1
0
Fork 0

Adding upstream version 2.5.1.

Signed-off-by: Daniel Baumann <daniel@debian.org>
This commit is contained in:
Daniel Baumann 2025-05-19 00:20:02 +02:00
parent c71cb8b61d
commit 982828099e
Signed by: daniel
GPG key ID: FBB4F0E80A80222F
783 changed files with 150650 additions and 0 deletions

View file

@ -0,0 +1,72 @@
// Copyright (c) 2014 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package scorer
import (
"reflect"
"github.com/blevesearch/bleve/v2/search"
"github.com/blevesearch/bleve/v2/size"
)
var reflectStaticSizeConjunctionQueryScorer int
func init() {
var cqs ConjunctionQueryScorer
reflectStaticSizeConjunctionQueryScorer = int(reflect.TypeOf(cqs).Size())
}
type ConjunctionQueryScorer struct {
options search.SearcherOptions
}
func (s *ConjunctionQueryScorer) Size() int {
return reflectStaticSizeConjunctionQueryScorer + size.SizeOfPtr
}
func NewConjunctionQueryScorer(options search.SearcherOptions) *ConjunctionQueryScorer {
return &ConjunctionQueryScorer{
options: options,
}
}
func (s *ConjunctionQueryScorer) Score(ctx *search.SearchContext, constituents []*search.DocumentMatch) *search.DocumentMatch {
var sum float64
var childrenExplanations []*search.Explanation
if s.options.Explain {
childrenExplanations = make([]*search.Explanation, len(constituents))
}
for i, docMatch := range constituents {
sum += docMatch.Score
if s.options.Explain {
childrenExplanations[i] = docMatch.Expl
}
}
newScore := sum
var newExpl *search.Explanation
if s.options.Explain {
newExpl = &search.Explanation{Value: sum, Message: "sum of:", Children: childrenExplanations}
}
// reuse constituents[0] as the return value
rv := constituents[0]
rv.Score = newScore
rv.Expl = newExpl
rv.FieldTermLocations = search.MergeFieldTermLocations(
rv.FieldTermLocations, constituents[1:])
return rv
}

View file

@ -0,0 +1,132 @@
// Copyright (c) 2014 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package scorer
import (
"fmt"
"reflect"
"github.com/blevesearch/bleve/v2/search"
"github.com/blevesearch/bleve/v2/size"
index "github.com/blevesearch/bleve_index_api"
)
var reflectStaticSizeConstantScorer int
func init() {
var cs ConstantScorer
reflectStaticSizeConstantScorer = int(reflect.TypeOf(cs).Size())
}
type ConstantScorer struct {
constant float64
boost float64
options search.SearcherOptions
queryNorm float64
queryWeight float64
queryWeightExplanation *search.Explanation
includeScore bool
}
func (s *ConstantScorer) Size() int {
sizeInBytes := reflectStaticSizeConstantScorer + size.SizeOfPtr
if s.queryWeightExplanation != nil {
sizeInBytes += s.queryWeightExplanation.Size()
}
return sizeInBytes
}
func NewConstantScorer(constant float64, boost float64, options search.SearcherOptions) *ConstantScorer {
rv := ConstantScorer{
options: options,
queryWeight: 1.0,
constant: constant,
boost: boost,
includeScore: options.Score != "none",
}
return &rv
}
func (s *ConstantScorer) Weight() float64 {
sum := s.boost
return sum * sum
}
func (s *ConstantScorer) SetQueryNorm(qnorm float64) {
s.queryNorm = qnorm
// update the query weight
s.queryWeight = s.boost * s.queryNorm
if s.options.Explain {
childrenExplanations := make([]*search.Explanation, 2)
childrenExplanations[0] = &search.Explanation{
Value: s.boost,
Message: "boost",
}
childrenExplanations[1] = &search.Explanation{
Value: s.queryNorm,
Message: "queryNorm",
}
s.queryWeightExplanation = &search.Explanation{
Value: s.queryWeight,
Message: fmt.Sprintf("ConstantScore()^%f, product of:", s.boost),
Children: childrenExplanations,
}
}
}
func (s *ConstantScorer) Score(ctx *search.SearchContext, id index.IndexInternalID) *search.DocumentMatch {
var scoreExplanation *search.Explanation
rv := ctx.DocumentMatchPool.Get()
rv.IndexInternalID = id
if s.includeScore {
score := s.constant
if s.options.Explain {
scoreExplanation = &search.Explanation{
Value: score,
Message: "ConstantScore()",
}
}
// if the query weight isn't 1, multiply
if s.queryWeight != 1.0 {
score = score * s.queryWeight
if s.options.Explain {
childExplanations := make([]*search.Explanation, 2)
childExplanations[0] = s.queryWeightExplanation
childExplanations[1] = scoreExplanation
scoreExplanation = &search.Explanation{
Value: score,
Message: fmt.Sprintf("weight(^%f), product of:", s.boost),
Children: childExplanations,
}
}
}
rv.Score = score
if s.options.Explain {
rv.Expl = scoreExplanation
}
}
return rv
}

View file

@ -0,0 +1,131 @@
// Copyright (c) 2013 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package scorer
import (
"reflect"
"testing"
"github.com/blevesearch/bleve/v2/search"
index "github.com/blevesearch/bleve_index_api"
)
func TestConstantScorer(t *testing.T) {
scorer := NewConstantScorer(1, 1, search.SearcherOptions{Explain: true})
tests := []struct {
termMatch *index.TermFieldDoc
result *search.DocumentMatch
}{
// test some simple math
{
termMatch: &index.TermFieldDoc{
ID: index.IndexInternalID("one"),
Freq: 1,
Norm: 1.0,
Vectors: []*index.TermFieldVector{
{
Field: "desc",
Pos: 1,
Start: 0,
End: 4,
},
},
},
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: 1.0,
Expl: &search.Explanation{
Value: 1.0,
Message: "ConstantScore()",
},
Sort: []string{},
},
},
}
for _, test := range tests {
ctx := &search.SearchContext{
DocumentMatchPool: search.NewDocumentMatchPool(1, 0),
}
actual := scorer.Score(ctx, test.termMatch.ID)
if !reflect.DeepEqual(actual, test.result) {
t.Errorf("expected %#v got %#v for %#v", test.result, actual, test.termMatch)
}
}
}
func TestConstantScorerWithQueryNorm(t *testing.T) {
scorer := NewConstantScorer(1, 1, search.SearcherOptions{Explain: true})
scorer.SetQueryNorm(2.0)
tests := []struct {
termMatch *index.TermFieldDoc
result *search.DocumentMatch
}{
{
termMatch: &index.TermFieldDoc{
ID: index.IndexInternalID("one"),
Freq: 1,
Norm: 1.0,
},
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: 2.0,
Sort: []string{},
Expl: &search.Explanation{
Value: 2.0,
Message: "weight(^1.000000), product of:",
Children: []*search.Explanation{
{
Value: 2.0,
Message: "ConstantScore()^1.000000, product of:",
Children: []*search.Explanation{
{
Value: 1,
Message: "boost",
},
{
Value: 2,
Message: "queryNorm",
},
},
},
{
Value: 1.0,
Message: "ConstantScore()",
},
},
},
},
},
}
for _, test := range tests {
ctx := &search.SearchContext{
DocumentMatchPool: search.NewDocumentMatchPool(1, 0),
}
actual := scorer.Score(ctx, test.termMatch.ID)
if !reflect.DeepEqual(actual, test.result) {
t.Errorf("expected %#v got %#v for %#v", test.result, actual, test.termMatch)
}
}
}

View file

@ -0,0 +1,123 @@
// Copyright (c) 2014 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package scorer
import (
"fmt"
"reflect"
"github.com/blevesearch/bleve/v2/search"
"github.com/blevesearch/bleve/v2/size"
)
var reflectStaticSizeDisjunctionQueryScorer int
func init() {
var dqs DisjunctionQueryScorer
reflectStaticSizeDisjunctionQueryScorer = int(reflect.TypeOf(dqs).Size())
}
type DisjunctionQueryScorer struct {
options search.SearcherOptions
}
func (s *DisjunctionQueryScorer) Size() int {
return reflectStaticSizeDisjunctionQueryScorer + size.SizeOfPtr
}
func NewDisjunctionQueryScorer(options search.SearcherOptions) *DisjunctionQueryScorer {
return &DisjunctionQueryScorer{
options: options,
}
}
func (s *DisjunctionQueryScorer) Score(ctx *search.SearchContext, constituents []*search.DocumentMatch, countMatch, countTotal int) *search.DocumentMatch {
var sum float64
var childrenExplanations []*search.Explanation
if s.options.Explain {
childrenExplanations = make([]*search.Explanation, len(constituents))
}
for i, docMatch := range constituents {
sum += docMatch.Score
if s.options.Explain {
childrenExplanations[i] = docMatch.Expl
}
}
var rawExpl *search.Explanation
if s.options.Explain {
rawExpl = &search.Explanation{Value: sum, Message: "sum of:", Children: childrenExplanations}
}
coord := float64(countMatch) / float64(countTotal)
newScore := sum * coord
var newExpl *search.Explanation
if s.options.Explain {
ce := make([]*search.Explanation, 2)
ce[0] = rawExpl
ce[1] = &search.Explanation{Value: coord, Message: fmt.Sprintf("coord(%d/%d)", countMatch, countTotal)}
newExpl = &search.Explanation{Value: newScore, Message: "product of:", Children: ce, PartialMatch: countMatch != countTotal}
}
// reuse constituents[0] as the return value
rv := constituents[0]
rv.Score = newScore
rv.Expl = newExpl
rv.FieldTermLocations = search.MergeFieldTermLocations(
rv.FieldTermLocations, constituents[1:])
return rv
}
// This method is used only when disjunction searcher is used over multiple
// KNN searchers, where only the score breakdown and the optional explanation breakdown
// is required. The final score and explanation is set when we finalize the KNN hits.
func (s *DisjunctionQueryScorer) ScoreAndExplBreakdown(ctx *search.SearchContext, constituents []*search.DocumentMatch,
matchingIdxs []int, originalPositions []int, countTotal int) *search.DocumentMatch {
scoreBreakdown := make(map[int]float64)
var childrenExplanations []*search.Explanation
if s.options.Explain {
// since we want to notify which expl belongs to which matched searcher within the disjunction searcher
childrenExplanations = make([]*search.Explanation, countTotal)
}
for i, docMatch := range constituents {
var index int
if originalPositions != nil {
// scorer used in disjunction slice searcher
index = originalPositions[matchingIdxs[i]]
} else {
// scorer used in disjunction heap searcher
index = matchingIdxs[i]
}
scoreBreakdown[index] = docMatch.Score
if s.options.Explain {
childrenExplanations[index] = docMatch.Expl
}
}
var explBreakdown *search.Explanation
if s.options.Explain {
explBreakdown = &search.Explanation{Children: childrenExplanations}
}
rv := constituents[0]
rv.ScoreBreakdown = scoreBreakdown
rv.Expl = explBreakdown
rv.FieldTermLocations = search.MergeFieldTermLocations(
rv.FieldTermLocations, constituents[1:])
return rv
}

157
search/scorer/scorer_knn.go Normal file
View file

@ -0,0 +1,157 @@
// Copyright (c) 2023 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build vectors
// +build vectors
package scorer
import (
"fmt"
"math"
"reflect"
"github.com/blevesearch/bleve/v2/search"
"github.com/blevesearch/bleve/v2/size"
index "github.com/blevesearch/bleve_index_api"
)
var reflectStaticSizeKNNQueryScorer int
func init() {
var sqs KNNQueryScorer
reflectStaticSizeKNNQueryScorer = int(reflect.TypeOf(sqs).Size())
}
type KNNQueryScorer struct {
queryVector []float32
queryField string
queryWeight float64
queryBoost float64
queryNorm float64
options search.SearcherOptions
similarityMetric string
queryWeightExplanation *search.Explanation
}
func (s *KNNQueryScorer) Size() int {
sizeInBytes := reflectStaticSizeKNNQueryScorer + size.SizeOfPtr +
(len(s.queryVector) * size.SizeOfFloat32) + len(s.queryField) +
len(s.similarityMetric)
if s.queryWeightExplanation != nil {
sizeInBytes += s.queryWeightExplanation.Size()
}
return sizeInBytes
}
func NewKNNQueryScorer(queryVector []float32, queryField string, queryBoost float64,
options search.SearcherOptions,
similarityMetric string) *KNNQueryScorer {
return &KNNQueryScorer{
queryVector: queryVector,
queryField: queryField,
queryBoost: queryBoost,
queryWeight: 1.0,
options: options,
similarityMetric: similarityMetric,
}
}
// Score used when the knnMatch.Score = 0 ->
// the query and indexed vector are exactly the same.
const maxKNNScore = math.MaxFloat32
func (sqs *KNNQueryScorer) Score(ctx *search.SearchContext,
knnMatch *index.VectorDoc) *search.DocumentMatch {
rv := ctx.DocumentMatchPool.Get()
var scoreExplanation *search.Explanation
score := knnMatch.Score
if sqs.similarityMetric == index.EuclideanDistance {
// in case of euclidean distance being the distance metric,
// an exact vector (perfect match), would return distance = 0
if score == 0 {
score = maxKNNScore
} else {
// euclidean distances need to be inverted to work with
// tf-idf scoring
score = 1.0 / score
}
}
if sqs.options.Explain {
scoreExplanation = &search.Explanation{
Value: score,
Message: fmt.Sprintf("fieldWeight(%s in doc %s), score of:",
sqs.queryField, knnMatch.ID),
Children: []*search.Explanation{
{
Value: score,
Message: fmt.Sprintf("vector(field(%s:%s) with similarity_metric(%s)=%e",
sqs.queryField, knnMatch.ID, sqs.similarityMetric, score),
},
},
}
}
// if the query weight isn't 1, multiply
if sqs.queryWeight != 1.0 && score != maxKNNScore {
score = score * sqs.queryWeight
if sqs.options.Explain {
scoreExplanation = &search.Explanation{
Value: score,
// Product of score * weight
// Avoid adding the query vector to the explanation since vectors
// can get quite large.
Message: fmt.Sprintf("weight(%s:query Vector^%f in %s), product of:",
sqs.queryField, sqs.queryBoost, knnMatch.ID),
Children: []*search.Explanation{sqs.queryWeightExplanation, scoreExplanation},
}
}
}
rv.Score = score
if sqs.options.Explain {
rv.Expl = scoreExplanation
}
rv.IndexInternalID = append(rv.IndexInternalID, knnMatch.ID...)
return rv
}
func (sqs *KNNQueryScorer) Weight() float64 {
return 1.0
}
func (sqs *KNNQueryScorer) SetQueryNorm(qnorm float64) {
sqs.queryNorm = qnorm
// update the query weight
sqs.queryWeight = sqs.queryBoost * sqs.queryNorm
if sqs.options.Explain {
childrenExplanations := make([]*search.Explanation, 2)
childrenExplanations[0] = &search.Explanation{
Value: sqs.queryBoost,
Message: "boost",
}
childrenExplanations[1] = &search.Explanation{
Value: sqs.queryNorm,
Message: "queryNorm",
}
sqs.queryWeightExplanation = &search.Explanation{
Value: sqs.queryWeight,
Message: fmt.Sprintf("queryWeight(%s:query Vector^%f), product of:",
sqs.queryField, sqs.queryBoost),
Children: childrenExplanations,
}
}
}

View file

@ -0,0 +1,181 @@
// Copyright (c) 2023 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build vectors
// +build vectors
package scorer
import (
"reflect"
"testing"
"github.com/blevesearch/bleve/v2/search"
index "github.com/blevesearch/bleve_index_api"
)
func TestKNNScorerExplanation(t *testing.T) {
var queryVector []float32
// arbitrary vector of dims: 64
for i := 0; i < 64; i++ {
queryVector = append(queryVector, float32(i))
}
var resVector []float32
// arbitrary res vector.
for i := 0; i < 64; i++ {
resVector = append(resVector, float32(i))
}
tests := []struct {
vectorMatch *index.VectorDoc
scorer *KNNQueryScorer
norm float64
result *search.DocumentMatch
}{
{
vectorMatch: &index.VectorDoc{
ID: index.IndexInternalID("one"),
Score: 0.5,
Vector: resVector,
},
norm: 1.0,
scorer: NewKNNQueryScorer(queryVector, "desc", 1.0,
search.SearcherOptions{Explain: true}, index.EuclideanDistance),
// Specifically testing EuclideanDistance since that involves score inversion.
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: 0.5,
Expl: &search.Explanation{
Value: 1 / 0.5,
Message: "fieldWeight(desc in doc one), score of:",
Children: []*search.Explanation{
{
Value: 1 / 0.5,
Message: "vector(field(desc:one) with similarity_metric(l2_norm)=2.000000e+00",
},
},
},
},
},
{
vectorMatch: &index.VectorDoc{
ID: index.IndexInternalID("one"),
Score: 0.0,
// Result vector is an exact match of an existing vector.
Vector: queryVector,
},
norm: 1.0,
scorer: NewKNNQueryScorer(queryVector, "desc", 1.0,
search.SearcherOptions{Explain: true}, index.EuclideanDistance),
// Specifically testing EuclideanDistance with 0 score.
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: 0.0,
Expl: &search.Explanation{
Value: maxKNNScore,
Message: "fieldWeight(desc in doc one), score of:",
Children: []*search.Explanation{
{
Value: maxKNNScore,
Message: "vector(field(desc:one) with similarity_metric(l2_norm)=3.402823e+38",
},
},
},
},
},
{
vectorMatch: &index.VectorDoc{
ID: index.IndexInternalID("one"),
Score: 0.5,
Vector: resVector,
},
norm: 1.0,
scorer: NewKNNQueryScorer(queryVector, "desc", 1.0,
search.SearcherOptions{Explain: true}, index.InnerProduct),
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: 0.5,
Expl: &search.Explanation{
Value: 0.5,
Message: "fieldWeight(desc in doc one), score of:",
Children: []*search.Explanation{
{
Value: 0.5,
Message: "vector(field(desc:one) with similarity_metric(dot_product)=5.000000e-01",
},
},
},
},
},
{
vectorMatch: &index.VectorDoc{
ID: index.IndexInternalID("one"),
Score: 0.25,
Vector: resVector,
},
norm: 0.5,
scorer: NewKNNQueryScorer(queryVector, "desc", 1.0,
search.SearcherOptions{Explain: true}, index.InnerProduct),
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: 0.25,
Expl: &search.Explanation{
Value: 0.125,
Message: "weight(desc:query Vector^1.000000 in one), product of:",
Children: []*search.Explanation{
{
Value: 0.5,
Message: "queryWeight(desc:query Vector^1.000000), product of:",
Children: []*search.Explanation{
{
Value: 1,
Message: "boost",
},
{
Value: 0.5,
Message: "queryNorm",
},
},
},
{
Value: 0.25,
Message: "fieldWeight(desc in doc one), score of:",
Children: []*search.Explanation{
{
Value: 0.25,
Message: "vector(field(desc:one) with similarity_metric(dot_product)=2.500000e-01",
},
},
},
},
},
},
},
}
for _, test := range tests {
ctx := &search.SearchContext{
DocumentMatchPool: search.NewDocumentMatchPool(1, 0),
}
test.scorer.SetQueryNorm(test.norm)
actual := test.scorer.Score(ctx, test.vectorMatch)
actual.Complete(nil)
if !reflect.DeepEqual(actual.Expl, test.result.Expl) {
t.Errorf("expected %#v got %#v for %#v", test.result.Expl,
actual.Expl, test.vectorMatch)
}
}
}

View file

@ -0,0 +1,276 @@
// Copyright (c) 2014 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package scorer
import (
"fmt"
"math"
"reflect"
"github.com/blevesearch/bleve/v2/search"
"github.com/blevesearch/bleve/v2/size"
index "github.com/blevesearch/bleve_index_api"
)
var reflectStaticSizeTermQueryScorer int
func init() {
var tqs TermQueryScorer
reflectStaticSizeTermQueryScorer = int(reflect.TypeOf(tqs).Size())
}
type TermQueryScorer struct {
queryTerm string
queryField string
queryBoost float64
docTerm uint64 // number of documents containing the term
docTotal uint64 // total number of documents in the index
avgDocLength float64
idf float64
options search.SearcherOptions
idfExplanation *search.Explanation
includeScore bool
queryNorm float64
queryWeight float64
queryWeightExplanation *search.Explanation
}
func (s *TermQueryScorer) Size() int {
sizeInBytes := reflectStaticSizeTermQueryScorer + size.SizeOfPtr +
len(s.queryTerm) + len(s.queryField)
if s.idfExplanation != nil {
sizeInBytes += s.idfExplanation.Size()
}
if s.queryWeightExplanation != nil {
sizeInBytes += s.queryWeightExplanation.Size()
}
return sizeInBytes
}
func (s *TermQueryScorer) computeIDF(avgDocLength float64, docTotal, docTerm uint64) float64 {
var rv float64
if avgDocLength > 0 {
// avgDocLength is set only for bm25 scoring
rv = math.Log(1 + (float64(docTotal)-float64(docTerm)+0.5)/
(float64(docTerm)+0.5))
} else {
rv = 1.0 + math.Log(float64(docTotal)/
float64(docTerm+1.0))
}
return rv
}
// queryTerm - the specific term being scored by this scorer object
// queryField - the field in which the term is being searched
// queryBoost - the boost value for the query term
// docTotal - total number of documents in the index
// docTerm - number of documents containing the term
// avgDocLength - average document length in the index
// options - search options such as explain scoring, include the location of the term etc.
func NewTermQueryScorer(queryTerm []byte, queryField string, queryBoost float64, docTotal,
docTerm uint64, avgDocLength float64, options search.SearcherOptions) *TermQueryScorer {
rv := TermQueryScorer{
queryTerm: string(queryTerm),
queryField: queryField,
queryBoost: queryBoost,
docTerm: docTerm,
docTotal: docTotal,
avgDocLength: avgDocLength,
options: options,
queryWeight: 1.0,
includeScore: options.Score != "none",
}
rv.idf = rv.computeIDF(avgDocLength, docTotal, docTerm)
if options.Explain {
rv.idfExplanation = &search.Explanation{
Value: rv.idf,
Message: fmt.Sprintf("idf(docFreq=%d, maxDocs=%d)", docTerm, docTotal),
}
}
return &rv
}
func (s *TermQueryScorer) Weight() float64 {
sum := s.queryBoost * s.idf
return sum * sum
}
func (s *TermQueryScorer) SetQueryNorm(qnorm float64) {
s.queryNorm = qnorm
// update the query weight
s.queryWeight = s.queryBoost * s.idf * s.queryNorm
if s.options.Explain {
childrenExplanations := make([]*search.Explanation, 3)
childrenExplanations[0] = &search.Explanation{
Value: s.queryBoost,
Message: "boost",
}
childrenExplanations[1] = s.idfExplanation
childrenExplanations[2] = &search.Explanation{
Value: s.queryNorm,
Message: "queryNorm",
}
s.queryWeightExplanation = &search.Explanation{
Value: s.queryWeight,
Message: fmt.Sprintf("queryWeight(%s:%s^%f), product of:", s.queryField, s.queryTerm, s.queryBoost),
Children: childrenExplanations,
}
}
}
func (s *TermQueryScorer) docScore(tf, norm float64) (score float64, model string) {
if s.avgDocLength > 0 {
// bm25 scoring
// using the posting's norm value to recompute the field length for the doc num
fieldLength := 1 / (norm * norm)
score = s.idf * (tf * search.BM25_k1) /
(tf + search.BM25_k1*(1-search.BM25_b+(search.BM25_b*fieldLength/s.avgDocLength)))
model = index.BM25Scoring
} else {
// tf-idf scoring by default
score = tf * norm * s.idf
model = index.DefaultScoringModel
}
return score, model
}
func (s *TermQueryScorer) scoreExplanation(tf float64, termMatch *index.TermFieldDoc) []*search.Explanation {
var rv []*search.Explanation
if s.avgDocLength > 0 {
fieldLength := 1 / (termMatch.Norm * termMatch.Norm)
fieldNormVal := 1 - search.BM25_b + (search.BM25_b * fieldLength / s.avgDocLength)
fieldNormalizeExplanation := &search.Explanation{
Value: fieldNormVal,
Message: fmt.Sprintf("fieldNorm(field=%s), b=%f, fieldLength=%f, avgFieldLength=%f)",
s.queryField, search.BM25_b, fieldLength, s.avgDocLength),
}
saturationExplanation := &search.Explanation{
Value: search.BM25_k1 / (tf + search.BM25_k1*fieldNormVal),
Message: fmt.Sprintf("saturation(term:%s), k1=%f/(tf=%f + k1*fieldNorm=%f))",
termMatch.Term, search.BM25_k1, tf, fieldNormVal),
Children: []*search.Explanation{fieldNormalizeExplanation},
}
rv = make([]*search.Explanation, 3)
rv[0] = &search.Explanation{
Value: tf,
Message: fmt.Sprintf("tf(termFreq(%s:%s)=%d", s.queryField, s.queryTerm, termMatch.Freq),
}
rv[1] = saturationExplanation
rv[2] = s.idfExplanation
} else {
rv = make([]*search.Explanation, 3)
rv[0] = &search.Explanation{
Value: tf,
Message: fmt.Sprintf("tf(termFreq(%s:%s)=%d", s.queryField, s.queryTerm, termMatch.Freq),
}
rv[1] = &search.Explanation{
Value: termMatch.Norm,
Message: fmt.Sprintf("fieldNorm(field=%s, doc=%s)", s.queryField, termMatch.ID),
}
rv[2] = s.idfExplanation
}
return rv
}
func (s *TermQueryScorer) Score(ctx *search.SearchContext, termMatch *index.TermFieldDoc) *search.DocumentMatch {
rv := ctx.DocumentMatchPool.Get()
// perform any score computations only when needed
if s.includeScore || s.options.Explain {
var scoreExplanation *search.Explanation
var tf float64
if termMatch.Freq < MaxSqrtCache {
tf = SqrtCache[int(termMatch.Freq)]
} else {
tf = math.Sqrt(float64(termMatch.Freq))
}
score, scoringModel := s.docScore(tf, termMatch.Norm)
if s.options.Explain {
childrenExplanations := s.scoreExplanation(tf, termMatch)
scoreExplanation = &search.Explanation{
Value: score,
Message: fmt.Sprintf("fieldWeight(%s:%s in %s), as per %s model, "+
"product of:", s.queryField, s.queryTerm, termMatch.ID, scoringModel),
Children: childrenExplanations,
}
}
// if the query weight isn't 1, multiply
if s.queryWeight != 1.0 {
score = score * s.queryWeight
if s.options.Explain {
childExplanations := make([]*search.Explanation, 2)
childExplanations[0] = s.queryWeightExplanation
childExplanations[1] = scoreExplanation
scoreExplanation = &search.Explanation{
Value: score,
Message: fmt.Sprintf("weight(%s:%s^%f in %s), product of:", s.queryField, s.queryTerm, s.queryBoost, termMatch.ID),
Children: childExplanations,
}
}
}
if s.includeScore {
rv.Score = score
}
if s.options.Explain {
rv.Expl = scoreExplanation
}
}
rv.IndexInternalID = append(rv.IndexInternalID, termMatch.ID...)
if len(termMatch.Vectors) > 0 {
if cap(rv.FieldTermLocations) < len(termMatch.Vectors) {
rv.FieldTermLocations = make([]search.FieldTermLocation, 0, len(termMatch.Vectors))
}
for _, v := range termMatch.Vectors {
var ap search.ArrayPositions
if len(v.ArrayPositions) > 0 {
n := len(rv.FieldTermLocations)
if n < cap(rv.FieldTermLocations) { // reuse ap slice if available
ap = rv.FieldTermLocations[:n+1][n].Location.ArrayPositions[:0]
}
ap = append(ap, v.ArrayPositions...)
}
rv.FieldTermLocations =
append(rv.FieldTermLocations, search.FieldTermLocation{
Field: v.Field,
Term: s.queryTerm,
Location: search.Location{
Pos: v.Pos,
Start: v.Start,
End: v.End,
ArrayPositions: ap,
},
})
}
}
return rv
}

View file

@ -0,0 +1,260 @@
// Copyright (c) 2013 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package scorer
import (
"math"
"reflect"
"testing"
"github.com/blevesearch/bleve/v2/search"
index "github.com/blevesearch/bleve_index_api"
)
func TestTermScorer(t *testing.T) {
var docTotal uint64 = 100
var docTerm uint64 = 9
var queryTerm = []byte("beer")
var queryField = "desc"
var queryBoost = 1.0
scorer := NewTermQueryScorer(queryTerm, queryField, queryBoost, docTotal, docTerm, 0, search.SearcherOptions{Explain: true})
idf := 1.0 + math.Log(float64(docTotal)/float64(docTerm+1.0))
tests := []struct {
termMatch *index.TermFieldDoc
result *search.DocumentMatch
}{
// test some simple math
{
termMatch: &index.TermFieldDoc{
ID: index.IndexInternalID("one"),
Freq: 1,
Norm: 1.0,
Vectors: []*index.TermFieldVector{
{
Field: "desc",
Pos: 1,
Start: 0,
End: 4,
},
},
},
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: math.Sqrt(1.0) * idf,
Sort: []string{},
Expl: &search.Explanation{
Value: math.Sqrt(1.0) * idf,
Message: "fieldWeight(desc:beer in one), as per tfidf model, product of:",
Children: []*search.Explanation{
{
Value: 1,
Message: "tf(termFreq(desc:beer)=1",
},
{
Value: 1,
Message: "fieldNorm(field=desc, doc=one)",
},
{
Value: idf,
Message: "idf(docFreq=9, maxDocs=100)",
},
},
},
Locations: search.FieldTermLocationMap{
"desc": search.TermLocationMap{
"beer": []*search.Location{
{
Pos: 1,
Start: 0,
End: 4,
},
},
},
},
},
},
// test the same thing again (score should be cached this time)
{
termMatch: &index.TermFieldDoc{
ID: index.IndexInternalID("one"),
Freq: 1,
Norm: 1.0,
},
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: math.Sqrt(1.0) * idf,
Sort: []string{},
Expl: &search.Explanation{
Value: math.Sqrt(1.0) * idf,
Message: "fieldWeight(desc:beer in one), as per tfidf model, product of:",
Children: []*search.Explanation{
{
Value: 1,
Message: "tf(termFreq(desc:beer)=1",
},
{
Value: 1,
Message: "fieldNorm(field=desc, doc=one)",
},
{
Value: idf,
Message: "idf(docFreq=9, maxDocs=100)",
},
},
},
},
},
// test a case where the sqrt isn't precalculated
{
termMatch: &index.TermFieldDoc{
ID: index.IndexInternalID("one"),
Freq: 65,
Norm: 1.0,
},
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: math.Sqrt(65) * idf,
Sort: []string{},
Expl: &search.Explanation{
Value: math.Sqrt(65) * idf,
Message: "fieldWeight(desc:beer in one), as per tfidf model, product of:",
Children: []*search.Explanation{
{
Value: math.Sqrt(65),
Message: "tf(termFreq(desc:beer)=65",
},
{
Value: 1,
Message: "fieldNorm(field=desc, doc=one)",
},
{
Value: idf,
Message: "idf(docFreq=9, maxDocs=100)",
},
},
},
},
},
}
for _, test := range tests {
ctx := &search.SearchContext{
DocumentMatchPool: search.NewDocumentMatchPool(1, 0),
}
actual := scorer.Score(ctx, test.termMatch)
actual.Complete(nil)
if len(actual.FieldTermLocations) == 0 {
actual.FieldTermLocations = nil
}
if !reflect.DeepEqual(actual, test.result) {
t.Errorf("expected %#v got %#v for %#v", test.result, actual, test.termMatch)
}
}
}
func TestTermScorerWithQueryNorm(t *testing.T) {
var docTotal uint64 = 100
var docTerm uint64 = 9
var queryTerm = []byte("beer")
var queryField = "desc"
var queryBoost = 3.0
scorer := NewTermQueryScorer(queryTerm, queryField, queryBoost, docTotal, docTerm, 0, search.SearcherOptions{Explain: true})
idf := 1.0 + math.Log(float64(docTotal)/float64(docTerm+1.0))
scorer.SetQueryNorm(2.0)
expectedQueryWeight := 3 * idf * 3 * idf
actualQueryWeight := scorer.Weight()
if expectedQueryWeight != actualQueryWeight {
t.Errorf("expected query weight %f, got %f", expectedQueryWeight, actualQueryWeight)
}
tests := []struct {
termMatch *index.TermFieldDoc
result *search.DocumentMatch
}{
{
termMatch: &index.TermFieldDoc{
ID: index.IndexInternalID("one"),
Freq: 1,
Norm: 1.0,
},
result: &search.DocumentMatch{
IndexInternalID: index.IndexInternalID("one"),
Score: math.Sqrt(1.0) * idf * 3.0 * idf * 2.0,
Sort: []string{},
Expl: &search.Explanation{
Value: math.Sqrt(1.0) * idf * 3.0 * idf * 2.0,
Message: "weight(desc:beer^3.000000 in one), product of:",
Children: []*search.Explanation{
{
Value: 2.0 * idf * 3.0,
Message: "queryWeight(desc:beer^3.000000), product of:",
Children: []*search.Explanation{
{
Value: 3,
Message: "boost",
},
{
Value: idf,
Message: "idf(docFreq=9, maxDocs=100)",
},
{
Value: 2,
Message: "queryNorm",
},
},
},
{
Value: math.Sqrt(1.0) * idf,
Message: "fieldWeight(desc:beer in one), as per tfidf model, product of:",
Children: []*search.Explanation{
{
Value: 1,
Message: "tf(termFreq(desc:beer)=1",
},
{
Value: 1,
Message: "fieldNorm(field=desc, doc=one)",
},
{
Value: idf,
Message: "idf(docFreq=9, maxDocs=100)",
},
},
},
},
},
},
},
}
for _, test := range tests {
ctx := &search.SearchContext{
DocumentMatchPool: search.NewDocumentMatchPool(1, 0),
}
actual := scorer.Score(ctx, test.termMatch)
if !reflect.DeepEqual(actual, test.result) {
t.Errorf("expected %#v got %#v for %#v", test.result, actual, test.termMatch)
}
}
}

View file

@ -0,0 +1,30 @@
// Copyright (c) 2014 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package scorer
import (
"math"
)
var SqrtCache []float64
const MaxSqrtCache = 64
func init() {
SqrtCache = make([]float64, MaxSqrtCache)
for i := 0; i < MaxSqrtCache; i++ {
SqrtCache[i] = math.Sqrt(float64(i))
}
}