1
0
Fork 0
dnsperf/src/net_tcp.c

406 lines
12 KiB
C
Raw Normal View History

/*
* Copyright 2019-2021 OARC, Inc.
* Copyright 2017-2018 Akamai Technologies
* Copyright 2006-2016 Nominum, Inc.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "config.h"
#include "net.h"
#include "log.h"
#include "strerror.h"
#include "os.h"
#include "util.h"
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <ck_pr.h>
#define self ((struct perf__tcp_socket*)sock)
/*
About state sync between sending and receiving thread
Two variables in the TCP socket struct are used with libck to atomically
sync states between thread w.r.t connect/reconnect events.
sock->fd is controlled by the sending thread (ST)
self->recv_need_reconn is controlled by receiving thread (RT)
On connect/reconnect ST will open a new socket and atomically store it
into sock->fd.
When RT is trying to receive it will atomically load sock->fd and store it
in self->recvfd. Before storing it, it will compare it to what already in
self->recvfd and if it differ then a connect/reconnect event happend and RT
will reset receiving state and buffers.
If RT detects a disconnection it will atomically store self->recvfd into
self->recv_need_reconn to signal to ST that it needs to reconnect.
ST will load and check self->recv_need_reconn before sending and when
checking socket readiness, if its the same as sock->fd then it will start
reconnecting.
*/
struct perf__tcp_socket {
struct perf_net_socket base;
char recvbuf[TCP_RECV_BUF_SIZE], sendbuf[TCP_SEND_BUF_SIZE];
size_t at, sending;
bool is_ready, need_reconnect, have_more, is_sending;
perf_sockaddr_t server, local;
size_t bufsize;
int recvfd;
int recv_need_reconn;
uint16_t qid;
uint64_t conn_ts;
perf_socket_event_t conn_event, conning_event;
};
static int perf__tcp_connect(struct perf_net_socket* sock)
{
int fd;
self->is_ready = true;
fd = socket(self->server.sa.sa.sa_family, SOCK_STREAM, 0);
if (fd == -1) {
char __s[256];
perf_log_fatal("socket: %s", perf_strerror_r(errno, __s, sizeof(__s)));
}
if (self->server.sa.sa.sa_family == AF_INET6) {
int on = 1;
if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &on, sizeof(on)) == -1) {
perf_log_warning("setsockopt(IPV6_V6ONLY) failed");
}
}
if (bind(fd, &self->local.sa.sa, self->local.length) == -1) {
char __s[256];
perf_log_fatal("bind: %s", perf_strerror_r(errno, __s, sizeof(__s)));
}
if (self->bufsize) {
int ret = setsockopt(fd, SOL_SOCKET, SO_RCVBUF,
&self->bufsize, sizeof(self->bufsize));
if (ret < 0)
perf_log_warning("setsockbuf(SO_RCVBUF) failed");
ret = setsockopt(fd, SOL_SOCKET, SO_SNDBUF,
&self->bufsize, sizeof(self->bufsize));
if (ret < 0)
perf_log_warning("setsockbuf(SO_SNDBUF) failed");
}
int flags = fcntl(fd, F_GETFL, 0);
if (flags < 0)
perf_log_fatal("fcntl(F_GETFL)");
int ret = fcntl(fd, F_SETFL, flags | O_NONBLOCK);
if (ret < 0)
perf_log_fatal("fcntl(F_SETFL)");
self->conn_ts = perf_get_time();
if (sock->event) {
sock->event(sock, self->conning_event, self->conn_ts);
self->conning_event = perf_socket_event_reconnecting;
}
if (connect(fd, &self->server.sa.sa, self->server.length)) {
if (errno == EINPROGRESS) {
self->is_ready = false;
} else {
char __s[256];
perf_log_fatal("connect() failed: %s", perf_strerror_r(errno, __s, sizeof(__s)));
}
}
return fd;
}
static ssize_t perf__tcp_recv(struct perf_net_socket* sock, void* buf, size_t len, int flags)
{
ssize_t n;
uint16_t dnslen, dnslen2;
int fd = ck_pr_load_int(&sock->fd);
if (fd != self->recvfd) {
/* reconnecting happened, reset buffers */
self->have_more = false;
self->at = 0;
self->recvfd = fd;
}
if (!self->have_more) {
n = recv(fd, self->recvbuf + self->at, TCP_RECV_BUF_SIZE - self->at, flags);
if (!n) {
// need reconnect
ck_pr_store_int(&self->recv_need_reconn, fd);
return 0;
} else if (n < 0) {
switch (errno) {
case ECONNREFUSED:
case ECONNRESET:
case ENOTCONN:
// need reconnect
ck_pr_store_int(&self->recv_need_reconn, fd);
errno = EAGAIN;
break;
default:
break;
}
return n;
}
self->at += n;
if (self->at < 3) {
errno = EAGAIN;
return -1;
}
}
memcpy(&dnslen, self->recvbuf, 2);
dnslen = ntohs(dnslen);
if (self->at < dnslen + 2) {
errno = EAGAIN;
return -1;
}
memcpy(buf, self->recvbuf + 2, len < dnslen ? len : dnslen);
memmove(self->recvbuf, self->recvbuf + 2 + dnslen, self->at - 2 - dnslen);
self->at -= 2 + dnslen;
if (self->at > 2) {
memcpy(&dnslen2, self->recvbuf, 2);
dnslen2 = ntohs(dnslen2);
if (self->at >= dnslen2 + 2) {
self->have_more = true;
return dnslen;
}
}
self->have_more = false;
return dnslen;
}
static ssize_t perf__tcp_sendto(struct perf_net_socket* sock, uint16_t qid, const void* buf, size_t len, int flags, const struct sockaddr* dest_addr, socklen_t addrlen)
{
size_t send = len < TCP_SEND_BUF_SIZE - 2 ? len : (TCP_SEND_BUF_SIZE - 2);
// TODO: We only send what we can send, because we can't continue sending
uint16_t dnslen = htons(send);
ssize_t n;
memcpy(self->sendbuf, &dnslen, 2);
memcpy(self->sendbuf + 2, buf, send);
self->qid = qid;
int recv_need_reconn = ck_pr_load_int(&self->recv_need_reconn);
if (recv_need_reconn == sock->fd) {
self->need_reconnect = true;
self->is_sending = true;
self->sending = 0;
errno = EINPROGRESS;
return -1;
}
n = sendto(sock->fd, self->sendbuf, send + 2, 0, 0, 0);
if (n < 0) {
switch (errno) {
case ECONNREFUSED:
case ECONNRESET:
case ENOTCONN:
case EPIPE:
self->need_reconnect = true;
self->is_sending = true;
self->sending = 0;
errno = EINPROGRESS;
return -1;
default:
break;
}
return -1;
}
if (n < send + 2) {
self->is_sending = true;
self->sending = n;
errno = EINPROGRESS;
return -1;
}
return n - 2;
}
static int perf__tcp_close(struct perf_net_socket* sock)
{
return close(sock->fd);
}
static int perf__tcp_sockeq(struct perf_net_socket* sock_a, struct perf_net_socket* sock_b)
{
return sock_a->fd == sock_b->fd;
}
static int perf__tcp_sockready(struct perf_net_socket* sock, int pipe_fd, int64_t timeout)
{
int recv_need_reconn = ck_pr_load_int(&self->recv_need_reconn);
if (recv_need_reconn == sock->fd || self->need_reconnect) {
int fd = perf__tcp_connect(sock), oldfd = ck_pr_load_int(&sock->fd);
ck_pr_store_int(&sock->fd, fd);
close(oldfd);
self->need_reconnect = false;
}
if (self->is_ready) {
if (self->is_sending) {
uint16_t dnslen;
ssize_t n;
memcpy(&dnslen, self->sendbuf, 2);
dnslen = ntohs(dnslen);
n = sendto(sock->fd, self->sendbuf + self->sending, dnslen + 2 - self->sending, 0, 0, 0);
if (n < 0) {
int fd = perf__tcp_connect(sock), oldfd = ck_pr_load_int(&sock->fd);
ck_pr_store_int(&sock->fd, fd);
close(oldfd);
if (self->sending) {
self->sending = 0;
self->is_sending = false;
}
goto conn_cont;
}
self->sending += n;
if (self->sending < dnslen + 2) {
return 0;
}
self->sending = 0;
self->is_sending = false;
if (sock->sent) {
sock->sent(sock, self->qid);
}
}
return 1;
}
conn_cont:
switch (perf_os_waituntilanywritable(&sock, 1, pipe_fd, timeout)) {
case PERF_R_TIMEDOUT:
return -1;
case PERF_R_SUCCESS: {
int error = 0;
socklen_t len = (socklen_t)sizeof(error);
getsockopt(sock->fd, SOL_SOCKET, SO_ERROR, (void*)&error, &len);
if (error != 0) {
if (error == EINPROGRESS
#if EWOULDBLOCK != EAGAIN
|| error == EWOULDBLOCK
#endif
|| error == EAGAIN) {
return 0;
}
// unrecoverable error, reconnect
self->need_reconnect = true;
return 0;
}
self->is_ready = true;
if (sock->event) {
sock->event(sock, self->conn_event, perf_get_time() - self->conn_ts);
self->conn_event = perf_socket_event_reconnected;
}
if (self->is_sending) {
uint16_t dnslen;
ssize_t n;
memcpy(&dnslen, self->sendbuf, 2);
dnslen = ntohs(dnslen);
n = sendto(sock->fd, self->sendbuf + self->sending, dnslen + 2 - self->sending, 0, 0, 0);
if (n < 0) {
self->need_reconnect = true;
return 0;
}
self->sending += n;
if (self->sending < dnslen + 2) {
return 0;
}
self->sending = 0;
self->is_sending = false;
if (sock->sent) {
sock->sent(sock, self->qid);
}
}
return 1;
}
default:
break;
}
return -1;
}
static bool perf__tcp_have_more(struct perf_net_socket* sock)
{
return self->have_more;
}
struct perf_net_socket* perf_net_tcp_opensocket(const perf_sockaddr_t* server, const perf_sockaddr_t* local, size_t bufsize, void* data, perf_net_sent_cb_t sent, perf_net_event_cb_t event)
{
struct perf__tcp_socket* tmp = calloc(1, sizeof(struct perf__tcp_socket)); // clang scan-build
struct perf_net_socket* sock = (struct perf_net_socket*)tmp;
if (!sock) {
perf_log_fatal("perf_net_tcp_opensocket() out of memory");
return 0; // needed for clang scan build
}
sock->recv = perf__tcp_recv;
sock->sendto = perf__tcp_sendto;
sock->close = perf__tcp_close;
sock->sockeq = perf__tcp_sockeq;
sock->sockready = perf__tcp_sockready;
sock->have_more = perf__tcp_have_more;
sock->data = data;
sock->sent = sent;
sock->event = event;
self->server = *server;
self->local = *local;
self->bufsize = bufsize;
if (self->bufsize > 0) {
self->bufsize *= 1024;
}
self->conning_event = perf_socket_event_connecting;
self->conn_event = perf_socket_event_connected;
sock->fd = perf__tcp_connect(sock);
self->recvfd = sock->fd;
self->recv_need_reconn = -1;
return sock;
}