Adding upstream version 0.0~git20250520.a1d9079+dfsg.
Signed-off-by: Daniel Baumann <daniel@debian.org>
This commit is contained in:
parent
590ac7ff5f
commit
20149b7f3a
456 changed files with 70406 additions and 0 deletions
109
exp/f32/affine.go
Normal file
109
exp/f32/affine.go
Normal file
|
@ -0,0 +1,109 @@
|
|||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package f32
|
||||
|
||||
import "fmt"
|
||||
|
||||
// An Affine is a 3x3 matrix of float32 values for which the bottom row is
|
||||
// implicitly always equal to [0 0 1].
|
||||
// Elements are indexed first by row then column, i.e. m[row][column].
|
||||
type Affine [2]Vec3
|
||||
|
||||
func (m Affine) String() string {
|
||||
return fmt.Sprintf(`Affine[% 0.3f, % 0.3f, % 0.3f,
|
||||
% 0.3f, % 0.3f, % 0.3f]`,
|
||||
m[0][0], m[0][1], m[0][2],
|
||||
m[1][0], m[1][1], m[1][2])
|
||||
}
|
||||
|
||||
// Identity sets m to be the identity transform.
|
||||
func (m *Affine) Identity() {
|
||||
*m = Affine{
|
||||
{1, 0, 0},
|
||||
{0, 1, 0},
|
||||
}
|
||||
}
|
||||
|
||||
// Eq reports whether each component of m is within epsilon of the same
|
||||
// component in n.
|
||||
func (m *Affine) Eq(n *Affine, epsilon float32) bool {
|
||||
for i := range m {
|
||||
for j := range m[i] {
|
||||
diff := m[i][j] - n[i][j]
|
||||
if diff < -epsilon || +epsilon < diff {
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Mul sets m to be p × q.
|
||||
func (m *Affine) Mul(p, q *Affine) {
|
||||
// Store the result in local variables, in case m == a || m == b.
|
||||
m00 := p[0][0]*q[0][0] + p[0][1]*q[1][0]
|
||||
m01 := p[0][0]*q[0][1] + p[0][1]*q[1][1]
|
||||
m02 := p[0][0]*q[0][2] + p[0][1]*q[1][2] + p[0][2]
|
||||
m10 := p[1][0]*q[0][0] + p[1][1]*q[1][0]
|
||||
m11 := p[1][0]*q[0][1] + p[1][1]*q[1][1]
|
||||
m12 := p[1][0]*q[0][2] + p[1][1]*q[1][2] + p[1][2]
|
||||
m[0][0] = m00
|
||||
m[0][1] = m01
|
||||
m[0][2] = m02
|
||||
m[1][0] = m10
|
||||
m[1][1] = m11
|
||||
m[1][2] = m12
|
||||
}
|
||||
|
||||
// Inverse sets m to be the inverse of p.
|
||||
func (m *Affine) Inverse(p *Affine) {
|
||||
m00 := p[1][1]
|
||||
m01 := -p[0][1]
|
||||
m02 := p[1][2]*p[0][1] - p[1][1]*p[0][2]
|
||||
m10 := -p[1][0]
|
||||
m11 := p[0][0]
|
||||
m12 := p[1][0]*p[0][2] - p[1][2]*p[0][0]
|
||||
|
||||
det := m00*m11 - m10*m01
|
||||
|
||||
m[0][0] = m00 / det
|
||||
m[0][1] = m01 / det
|
||||
m[0][2] = m02 / det
|
||||
m[1][0] = m10 / det
|
||||
m[1][1] = m11 / det
|
||||
m[1][2] = m12 / det
|
||||
}
|
||||
|
||||
// Scale sets m to be a scale followed by p.
|
||||
// It is equivalent to m.Mul(p, &Affine{{x,0,0}, {0,y,0}}).
|
||||
func (m *Affine) Scale(p *Affine, x, y float32) {
|
||||
m[0][0] = p[0][0] * x
|
||||
m[0][1] = p[0][1] * y
|
||||
m[0][2] = p[0][2]
|
||||
m[1][0] = p[1][0] * x
|
||||
m[1][1] = p[1][1] * y
|
||||
m[1][2] = p[1][2]
|
||||
}
|
||||
|
||||
// Translate sets m to be a translation followed by p.
|
||||
// It is equivalent to m.Mul(p, &Affine{{1,0,x}, {0,1,y}}).
|
||||
func (m *Affine) Translate(p *Affine, x, y float32) {
|
||||
m[0][0] = p[0][0]
|
||||
m[0][1] = p[0][1]
|
||||
m[0][2] = p[0][0]*x + p[0][1]*y + p[0][2]
|
||||
m[1][0] = p[1][0]
|
||||
m[1][1] = p[1][1]
|
||||
m[1][2] = p[1][0]*x + p[1][1]*y + p[1][2]
|
||||
}
|
||||
|
||||
// Rotate sets m to a rotation in radians followed by p.
|
||||
// It is equivalent to m.Mul(p, affineRotation).
|
||||
func (m *Affine) Rotate(p *Affine, radians float32) {
|
||||
s, c := Sin(radians), Cos(radians)
|
||||
m.Mul(p, &Affine{
|
||||
{+c, +s, 0},
|
||||
{-s, +c, 0},
|
||||
})
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue