// Copyright (c) 2019 Couchbase, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package searcher import ( "context" "fmt" "math" "github.com/blevesearch/bleve/v2/geo" "github.com/blevesearch/bleve/v2/numeric" "github.com/blevesearch/bleve/v2/search" index "github.com/blevesearch/bleve_index_api" ) func NewGeoBoundedPolygonSearcher(ctx context.Context, indexReader index.IndexReader, coordinates []geo.Point, field string, boost float64, options search.SearcherOptions) (search.Searcher, error) { if len(coordinates) < 3 { return nil, fmt.Errorf("Too few points specified for the polygon boundary") } var rectSearcher search.Searcher if sr, ok := indexReader.(index.SpatialIndexPlugin); ok { tp, err := sr.GetSpatialAnalyzerPlugin("s2") if err == nil { terms := tp.GetQueryTokens(geo.NewBoundedPolygon(coordinates)) rectSearcher, err = NewMultiTermSearcher(ctx, indexReader, terms, field, boost, options, false) if err != nil { return nil, err } } } // indexes without the spatial plugin override would get // initialized here. if rectSearcher == nil { // compute the bounding box enclosing the polygon topLeftLon, topLeftLat, bottomRightLon, bottomRightLat, err := geo.BoundingRectangleForPolygon(coordinates) if err != nil { return nil, err } // build a searcher for the bounding box on the polygon rectSearcher, err = boxSearcher(ctx, indexReader, topLeftLon, topLeftLat, bottomRightLon, bottomRightLat, field, boost, options, true) if err != nil { return nil, err } } dvReader, err := indexReader.DocValueReader([]string{field}) if err != nil { return nil, err } // wrap it in a filtering searcher that checks for the polygon inclusivity return NewFilteringSearcher(ctx, rectSearcher, buildPolygonFilter(ctx, dvReader, field, coordinates)), nil } const float64EqualityThreshold = 1e-6 func almostEqual(a, b float64) bool { return math.Abs(a-b) <= float64EqualityThreshold } // buildPolygonFilter returns true if the point lies inside the // polygon. It is based on the ray-casting technique as referred // here: https://wrf.ecse.rpi.edu/nikola/pubdetails/pnpoly.html func buildPolygonFilter(ctx context.Context, dvReader index.DocValueReader, field string, coordinates []geo.Point) FilterFunc { return func(d *search.DocumentMatch) bool { // check geo matches against all numeric type terms indexed var lons, lats []float64 var found bool err := dvReader.VisitDocValues(d.IndexInternalID, func(field string, term []byte) { // only consider the values which are shifted 0 prefixCoded := numeric.PrefixCoded(term) shift, err := prefixCoded.Shift() if err == nil && shift == 0 { i64, err := prefixCoded.Int64() if err == nil { lons = append(lons, geo.MortonUnhashLon(uint64(i64))) lats = append(lats, geo.MortonUnhashLat(uint64(i64))) found = true } } }) // Note: this approach works for points which are strictly inside // the polygon. ie it might fail for certain points on the polygon boundaries. if err == nil && found { bytes := dvReader.BytesRead() if bytes > 0 { reportIOStats(ctx, bytes) search.RecordSearchCost(ctx, search.AddM, bytes) } nVertices := len(coordinates) if len(coordinates) < 3 { return false } rayIntersectsSegment := func(point, a, b geo.Point) bool { return (a.Lat > point.Lat) != (b.Lat > point.Lat) && point.Lon < (b.Lon-a.Lon)*(point.Lat-a.Lat)/(b.Lat-a.Lat)+a.Lon } for i := range lons { pt := geo.Point{Lon: lons[i], Lat: lats[i]} inside := rayIntersectsSegment(pt, coordinates[len(coordinates)-1], coordinates[0]) // check for a direct vertex match if almostEqual(coordinates[0].Lat, lats[i]) && almostEqual(coordinates[0].Lon, lons[i]) { return true } for j := 1; j < nVertices; j++ { if almostEqual(coordinates[j].Lat, lats[i]) && almostEqual(coordinates[j].Lon, lons[i]) { return true } if rayIntersectsSegment(pt, coordinates[j-1], coordinates[j]) { inside = !inside } } if inside { return true } } } return false } }