1
0
Fork 0
dnsperf/src/net.c

665 lines
20 KiB
C
Raw Normal View History

/*
* Copyright 2019-2021 OARC, Inc.
* Copyright 2017-2018 Akamai Technologies
* Copyright 2006-2016 Nominum, Inc.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "config.h"
#include "net.h"
#include "log.h"
#include "opt.h"
#include "os.h"
#include "strerror.h"
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <poll.h>
#include <openssl/err.h>
#include <netdb.h>
#include <arpa/inet.h>
#define TCP_RECV_BUF_SIZE (16 * 1024)
#define TCP_SEND_BUF_SIZE (4 * 1024)
static SSL_CTX* ssl_ctx = 0;
int perf_net_parsefamily(const char* family)
{
if (family == NULL || strcmp(family, "any") == 0)
return AF_UNSPEC;
else if (strcmp(family, "inet") == 0)
return AF_INET;
#ifdef AF_INET6
else if (strcmp(family, "inet6") == 0)
return AF_INET6;
#endif
else {
fprintf(stderr, "invalid family %s\n", family);
perf_opt_usage();
exit(1);
}
}
void perf_sockaddr_fromin(perf_sockaddr_t* sockaddr, const struct in_addr* in, in_port_t port)
{
memset(sockaddr, 0, sizeof(*sockaddr));
sockaddr->sa.sin.sin_family = AF_INET;
sockaddr->sa.sin.sin_addr = *in;
sockaddr->sa.sin.sin_port = htons(port);
sockaddr->length = sizeof(sockaddr->sa.sin);
}
void perf_sockaddr_fromin6(perf_sockaddr_t* sockaddr, const struct in6_addr* in, in_port_t port)
{
memset(sockaddr, 0, sizeof(*sockaddr));
sockaddr->sa.sin6.sin6_family = AF_INET6;
sockaddr->sa.sin6.sin6_addr = *in;
sockaddr->sa.sin6.sin6_port = htons(port);
sockaddr->length = sizeof(sockaddr->sa.sin6);
}
in_port_t perf_sockaddr_port(const perf_sockaddr_t* sockaddr)
{
switch (sockaddr->sa.sa.sa_family) {
case AF_INET:
return sockaddr->sa.sin.sin_port;
case AF_INET6:
return sockaddr->sa.sin6.sin6_port;
default:
break;
}
return 0;
}
void perf_sockaddr_setport(perf_sockaddr_t* sockaddr, in_port_t port)
{
switch (sockaddr->sa.sa.sa_family) {
case AF_INET:
sockaddr->sa.sin.sin_port = port;
break;
case AF_INET6:
sockaddr->sa.sin6.sin6_port = port;
break;
default:
break;
}
}
void perf_sockaddr_format(const perf_sockaddr_t* sockaddr, char* buf, size_t len)
{
const void* src;
*buf = 0;
switch (sockaddr->sa.sa.sa_family) {
case AF_INET:
src = &sockaddr->sa.sin.sin_addr;
break;
case AF_INET6:
src = &sockaddr->sa.sin6.sin6_addr;
break;
default:
return;
}
(void)inet_ntop(sockaddr->sa.sa.sa_family, src, buf, len);
}
void perf_net_parseserver(int family, const char* name, unsigned int port, perf_sockaddr_t* addr)
{
struct addrinfo* ai;
if (getaddrinfo(name, 0, 0, &ai) == 0) {
struct addrinfo* a;
for (a = ai; a; a = a->ai_next) {
if (a->ai_family == family || family == AF_UNSPEC) {
switch (a->ai_family) {
case AF_INET:
perf_sockaddr_fromin(addr, &((struct sockaddr_in*)a->ai_addr)->sin_addr, port);
break;
case AF_INET6:
perf_sockaddr_fromin6(addr, &((struct sockaddr_in6*)a->ai_addr)->sin6_addr, port);
break;
default:
continue;
}
freeaddrinfo(ai);
return;
}
}
freeaddrinfo(ai);
}
fprintf(stderr, "invalid server address %s\n", name);
perf_opt_usage();
exit(1);
}
void perf_net_parselocal(int family, const char* name, unsigned int port,
perf_sockaddr_t* addr)
{
struct in_addr in4a;
struct in6_addr in6a;
if (name == NULL) {
switch (family) {
case AF_INET:
in4a.s_addr = INADDR_ANY;
perf_sockaddr_fromin(addr, &in4a, port);
return;
case AF_INET6:
perf_sockaddr_fromin6(addr, &in6addr_any, port);
return;
default:
break;
}
} else if (inet_pton(AF_INET, name, &in4a) == 1) {
perf_sockaddr_fromin(addr, &in4a, port);
return;
} else if (inet_pton(AF_INET6, name, &in6a) == 1) {
perf_sockaddr_fromin6(addr, &in6a, port);
return;
}
fprintf(stderr, "invalid local address %s\n", name);
perf_opt_usage();
exit(1);
}
struct perf_net_socket perf_net_opensocket(enum perf_net_mode mode, const perf_sockaddr_t* server, const perf_sockaddr_t* local, unsigned int offset, int bufsize)
{
int family;
perf_sockaddr_t tmp;
int port;
int ret;
int flags;
struct perf_net_socket sock = { .mode = mode, .is_ready = 1 };
family = server->sa.sa.sa_family;
if (local->sa.sa.sa_family != family) {
perf_log_fatal("server and local addresses have different families");
}
switch (mode) {
case sock_udp:
sock.fd = socket(family, SOCK_DGRAM, 0);
break;
case sock_tls:
if (pthread_mutex_init(&sock.lock, 0)) {
perf_log_fatal("pthread_mutex_init() failed");
}
if ((sock.fd = socket(family, SOCK_STREAM, 0)) < 0) {
char __s[256];
perf_log_fatal("socket: %s", perf_strerror_r(errno, __s, sizeof(__s)));
}
if (!ssl_ctx) {
#ifdef HAVE_TLS_METHOD
if (!(ssl_ctx = SSL_CTX_new(TLS_method()))) {
perf_log_fatal("SSL_CTX_new(): %s", ERR_error_string(ERR_get_error(), 0));
}
if (!SSL_CTX_set_min_proto_version(ssl_ctx, TLS1_2_VERSION)) {
perf_log_fatal("SSL_CTX_set_min_proto_version(TLS1_2_VERSION): %s", ERR_error_string(ERR_get_error(), 0));
}
#else
if (!(ssl_ctx = SSL_CTX_new(SSLv23_client_method()))) {
perf_log_fatal("SSL_CTX_new(): %s", ERR_error_string(ERR_get_error(), 0));
}
#endif
}
if (!(sock.ssl = SSL_new(ssl_ctx))) {
perf_log_fatal("SSL_new(): %s", ERR_error_string(ERR_get_error(), 0));
}
if (!(ret = SSL_set_fd(sock.ssl, sock.fd))) {
perf_log_fatal("SSL_set_fd(): %s", ERR_error_string(SSL_get_error(sock.ssl, ret), 0));
}
break;
case sock_tcp:
sock.fd = socket(family, SOCK_STREAM, 0);
break;
default:
perf_log_fatal("perf_net_opensocket(): invalid mode");
}
if (sock.fd == -1) {
char __s[256];
perf_log_fatal("socket: %s", perf_strerror_r(errno, __s, sizeof(__s)));
}
#if defined(AF_INET6) && defined(IPV6_V6ONLY)
if (family == AF_INET6) {
int on = 1;
if (setsockopt(sock.fd, IPPROTO_IPV6, IPV6_V6ONLY, &on, sizeof(on)) == -1) {
perf_log_warning("setsockopt(IPV6_V6ONLY) failed");
}
}
#endif
tmp = *local;
port = perf_sockaddr_port(&tmp);
if (port != 0 && offset != 0) {
port += offset;
if (port >= 0xFFFF)
perf_log_fatal("port %d out of range", port);
perf_sockaddr_setport(&tmp, port);
}
if (bind(sock.fd, &tmp.sa.sa, tmp.length) == -1) {
char __s[256];
perf_log_fatal("bind: %s", perf_strerror_r(errno, __s, sizeof(__s)));
}
if (bufsize > 0) {
bufsize *= 1024;
ret = setsockopt(sock.fd, SOL_SOCKET, SO_RCVBUF,
&bufsize, sizeof(bufsize));
if (ret < 0)
perf_log_warning("setsockbuf(SO_RCVBUF) failed");
ret = setsockopt(sock.fd, SOL_SOCKET, SO_SNDBUF,
&bufsize, sizeof(bufsize));
if (ret < 0)
perf_log_warning("setsockbuf(SO_SNDBUF) failed");
}
flags = fcntl(sock.fd, F_GETFL, 0);
if (flags < 0)
perf_log_fatal("fcntl(F_GETFL)");
ret = fcntl(sock.fd, F_SETFL, flags | O_NONBLOCK);
if (ret < 0)
perf_log_fatal("fcntl(F_SETFL)");
if (mode == sock_tcp || mode == sock_tls) {
if (connect(sock.fd, &server->sa.sa, server->length)) {
if (errno == EINPROGRESS) {
sock.is_ready = 0;
} else {
char __s[256];
perf_log_fatal("connect() failed: %s", perf_strerror_r(errno, __s, sizeof(__s)));
}
}
sock.recvbuf = malloc(TCP_RECV_BUF_SIZE);
sock.at = 0;
sock.have_more = 0;
sock.sendbuf = malloc(TCP_SEND_BUF_SIZE);
if (!sock.recvbuf || !sock.sendbuf) {
perf_log_fatal("perf_net_opensocket() failed: unable to allocate buffers");
}
}
return sock;
}
ssize_t perf_net_recv(struct perf_net_socket* sock, void* buf, size_t len, int flags)
{
switch (sock->mode) {
case sock_tls: {
ssize_t n;
uint16_t dnslen, dnslen2;
if (!sock->have_more) {
if (pthread_mutex_lock(&sock->lock)) {
perf_log_fatal("pthread_mutex_lock() failed");
}
if (!sock->is_ready) {
if (pthread_mutex_unlock(&sock->lock)) {
perf_log_fatal("pthread_mutex_unlock() failed");
}
errno = EAGAIN;
return -1;
}
n = SSL_read(sock->ssl, sock->recvbuf + sock->at, TCP_RECV_BUF_SIZE - sock->at);
if (n < 0) {
int err = SSL_get_error(sock->ssl, n);
if (pthread_mutex_unlock(&sock->lock)) {
perf_log_fatal("pthread_mutex_unlock() failed");
}
if (err == SSL_ERROR_WANT_READ) {
errno = EAGAIN;
} else {
errno = EBADF;
}
return -1;
}
if (pthread_mutex_unlock(&sock->lock)) {
perf_log_fatal("pthread_mutex_unlock() failed");
}
sock->at += n;
if (sock->at < 3) {
errno = EAGAIN;
return -1;
}
}
memcpy(&dnslen, sock->recvbuf, 2);
dnslen = ntohs(dnslen);
if (sock->at < dnslen + 2) {
errno = EAGAIN;
return -1;
}
memcpy(buf, sock->recvbuf + 2, len < dnslen ? len : dnslen);
memmove(sock->recvbuf, sock->recvbuf + 2 + dnslen, sock->at - 2 - dnslen);
sock->at -= 2 + dnslen;
if (sock->at > 2) {
memcpy(&dnslen2, sock->recvbuf, 2);
dnslen2 = ntohs(dnslen2);
if (sock->at >= dnslen2 + 2) {
sock->have_more = 1;
return dnslen;
}
}
sock->have_more = 0;
return dnslen;
}
case sock_tcp: {
ssize_t n;
uint16_t dnslen, dnslen2;
if (!sock->have_more) {
n = recv(sock->fd, sock->recvbuf + sock->at, TCP_RECV_BUF_SIZE - sock->at, flags);
if (n < 0) {
if (errno == ECONNRESET) {
// Treat connection reset like try again until reconnection features are in
errno = EAGAIN;
}
return n;
}
sock->at += n;
if (sock->at < 3) {
errno = EAGAIN;
return -1;
}
}
memcpy(&dnslen, sock->recvbuf, 2);
dnslen = ntohs(dnslen);
if (sock->at < dnslen + 2) {
errno = EAGAIN;
return -1;
}
memcpy(buf, sock->recvbuf + 2, len < dnslen ? len : dnslen);
memmove(sock->recvbuf, sock->recvbuf + 2 + dnslen, sock->at - 2 - dnslen);
sock->at -= 2 + dnslen;
if (sock->at > 2) {
memcpy(&dnslen2, sock->recvbuf, 2);
dnslen2 = ntohs(dnslen2);
if (sock->at >= dnslen2 + 2) {
sock->have_more = 1;
return dnslen;
}
}
sock->have_more = 0;
return dnslen;
}
default:
break;
}
return recv(sock->fd, buf, len, flags);
}
ssize_t perf_net_sendto(struct perf_net_socket* sock, const void* buf, size_t len, int flags,
const struct sockaddr* dest_addr, socklen_t addrlen)
{
switch (sock->mode) {
case sock_tls: {
size_t send = len < TCP_SEND_BUF_SIZE - 2 ? len : (TCP_SEND_BUF_SIZE - 2);
// TODO: We only send what we can send, because we can't continue sending
uint16_t dnslen = htons(send);
ssize_t n;
memcpy(sock->sendbuf, &dnslen, 2);
memcpy(sock->sendbuf + 2, buf, send);
if (pthread_mutex_lock(&sock->lock)) {
perf_log_fatal("pthread_mutex_lock() failed");
}
n = SSL_write(sock->ssl, sock->sendbuf, send + 2);
if (n < 0) {
perf_log_warning("SSL_write(): %s", ERR_error_string(SSL_get_error(sock->ssl, n), 0));
errno = EBADF;
}
if (pthread_mutex_unlock(&sock->lock)) {
perf_log_fatal("pthread_mutex_unlock() failed");
}
if (n > 0 && n < send + 2) {
sock->sending = n;
sock->flags = flags;
memcpy(&sock->dest_addr, dest_addr, addrlen);
sock->addrlen = addrlen;
sock->is_ready = 0;
errno = EINPROGRESS;
return -1;
}
return n > 0 ? n - 2 : n;
}
case sock_tcp: {
size_t send = len < TCP_SEND_BUF_SIZE - 2 ? len : (TCP_SEND_BUF_SIZE - 2);
// TODO: We only send what we can send, because we can't continue sending
uint16_t dnslen = htons(send);
ssize_t n;
memcpy(sock->sendbuf, &dnslen, 2);
memcpy(sock->sendbuf + 2, buf, send);
n = sendto(sock->fd, sock->sendbuf, send + 2, flags, dest_addr, addrlen);
if (n > 0 && n < send + 2) {
sock->sending = n;
sock->flags = flags;
memcpy(&sock->dest_addr, dest_addr, addrlen);
sock->addrlen = addrlen;
sock->is_ready = 0;
errno = EINPROGRESS;
return -1;
}
return n > 0 ? n - 2 : n;
}
default:
break;
}
return sendto(sock->fd, buf, len, flags, dest_addr, addrlen);
}
int perf_net_close(struct perf_net_socket* sock)
{
return close(sock->fd);
}
int perf_net_sockeq(struct perf_net_socket* sock_a, struct perf_net_socket* sock_b)
{
return sock_a->fd == sock_b->fd;
}
enum perf_net_mode perf_net_parsemode(const char* mode)
{
if (!strcmp(mode, "udp")) {
return sock_udp;
} else if (!strcmp(mode, "tcp")) {
return sock_tcp;
} else if (!strcmp(mode, "tls") || !strcmp(mode, "dot")) {
return sock_tls;
}
perf_log_warning("invalid socket mode");
perf_opt_usage();
exit(1);
}
int perf_net_sockready(struct perf_net_socket* sock, int pipe_fd, int64_t timeout)
{
if (sock->is_ready) {
return 1;
}
switch (sock->mode) {
case sock_tls: {
int ret;
if (sock->sending) {
uint16_t dnslen;
ssize_t n;
memcpy(&dnslen, sock->sendbuf, 2);
dnslen = ntohs(dnslen);
if (pthread_mutex_lock(&sock->lock)) {
perf_log_fatal("pthread_mutex_lock() failed");
}
n = SSL_write(sock->ssl, sock->sendbuf + sock->sending, dnslen + 2 - sock->sending);
if (n < 1) {
if (n < 0) {
perf_log_warning("SSL_write(): %s", ERR_error_string(SSL_get_error(sock->ssl, n), 0));
errno = EBADF;
}
if (pthread_mutex_unlock(&sock->lock)) {
perf_log_fatal("pthread_mutex_unlock() failed");
}
return -1;
}
if (pthread_mutex_unlock(&sock->lock)) {
perf_log_fatal("pthread_mutex_unlock() failed");
}
sock->sending += n;
if (sock->sending < dnslen + 2) {
errno = EINPROGRESS;
return -1;
}
sock->sending = 0;
sock->is_ready = 1;
return 1;
}
if (!sock->is_ssl_ready) {
switch (perf_os_waituntilanywritable(sock, 1, pipe_fd, timeout)) {
case PERF_R_TIMEDOUT:
return -1;
case PERF_R_SUCCESS: {
int error = 0;
socklen_t len = (socklen_t)sizeof(error);
getsockopt(sock->fd, SOL_SOCKET, SO_ERROR, (void*)&error, &len);
if (error != 0) {
if (error == EINPROGRESS
#if EWOULDBLOCK != EAGAIN
|| error == EWOULDBLOCK
#endif
|| error == EAGAIN) {
return 0;
}
return -1;
}
}
}
sock->is_ssl_ready = 1;
}
if (pthread_mutex_lock(&sock->lock)) {
perf_log_fatal("pthread_mutex_lock() failed");
}
ret = SSL_connect(sock->ssl);
if (!ret) {
perf_log_warning("SSL_connect(): %s", ERR_error_string(SSL_get_error(sock->ssl, ret), 0));
if (pthread_mutex_unlock(&sock->lock)) {
perf_log_fatal("pthread_mutex_unlock() failed");
}
return -1;
}
if (ret < 0) {
int err = SSL_get_error(sock->ssl, ret);
if (pthread_mutex_unlock(&sock->lock)) {
perf_log_fatal("pthread_mutex_unlock() failed");
}
if (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) {
return 0;
}
perf_log_warning("SSL_connect(): %s", ERR_error_string(err, 0));
return -1;
}
sock->is_ready = 1;
if (pthread_mutex_unlock(&sock->lock)) {
perf_log_fatal("pthread_mutex_unlock() failed");
}
return 1;
}
case sock_tcp:
if (sock->sending) {
uint16_t dnslen;
ssize_t n;
memcpy(&dnslen, sock->sendbuf, 2);
dnslen = ntohs(dnslen);
n = sendto(sock->fd, sock->sendbuf + sock->sending, dnslen + 2 - sock->sending, sock->flags, (struct sockaddr*)&sock->dest_addr, sock->addrlen);
if (n < 1) {
return -1;
}
sock->sending += n;
if (sock->sending < dnslen + 2) {
errno = EINPROGRESS;
return -1;
}
sock->sending = 0;
sock->is_ready = 1;
return 1;
}
switch (perf_os_waituntilanywritable(sock, 1, pipe_fd, timeout)) {
case PERF_R_TIMEDOUT:
return -1;
case PERF_R_SUCCESS: {
int error = 0;
socklen_t len = (socklen_t)sizeof(error);
getsockopt(sock->fd, SOL_SOCKET, SO_ERROR, (void*)&error, &len);
if (error != 0) {
if (error == EINPROGRESS
#if EWOULDBLOCK != EAGAIN
|| error == EWOULDBLOCK
#endif
|| error == EAGAIN) {
return 0;
}
return -1;
}
sock->is_ready = 1;
return 1;
}
}
break;
default:
break;
}
return -1;
}