69 lines
1.4 KiB
Python
69 lines
1.4 KiB
Python
"""dsc_datatool.transformer.labler
|
|
|
|
See `man dsc-datatool-transformer labler`.
|
|
|
|
Part of dsc_datatool.
|
|
|
|
:copyright: 2024 OARC, Inc.
|
|
"""
|
|
|
|
import yaml
|
|
|
|
from dsc_datatool import Transformer, encoding
|
|
|
|
|
|
def _process(label, d):
|
|
l = label.get(d.name, None)
|
|
if d.values:
|
|
if l is None:
|
|
return
|
|
|
|
values = d.values
|
|
d.values = {}
|
|
|
|
for k, v in values.items():
|
|
nk = l.get(k, None)
|
|
d.values[nk or k] = v
|
|
|
|
return
|
|
|
|
if l:
|
|
v = l.get(d.value, None)
|
|
if v:
|
|
d.value = v
|
|
for d2 in d.dimensions:
|
|
_process(label, d2)
|
|
|
|
|
|
class Labler(Transformer):
|
|
label = None
|
|
|
|
|
|
def __init__(self, opts):
|
|
Transformer.__init__(self, opts)
|
|
if not 'yaml' in opts:
|
|
raise Exception('yaml=file option required')
|
|
f = open(opts.get('yaml'), 'r', encoding=encoding)
|
|
try:
|
|
self.label = yaml.full_load(f)
|
|
except AttributeError:
|
|
self.label = yaml.load(f)
|
|
f.close()
|
|
|
|
|
|
def process(self, datasets):
|
|
if self.label is None:
|
|
return
|
|
|
|
for dataset in datasets:
|
|
label = self.label.get(dataset.name, None)
|
|
if label is None:
|
|
continue
|
|
|
|
for d in dataset.dimensions:
|
|
_process(label, d)
|
|
|
|
|
|
import sys
|
|
if sys.version_info[0] == 3 and sys.version_info[1] == 5: # pragma: no cover
|
|
Transformer.__init_subclass__(Labler)
|