test_value \
prop_test_wakeup \
prop_test_slow_wakeup
all: $(OBJECTS)
check: all
./ck_ec_smoke_test
# the command line arguments are only consumed by libfuzzer.
./prop_test_slow_wakeup -max_total_time=60
./prop_test_timeutil_add -max_total_time=60
./prop_test_timeutil_add_ns -max_total_time=60
./prop_test_timeutil_cmp -max_total_time=60
./prop_test_timeutil_scale -max_total_time=60
./prop_test_value -max_total_time=60
./prop_test_wakeup -max_total_time=60
quickfuzz: all
./prop_test_slow_wakeup -max_total_time=5
./prop_test_timeutil_add -max_total_time=5
./prop_test_timeutil_add_ns -max_total_time=5
./prop_test_timeutil_cmp -max_total_time=5
./prop_test_timeutil_scale -max_total_time=5
./prop_test_value -max_total_time=5
./prop_test_wakeup -max_total_time=5
ck_ec_smoke_test: ../../../src/ck_ec.c ck_ec_smoke_test.c ../../../src/ck_ec_timeutil.h ../../../include/ck_ec.h
$(CC) $(CFLAGS) -std=gnu11 ../../../src/ck_ec.c -o ck_ec_smoke_test ck_ec_smoke_test.c
prop_test_slow_wakeup: ../../../src/ck_ec.c prop_test_slow_wakeup.c ../../../src/ck_ec_timeutil.h ../../../include/ck_ec.h fuzz_harness.h
$(CC) $(CFLAGS) $(FUZZ_CFLAGS) ../../../src/ck_ec.c -o prop_test_slow_wakeup prop_test_slow_wakeup.c
prop_test_timeutil_add: ../../../src/ck_ec.c prop_test_timeutil_add.c ../../../src/ck_ec_timeutil.h ../../../include/ck_ec.h fuzz_harness.h
$(CC) $(CFLAGS) $(FUZZ_CFLAGS) ../../../src/ck_ec.c -o prop_test_timeutil_add prop_test_timeutil_add.c
prop_test_timeutil_add_ns: ../../../src/ck_ec.c prop_test_timeutil_add_ns.c ../../../src/ck_ec_timeutil.h ../../../include/ck_ec.h fuzz_harness.h
$(CC) $(CFLAGS) $(FUZZ_CFLAGS) ../../../src/ck_ec.c -o prop_test_timeutil_add_ns prop_test_timeutil_add_ns.c
prop_test_timeutil_cmp: ../../../src/ck_ec.c prop_test_timeutil_cmp.c ../../../src/ck_ec_timeutil.h ../../../include/ck_ec.h fuzz_harness.h
$(CC) $(CFLAGS) $(FUZZ_CFLAGS) ../../../src/ck_ec.c -o prop_test_timeutil_cmp prop_test_timeutil_cmp.c
prop_test_timeutil_scale: ../../../src/ck_ec.c prop_test_timeutil_scale.c ../../../src/ck_ec_timeutil.h ../../../include/ck_ec.h fuzz_harness.h
$(CC) $(CFLAGS) $(FUZZ_CFLAGS) ../../../src/ck_ec.c -o prop_test_timeutil_scale prop_test_timeutil_scale.c
prop_test_value: ../../../src/ck_ec.c prop_test_value.c ../../../src/ck_ec_timeutil.h ../../../include/ck_ec.h fuzz_harness.h
$(CC) $(CFLAGS) $(FUZZ_CFLAGS) ../../../src/ck_ec.c -o prop_test_value prop_test_value.c
prop_test_wakeup: ../../../src/ck_ec.c prop_test_wakeup.c ../../../src/ck_ec_timeutil.h ../../../include/ck_ec.h fuzz_harness.h
$(CC) $(CFLAGS) $(FUZZ_CFLAGS) ../../../src/ck_ec.c -o prop_test_wakeup prop_test_wakeup.c
clean:
rm -rf *~ *.o *.dSYM *.exe $(OBJECTS)
include ../../../build/regressions.build
CFLAGS+=$(PTHREAD_CFLAGS) -D_GNU_SOURCE

View file

@ -0,0 +1,450 @@
#include <assert.h>
#include <ck_ec.h>
#include <ck_limits.h>
#include <ck_stdbool.h>
#include <pthread.h>
#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#define TIME_MAX ((time_t)((1ULL << ((sizeof(time_t) * CHAR_BIT) - 1)) - 1))
#ifndef __linux__
/* Zero-initialize to mark the ops as unavailable. */
static const struct ck_ec_ops test_ops;
#else
#include <linux/futex.h>
#include <sys/syscall.h>
#include <time.h>
static int gettime(const struct ck_ec_ops *, struct timespec *out);
static void wake32(const struct ck_ec_ops *, const uint32_t *);
static void wait32(const struct ck_ec_wait_state *, const uint32_t *,
uint32_t, const struct timespec *);
static void wake64(const struct ck_ec_ops *, const uint64_t *);
static void wait64(const struct ck_ec_wait_state *, const uint64_t *,
uint64_t, const struct timespec *);
static const struct ck_ec_ops test_ops = {
.gettime = gettime,
.wait32 = wait32,
.wait64 = wait64,
.wake32 = wake32,
.wake64 = wake64
};
static int gettime(const struct ck_ec_ops *ops, struct timespec *out)
{
assert(ops == &test_ops);
return clock_gettime(CLOCK_MONOTONIC, out);
}
static void wait32(const struct ck_ec_wait_state *state,
const uint32_t *address, uint32_t expected,
const struct timespec *deadline)
{
assert(state->ops == &test_ops);
syscall(SYS_futex, address,
FUTEX_WAIT_BITSET, expected, deadline,
NULL, FUTEX_BITSET_MATCH_ANY, 0);
return;
}
static void wait64(const struct ck_ec_wait_state *state,
const uint64_t *address, uint64_t expected,
const struct timespec *deadline)
{
const void *low_half;
assert(state->ops == &test_ops);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
low_half = address;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
low_half = (uintptr_t)address + sizeof(uint32_t);
#else
# error "__BYTE_ORDER__ must be defined."
#endif
syscall(SYS_futex, low_half,
FUTEX_WAIT_BITSET, (uint32_t)expected, deadline,
NULL, FUTEX_BITSET_MATCH_ANY, 0);
return;
}
static void wake32(const struct ck_ec_ops *ops, const uint32_t *address)
{
assert(ops == &test_ops);
syscall(SYS_futex, address,
FUTEX_WAKE, INT_MAX,
/* ignored arguments */NULL, NULL, 0);
return;
}
static void wake64(const struct ck_ec_ops *ops, const uint64_t *address)
{
const void *low_half;
assert(ops == &test_ops);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
low_half = address;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
low_half = (uintptr_t)address + sizeof(uint32_t);
#else
# error "__BYTE_ORDER__ must be defined."
#endif
syscall(SYS_futex, low_half,
FUTEX_WAKE, INT_MAX,
/* ignored arguments */NULL, NULL, 0);
return;
}
#endif /* __linux__ */
static const struct ck_ec_mode sp = {
.ops = &test_ops,
.single_producer = true
};
static const struct ck_ec_mode mp = {
.ops = &test_ops,
.single_producer = false
};
static void test_update_counter_32(const struct ck_ec_mode *mode)
{
struct ck_ec32 ec = CK_EC_INITIALIZER;
assert(ck_ec_value(&ec) == 0);
ck_ec_inc(&ec, mode);
assert(ck_ec_value(&ec) == 1);
uint32_t old = ck_ec_add(&ec, mode, 42);
assert(old == 1);
assert(ck_ec_value(&ec) == 43);
return;
}
#ifdef CK_F_EC64
static void test_update_counter_64(const struct ck_ec_mode *mode)
{
struct ck_ec64 ec = CK_EC_INITIALIZER;
assert(ck_ec_value(&ec) == 0);
ck_ec_inc(&ec, mode);
assert(ck_ec_value(&ec) == 1);
uint64_t old = ck_ec_add(&ec, mode, 42);
assert(old == 1);
assert(ck_ec_value(&ec) == 43);
return;
}
#endif
static void test_deadline(void)
{
struct timespec deadline;
assert(ck_ec_deadline(&deadline, &sp, NULL) == 0);
assert(deadline.tv_sec == TIME_MAX);
{
const struct timespec timeout = {
.tv_sec = 1,
.tv_nsec = 1000
};
const struct timespec no_timeout = {
.tv_sec = 0
};
struct timespec now;
assert(ck_ec_deadline(&deadline, &sp, &timeout) == 0);
assert(ck_ec_deadline(&now, &sp, &no_timeout) == 0);
double now_sec = now.tv_sec + 1e-9 * now.tv_nsec;
double deadline_sec = deadline.tv_sec + 1e-9 * deadline.tv_nsec;
assert(now_sec < deadline_sec);
assert(deadline_sec <= now_sec + 1 + 1000e-9);
}
{
const struct timespec timeout = {
.tv_sec = TIME_MAX - 1,
.tv_nsec = 1000
};
assert(ck_ec_deadline(&deadline, &sp, &timeout) == 0);
assert(deadline.tv_sec == TIME_MAX);
}
return;
}
static void test_wait_32(void)
{
struct timespec deadline = { .tv_sec = 0 };
struct ck_ec32 ec;
ck_ec_init(&ec, 1);
assert(ck_ec_value(&ec) == 1);
assert(ck_ec_wait(&ec, &sp, 2, NULL) == 0);
assert(ck_ec_wait(&ec, &sp, 1, &deadline) == -1);
{
const struct timespec timeout = { .tv_nsec = 1 };
assert(ck_ec_deadline(&deadline, &sp, &timeout) == 0);
assert(ck_ec_wait(&ec, &sp, 1, &deadline) == -1);
assert(ck_ec_has_waiters(&ec));
}
return;
}
#ifdef CK_F_EC64
static void test_wait_64(void)
{
struct timespec deadline = { .tv_sec = 0 };
struct ck_ec64 ec;
ck_ec_init(&ec, 0);
assert(ck_ec_value(&ec) == 0);
assert(ck_ec_wait(&ec, &sp, 1, NULL) == 0);
assert(ck_ec_wait(&ec, &sp, 0, &deadline) == -1);
{
const struct timespec timeout = { .tv_nsec = 1 };
assert(ck_ec_deadline(&deadline, &sp, &timeout) == 0);
assert(ck_ec_wait(&ec, &sp, 0, &deadline) == -1);
assert(ck_ec_has_waiters(&ec));
}
return;
}
#endif
static int pred(const struct ck_ec_wait_state *state,
struct timespec *deadline)
{
double initial_ts = state->start.tv_sec +
1e-9 * state->start.tv_nsec;
int *count = state->data;
printf("pred wait: %f\n",
deadline->tv_sec + 1e-9 * deadline->tv_nsec - initial_ts);
if ((*count)++ < 3) {
return 0;
}
return (*count)++;
}
/*
* Check that pred's return value is correctly bubbled up,
* and that the event count is marked as having waiters.
*/
static void test_wait_pred_32(void)
{
struct ck_ec32 ec = CK_EC_INITIALIZER;
int count = 0;
assert(!ck_ec_has_waiters(&ec));
assert(ck_ec_wait_pred(&ec, &sp, 0, pred, &count, NULL) == 4);
assert(ck_ec_has_waiters(&ec));
assert(count == 5);
return;
}
#ifdef CK_F_EC64
static int pred2(const struct ck_ec_wait_state *state,
struct timespec *deadline)
{
double initial_ts = state->start.tv_sec +
1e-9 * state->start.tv_nsec;
int *count = state->data;
printf("pred2 wait: %f\n",
deadline->tv_sec + 1e-9 * deadline->tv_nsec - initial_ts);
*deadline = state->now;
deadline->tv_sec++;
(*count)++;
return 0;
}
/*
* wait_pred_64 is nearly identical to _32. Now check that deadline
* overriding works.
*/
static void test_wait_pred_64(void)
{
const struct timespec timeout = { .tv_sec = 5 };
struct timespec deadline;
struct ck_ec64 ec = CK_EC_INITIALIZER;
int count = 0;
assert(!ck_ec_has_waiters(&ec));
assert(ck_ec_deadline(&deadline, &sp, &timeout) == 0);
assert(ck_ec_wait_pred(&ec, &sp, 0, pred2, &count, &deadline) == -1);
assert(ck_ec_has_waiters(&ec));
assert(count == 5);
return;
}
#endif
static int woken = 0;
static void *test_threaded_32_waiter(void *data)
{
struct ck_ec32 *ec = data;
ck_ec_wait(ec, &sp, 0, NULL);
ck_pr_store_int(&woken, 1);
return NULL;
}
static void test_threaded_inc_32(const struct ck_ec_mode *mode)
{
struct ck_ec32 ec = CK_EC_INITIALIZER;
pthread_t waiter;
ck_pr_store_int(&woken, 0);
pthread_create(&waiter, NULL, test_threaded_32_waiter, &ec);
usleep(10000);
assert(ck_pr_load_int(&woken) == 0);
ck_ec_inc(&ec, mode);
pthread_join(waiter, NULL);
assert(ck_pr_load_int(&woken) == 1);
return;
}
static void test_threaded_add_32(const struct ck_ec_mode *mode)
{
struct ck_ec32 ec = CK_EC_INITIALIZER;
pthread_t waiter;
ck_pr_store_int(&woken, 0);
pthread_create(&waiter, NULL, test_threaded_32_waiter, &ec);
usleep(10000);
assert(ck_pr_load_int(&woken) == 0);
ck_ec_add(&ec, mode, 4);
pthread_join(waiter, NULL);
assert(ck_pr_load_int(&woken) == 1);
return;
}
#ifdef CK_F_EC64
static void *test_threaded_64_waiter(void *data)
{
struct ck_ec64 *ec = data;
ck_ec_wait(ec, &sp, 0, NULL);
ck_pr_store_int(&woken, 1);
return NULL;
}
static void test_threaded_inc_64(const struct ck_ec_mode *mode)
{
struct ck_ec64 ec = CK_EC_INITIALIZER;
pthread_t waiter;
ck_pr_store_int(&woken, 0);
pthread_create(&waiter, NULL, test_threaded_64_waiter, &ec);
usleep(10000);
assert(ck_pr_load_int(&woken) == 0);
ck_ec_inc(&ec, mode);
pthread_join(waiter, NULL);
assert(ck_pr_load_int(&woken) == 1);
return;
}
static void test_threaded_add_64(const struct ck_ec_mode *mode)
{
struct ck_ec64 ec = CK_EC_INITIALIZER;
pthread_t waiter;
ck_pr_store_int(&woken, 0);
pthread_create(&waiter, NULL, test_threaded_64_waiter, &ec);
usleep(10000);
assert(ck_pr_load_int(&woken) == 0);
ck_ec_add(&ec, mode, 4);
pthread_join(waiter, NULL);
assert(ck_pr_load_int(&woken) == 1);
return;
}
#endif
int main(int argc, char **argv)
{
(void)argc;
(void)argv;
if (test_ops.gettime == NULL ||
test_ops.wake32 == NULL ||
test_ops.wait32 == NULL) {
printf("No ck_ec ops for this platform. Trivial success.\n");
return 0;
}
test_update_counter_32(&sp);
#ifdef CK_F_EC64
test_update_counter_64(&sp);
#endif
printf("test_update_counter SP passed.\n");
test_update_counter_32(&mp);
#ifdef CK_F_EC64
test_update_counter_64(&mp);
#endif
printf("test_update_counter MP passed.\n");
test_deadline();
printf("test_deadline passed.\n");
test_wait_32();
#ifdef CK_F_EC64
test_wait_64();
#endif
printf("test_wait passed.\n");
test_wait_pred_32();
#ifdef CK_F_EC64
test_wait_pred_64();
#endif
printf("test_wait_pred passed.\n");
test_threaded_inc_32(&sp);
test_threaded_add_32(&sp);
#ifdef CK_F_EC64
test_threaded_inc_64(&sp);
test_threaded_add_64(&sp);
#endif
printf("test_threaded SP passed.\n");
test_threaded_inc_32(&mp);
test_threaded_add_32(&mp);
#ifdef CK_F_EC64
test_threaded_inc_64(&mp);
test_threaded_add_64(&mp);
#endif
printf("test_threaded MP passed.\n");
return 0;
}

View file

@ -0,0 +1,95 @@
#ifndef FUZZ_HARNESS_H
#define FUZZ_HARNESS_H
#include <assert.h>
#include <ck_stddef.h>
#include <ck_string.h>
#include <stdio.h>
#include <unistd.h>
#if defined(USE_LIBFUZZER)
#define TEST(function, examples) \
void LLVMFuzzerInitialize(int *argcp, char ***argvp); \
int LLVMFuzzerTestOneInput(const void *data, size_t n); \
\
void LLVMFuzzerInitialize(int *argcp, char ***argvp) \
{ \
static char size[128]; \
static char *argv[1024]; \
int argc = *argcp; \
\
assert(argc < 1023); \
\
int r = snprintf(size, sizeof(size), \
"-max_len=%zu", sizeof(examples[0])); \
assert((size_t)r < sizeof(size)); \
\
memcpy(argv, *argvp, argc * sizeof(argv[0])); \
argv[argc++] = size; \
\
*argcp = argc; \
*argvp = argv; \
\
for (size_t i = 0; \
i < sizeof(examples) / sizeof(examples[0]); \
i++) { \
assert(function(&examples[i]) == 0); \
} \
\
return; \
} \
\
int LLVMFuzzerTestOneInput(const void *data, size_t n) \
{ \
char buf[sizeof(examples[0])]; \
\
memset(buf, 0, sizeof(buf)); \
if (n < sizeof(buf)) { \
memcpy(buf, data, n); \
} else { \
memcpy(buf, data, sizeof(buf)); \
} \
\
assert(function((const void *)buf) == 0); \
return 0; \
}
#elif defined(USE_AFL)
#define TEST(function, examples) \
int main(int argc, char **argv) \
{ \
char buf[sizeof(examples[0])]; \
\
(void)argc; \
(void)argv; \
for (size_t i = 0; \
i < sizeof(examples) / sizeof(examples[0]); \
i++) { \
assert(function(&examples[i]) == 0); \
} \
\
\
while (__AFL_LOOP(10000)) { \
memset(buf, 0, sizeof(buf)); \
read(0, buf, sizeof(buf)); \
\
assert(function((const void *)buf) == 0); \
} \
\
return 0; \
}
#else
#define TEST(function, examples) \
int main(int argc, char **argv) \
{ \
(void)argc; \
(void)argv; \
\
for (size_t i = 0; \
i < sizeof(examples) / sizeof(examples[0]); \
i++) { \
assert(function(&examples[i]) == 0); \
} \
\
return 0; \
}
#endif
#endif /* !FUZZ_HARNESS_H */

View file

@ -0,0 +1,110 @@
#include <assert.h>
#include <ck_ec.h>
#include "fuzz_harness.h"
static int gettime(const struct ck_ec_ops *, struct timespec *out);
static void wake32(const struct ck_ec_ops *, const uint32_t *);
static void wait32(const struct ck_ec_wait_state *, const uint32_t *,
uint32_t, const struct timespec *);
static void wake64(const struct ck_ec_ops *, const uint64_t *);
static void wait64(const struct ck_ec_wait_state *, const uint64_t *,
uint64_t, const struct timespec *);
static const struct ck_ec_ops test_ops = {
.gettime = gettime,
.wait32 = wait32,
.wait64 = wait64,
.wake32 = wake32,
.wake64 = wake64
};
static int gettime(const struct ck_ec_ops *ops, struct timespec *out)
{
(void)out;
assert(ops == &test_ops);
return -1;
}
static void wait32(const struct ck_ec_wait_state *wait_state,
const uint32_t *addr, uint32_t expected,
const struct timespec *deadline)
{
(void)addr;
(void)expected;
(void)deadline;
assert(wait_state->ops == &test_ops);
return;
}
static void wait64(const struct ck_ec_wait_state *wait_state,
const uint64_t *addr, uint64_t expected,
const struct timespec *deadline)
{
(void)addr;
(void)expected;
(void)deadline;
assert(wait_state->ops == &test_ops);
return;
}
static void wake32(const struct ck_ec_ops *ops, const uint32_t *addr)
{
(void)addr;
assert(ops == &test_ops);
return;
}
static void wake64(const struct ck_ec_ops *ops, const uint64_t *addr)
{
(void)addr;
assert(ops == &test_ops);
return;
}
/*
* Check that calling ck_ec{32,64}_wake always clears the waiting bit.
*/
struct example {
uint64_t value;
};
const struct example examples[] = {
{ 0 },
{ 1 },
{ 1UL << 30 },
{ 1UL << 31 },
{ INT32_MAX },
{ INT64_MAX },
{ 1ULL << 62 },
{ 1ULL << 63 },
};
static inline int test_slow_wakeup(const struct example *example)
{
{
struct ck_ec32 ec = { .counter = example->value };
ck_ec32_wake(&ec, &test_ops);
assert(!ck_ec32_has_waiters(&ec));
}
#ifdef CK_F_EC64
{
struct ck_ec64 ec = { .counter = example->value };
ck_ec64_wake(&ec, &test_ops);
assert(!ck_ec64_has_waiters(&ec));
}
#endif /* CK_F_EC64 */
return 0;
}
TEST(test_slow_wakeup, examples)

View file

@ -0,0 +1,101 @@
#include <assert.h>
#include <ck_limits.h>
#include <ck_stdint.h>
#include "../../../src/ck_ec_timeutil.h"
#include "fuzz_harness.h"
#if ULONG_MAX > 4294967295
typedef unsigned __int128 dword_t;
#else
typedef uint64_t dword_t;
#endif
struct example {
struct timespec ts;
struct timespec inc;
};
static const struct example examples[] = {
{
{
42,
100
},
{
1,
2
}
},
{
{
42,
100
},
{
1,
NSEC_MAX
}
},
{
{
42,
NSEC_MAX
},
{
0,
NSEC_MAX
}
},
{
{
TIME_MAX - 1,
1000
},
{
2,
NSEC_MAX
}
}
};
static struct timespec normalize_ts(const struct timespec ts)
{
struct timespec ret = ts;
if (ret.tv_sec < 0) {
ret.tv_sec = ~ret.tv_sec;
}
if (ret.tv_nsec < 0) {
ret.tv_nsec = ~ret.tv_nsec;
}
ret.tv_nsec %= NSEC_MAX + 1;
return ret;
}
static dword_t ts_to_nanos(const struct timespec ts)
{
return (dword_t)ts.tv_sec * (NSEC_MAX + 1) + ts.tv_nsec;
}
static inline int test_timespec_add(const struct example *example)
{
const struct timespec ts = normalize_ts(example->ts);
const struct timespec inc = normalize_ts(example->inc);
const struct timespec actual = timespec_add(ts, inc);
const dword_t nanos = ts_to_nanos(ts) + ts_to_nanos(inc);
if (nanos / (NSEC_MAX + 1) > TIME_MAX) {
assert(actual.tv_sec == TIME_MAX);
assert(actual.tv_nsec == NSEC_MAX);
} else {
assert(actual.tv_sec == (time_t)(nanos / (NSEC_MAX + 1)));
assert(actual.tv_nsec == (long)(nanos % (NSEC_MAX + 1)));
}
return 0;
}
TEST(test_timespec_add, examples)

View file

@ -0,0 +1,88 @@
#include <assert.h>
#include "../../../src/ck_ec_timeutil.h"
#include "fuzz_harness.h"
#if ULONG_MAX > 4294967295
typedef unsigned __int128 dword_t;
#else
typedef uint64_t dword_t;
#endif
struct example {
struct timespec ts;
uint32_t ns;
};
static const struct example examples[] = {
{
{
42,
100
},
1
},
{
{
42,
100
},
2 * NSEC_MAX
},
{
{
42,
NSEC_MAX
},
NSEC_MAX
},
{
{
TIME_MAX - 1,
1000
},
2 * NSEC_MAX
}
};
static inline int test_timespec_add_ns(const struct example *example)
{
struct timespec ts = {
.tv_sec = example->ts.tv_sec,
.tv_nsec = example->ts.tv_nsec
};
const uint32_t ns = example->ns;
if (ts.tv_sec < 0) {
ts.tv_sec = ~ts.tv_sec;
}
if (ts.tv_nsec < 0) {
ts.tv_nsec = ~ts.tv_nsec;
}
ts.tv_nsec %= NSEC_MAX + 1;
const struct timespec actual = timespec_add_ns(ts, ns);
dword_t nanos =
(dword_t)ts.tv_sec * (NSEC_MAX + 1) + ts.tv_nsec;
if (ns > NSEC_MAX) {
nanos += NSEC_MAX + 1;
} else {
nanos += ns;
}
if (nanos / (NSEC_MAX + 1) > TIME_MAX) {
assert(actual.tv_sec == TIME_MAX);
assert(actual.tv_nsec == NSEC_MAX);
} else {
assert(actual.tv_sec == (time_t)(nanos / (NSEC_MAX + 1)));
assert(actual.tv_nsec == (long)(nanos % (NSEC_MAX + 1)));
}
return 0;
}
TEST(test_timespec_add_ns, examples)

View file

@ -0,0 +1,99 @@
#include <assert.h>
#include "../../../src/ck_ec_timeutil.h"
#include "fuzz_harness.h"
#if ULONG_MAX > 4294967295
typedef __int128 dsword_t;
#else
typedef int64_t dsword_t;
#endif
struct example {
struct timespec x;
struct timespec y;
};
static const struct example examples[] = {
{
{
42,
100
},
{
1,
2
}
},
{
{
42,
100
},
{
1,
NSEC_MAX
}
},
{
{
42,
NSEC_MAX
},
{
0,
NSEC_MAX
}
},
{
{
TIME_MAX - 1,
1000
},
{
2,
NSEC_MAX
}
}
};
static struct timespec normalize_ts(const struct timespec ts)
{
struct timespec ret = ts;
if (ret.tv_nsec < 0) {
ret.tv_nsec = ~ret.tv_nsec;
}
ret.tv_nsec %= NSEC_MAX + 1;
return ret;
}
static dsword_t ts_to_nanos(const struct timespec ts)
{
return (dsword_t)ts.tv_sec * (NSEC_MAX + 1) + ts.tv_nsec;
}
static inline int test_timespec_cmp(const struct example *example)
{
const struct timespec x = normalize_ts(example->y);
const struct timespec y = normalize_ts(example->x);
const dsword_t x_nanos = ts_to_nanos(x);
const dsword_t y_nanos = ts_to_nanos(y);
assert(timespec_cmp(x, x) == 0);
assert(timespec_cmp(y, y) == 0);
assert(timespec_cmp(x, y) == -timespec_cmp(y, x));
if (x_nanos == y_nanos) {
assert(timespec_cmp(x, y) == 0);
} else if (x_nanos < y_nanos) {
assert(timespec_cmp(x, y) == -1);
} else {
assert(timespec_cmp(x, y) == 1);
}
return 0;
}
TEST(test_timespec_cmp, examples)

View file

@ -0,0 +1,41 @@
#include <assert.h>
#include "../../../src/ck_ec_timeutil.h"
#include "fuzz_harness.h"
struct example {
uint32_t nsec;
uint32_t multiplier;
unsigned int shift;
};
static const struct example examples[] = {
{
UINT32_MAX,
UINT32_MAX,
1
},
{
10,
20,
0
}
};
static inline int test_wait_time_scale(const struct example *example)
{
const uint32_t nsec = example->nsec;
const uint32_t multiplier = example->multiplier;
const unsigned int shift = example->shift % 32;
uint32_t actual = wait_time_scale(nsec, multiplier, shift);
uint64_t expected = ((uint64_t)nsec * multiplier) >> shift;
if (expected > UINT32_MAX) {
expected = UINT32_MAX;
}
assert(actual == expected);
return 0;
}
TEST(test_wait_time_scale, examples)

View file

@ -0,0 +1,150 @@
#include <assert.h>
#include <ck_ec.h>
#include "fuzz_harness.h"
static int gettime(const struct ck_ec_ops *, struct timespec *out);
static void wake32(const struct ck_ec_ops *, const uint32_t *);
static void wait32(const struct ck_ec_wait_state *, const uint32_t *,
uint32_t, const struct timespec *);
static void wake64(const struct ck_ec_ops *, const uint64_t *);
static void wait64(const struct ck_ec_wait_state *, const uint64_t *,
uint64_t, const struct timespec *);
static const struct ck_ec_ops test_ops = {
.gettime = gettime,
.wait32 = wait32,
.wait64 = wait64,
.wake32 = wake32,
.wake64 = wake64
};
static const struct ck_ec_mode modes[] = {
{
.single_producer = true,
.ops = &test_ops
},
{
.single_producer = false,
.ops = &test_ops
},
};
static int gettime(const struct ck_ec_ops *ops, struct timespec *out)
{
(void)out;
assert(ops == &test_ops);
return -1;
}
static void wait32(const struct ck_ec_wait_state *wait_state,
const uint32_t *addr, uint32_t expected,
const struct timespec *deadline)
{
(void)addr;
(void)expected;
(void)deadline;
assert(wait_state->ops == &test_ops);
return;
}
static void wait64(const struct ck_ec_wait_state *wait_state,
const uint64_t *addr, uint64_t expected,
const struct timespec *deadline)
{
(void)addr;
(void)expected;
(void)deadline;
assert(wait_state->ops == &test_ops);
return;
}
static void wake32(const struct ck_ec_ops *ops, const uint32_t *addr)
{
(void)addr;
assert(ops == &test_ops);
return;
}
static void wake64(const struct ck_ec_ops *ops, const uint64_t *addr)
{
(void)addr;
assert(ops == &test_ops);
return;
}
/*
* Check that adding a value correctly updates the counter, and that
* incrementing after that also works.
*/
struct example {
uint64_t value[2];
};
static const struct example examples[] = {
{ { 0, 0 } },
{ { 1, 2 } },
{ { 0, INT32_MAX - 2 } },
{ { 0, INT32_MAX - 1 } },
{ { 0, INT32_MAX } },
{ { 0, INT64_MAX - 2 } },
{ { 0, INT64_MAX - 1 } },
{ { 0, INT64_MAX } },
};
static inline int test_value(const struct example *example)
{
for (size_t i = 0; i < 2; i++) {
const struct ck_ec_mode *mode = &modes[i];
const uint32_t value0 = example->value[0] & INT32_MAX;
const uint32_t value1 = example->value[1] & INT32_MAX;
struct ck_ec32 ec;
ck_ec32_init(&ec, 0);
assert(ck_ec32_value(&ec) == 0);
ck_ec32_add(&ec, mode, value0);
assert(ck_ec32_value(&ec) == value0);
ck_ec32_add(&ec, mode, value1);
assert(ck_ec32_value(&ec) ==
((value0 + value1) & INT32_MAX));
ck_ec32_inc(&ec, mode);
assert(ck_ec32_value(&ec) ==
((value0 + value1 + 1) & INT32_MAX));
}
#ifdef CK_F_EC64
for (size_t i = 0; i < 2; i++) {
const struct ck_ec_mode *mode = &modes[i];
const uint64_t value0 = example->value[0] & INT64_MAX;
const uint64_t value1 = example->value[1] & INT64_MAX;
struct ck_ec64 ec;
ck_ec64_init(&ec, 0);
assert(ck_ec64_value(&ec) == 0);
ck_ec64_add(&ec, mode, value0);
assert(ck_ec64_value(&ec) == value0);
ck_ec64_add(&ec, mode, value1);
assert(ck_ec64_value(&ec) ==
((value0 + value1) & INT64_MAX));
ck_ec64_inc(&ec, mode);
assert(ck_ec64_value(&ec) ==
((value0 + value1 + 1) & INT64_MAX));
}
#endif /* CK_F_EC64 */
return 0;
}
TEST(test_value, examples)

View file

@ -0,0 +1,193 @@
#include <assert.h>
#include <ck_ec.h>
#include <ck_stdbool.h>
#include "fuzz_harness.h"
static int gettime(const struct ck_ec_ops *, struct timespec *out);
static void wake32(const struct ck_ec_ops *, const uint32_t *);
static void wait32(const struct ck_ec_wait_state *, const uint32_t *,
uint32_t, const struct timespec *);
static void wake64(const struct ck_ec_ops *, const uint64_t *);
static void wait64(const struct ck_ec_wait_state *, const uint64_t *,
uint64_t, const struct timespec *);
static const struct ck_ec_ops test_ops = {
.gettime = gettime,
.wait32 = wait32,
.wait64 = wait64,
.wake32 = wake32,
.wake64 = wake64
};
static const struct ck_ec_mode modes[] = {
{
.single_producer = true,
.ops = &test_ops
},
{
.single_producer = false,
.ops = &test_ops
},
};
static bool woken = false;
static int gettime(const struct ck_ec_ops *ops, struct timespec *out)
{
(void)out;
assert(ops == &test_ops);
return -1;
}
static void wait32(const struct ck_ec_wait_state *state, const uint32_t *addr,
uint32_t expected, const struct timespec *deadline)
{
(void)addr;
(void)expected;
(void)deadline;
assert(state->ops == &test_ops);
return;
}
static void wait64(const struct ck_ec_wait_state *state, const uint64_t *addr,
uint64_t expected, const struct timespec *deadline)
{
(void)addr;
(void)expected;
(void)deadline;
assert(state->ops == &test_ops);
return;
}
static void wake32(const struct ck_ec_ops *ops, const uint32_t *addr)
{
(void)addr;
assert(ops == &test_ops);
woken = true;
return;
}
static void wake64(const struct ck_ec_ops *ops, const uint64_t *addr)
{
(void)addr;
assert(ops == &test_ops);
woken = true;
return;
}
/*
* Check that adding a value calls the wake function when the sign bit
* is set, and does not call it when the sign bit is unset (modulo
* wrap-around).
*/
struct example {
uint64_t initial;
uint64_t increment;
};
const struct example examples[] = {
{ INT32_MAX, 0 },
{ INT32_MAX, 1 },
{ 0 + (0U << 31), 0 },
{ 1 + (0U << 31), 0 },
{ 0 + (1U << 31), 0 },
{ 1 + (1U << 31), 0 },
{ 0 + (0U << 31), 1 },
{ 1 + (0U << 31), 1 },
{ 0 + (1U << 31), 1 },
{ 1 + (1U << 31), 1 },
{ 0 + (0U << 31), INT32_MAX },
{ 1 + (0U << 31), INT32_MAX },
{ 0 + (1U << 31), INT32_MAX },
{ 1 + (1U << 31), INT32_MAX },
{ INT64_MAX, 0 },
{ INT64_MAX, 1 },
{ 0 + (0ULL << 63), 0 },
{ 1 + (0ULL << 63), 0 },
{ 0 + (1ULL << 63), 0 },
{ 1 + (1ULL << 63), 0 },
{ 0 + (0ULL << 63), 1 },
{ 1 + (0ULL << 63), 1 },
{ 0 + (1ULL << 63), 1 },
{ 1 + (1ULL << 63), 1 },
{ 0 + (0ULL << 63), INT64_MAX },
{ 1 + (0ULL << 63), INT64_MAX },
{ 0 + (1ULL << 63), INT64_MAX },
{ 1 + (1ULL << 63), INT64_MAX },
};
static inline int test_wakeup(const struct example *example)
{
for (size_t i = 0; i < 2; i++) {
const struct ck_ec_mode *mode = &modes[i];
const uint32_t increment = example->increment & INT32_MAX;
struct ck_ec32 ec;
bool should_wake;
bool may_wake;
ec.counter = example->initial;
should_wake = increment != 0 && (ec.counter & (1U << 31));
may_wake = should_wake || (ec.counter & (1U << 31));
woken = false;
ck_ec32_add(&ec, mode, increment);
assert(!should_wake || woken);
assert(may_wake || !woken);
assert(!woken || ck_ec32_has_waiters(&ec) == false);
/* Test inc now. */
ec.counter = example->initial + increment;
should_wake = ec.counter & (1U << 31);
may_wake = should_wake || ((ec.counter + 1) & (1U << 31));
woken = false;
ck_ec32_inc(&ec, mode);
assert(!should_wake || woken);
assert(may_wake || !woken);
assert(!woken || ck_ec32_has_waiters(&ec) == false);
}
#ifdef CK_F_EC64
for (size_t i = 0; i < 2; i++) {
const struct ck_ec_mode *mode = &modes[i];
const uint64_t increment = example->increment & INT64_MAX;
struct ck_ec64 ec;
bool should_wake;
bool may_wake;
ec.counter = example->initial;
should_wake = increment != 0 && (ec.counter & 1);
may_wake = should_wake || (ec.counter & 1);
woken = false;
ck_ec64_add(&ec, mode, increment);
assert(!should_wake || woken);
assert(may_wake || !woken);
assert(!woken || ck_ec64_has_waiters(&ec) == false);
/* Test inc now. */
ec.counter = example->initial + increment;
should_wake = ec.counter & 1;
woken = false;
ck_ec64_inc(&ec, mode);
assert(should_wake == woken);
assert(!woken || ck_ec64_has_waiters(&ec) == false);
}
#endif /* CK_F_EC64 */
return 0;
}
TEST(test_wakeup, examples)

View file

@ -37,6 +37,7 @@ static void
cb(ck_epoch_entry_t *p)
{
/* Test that we can reregister the callback. */
if (counter == 0)
ck_epoch_call(&record[1], p, cb);
@ -50,15 +51,22 @@ int
main(void)
{
ck_epoch_entry_t entry;
ck_epoch_entry_t another;
ck_epoch_register(&epoch, &record[0]);
ck_epoch_register(&epoch, &record[1]);
ck_epoch_register(&epoch, &record[0], NULL);
ck_epoch_register(&epoch, &record[1], NULL);
ck_epoch_call(&record[1], &entry, cb);
ck_epoch_barrier(&record[1]);
ck_epoch_barrier(&record[1]);
if (counter != 2)
ck_error("Expected counter value 2, read %u.\n", counter);
/* Make sure that strict works. */
ck_epoch_call_strict(&record[1], &entry, cb);
ck_epoch_call_strict(&record[1], &another, cb);
ck_epoch_barrier(&record[1]);
if (counter != 4)
ck_error("Expected counter value 4, read %u.\n", counter);
return 0;
}

View file

@ -86,10 +86,14 @@ static void *
read_thread(void *unused CK_CC_UNUSED)
{
unsigned int j;
ck_epoch_record_t record CK_CC_CACHELINE;
ck_epoch_record_t *record CK_CC_CACHELINE;
ck_stack_entry_t *cursor, *n;
ck_epoch_register(&stack_epoch, &record);
record = malloc(sizeof *record);
if (record == NULL)
ck_error("record allocation failure");
ck_epoch_register(&stack_epoch, record, NULL);
if (aff_iterate(&a)) {
perror("ERROR: failed to affine thread");
@ -108,7 +112,7 @@ read_thread(void *unused CK_CC_UNUSED)
j = 0;
for (;;) {
ck_epoch_begin(&record, NULL);
ck_epoch_begin(record, NULL);
CK_STACK_FOREACH(&stack, cursor) {
if (cursor == NULL)
continue;
@ -116,7 +120,7 @@ read_thread(void *unused CK_CC_UNUSED)
n = CK_STACK_NEXT(cursor);
j += ck_pr_load_ptr(&n) != NULL;
}
ck_epoch_end(&record, NULL);
ck_epoch_end(record, NULL);
if (j != 0 && ck_pr_load_uint(&readers) == 0)
ck_pr_store_uint(&readers, 1);
@ -138,10 +142,13 @@ write_thread(void *unused CK_CC_UNUSED)
{
struct node **entry, *e;
unsigned int i, j, tid;
ck_epoch_record_t record;
ck_epoch_record_t *record;
ck_stack_entry_t *s;
ck_epoch_register(&stack_epoch, &record);
record = malloc(sizeof *record);
if (record == NULL)
ck_error("record allocation failure");
ck_epoch_register(&stack_epoch, record, NULL);
if (aff_iterate(&a)) {
perror("ERROR: failed to affine thread");
@ -178,23 +185,23 @@ write_thread(void *unused CK_CC_UNUSED)
}
for (i = 0; i < PAIRS_S; i++) {
ck_epoch_begin(&record, NULL);
ck_epoch_begin(record, NULL);
s = ck_stack_pop_upmc(&stack);
e = stack_container(s);
ck_epoch_end(&record, NULL);
ck_epoch_end(record, NULL);
ck_epoch_call(&record, &e->epoch_entry, destructor);
ck_epoch_poll(&record);
ck_epoch_call(record, &e->epoch_entry, destructor);
ck_epoch_poll(record);
}
}
ck_epoch_barrier(&record);
ck_epoch_barrier(record);
if (tid == 0) {
fprintf(stderr, "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b[W] Peak: %u (%2.2f%%)\n Reclamations: %lu\n\n",
record.n_peak,
(double)record.n_peak / ((double)PAIRS_S * ITERATE_S) * 100,
record.n_dispatch);
fprintf(stderr, "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b[W] Peak: %u (%2.2f%%)\n Reclamations: %u\n\n",
record->n_peak,
(double)record->n_peak / ((double)PAIRS_S * ITERATE_S) * 100,
record->n_dispatch);
}
ck_pr_inc_uint(&e_barrier);

View file

@ -46,8 +46,8 @@ setup_test(void)
{
ck_epoch_init(&epc);
ck_epoch_register(&epc, &record);
ck_epoch_register(&epc, &record2);
ck_epoch_register(&epc, &record, NULL);
ck_epoch_register(&epc, &record2, NULL);
cleanup_calls = 0;
return;
@ -88,7 +88,8 @@ test_simple_read_section(void)
ck_epoch_begin(&record, &section);
ck_epoch_call(&record, &entry, cleanup);
assert(cleanup_calls == 0);
ck_epoch_end(&record, &section);
if (ck_epoch_end(&record, &section) == false)
ck_error("expected no more sections");
ck_epoch_barrier(&record);
assert(cleanup_calls == 1);
@ -157,7 +158,7 @@ reader_work(void *arg)
ck_epoch_section_t section;
struct obj *o;
ck_epoch_register(&epc, &local_record);
ck_epoch_register(&epc, &local_record, NULL);
o = (struct obj *)arg;

View file

@ -64,7 +64,7 @@ read_thread(void *unused CK_CC_UNUSED)
record = malloc(sizeof *record);
assert(record != NULL);
ck_epoch_register(&epoch, record);
ck_epoch_register(&epoch, record, NULL);
if (aff_iterate(&a)) {
perror("ERROR: failed to affine thread");
@ -110,11 +110,14 @@ read_thread(void *unused CK_CC_UNUSED)
}
ck_epoch_begin(record, &section[1]);
assert(section[0].bucket != section[1].bucket);
if (section[0].bucket == section[1].bucket) {
ck_error("%u == %u\n",
section[0].bucket, section[1].bucket);
}
ck_epoch_end(record, &section[0]);
assert(ck_pr_load_uint(&record->active) > 0);
if (ck_pr_load_uint(&record->active) == 0)
ck_error("active: %u\n", record->active);
if (ck_pr_load_uint(&leave) == 1) {
ck_epoch_end(record, &section[1]);
@ -130,10 +133,14 @@ read_thread(void *unused CK_CC_UNUSED)
static void *
write_thread(void *unused CK_CC_UNUSED)
{
ck_epoch_record_t record;
ck_epoch_record_t *record;
unsigned long iterations = 0;
ck_epoch_register(&epoch, &record);
record = malloc(sizeof *record);
if (record == NULL)
ck_error("record allocation failure");
ck_epoch_register(&epoch, record, NULL);
if (aff_iterate(&a)) {
perror("ERROR: failed to affine thread");
@ -147,7 +154,7 @@ write_thread(void *unused CK_CC_UNUSED)
if (!(iterations % 1048575))
fprintf(stderr, ".");
ck_epoch_synchronize(&record);
ck_epoch_synchronize(record);
iterations++;
if (ck_pr_load_uint(&leave) == 1)

View file

@ -86,12 +86,15 @@ static void *
read_thread(void *unused CK_CC_UNUSED)
{
unsigned int j;
ck_epoch_record_t record CK_CC_CACHELINE;
ck_epoch_record_t *record CK_CC_CACHELINE;
ck_stack_entry_t *cursor;
ck_stack_entry_t *n;
unsigned int i;
ck_epoch_register(&stack_epoch, &record);
record = malloc(sizeof *record);
if (record == NULL)
ck_error("record allocation failure");
ck_epoch_register(&stack_epoch, record, NULL);
if (aff_iterate(&a)) {
perror("ERROR: failed to affine thread");
@ -112,7 +115,7 @@ read_thread(void *unused CK_CC_UNUSED)
for (;;) {
i = 0;
ck_epoch_begin(&record, NULL);
ck_epoch_begin(record, NULL);
CK_STACK_FOREACH(&stack, cursor) {
if (cursor == NULL)
continue;
@ -123,7 +126,7 @@ read_thread(void *unused CK_CC_UNUSED)
if (i++ > 4098)
break;
}
ck_epoch_end(&record, NULL);
ck_epoch_end(record, NULL);
if (j != 0 && ck_pr_load_uint(&readers) == 0)
ck_pr_store_uint(&readers, 1);
@ -145,10 +148,13 @@ write_thread(void *unused CK_CC_UNUSED)
{
struct node **entry, *e;
unsigned int i, j, tid;
ck_epoch_record_t record;
ck_epoch_record_t *record;
ck_stack_entry_t *s;
ck_epoch_register(&stack_epoch, &record);
record = malloc(sizeof *record);
if (record == NULL)
ck_error("record allocation failure");
ck_epoch_register(&stack_epoch, record, NULL);
if (aff_iterate(&a)) {
perror("ERROR: failed to affine thread");
@ -180,17 +186,17 @@ write_thread(void *unused CK_CC_UNUSED)
ck_pr_stall();
for (i = 0; i < PAIRS_S; i++) {
ck_epoch_begin(&record, NULL);
ck_epoch_begin(record, NULL);
s = ck_stack_pop_upmc(&stack);
e = stack_container(s);
ck_epoch_end(&record, NULL);
ck_epoch_end(record, NULL);
if (i & 1) {
ck_epoch_synchronize(&record);
ck_epoch_reclaim(&record);
ck_epoch_call(&record, &e->epoch_entry, destructor);
ck_epoch_synchronize(record);
ck_epoch_reclaim(record);
ck_epoch_call(record, &e->epoch_entry, destructor);
} else {
ck_epoch_barrier(&record);
ck_epoch_barrier(record);
destructor(&e->epoch_entry);
}
@ -201,13 +207,13 @@ write_thread(void *unused CK_CC_UNUSED)
}
}
ck_epoch_synchronize(&record);
ck_epoch_synchronize(record);
if (tid == 0) {
fprintf(stderr, "[W] Peak: %u (%2.2f%%)\n Reclamations: %lu\n\n",
record.n_peak,
(double)record.n_peak / ((double)PAIRS_S * ITERATE_S) * 100,
record.n_dispatch);
fprintf(stderr, "[W] Peak: %u (%2.2f%%)\n Reclamations: %u\n\n",
record->n_peak,
(double)record->n_peak / ((double)PAIRS_S * ITERATE_S) * 100,
record->n_dispatch);
}
ck_pr_inc_uint(&e_barrier);

View file

@ -81,7 +81,7 @@ thread(void *unused CK_CC_UNUSED)
unsigned long smr = 0;
unsigned int i;
ck_epoch_register(&stack_epoch, &record);
ck_epoch_register(&stack_epoch, &record, NULL);
if (aff_iterate(&a)) {
perror("ERROR: failed to affine thread");
@ -118,7 +118,7 @@ thread(void *unused CK_CC_UNUSED)
while (ck_pr_load_uint(&e_barrier) < n_threads);
fprintf(stderr, "Deferrals: %lu (%2.2f)\n", smr, (double)smr / PAIRS);
fprintf(stderr, "Peak: %u (%2.2f%%), %u pending\nReclamations: %lu\n\n",
fprintf(stderr, "Peak: %u (%2.2f%%), %u pending\nReclamations: %u\n\n",
record.n_peak,
(double)record.n_peak / PAIRS * 100,
record.n_pending,

View file

@ -31,8 +31,8 @@
#include <unistd.h>
#include <ck_cc.h>
#include <ck_pr.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <ck_epoch.h>
#include <ck_stack.h>
@ -119,7 +119,7 @@ read_thread(void *unused CK_CC_UNUSED)
record = malloc(sizeof *record);
assert(record != NULL);
ck_epoch_register(&epoch, record);
ck_epoch_register(&epoch, record, NULL);
if (aff_iterate(&a)) {
perror("ERROR: failed to affine thread");
@ -147,10 +147,11 @@ write_thread(void *unused CK_CC_UNUSED)
ck_epoch_record_t *record;
unsigned long iterations = 0;
bool c = ck_pr_faa_uint(&first, 1);
uint64_t ac = 0;
record = malloc(sizeof *record);
assert(record != NULL);
ck_epoch_register(&epoch, record);
ck_epoch_register(&epoch, record, NULL);
if (aff_iterate(&a)) {
perror("ERROR: failed to affine thread");
@ -160,6 +161,12 @@ write_thread(void *unused CK_CC_UNUSED)
ck_pr_inc_uint(&barrier);
while (ck_pr_load_uint(&barrier) < n_threads);
#define CK_EPOCH_S do { \
uint64_t _s = rdtsc(); \
ck_epoch_synchronize(record); \
ac += rdtsc() - _s; \
} while (0)
do {
/*
* A thread should never observe invalid.value > valid.value.
@ -167,33 +174,34 @@ write_thread(void *unused CK_CC_UNUSED)
* invalid.value <= valid.value is valid.
*/
if (!c) ck_pr_store_uint(&valid.value, 1);
ck_epoch_synchronize(record);
CK_EPOCH_S;
if (!c) ck_pr_store_uint(&invalid.value, 1);
ck_pr_fence_store();
if (!c) ck_pr_store_uint(&valid.value, 2);
ck_epoch_synchronize(record);
CK_EPOCH_S;
if (!c) ck_pr_store_uint(&invalid.value, 2);
ck_pr_fence_store();
if (!c) ck_pr_store_uint(&valid.value, 3);
ck_epoch_synchronize(record);
CK_EPOCH_S;
if (!c) ck_pr_store_uint(&invalid.value, 3);
ck_pr_fence_store();
if (!c) ck_pr_store_uint(&valid.value, 4);
ck_epoch_synchronize(record);
CK_EPOCH_S;
if (!c) ck_pr_store_uint(&invalid.value, 4);
ck_epoch_synchronize(record);
CK_EPOCH_S;
if (!c) ck_pr_store_uint(&invalid.value, 0);
ck_epoch_synchronize(record);
CK_EPOCH_S;
iterations += 4;
iterations += 6;
} while (ck_pr_load_uint(&leave) == 0 &&
ck_pr_load_uint(&n_rd) > 0);
fprintf(stderr, "%lu iterations\n", iterations);
fprintf(stderr, "%" PRIu64 " average latency\n", ac / iterations);
return NULL;
}

View file

@ -55,6 +55,7 @@ static struct affinity a;
static int size;
static unsigned int barrier;
static unsigned int e_barrier;
static unsigned int s_barrier;
static void *
test(void *c)
@ -98,6 +99,9 @@ test(void *c)
}
}
ck_pr_inc_uint(&s_barrier);
while (ck_pr_load_uint(&s_barrier) < (unsigned int)nthr);
for (i = 0; i < ITERATIONS; i++) {
for (j = 0; j < size; j++) {
fifo_entry = malloc(sizeof(ck_hp_fifo_entry_t));

View file

@ -6,9 +6,9 @@
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyrighs
* 1. Redistributions of source code must retain the above copyrights
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyrighs
* 2. Redistributions in binary form must reproduce the above copyrights
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*

View file

@ -5,9 +5,9 @@
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyrighs
* 1. Redistributions of source code must retain the above copyrights
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyrighs
* 2. Redistributions in binary form must reproduce the above copyrights
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
@ -147,7 +147,7 @@ set_init(void)
#endif
ck_epoch_init(&epoch_hs);
ck_epoch_register(&epoch_hs, &epoch_wr);
ck_epoch_register(&epoch_hs, &epoch_wr, NULL);
common_srand48((long int)time(NULL));
if (ck_hs_init(&hs, mode, hs_hash, hs_compare, &my_allocator, 65536, common_lrand48()) == false) {
perror("ck_hs_init");
@ -234,7 +234,7 @@ reader(void *unused)
perror("WARNING: Failed to affine thread");
s = j = a = 0;
ck_epoch_register(&epoch_hs, &epoch_record);
ck_epoch_register(&epoch_hs, &epoch_record, NULL);
for (;;) {
j++;
ck_epoch_begin(&epoch_record, NULL);
@ -454,8 +454,8 @@ main(int argc, char *argv[])
ck_epoch_record_t epoch_temporary = epoch_wr;
ck_epoch_synchronize(&epoch_wr);
fprintf(stderr, " '- Summary: %u pending, %u peak, %lu reclamations -> "
"%u pending, %u peak, %lu reclamations\n\n",
fprintf(stderr, " '- Summary: %u pending, %u peak, %u reclamations -> "
"%u pending, %u peak, %u reclamations\n\n",
epoch_temporary.n_pending, epoch_temporary.n_peak, epoch_temporary.n_dispatch,
epoch_wr.n_pending, epoch_wr.n_peak, epoch_wr.n_dispatch);
@ -593,8 +593,8 @@ main(int argc, char *argv[])
epoch_temporary = epoch_wr;
ck_epoch_synchronize(&epoch_wr);
fprintf(stderr, " '- Summary: %u pending, %u peak, %lu reclamations -> "
"%u pending, %u peak, %lu reclamations\n\n",
fprintf(stderr, " '- Summary: %u pending, %u peak, %u reclamations -> "
"%u pending, %u peak, %u reclamations\n\n",
epoch_temporary.n_pending, epoch_temporary.n_peak, epoch_temporary.n_dispatch,
epoch_wr.n_pending, epoch_wr.n_peak, epoch_wr.n_dispatch);
return 0;

View file

@ -5,9 +5,9 @@
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyrighs
* 1. Redistributions of source code must retain the above copyrights
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyrighs
* 2. Redistributions in binary form must reproduce the above copyrights
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*

View file

@ -5,9 +5,9 @@
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyrighs
* 1. Redistributions of source code must retain the above copyrights
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyrighs
* 2. Redistributions in binary form must reproduce the above copyrights
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
@ -57,12 +57,28 @@ static struct ck_malloc my_allocator = {
.free = hs_free
};
static void
stub_free(void *p, size_t b, bool r)
{
(void)b;
(void)r;
fprintf(stderr, "Ignoring reclamation of %p\n", p);
return;
}
static struct ck_malloc stub_allocator = {
.malloc = hs_malloc,
.free = stub_free
};
const char *test[] = { "Samy", "Al", "Bahra", "dances", "in", "the", "wind.", "Once",
"upon", "a", "time", "his", "gypsy", "ate", "one", "itsy",
"bitsy", "spider.", "What", "goes", "up", "must",
"come", "down.", "What", "is", "down", "stays",
"down.", "A", "B", "C", "D", "E", "F", "G", "H",
"I", "J", "K", "L", "M", "N", "O", "P", "Q" };
"upon", "a", "time", "his", "gypsy", "ate", "one", "itsy",
"bitsy", "spider.", "What", "goes", "up", "must",
"come", "down.", "What", "is", "down", "stays",
"down.", "A", "B", "C", "D", "E", "F", "G", "H",
"I", "J", "K", "L", "M", "N", "O", "P", "Q" };
const char *negative = "negative";
@ -136,13 +152,21 @@ run_test(unsigned int is, unsigned int ad)
size_t i, j;
const char *blob = "#blobs";
unsigned long h;
ck_hs_iterator_t it;
if (ck_hs_init(&hs[0], CK_HS_MODE_SPMC | CK_HS_MODE_OBJECT | ad, hs_hash, hs_compare, &my_allocator, is, 6602834) == false)
ck_error("ck_hs_init\n");
for (j = 0; j < size; j++) {
for (i = 0; i < sizeof(test) / sizeof(*test); i++) {
h = test[i][0];
unsigned long h_1;
h = CK_HS_HASH(&hs[j], hs_hash, test[i]);
h_1 = ck_hs_hash(&hs[j], test[i]);
if (h != h_1)
ck_error("h != h_1 (%lu != %lu)\n", h, h_1);
if (ck_hs_get(&hs[j], h, test[i]) != NULL) {
continue;
}
@ -181,6 +205,58 @@ run_test(unsigned int is, unsigned int ad)
}
}
/* Test iteration */
if (j == 0) {
/* Avoid the blob stuff as it's not in the test array. */
ck_hs_iterator_init(&it);
void *k = NULL;
int matches = 0;
int entries = 0;
while (ck_hs_next(&hs[j], &it, &k) == true) {
entries++;
for (i = 0; i < sizeof(test) / sizeof(*test); i++) {
int x = strcmp(test[i], (char *)k);
if (x == 0) {
matches++;
break;
}
}
}
if (entries != matches) {
ck_error("Iteration must match all elements, has: %d, matched: %d [%d]", entries, matches, is);
}
/*
* Now test iteration in the face of grows (spmc).
* In order to test usage after reclamation, we
* stub the allocator.
*/
ck_hs_iterator_init(&it);
k = NULL;
matches = 0;
entries = 0;
hs[j].m = &stub_allocator;
while (ck_hs_next_spmc(&hs[j], &it, &k) == true) {
entries++;
for (i = 0; i < sizeof(test) / sizeof(*test); i++) {
int x = strcmp(test[i], (char *)k);
if (x == 0) {
matches++;
break;
}
}
if (entries == 20) {
ck_hs_grow(&hs[j], 128);
}
}
hs[j].m = &my_allocator;
if (entries != matches) {
ck_error("After growth, iteration must match all elements, has: %d, matched: %d [%d]", entries, matches, is);
}
}
/* Test grow semantics. */
ck_hs_grow(&hs[j], 128);
for (i = 0; i < sizeof(test) / sizeof(*test); i++) {

View file

@ -132,7 +132,7 @@ table_init(void)
#endif
ck_epoch_init(&epoch_ht);
ck_epoch_register(&epoch_ht, &epoch_wr);
ck_epoch_register(&epoch_ht, &epoch_wr, NULL);
common_srand48((long int)time(NULL));
if (ck_ht_init(&ht, mode, NULL, &my_allocator, 8, common_lrand48()) == false) {
perror("ck_ht_init");
@ -221,7 +221,7 @@ reader(void *unused)
perror("WARNING: Failed to affine thread");
s = j = a = 0;
ck_epoch_register(&epoch_ht, &epoch_record);
ck_epoch_register(&epoch_ht, &epoch_record, NULL);
for (;;) {
j++;
ck_epoch_begin(&epoch_record, NULL);
@ -426,8 +426,8 @@ main(int argc, char *argv[])
ck_epoch_record_t epoch_temporary = epoch_wr;
ck_epoch_synchronize(&epoch_wr);
fprintf(stderr, " '- Summary: %u pending, %u peak, %lu reclamations -> "
"%u pending, %u peak, %lu reclamations\n\n",
fprintf(stderr, " '- Summary: %u pending, %u peak, %u reclamations -> "
"%u pending, %u peak, %u reclamations\n\n",
epoch_temporary.n_pending, epoch_temporary.n_peak, epoch_temporary.n_dispatch,
epoch_wr.n_pending, epoch_wr.n_peak, epoch_wr.n_dispatch);
@ -551,8 +551,8 @@ main(int argc, char *argv[])
epoch_temporary = epoch_wr;
ck_epoch_synchronize(&epoch_wr);
fprintf(stderr, " '- Summary: %u pending, %u peak, %lu reclamations -> "
"%u pending, %u peak, %lu reclamations\n\n",
fprintf(stderr, " '- Summary: %u pending, %u peak, %u reclamations -> "
"%u pending, %u peak, %u reclamations\n\n",
epoch_temporary.n_pending, epoch_temporary.n_peak, epoch_temporary.n_dispatch,
epoch_wr.n_pending, epoch_wr.n_peak, epoch_wr.n_dispatch);
return 0;

View file

@ -136,7 +136,7 @@ table_init(void)
{
ck_epoch_init(&epoch_ht);
ck_epoch_register(&epoch_ht, &epoch_wr);
ck_epoch_register(&epoch_ht, &epoch_wr, NULL);
common_srand48((long int)time(NULL));
if (ck_ht_init(&ht, CK_HT_MODE_DIRECT, hash_function, &my_allocator, 8, common_lrand48()) == false) {
perror("ck_ht_init");
@ -221,7 +221,7 @@ ht_reader(void *unused)
perror("WARNING: Failed to affine thread");
s = j = a = 0;
ck_epoch_register(&epoch_ht, &epoch_record);
ck_epoch_register(&epoch_ht, &epoch_record, NULL);
for (;;) {
j++;
ck_epoch_begin(&epoch_record, NULL);
@ -412,8 +412,8 @@ main(int argc, char *argv[])
ck_epoch_record_t epoch_temporary = epoch_wr;
ck_epoch_synchronize(&epoch_wr);
fprintf(stderr, " '- Summary: %u pending, %u peak, %lu reclamations -> "
"%u pending, %u peak, %lu reclamations\n\n",
fprintf(stderr, " '- Summary: %u pending, %u peak, %u reclamations -> "
"%u pending, %u peak, %u reclamations\n\n",
epoch_temporary.n_pending, epoch_temporary.n_peak, epoch_temporary.n_dispatch,
epoch_wr.n_pending, epoch_wr.n_peak, epoch_wr.n_dispatch);
@ -537,8 +537,8 @@ main(int argc, char *argv[])
epoch_temporary = epoch_wr;
ck_epoch_synchronize(&epoch_wr);
fprintf(stderr, " '- Summary: %u pending, %u peak, %lu reclamations -> "
"%u pending, %u peak, %lu reclamations\n\n",
fprintf(stderr, " '- Summary: %u pending, %u peak, %u reclamations -> "
"%u pending, %u peak, %u reclamations\n\n",
epoch_temporary.n_pending, epoch_temporary.n_peak, epoch_temporary.n_dispatch,
epoch_wr.n_pending, epoch_wr.n_peak, epoch_wr.n_dispatch);
return 0;

View file

@ -1,6 +1,8 @@
.PHONY: clean
all: ck_pr_cas_64 ck_pr_fas_64 ck_pr_cas_64_2 ck_pr_add_64 ck_pr_faa_64 ck_pr_neg_64 fp
OBJECTS=ck_pr_cas_64 ck_pr_fas_64 ck_pr_cas_64_2 ck_pr_add_64 ck_pr_faa_64 ck_pr_neg_64 fp
all: $(OBJECTS)
fp: fp.c
$(CC) $(CFLAGS) -o fp fp.c
@ -24,8 +26,7 @@ ck_pr_neg_64: ck_pr_neg_64.c
$(CC) $(CFLAGS) -o ck_pr_neg_64 ck_pr_neg_64.c -lm
clean:
rm -rf ck_pr_cas_64 ck_pr_fas_64 ck_pr_cas_64_2 ck_pr_add_64 \
ck_pr_faa_64 ck_pr_neg_64 *.dSYM *.exe
rm -rf *.dSYM *.exe *.o $(OBJECTS)
include ../../../build/regressions.build
CFLAGS+=$(PTHREAD_CFLAGS) -D_GNU_SOURCE

View file

@ -4,7 +4,7 @@ OBJECTS=ck_pr_cas ck_pr_faa ck_pr_inc ck_pr_dec ck_pr_bts \
ck_pr_btr ck_pr_btc ck_pr_load ck_pr_store \
ck_pr_and ck_pr_or ck_pr_xor ck_pr_add ck_pr_sub \
ck_pr_fas ck_pr_bin ck_pr_btx ck_pr_fax ck_pr_n \
ck_pr_unary
ck_pr_unary ck_pr_fence ck_pr_dec_zero ck_pr_inc_zero
all: $(OBJECTS)
@ -20,12 +20,21 @@ ck_pr_cas: ck_pr_cas.c
ck_pr_inc: ck_pr_inc.c
$(CC) $(CFLAGS) -o ck_pr_inc ck_pr_inc.c
ck_pr_inc_zero: ck_pr_inc_zero.c
$(CC) $(CFLAGS) -o ck_pr_inc_zero ck_pr_inc_zero.c
ck_pr_dec: ck_pr_dec.c
$(CC) $(CFLAGS) -o ck_pr_dec ck_pr_dec.c
ck_pr_dec_zero: ck_pr_dec_zero.c
$(CC) $(CFLAGS) -o ck_pr_dec_zero ck_pr_dec_zero.c
ck_pr_faa: ck_pr_faa.c
$(CC) $(CFLAGS) -o ck_pr_faa ck_pr_faa.c
ck_pr_fence: ck_pr_fence.c
$(CC) $(CFLAGS) -o ck_pr_fence ck_pr_fence.c
ck_pr_btc: ck_pr_btc.c
$(CC) $(CFLAGS) -o ck_pr_btc ck_pr_btc.c

View file

@ -0,0 +1,105 @@
#include <inttypes.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <ck_pr.h>
#define EXPECT(ACTUAL, IS_ZERO, TYPE, INITIAL) do { \
TYPE expected = (TYPE)((TYPE)INITIAL - (TYPE)1); \
if ((ACTUAL) != expected) { \
printf("FAIL [ %" PRIx64" != %" PRIx64" ]\n", \
(uint64_t)(ACTUAL), \
(uint64_t)expected); \
exit(EXIT_FAILURE); \
} \
\
if ((IS_ZERO) != ((ACTUAL) == 0)) { \
printf("FAIL [ %s != %s ]\n", \
((IS_ZERO) ? "true" : "false"), \
(((ACTUAL) == 0) ? "true" : "false")); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define TEST_ZERO(TYPE, SUFFIX) do { \
TYPE datum; \
bool is_zero; \
\
datum = 0; \
ck_pr_dec_##SUFFIX##_zero(&datum, &is_zero); \
EXPECT(datum, is_zero, TYPE, 0); \
\
datum = (TYPE)-1; \
ck_pr_dec_##SUFFIX##_zero(&datum, &is_zero); \
EXPECT(datum, is_zero, TYPE, -1); \
\
datum = (TYPE)1; \
ck_pr_dec_##SUFFIX##_zero(&datum, &is_zero); \
EXPECT(datum, is_zero, TYPE, 1); \
\
datum = (TYPE)2; \
ck_pr_dec_##SUFFIX##_zero(&datum, &is_zero); \
EXPECT(datum, is_zero, TYPE, 2); \
} while (0)
#define TEST_IS_ZERO(TYPE, SUFFIX) do { \
TYPE datum; \
bool is_zero; \
\
datum = 0; \
is_zero = ck_pr_dec_##SUFFIX##_is_zero(&datum); \
EXPECT(datum, is_zero, TYPE, 0); \
\
datum = (TYPE)-1; \
is_zero = ck_pr_dec_##SUFFIX##_is_zero(&datum); \
EXPECT(datum, is_zero, TYPE, -1); \
\
datum = (TYPE)1; \
is_zero = ck_pr_dec_##SUFFIX##_is_zero(&datum); \
EXPECT(datum, is_zero, TYPE, 1); \
\
datum = (TYPE)2; \
is_zero = ck_pr_dec_##SUFFIX##_is_zero(&datum); \
EXPECT(datum, is_zero, TYPE, 2); \
} while (0)
#define TEST(TYPE, SUFFIX) do { \
TEST_ZERO(TYPE, SUFFIX); \
TEST_IS_ZERO(TYPE, SUFFIX); \
} while (0)
int
main(void)
{
#ifdef CK_F_PR_DEC_64_ZERO
TEST(uint64_t, 64);
#endif
#ifdef CK_F_PR_DEC_32_ZERO
TEST(uint32_t, 32);
#endif
#ifdef CK_F_PR_DEC_16_ZERO
TEST(uint16_t, 16);
#endif
#ifdef CK_F_PR_DEC_8_ZERO
TEST(uint8_t, 8);
#endif
#ifdef CK_F_PR_DEC_UINT_ZERO
TEST(unsigned int, uint);
#endif
#ifdef CK_F_PR_DEC_INT_ZERO
TEST(int, int);
#endif
#ifdef CK_F_PR_DEC_CHAR_ZERO
TEST(char, char);
#endif
return (0);
}

View file

@ -0,0 +1,80 @@
/*
* Copyright 2009-2018 Samy Al Bahra.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <ck_pr.h>
#include "../../common.h"
int
main(void)
{
int r = 0;
/* Below serves as a marker. */
ck_pr_sub_int(&r, 31337);
/*
* This is a simple test to help ensure all fences compile or crash
* on target. Below are generated according to the underlying memory
* model's ordering.
*/
ck_pr_fence_atomic();
ck_pr_fence_atomic_store();
ck_pr_fence_atomic_load();
ck_pr_fence_store_atomic();
ck_pr_fence_load_atomic();
ck_pr_fence_load();
ck_pr_fence_load_store();
ck_pr_fence_store();
ck_pr_fence_store_load();
ck_pr_fence_memory();
ck_pr_fence_release();
ck_pr_fence_acquire();
ck_pr_fence_acqrel();
ck_pr_fence_lock();
ck_pr_fence_unlock();
/* Below serves as a marker. */
ck_pr_sub_int(&r, 31337);
/* The following are generating assuming RMO. */
ck_pr_fence_strict_atomic();
ck_pr_fence_strict_atomic_store();
ck_pr_fence_strict_atomic_load();
ck_pr_fence_strict_store_atomic();
ck_pr_fence_strict_load_atomic();
ck_pr_fence_strict_load();
ck_pr_fence_strict_load_store();
ck_pr_fence_strict_store();
ck_pr_fence_strict_store_load();
ck_pr_fence_strict_memory();
ck_pr_fence_strict_release();
ck_pr_fence_strict_acquire();
ck_pr_fence_strict_acqrel();
ck_pr_fence_strict_lock();
ck_pr_fence_strict_unlock();
return 0;
}

View file

@ -0,0 +1,105 @@
#include <inttypes.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <ck_pr.h>
#define EXPECT(ACTUAL, IS_ZERO, TYPE, INITIAL) do { \
TYPE expected = (TYPE)((TYPE)INITIAL + (TYPE)1); \
if ((ACTUAL) != expected) { \
printf("FAIL [ %" PRIx64" != %" PRIx64" ]\n", \
(uint64_t)(ACTUAL), \
(uint64_t)expected); \
exit(EXIT_FAILURE); \
} \
\
if ((IS_ZERO) != ((ACTUAL) == 0)) { \
printf("FAIL [ %s != %s ]\n", \
((IS_ZERO) ? "true" : "false"), \
(((ACTUAL) == 0) ? "true" : "false")); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define TEST_ZERO(TYPE, SUFFIX) do { \
TYPE datum; \
bool is_zero; \
\
datum = 0; \
ck_pr_inc_##SUFFIX##_zero(&datum, &is_zero); \
EXPECT(datum, is_zero, TYPE, 0); \
\
datum = (TYPE)-1; \
ck_pr_inc_##SUFFIX##_zero(&datum, &is_zero); \
EXPECT(datum, is_zero, TYPE, -1); \
\
datum = (TYPE)1; \
ck_pr_inc_##SUFFIX##_zero(&datum, &is_zero); \
EXPECT(datum, is_zero, TYPE, 1); \
\
datum = (TYPE)2; \
ck_pr_inc_##SUFFIX##_zero(&datum, &is_zero); \
EXPECT(datum, is_zero, TYPE, 2); \
} while (0)
#define TEST_IS_ZERO(TYPE, SUFFIX) do { \
TYPE datum; \
bool is_zero; \
\
datum = 0; \
is_zero = ck_pr_inc_##SUFFIX##_is_zero(&datum); \
EXPECT(datum, is_zero, TYPE, 0); \
\
datum = (TYPE)-1; \
is_zero = ck_pr_inc_##SUFFIX##_is_zero(&datum); \
EXPECT(datum, is_zero, TYPE, -1); \
\
datum = (TYPE)1; \
is_zero = ck_pr_inc_##SUFFIX##_is_zero(&datum); \
EXPECT(datum, is_zero, TYPE, 1); \
\
datum = (TYPE)2; \
is_zero = ck_pr_inc_##SUFFIX##_is_zero(&datum); \
EXPECT(datum, is_zero, TYPE, 2); \
} while (0)
#define TEST(TYPE, SUFFIX) do { \
TEST_ZERO(TYPE, SUFFIX); \
TEST_IS_ZERO(TYPE, SUFFIX); \
} while (0)
int
main(void)
{
#ifdef CK_F_PR_INC_64_ZERO
TEST(uint64_t, 64);
#endif
#ifdef CK_F_PR_INC_32_ZERO
TEST(uint32_t, 32);
#endif
#ifdef CK_F_PR_INC_16_ZERO
TEST(uint16_t, 16);
#endif
#ifdef CK_F_PR_INC_8_ZERO
TEST(uint8_t, 8);
#endif
#ifdef CK_F_PR_INC_UINT_ZERO
TEST(unsigned int, uint);
#endif
#ifdef CK_F_PR_INC_INT_ZERO
TEST(int, int);
#endif
#ifdef CK_F_PR_INC_CHAR_ZERO
TEST(char, char);
#endif
return (0);
}

View file

@ -118,6 +118,7 @@ rg_width(int m)
int
main(void)
{
void *ptr = (void *)(intptr_t)-1;
common_srand((unsigned int)getpid());
@ -143,6 +144,11 @@ main(void)
ck_pr_load_64_2(&b, &a);
printf("%" PRIx64 ":%" PRIx64 "\n", a[0], a[1]);
#endif
printf("ck_pr_load_ptr: ");
if (ck_pr_load_ptr(&ptr) != (void *)(intptr_t)(-1))
printf("Failed : %p != %p\n", ck_pr_load_ptr(&ptr), (void *)(intptr_t)(-1));
else
printf("SUCCESS\n");
return (0);
}

View file

@ -119,6 +119,8 @@ rg_width(int m)
int
main(void)
{
void *ptr;
#if defined(CK_F_PR_STORE_DOUBLE) && defined(CK_F_PR_LOAD_DOUBLE)
double d;
@ -145,6 +147,12 @@ main(void)
#ifdef CK_F_PR_STORE_8
CK_PR_STORE_B(8);
#endif
printf("ck_pr_store_ptr: ");
ck_pr_store_ptr(&ptr, (void *)(intptr_t)-1);
if (ptr != (void *)(intptr_t)(-1))
printf("Failed : %p != %p\n", ptr, (void *)(intptr_t)-1);
else
printf("SUCCESS\n");
return (0);
}

View file

@ -5,9 +5,9 @@
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyrighs
* 1. Redistributions of source code must retain the above copyrights
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyrighs
* 2. Redistributions in binary form must reproduce the above copyrights
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
@ -144,7 +144,7 @@ set_init(void)
ck_epoch_init(&epoch_hs);
ck_epoch_register(&epoch_hs, &epoch_wr);
ck_epoch_register(&epoch_hs, &epoch_wr, NULL);
common_srand48((long int)time(NULL));
if (ck_rhs_init(&hs, mode, hs_hash, hs_compare, &my_allocator, 65536, common_lrand48()) == false) {
perror("ck_rhs_init");
@ -231,7 +231,7 @@ reader(void *unused)
perror("WARNING: Failed to affine thread");
s = j = a = 0;
ck_epoch_register(&epoch_hs, &epoch_record);
ck_epoch_register(&epoch_hs, &epoch_record, NULL);
for (;;) {
j++;
ck_epoch_begin(&epoch_record, NULL);
@ -451,8 +451,8 @@ main(int argc, char *argv[])
ck_epoch_record_t epoch_temporary = epoch_wr;
ck_epoch_synchronize(&epoch_wr);
fprintf(stderr, " '- Summary: %u pending, %u peak, %lu reclamations -> "
"%u pending, %u peak, %lu reclamations\n\n",
fprintf(stderr, " '- Summary: %u pending, %u peak, %u reclamations -> "
"%u pending, %u peak, %u reclamations\n\n",
epoch_temporary.n_pending, epoch_temporary.n_peak, epoch_temporary.n_dispatch,
epoch_wr.n_pending, epoch_wr.n_peak, epoch_wr.n_dispatch);
@ -590,8 +590,8 @@ main(int argc, char *argv[])
epoch_temporary = epoch_wr;
ck_epoch_synchronize(&epoch_wr);
fprintf(stderr, " '- Summary: %u pending, %u peak, %lu reclamations -> "
"%u pending, %u peak, %lu reclamations\n\n",
fprintf(stderr, " '- Summary: %u pending, %u peak, %u reclamations -> "
"%u pending, %u peak, %u reclamations\n\n",
epoch_temporary.n_pending, epoch_temporary.n_peak, epoch_temporary.n_dispatch,
epoch_wr.n_pending, epoch_wr.n_peak, epoch_wr.n_dispatch);
return 0;

View file

@ -5,9 +5,9 @@
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyrighs
* 1. Redistributions of source code must retain the above copyrights
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyrighs
* 2. Redistributions in binary form must reproduce the above copyrights
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*

View file

@ -5,9 +5,9 @@
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyrighs
* 1. Redistributions of source code must retain the above copyrights
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyrighs
* 2. Redistributions in binary form must reproduce the above copyrights
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*

View file

@ -2,7 +2,7 @@
OBJECTS=ck_ring_spsc ck_ring_spmc ck_ring_spmc_template ck_ring_mpmc \
ck_ring_mpmc_template
SIZE=16384
SIZE=2048
all: $(OBJECTS)

View file

@ -122,7 +122,7 @@ main(int argc, char *argv[])
ck_error("Usage: ck_sequence <number of threads> <affinity delta>\n");
}
n_threads = atoi(argv[1]);
n_threads = atoi(argv[1]) - 1;
if (n_threads <= 0) {
ck_error("ERROR: Number of threads must be greater than 0\n");
}
@ -163,6 +163,8 @@ main(int argc, char *argv[])
counter++;
if (ck_pr_load_uint(&barrier) == 0)
break;
ck_pr_stall();
}
printf("%u updates made.\n", counter);

View file

@ -1,9 +1,16 @@
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#if CORES < 2
#undef CORES
#define CORES 2
#endif
#define LOCK_NAME "ck_clh"
#define LOCK_DEFINE static ck_spinlock_hclh_t CK_CC_CACHELINE *glob_lock; \
static ck_spinlock_hclh_t CK_CC_CACHELINE *local_lock[CORES / 2]
#define LOCK_STATE ck_spinlock_hclh_t *na = malloc(MAX(sizeof(ck_spinlock_hclh_t), 64))
#define LOCK ck_spinlock_hclh_lock(&glob_lock, &local_lock[(core % CORES) / 2], na)
#define LOCK ck_spinlock_hclh_lock(&glob_lock, &local_lock[core % (CORES / 2)], na)
#define UNLOCK ck_spinlock_hclh_unlock(&na)
#define LOCK_INIT do { \
int _i; \

View file

@ -267,13 +267,11 @@ struct affinity {
#define AFFINITY_INITIALIZER {0, 0}
#ifdef __linux__
#ifndef gettid
static pid_t
gettid(void)
common_gettid(void)
{
return syscall(__NR_gettid);
}
#endif /* gettid */
CK_CC_UNUSED static int
aff_iterate(struct affinity *acb)
@ -285,7 +283,10 @@ aff_iterate(struct affinity *acb)
CPU_ZERO(&s);
CPU_SET(c % CORES, &s);
return sched_setaffinity(gettid(), sizeof(s), &s);
if (sched_setaffinity(common_gettid(), sizeof(s), &s) != 0)
perror("WARNING: Could not affine thread");
return 0;
}
CK_CC_UNUSED static int
@ -297,7 +298,10 @@ aff_iterate_core(struct affinity *acb, unsigned int *core)
CPU_ZERO(&s);
CPU_SET((*core) % CORES, &s);
return sched_setaffinity(gettid(), sizeof(s), &s);
if (sched_setaffinity(common_gettid(), sizeof(s), &s) != 0)
perror("WARNING: Could not affine thread");
return 0;
}
#elif defined(__MACH__)
CK_CC_UNUSED static int

View file

@ -11,6 +11,7 @@ OBJECTS=ck_barrier_centralized.o \
ck_barrier_dissemination.o \
ck_barrier_tournament.o \
ck_barrier_mcs.o \
ck_ec.o \
ck_epoch.o \
ck_ht.o \
ck_hp.o \
@ -24,11 +25,14 @@ libck.so: $(OBJECTS)
$(LD) $(LDFLAGS) -o $(TARGET_DIR)/libck.so $(OBJECTS)
libck.a: $(OBJECTS)
ar rcs $(TARGET_DIR)/libck.a $(OBJECTS)
$(AR) rcs $(TARGET_DIR)/libck.a $(OBJECTS)
ck_array.o: $(INCLUDE_DIR)/ck_array.h $(SDIR)/ck_array.c
$(CC) $(CFLAGS) -c -o $(TARGET_DIR)/ck_array.o $(SDIR)/ck_array.c
ck_ec.o: $(INCLUDE_DIR)/ck_ec.h $(SDIR)/ck_ec.c $(SDIR)/ck_ec_timeutil.h
$(CC) $(CFLAGS) -c -o $(TARGET_DIR)/ck_ec.o $(SDIR)/ck_ec.c
ck_epoch.o: $(INCLUDE_DIR)/ck_epoch.h $(SDIR)/ck_epoch.c $(INCLUDE_DIR)/ck_stack.h
$(CC) $(CFLAGS) -c -o $(TARGET_DIR)/ck_epoch.o $(SDIR)/ck_epoch.c

View file

@ -35,7 +35,7 @@ struct ck_barrier_combining_queue {
struct ck_barrier_combining_group *tail;
};
CK_CC_INLINE static struct ck_barrier_combining_group *
static struct ck_barrier_combining_group *
ck_barrier_combining_queue_dequeue(struct ck_barrier_combining_queue *queue)
{
struct ck_barrier_combining_group *front = NULL;
@ -48,7 +48,7 @@ ck_barrier_combining_queue_dequeue(struct ck_barrier_combining_queue *queue)
return front;
}
CK_CC_INLINE static void
static void
ck_barrier_combining_insert(struct ck_barrier_combining_group *parent,
struct ck_barrier_combining_group *tnode,
struct ck_barrier_combining_group **child)
@ -72,7 +72,7 @@ ck_barrier_combining_insert(struct ck_barrier_combining_group *parent,
* into the barrier's tree. We use a queue to implement this
* traversal.
*/
CK_CC_INLINE static void
static void
ck_barrier_combining_queue_enqueue(struct ck_barrier_combining_queue *queue,
struct ck_barrier_combining_group *node_value)
{
@ -185,10 +185,10 @@ ck_barrier_combining_aux(struct ck_barrier_combining *barrier,
ck_pr_fence_store();
ck_pr_store_uint(&tnode->sense, ~tnode->sense);
} else {
ck_pr_fence_memory();
while (sense != ck_pr_load_uint(&tnode->sense))
ck_pr_stall();
}
ck_pr_fence_memory();
return;
}

425
src/ck_ec.c Normal file
View file

@ -0,0 +1,425 @@
#include <ck_ec.h>
#include <ck_limits.h>
#include "ck_ec_timeutil.h"
#define DEFAULT_BUSY_LOOP_ITER 100U
/*
* The 2ms, 8x/iter default parameter hit 1.024 seconds after 3
* iterations.
*/
#define DEFAULT_INITIAL_WAIT_NS 2000000L /* Start at 2 ms */
/* Grow the wait time 8x/iteration. */
#define DEFAULT_WAIT_SCALE_FACTOR 8
#define DEFAULT_WAIT_SHIFT_COUNT 0
struct ck_ec32_slow_path_state {
struct ck_ec32 *ec;
uint32_t flagged_word;
};
#ifdef CK_F_EC64
struct ck_ec64_slow_path_state {
struct ck_ec64 *ec;
uint64_t flagged_word;
};
#endif
/* Once we've waited for >= 1 sec, go for the full deadline. */
static const struct timespec final_wait_time = {
.tv_sec = 1
};
void
ck_ec32_wake(struct ck_ec32 *ec, const struct ck_ec_ops *ops)
{
/* Spurious wake-ups are OK. Clear the flag before futexing. */
ck_pr_and_32(&ec->counter, (1U << 31) - 1);
ops->wake32(ops, &ec->counter);
return;
}
int
ck_ec32_wait_slow(struct ck_ec32 *ec,
const struct ck_ec_ops *ops,
uint32_t old_value,
const struct timespec *deadline)
{
return ck_ec32_wait_pred_slow(ec, ops, old_value,
NULL, NULL, deadline);
}
#ifdef CK_F_EC64
void
ck_ec64_wake(struct ck_ec64 *ec, const struct ck_ec_ops *ops)
{
ck_pr_and_64(&ec->counter, ~1);
ops->wake64(ops, &ec->counter);
return;
}
int
ck_ec64_wait_slow(struct ck_ec64 *ec,
const struct ck_ec_ops *ops,
uint64_t old_value,
const struct timespec *deadline)
{
return ck_ec64_wait_pred_slow(ec, ops, old_value,
NULL, NULL, deadline);
}
#endif
int
ck_ec_deadline_impl(struct timespec *new_deadline,
const struct ck_ec_ops *ops,
const struct timespec *timeout)
{
struct timespec now;
int r;
if (timeout == NULL) {
new_deadline->tv_sec = TIME_MAX;
new_deadline->tv_nsec = NSEC_MAX;
return 0;
}
r = ops->gettime(ops, &now);
if (r != 0) {
return -1;
}
*new_deadline = timespec_add(now, *timeout);
return 0;
}
/* The rest of the file implements wait_pred_slow. */
/*
* Returns a timespec value for deadline_ptr. If deadline_ptr is NULL,
* returns a timespec far in the future.
*/
static struct timespec
canonical_deadline(const struct timespec *deadline_ptr)
{
if (deadline_ptr == NULL) {
return (struct timespec) { .tv_sec = TIME_MAX };
}
return *deadline_ptr;
}
/*
* Really slow (sleeping) path for ck_ec_wait. Drives the exponential
* backoff scheme to sleep for longer and longer periods of time,
* until either the sleep function returns true (the eventcount's
* value has changed), or the predicate returns non-0 (something else
* has changed).
*
* If deadline is ever reached, returns -1 (timeout).
*
* TODO: add some form of randomisation to the intermediate timeout
* values.
*/
static int
exponential_backoff(struct ck_ec_wait_state *wait_state,
bool (*sleep)(const void *sleep_state,
const struct ck_ec_wait_state *wait_state,
const struct timespec *partial_deadline),
const void *sleep_state,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
const struct timespec *deadline)
{
struct timespec begin;
struct timespec stop_backoff;
const struct ck_ec_ops *ops = wait_state->ops;
const uint32_t scale_factor = (ops->wait_scale_factor != 0)
? ops->wait_scale_factor
: DEFAULT_WAIT_SCALE_FACTOR;
const uint32_t shift_count = (ops->wait_shift_count != 0)
? ops->wait_shift_count
: DEFAULT_WAIT_SHIFT_COUNT;
uint32_t wait_ns = (ops->initial_wait_ns != 0)
? ops->initial_wait_ns
: DEFAULT_INITIAL_WAIT_NS;
bool first = true;
for (;;) {
struct timespec now;
struct timespec partial_deadline;
if (check_deadline(&now, ops, *deadline) == true) {
/* Timeout. Bail out. */
return -1;
}
if (first) {
begin = now;
wait_state->start = begin;
stop_backoff = timespec_add(begin, final_wait_time);
first = false;
}
wait_state->now = now;
if (timespec_cmp(now, stop_backoff) >= 0) {
partial_deadline = *deadline;
} else {
do {
partial_deadline =
timespec_add_ns(begin, wait_ns);
wait_ns =
wait_time_scale(wait_ns,
scale_factor,
shift_count);
} while (timespec_cmp(partial_deadline, now) <= 0);
}
if (pred != NULL) {
int r = pred(wait_state, &partial_deadline);
if (r != 0) {
return r;
}
}
/* Canonicalize deadlines in the far future to NULL. */
if (sleep(sleep_state, wait_state,
((partial_deadline.tv_sec == TIME_MAX)
? NULL : &partial_deadline)) == true) {
return 0;
}
}
}
/*
* Loops up to BUSY_LOOP_ITER times, or until ec's counter value
* (including the flag) differs from old_value.
*
* Returns the new value in ec.
*/
#define DEF_WAIT_EASY(W) \
static uint##W##_t ck_ec##W##_wait_easy(struct ck_ec##W* ec, \
const struct ck_ec_ops *ops, \
uint##W##_t expected) \
{ \
uint##W##_t current = ck_pr_load_##W(&ec->counter); \
size_t n = (ops->busy_loop_iter != 0) \
? ops->busy_loop_iter \
: DEFAULT_BUSY_LOOP_ITER; \
\
for (size_t i = 0; \
i < n && current == expected; \
i++) { \
ck_pr_stall(); \
current = ck_pr_load_##W(&ec->counter); \
} \
\
return current; \
}
DEF_WAIT_EASY(32)
#ifdef CK_F_EC64
DEF_WAIT_EASY(64)
#endif
#undef DEF_WAIT_EASY
/*
* Attempts to upgrade ec->counter from unflagged to flagged.
*
* Returns true if the event count has changed. Otherwise, ec's
* counter word is equal to flagged on return, or has been at some
* time before the return.
*/
#define DEF_UPGRADE(W) \
static bool ck_ec##W##_upgrade(struct ck_ec##W* ec, \
uint##W##_t current, \
uint##W##_t unflagged, \
uint##W##_t flagged) \
{ \
uint##W##_t old_word; \
\
if (current == flagged) { \
/* Nothing to do, no change. */ \
return false; \
} \
\
if (current != unflagged) { \
/* We have a different counter value! */ \
return true; \
} \
\
/* \
* Flag the counter value. The CAS only fails if the \
* counter is already flagged, or has a new value. \
*/ \
return (ck_pr_cas_##W##_value(&ec->counter, \
unflagged, flagged, \
&old_word) == false && \
old_word != flagged); \
}
DEF_UPGRADE(32)
#ifdef CK_F_EC64
DEF_UPGRADE(64)
#endif
#undef DEF_UPGRADE
/*
* Blocks until partial_deadline on the ck_ec. Returns true if the
* eventcount's value has changed. If partial_deadline is NULL, wait
* forever.
*/
static bool
ck_ec32_wait_slow_once(const void *vstate,
const struct ck_ec_wait_state *wait_state,
const struct timespec *partial_deadline)
{
const struct ck_ec32_slow_path_state *state = vstate;
const struct ck_ec32 *ec = state->ec;
const uint32_t flagged_word = state->flagged_word;
wait_state->ops->wait32(wait_state, &ec->counter,
flagged_word, partial_deadline);
return ck_pr_load_32(&ec->counter) != flagged_word;
}
#ifdef CK_F_EC64
static bool
ck_ec64_wait_slow_once(const void *vstate,
const struct ck_ec_wait_state *wait_state,
const struct timespec *partial_deadline)
{
const struct ck_ec64_slow_path_state *state = vstate;
const struct ck_ec64 *ec = state->ec;
const uint64_t flagged_word = state->flagged_word;
/* futex_wait will only compare the low 32 bits. Perform a
* full comparison here to maximise the changes of catching an
* ABA in the low 32 bits.
*/
if (ck_pr_load_64(&ec->counter) != flagged_word) {
return true;
}
wait_state->ops->wait64(wait_state, &ec->counter,
flagged_word, partial_deadline);
return ck_pr_load_64(&ec->counter) != flagged_word;
}
#endif
/*
* The full wait logic is a lot of code (> 1KB). Encourage the
* compiler to lay this all out linearly with LIKELY annotations on
* every early exit.
*/
#define WAIT_SLOW_BODY(W, ec, ops, pred, data, deadline_ptr, \
old_value, unflagged, flagged) \
do { \
struct ck_ec_wait_state wait_state = { \
.ops = ops, \
.data = data \
}; \
const struct ck_ec##W##_slow_path_state state = { \
.ec = ec, \
.flagged_word = flagged \
}; \
const struct timespec deadline = \
canonical_deadline(deadline_ptr); \
\
/* Detect infinite past deadlines. */ \
if (CK_CC_LIKELY(deadline.tv_sec <= 0)) { \
return -1; \
} \
\
for (;;) { \
uint##W##_t current; \
int r; \
\
current = ck_ec##W##_wait_easy(ec, ops, unflagged); \
\
/* \
* We're about to wait harder (i.e., \
* potentially with futex). Make sure the \
* counter word is flagged. \
*/ \
if (CK_CC_LIKELY( \
ck_ec##W##_upgrade(ec, current, \
unflagged, flagged) == true)) { \
ck_pr_fence_acquire(); \
return 0; \
} \
\
/* \
* By now, ec->counter == flagged_word (at \
* some point in the past). Spin some more to \
* heuristically let any in-flight SP inc/add \
* to retire. This does not affect \
* correctness, but practically eliminates \
* lost wake-ups. \
*/ \
current = ck_ec##W##_wait_easy(ec, ops, flagged); \
if (CK_CC_LIKELY(current != flagged_word)) { \
ck_pr_fence_acquire(); \
return 0; \
} \
\
r = exponential_backoff(&wait_state, \
ck_ec##W##_wait_slow_once, \
&state, \
pred, &deadline); \
if (r != 0) { \
return r; \
} \
\
if (ck_ec##W##_value(ec) != old_value) { \
ck_pr_fence_acquire(); \
return 0; \
} \
\
/* Spurious wake-up. Redo the slow path. */ \
} \
} while (0)
int
ck_ec32_wait_pred_slow(struct ck_ec32 *ec,
const struct ck_ec_ops *ops,
uint32_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline_ptr)
{
const uint32_t unflagged_word = old_value;
const uint32_t flagged_word = old_value | (1UL << 31);
if (CK_CC_UNLIKELY(ck_ec32_value(ec) != old_value)) {
return 0;
}
WAIT_SLOW_BODY(32, ec, ops, pred, data, deadline_ptr,
old_value, unflagged_word, flagged_word);
}
#ifdef CK_F_EC64
int
ck_ec64_wait_pred_slow(struct ck_ec64 *ec,
const struct ck_ec_ops *ops,
uint64_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline_ptr)
{
const uint64_t unflagged_word = old_value << 1;
const uint64_t flagged_word = unflagged_word | 1;
if (CK_CC_UNLIKELY(ck_ec64_value(ec) != old_value)) {
return 0;
}
WAIT_SLOW_BODY(64, ec, ops, pred, data, deadline_ptr,
old_value, unflagged_word, flagged_word);
}
#endif
#undef WAIT_SLOW_BODY

150
src/ck_ec_timeutil.h Normal file
View file

@ -0,0 +1,150 @@
#ifndef CK_EC_TIMEUTIL_H
#define CK_EC_TIMEUTIL_H
#include <ck_cc.h>
#include <ck_ec.h>
#include <ck_limits.h>
#include <ck_stdint.h>
#include <sys/time.h>
#define TIME_MAX ((time_t)((1ULL << ((sizeof(time_t) * CHAR_BIT) - 1)) - 1))
#define NSEC_MAX ((1000L * 1000 * 1000) - 1)
/*
* Approximates (nsec * multiplier) >> shift. Clamps to UINT32_MAX on
* overflow.
*/
CK_CC_UNUSED static uint32_t
wait_time_scale(uint32_t nsec,
uint32_t multiplier,
unsigned int shift)
{
uint64_t temp = (uint64_t)nsec * multiplier;
uint64_t max = (uint64_t)UINT32_MAX << shift;
if (temp >= max) {
return UINT32_MAX;
}
return temp >> shift;
}
/*
* Returns ts + ns. ns is clamped to at most 1 second. Clamps the
* return value to TIME_MAX, NSEC_MAX on overflow.
*
*/
CK_CC_UNUSED static struct timespec timespec_add_ns(const struct timespec ts,
uint32_t ns)
{
struct timespec ret = {
.tv_sec = TIME_MAX,
.tv_nsec = NSEC_MAX
};
time_t sec;
uint32_t sum_ns;
if (ns > (uint32_t)NSEC_MAX) {
if (ts.tv_sec >= TIME_MAX) {
return ret;
}
ret.tv_sec = ts.tv_sec + 1;
ret.tv_nsec = ts.tv_nsec;
return ret;
}
sec = ts.tv_sec;
sum_ns = ns + ts.tv_nsec;
if (sum_ns > NSEC_MAX) {
if (sec >= TIME_MAX) {
return ret;
}
sec++;
sum_ns -= (NSEC_MAX + 1);
}
ret.tv_sec = sec;
ret.tv_nsec = sum_ns;
return ret;
}
/*
* Returns ts + inc. If inc is negative, it is normalized to 0.
* Clamps the return value to TIME_MAX, NSEC_MAX on overflow.
*/
CK_CC_UNUSED static struct timespec timespec_add(const struct timespec ts,
const struct timespec inc)
{
/* Initial return value is clamped to infinite future. */
struct timespec ret = {
.tv_sec = TIME_MAX,
.tv_nsec = NSEC_MAX
};
time_t sec;
unsigned long nsec;
/* Non-positive delta is a no-op. Invalid nsec is another no-op. */
if (inc.tv_sec < 0 || inc.tv_nsec < 0 || inc.tv_nsec > NSEC_MAX) {
return ts;
}
/* Detect overflow early. */
if (inc.tv_sec > TIME_MAX - ts.tv_sec) {
return ret;
}
sec = ts.tv_sec + inc.tv_sec;
/* This sum can't overflow if the inputs are valid.*/
nsec = (unsigned long)ts.tv_nsec + inc.tv_nsec;
if (nsec > NSEC_MAX) {
if (sec >= TIME_MAX) {
return ret;
}
sec++;
nsec -= (NSEC_MAX + 1);
}
ret.tv_sec = sec;
ret.tv_nsec = nsec;
return ret;
}
/* Compares two timespecs. Returns -1 if x < y, 0 if x == y, and 1 if x > y. */
CK_CC_UNUSED static int timespec_cmp(const struct timespec x,
const struct timespec y)
{
if (x.tv_sec != y.tv_sec) {
return (x.tv_sec < y.tv_sec) ? -1 : 1;
}
if (x.tv_nsec != y.tv_nsec) {
return (x.tv_nsec < y.tv_nsec) ? -1 : 1;
}
return 0;
}
/*
* Overwrites now with the current CLOCK_MONOTONIC time, and returns
* true if the current time is greater than or equal to the deadline,
* or the clock is somehow broken.
*/
CK_CC_UNUSED static bool check_deadline(struct timespec *now,
const struct ck_ec_ops *ops,
const struct timespec deadline)
{
int r;
r = ops->gettime(ops, now);
if (r != 0) {
return true;
}
return timespec_cmp(*now, deadline) >= 0;
}
#endif /* !CK_EC_TIMEUTIL_H */

View file

@ -127,6 +127,14 @@
*/
#define CK_EPOCH_GRACE 3U
/*
* CK_EPOCH_LENGTH must be a power-of-2 (because (CK_EPOCH_LENGTH - 1) is used
* as a mask, and it must be at least 3 (see comments above).
*/
#if (CK_EPOCH_LENGTH < 3 || (CK_EPOCH_LENGTH & (CK_EPOCH_LENGTH - 1)) != 0)
#error "CK_EPOCH_LENGTH must be a power of 2 and >= 3"
#endif
enum {
CK_EPOCH_STATE_USED = 0,
CK_EPOCH_STATE_FREE = 1
@ -139,7 +147,7 @@ CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
#define CK_EPOCH_SENSE_MASK (CK_EPOCH_SENSE - 1)
void
bool
_ck_epoch_delref(struct ck_epoch_record *record,
struct ck_epoch_section *section)
{
@ -150,7 +158,7 @@ _ck_epoch_delref(struct ck_epoch_record *record,
current->count--;
if (current->count > 0)
return;
return false;
/*
* If the current bucket no longer has any references, then
@ -161,8 +169,7 @@ _ck_epoch_delref(struct ck_epoch_record *record,
* If no other active bucket exists, then the record will go
* inactive in order to allow for forward progress.
*/
other = &record->local.bucket[(i + 1) &
CK_EPOCH_SENSE_MASK];
other = &record->local.bucket[(i + 1) & CK_EPOCH_SENSE_MASK];
if (other->count > 0 &&
((int)(current->epoch - other->epoch) < 0)) {
/*
@ -172,7 +179,7 @@ _ck_epoch_delref(struct ck_epoch_record *record,
ck_pr_store_uint(&record->epoch, other->epoch);
}
return;
return true;
}
void
@ -230,7 +237,7 @@ ck_epoch_init(struct ck_epoch *global)
}
struct ck_epoch_record *
ck_epoch_recycle(struct ck_epoch *global)
ck_epoch_recycle(struct ck_epoch *global, void *ct)
{
struct ck_epoch_record *record;
ck_stack_entry_t *cursor;
@ -249,6 +256,12 @@ ck_epoch_recycle(struct ck_epoch *global)
CK_EPOCH_STATE_USED);
if (state == CK_EPOCH_STATE_FREE) {
ck_pr_dec_uint(&global->n_free);
ck_pr_store_ptr(&record->ct, ct);
/*
* The context pointer is ordered by a
* subsequent protected section.
*/
return record;
}
}
@ -258,7 +271,8 @@ ck_epoch_recycle(struct ck_epoch *global)
}
void
ck_epoch_register(struct ck_epoch *global, struct ck_epoch_record *record)
ck_epoch_register(struct ck_epoch *global, struct ck_epoch_record *record,
void *ct)
{
size_t i;
@ -269,6 +283,7 @@ ck_epoch_register(struct ck_epoch *global, struct ck_epoch_record *record)
record->n_dispatch = 0;
record->n_peak = 0;
record->n_pending = 0;
record->ct = ct;
memset(&record->local, 0, sizeof record->local);
for (i = 0; i < CK_EPOCH_LENGTH; i++)
@ -295,6 +310,7 @@ ck_epoch_unregister(struct ck_epoch_record *record)
for (i = 0; i < CK_EPOCH_LENGTH; i++)
ck_stack_init(&record->pending[i]);
ck_pr_store_ptr(&record->ct, NULL);
ck_pr_fence_store();
ck_pr_store_uint(&record->state, CK_EPOCH_STATE_FREE);
ck_pr_inc_uint(&global->n_free);
@ -340,31 +356,41 @@ ck_epoch_scan(struct ck_epoch *global,
return NULL;
}
static void
ck_epoch_dispatch(struct ck_epoch_record *record, unsigned int e)
static unsigned int
ck_epoch_dispatch(struct ck_epoch_record *record, unsigned int e, ck_stack_t *deferred)
{
unsigned int epoch = e & (CK_EPOCH_LENGTH - 1);
ck_stack_entry_t *head, *next, *cursor;
unsigned int n_pending, n_peak;
unsigned int i = 0;
head = CK_STACK_FIRST(&record->pending[epoch]);
ck_stack_init(&record->pending[epoch]);
head = ck_stack_batch_pop_upmc(&record->pending[epoch]);
for (cursor = head; cursor != NULL; cursor = next) {
struct ck_epoch_entry *entry =
ck_epoch_entry_container(cursor);
next = CK_STACK_NEXT(cursor);
entry->function(entry);
if (deferred != NULL)
ck_stack_push_spnc(deferred, &entry->stack_entry);
else
entry->function(entry);
i++;
}
if (record->n_pending > record->n_peak)
record->n_peak = record->n_pending;
n_peak = ck_pr_load_uint(&record->n_peak);
n_pending = ck_pr_load_uint(&record->n_pending);
record->n_dispatch += i;
record->n_pending -= i;
return;
/* We don't require accuracy around peak calculation. */
if (n_pending > n_peak)
ck_pr_store_uint(&record->n_peak, n_peak);
if (i > 0) {
ck_pr_add_uint(&record->n_dispatch, i);
ck_pr_sub_uint(&record->n_pending, i);
}
return i;
}
/*
@ -376,7 +402,18 @@ ck_epoch_reclaim(struct ck_epoch_record *record)
unsigned int epoch;
for (epoch = 0; epoch < CK_EPOCH_LENGTH; epoch++)
ck_epoch_dispatch(record, epoch);
ck_epoch_dispatch(record, epoch, NULL);
return;
}
CK_CC_FORCE_INLINE static void
epoch_block(struct ck_epoch *global, struct ck_epoch_record *cr,
ck_epoch_wait_cb_t *cb, void *ct)
{
if (cb != NULL)
cb(global, cr, ct);
return;
}
@ -385,9 +422,9 @@ ck_epoch_reclaim(struct ck_epoch_record *record)
* This function must not be called with-in read section.
*/
void
ck_epoch_synchronize(struct ck_epoch_record *record)
ck_epoch_synchronize_wait(struct ck_epoch *global,
ck_epoch_wait_cb_t *cb, void *ct)
{
struct ck_epoch *global = record->global;
struct ck_epoch_record *cr;
unsigned int delta, epoch, goal, i;
bool active;
@ -424,10 +461,27 @@ ck_epoch_synchronize(struct ck_epoch_record *record)
* period.
*/
e_d = ck_pr_load_uint(&global->epoch);
if (e_d != delta) {
delta = e_d;
goto reload;
if (e_d == delta) {
epoch_block(global, cr, cb, ct);
continue;
}
/*
* If the epoch has been updated, we may have already
* met our goal.
*/
delta = e_d;
if ((goal > epoch) & (delta >= goal))
goto leave;
epoch_block(global, cr, cb, ct);
/*
* If the epoch has been updated, then a grace period
* requires that all threads are observed idle at the
* same epoch.
*/
cr = NULL;
}
/*
@ -459,20 +513,6 @@ ck_epoch_synchronize(struct ck_epoch_record *record)
* Otherwise, we have just acquired latest snapshot.
*/
delta = delta + r;
continue;
reload:
if ((goal > epoch) & (delta >= goal)) {
/*
* Right now, epoch overflow is handled as an edge
* case. If we have already observed an epoch
* generation, then we can be sure no hazardous
* references exist to objects from this generation. We
* can actually avoid an addtional scan step at this
* point.
*/
break;
}
}
/*
@ -480,8 +520,16 @@ reload:
* However, if non-temporal instructions are used, full barrier
* semantics are necessary.
*/
leave:
ck_pr_fence_memory();
record->epoch = delta;
return;
}
void
ck_epoch_synchronize(struct ck_epoch_record *record)
{
ck_epoch_synchronize_wait(record->global, NULL, NULL);
return;
}
@ -494,6 +542,16 @@ ck_epoch_barrier(struct ck_epoch_record *record)
return;
}
void
ck_epoch_barrier_wait(struct ck_epoch_record *record, ck_epoch_wait_cb_t *cb,
void *ct)
{
ck_epoch_synchronize_wait(record->global, cb, ct);
ck_epoch_reclaim(record);
return;
}
/*
* It may be worth it to actually apply these deferral semantics to an epoch
* that was observed at ck_epoch_call time. The problem is that the latter
@ -505,41 +563,61 @@ ck_epoch_barrier(struct ck_epoch_record *record)
* is far from ideal too.
*/
bool
ck_epoch_poll(struct ck_epoch_record *record)
ck_epoch_poll_deferred(struct ck_epoch_record *record, ck_stack_t *deferred)
{
bool active;
unsigned int epoch;
unsigned int snapshot;
struct ck_epoch_record *cr = NULL;
struct ck_epoch *global = record->global;
unsigned int n_dispatch;
epoch = ck_pr_load_uint(&global->epoch);
/* Serialize epoch snapshots with respect to global epoch. */
ck_pr_fence_memory();
/*
* At this point, epoch is the current global epoch value.
* There may or may not be active threads which observed epoch - 1.
* (ck_epoch_scan() will tell us that). However, there should be
* no active threads which observed epoch - 2.
*
* Note that checking epoch - 2 is necessary, as race conditions can
* allow another thread to increment the global epoch before this
* thread runs.
*/
n_dispatch = ck_epoch_dispatch(record, epoch - 2, deferred);
cr = ck_epoch_scan(global, cr, epoch, &active);
if (cr != NULL) {
record->epoch = epoch;
return false;
}
if (cr != NULL)
return (n_dispatch > 0);
/* We are at a grace period if all threads are inactive. */
if (active == false) {
record->epoch = epoch;
for (epoch = 0; epoch < CK_EPOCH_LENGTH; epoch++)
ck_epoch_dispatch(record, epoch);
ck_epoch_dispatch(record, epoch, deferred);
return true;
}
/* If an active thread exists, rely on epoch observation. */
if (ck_pr_cas_uint_value(&global->epoch, epoch, epoch + 1,
&snapshot) == false) {
record->epoch = snapshot;
} else {
record->epoch = epoch + 1;
}
/*
* If an active thread exists, rely on epoch observation.
*
* All the active threads entered the epoch section during
* the current epoch. Therefore, we can now run the handlers
* for the immediately preceding epoch and attempt to
* advance the epoch if it hasn't been already.
*/
(void)ck_pr_cas_uint(&global->epoch, epoch, epoch + 1);
ck_epoch_dispatch(record, epoch + 1);
ck_epoch_dispatch(record, epoch - 1, deferred);
return true;
}
bool
ck_epoch_poll(struct ck_epoch_record *record)
{
return ck_epoch_poll_deferred(record, NULL);
}

View file

@ -105,19 +105,10 @@ ck_hs_map_signal(struct ck_hs_map *map, unsigned long h)
return;
}
void
ck_hs_iterator_init(struct ck_hs_iterator *iterator)
static bool
_ck_hs_next(struct ck_hs *hs, struct ck_hs_map *map,
struct ck_hs_iterator *i, void **key)
{
iterator->cursor = NULL;
iterator->offset = 0;
return;
}
bool
ck_hs_next(struct ck_hs *hs, struct ck_hs_iterator *i, void **key)
{
struct ck_hs_map *map = hs->map;
void *value;
if (i->offset >= map->capacity)
@ -129,6 +120,8 @@ ck_hs_next(struct ck_hs *hs, struct ck_hs_iterator *i, void **key)
#ifdef CK_HS_PP
if (hs->mode & CK_HS_MODE_OBJECT)
value = CK_HS_VMA(value);
#else
(void)hs; /* Avoid unused parameter warning. */
#endif
i->offset++;
*key = value;
@ -139,6 +132,35 @@ ck_hs_next(struct ck_hs *hs, struct ck_hs_iterator *i, void **key)
return false;
}
void
ck_hs_iterator_init(struct ck_hs_iterator *iterator)
{
iterator->cursor = NULL;
iterator->offset = 0;
iterator->map = NULL;
return;
}
bool
ck_hs_next(struct ck_hs *hs, struct ck_hs_iterator *i, void **key)
{
return _ck_hs_next(hs, hs->map, i, key);
}
bool
ck_hs_next_spmc(struct ck_hs *hs, struct ck_hs_iterator *i, void **key)
{
struct ck_hs_map *m = i->map;
if (m == NULL) {
m = i->map = ck_pr_load_ptr(&hs->map);
}
return _ck_hs_next(hs, m, i, key);
}
void
ck_hs_stat(struct ck_hs *hs, struct ck_hs_stat *st)
{
@ -206,7 +228,7 @@ ck_hs_map_create(struct ck_hs *hs, unsigned long entries)
map->probe_limit = (unsigned int)limit;
map->probe_maximum = 0;
map->capacity = n_entries;
map->step = ck_internal_bsf(n_entries);
map->step = ck_cc_ffsl(n_entries);
map->mask = n_entries - 1;
map->n_entries = 0;

View file

@ -30,9 +30,6 @@
/*
* This implementation borrows several techniques from Josh Dybnis's
* nbds library which can be found at http://code.google.com/p/nbds
*
* This release currently only includes support for 64-bit platforms.
* We can address 32-bit platforms in a future release.
*/
#include <ck_cc.h>
#include <ck_md.h>
@ -171,7 +168,7 @@ ck_ht_map_create(struct ck_ht *table, CK_HT_TYPE entries)
map->deletions = 0;
map->probe_maximum = 0;
map->capacity = n_entries;
map->step = ck_internal_bsf_64(map->capacity);
map->step = ck_cc_ffsll(map->capacity);
map->mask = map->capacity - 1;
map->n_entries = 0;
map->entries = (struct ck_ht_entry *)(((uintptr_t)&map[1] + prefix +

View file

@ -88,7 +88,15 @@ static inline uint64_t rotl64 ( uint64_t x, int8_t r )
FORCE_INLINE static uint32_t getblock ( const uint32_t * p, int i )
{
#ifdef __s390x__
uint32_t res;
__asm__ (" lrv %0,%1\n"
: "=r" (res) : "Q" (p[i]) : "cc", "mem");
return res;
#else
return p[i];
#endif /* !__s390x__ */
}
//-----------------------------------------------------------------------------
@ -147,7 +155,9 @@ static inline void MurmurHash3_x86_32 ( const void * key, int len,
switch(len & 3)
{
case 3: k1 ^= tail[2] << 16;
/* fall through */
case 2: k1 ^= tail[1] << 8;
/* fall through */
case 1: k1 ^= tail[0];
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
};
@ -196,11 +206,17 @@ static inline uint64_t MurmurHash64A ( const void * key, int len, uint64_t seed
switch(len & 7)
{
case 7: h ^= (uint64_t)(data2[6]) << 48;
/* fall through */
case 6: h ^= (uint64_t)(data2[5]) << 40;
/* fall through */
case 5: h ^= (uint64_t)(data2[4]) << 32;
/* fall through */
case 4: h ^= (uint64_t)(data2[3]) << 24;
/* fall through */
case 3: h ^= (uint64_t)(data2[2]) << 16;
/* fall through */
case 2: h ^= (uint64_t)(data2[1]) << 8;
/* fall through */
case 1: h ^= (uint64_t)(data2[0]);
h *= m;
};
@ -249,7 +265,9 @@ static inline uint64_t MurmurHash64B ( const void * key, int len, uint64_t seed
switch(len)
{
case 3: h2 ^= ((const unsigned char*)data)[2] << 16;
/* fall through */
case 2: h2 ^= ((const unsigned char*)data)[1] << 8;
/* fall through */
case 1: h2 ^= ((const unsigned char*)data)[0];
h2 *= m;
};

View file

@ -80,40 +80,3 @@ ck_internal_max_32(uint32_t x, uint32_t y)
return x ^ ((x ^ y) & -(x < y));
}
CK_CC_INLINE static unsigned long
ck_internal_bsf(unsigned long v)
{
#if defined(__GNUC__)
return __builtin_ffs(v);
#else
unsigned int i;
const unsigned int s = sizeof(unsigned long) * 8 - 1;
for (i = 0; i < s; i++) {
if (v & (1UL << (s - i)))
return sizeof(unsigned long) * 8 - i;
}
return 1;
#endif /* !__GNUC__ */
}
CK_CC_INLINE static uint64_t
ck_internal_bsf_64(uint64_t v)
{
#if defined(__GNUC__)
return __builtin_ffs(v);
#else
unsigned int i;
const unsigned int s = sizeof(unsigned long) * 8 - 1;
for (i = 0; i < s; i++) {
if (v & (1ULL << (63U - i)))
return i;
}
#endif /* !__GNUC__ */
return 1;
}

View file

@ -366,7 +366,7 @@ ck_rhs_map_create(struct ck_rhs *hs, unsigned long entries)
map->probe_limit = (unsigned int)limit;
map->probe_maximum = 0;
map->capacity = n_entries;
map->step = ck_internal_bsf(n_entries);
map->step = ck_cc_ffsl(n_entries);
map->mask = n_entries - 1;
map->n_entries = 0;

15
tools/ci-build.sh Executable file
View file

@ -0,0 +1,15 @@
#!/bin/sh
#
# Skeleton for continuous integration testing.
##############################################################################
set -x
export CFLAGS="-DITERATE=400 -DPAIRS_S=100 -DITERATIONS=24 -DSTEPS=10000"
./configure $@
if [ `uname -s` = "FreeBSD" ]; then
make -j $(sysctl -n hw.ncpu)
else
make -j
fi