1
0
Fork 0
textual-fastdatatable/stubs/pyarrow/__init__.pyi

167 lines
4.9 KiB
Python
Raw Normal View History

from __future__ import annotations
from typing import Any, Iterable, Iterator, Literal, Mapping, Sequence, Type, TypeVar
import pandas as pd
from .compute import CastOptions
class DataType: ...
class Date32Type(DataType): ...
class Date64Type(DataType): ...
class TimestampType(DataType): ...
def string() -> DataType: ...
def null() -> DataType: ...
def bool_() -> DataType: ...
def int8() -> DataType: ...
def int16() -> DataType: ...
def int32() -> DataType: ...
def int64() -> DataType: ...
def uint8() -> DataType: ...
def uint16() -> DataType: ...
def uint32() -> DataType: ...
def uint64() -> DataType: ...
def float16() -> DataType: ...
def float32() -> DataType: ...
def float64() -> DataType: ...
def date32() -> DataType: ...
def date64() -> DataType: ...
def binary(length: int = -1) -> DataType: ...
def large_binary() -> DataType: ...
def large_string() -> DataType: ...
def month_day_nano_interval() -> DataType: ...
def time32(unit: Literal["s", "ms", "us", "ns"]) -> DataType: ...
def time64(unit: Literal["s", "ms", "us", "ns"]) -> DataType: ...
def timestamp(
unit: Literal["s", "ms", "us", "ns"], tz: str | None = None
) -> DataType: ...
def duration(unit: Literal["s", "ms", "us", "ns"]) -> DataType: ...
class MemoryPool: ...
class Schema: ...
class Field: ...
class NativeFile: ...
class MonthDayNano: ...
class Scalar:
def as_py(self) -> Any: ...
@property
def type(self) -> DataType: ...
A = TypeVar("A", bound="_PandasConvertible")
class _PandasConvertible:
@property
def type(self) -> DataType: ... # noqa: A003
def cast(
self: A,
target_type: DataType | None = None,
safe: bool = True,
options: CastOptions | None = None,
) -> A: ...
def __getitem__(self, index: int) -> Scalar: ...
def __iter__(self) -> Any: ...
def to_pylist(self) -> list[Any]: ...
def fill_null(self: A, fill_value: Any) -> A: ...
def drop_null(self: A) -> A: ...
class Array(_PandasConvertible): ...
class ChunkedArray(_PandasConvertible): ...
class StructArray(Array):
def flatten(self, memory_pool: MemoryPool | None = None) -> list[Array]: ...
T = TypeVar("T", bound="_Tabular")
class _Tabular:
@classmethod
def from_arrays(
cls: Type[T],
arrays: list[_PandasConvertible],
names: list[str] | None = None,
schema: Schema | None = None,
metadata: Mapping | None = None,
) -> T: ...
@classmethod
def from_pydict(
cls: Type[T],
mapping: Mapping,
schema: Schema | None = None,
metadata: Mapping | None = None,
) -> T: ...
def __getitem__(self, index: int) -> _PandasConvertible: ...
def __len__(self) -> int: ...
@property
def column_names(self) -> list[str]: ...
@property
def columns(self) -> list[_PandasConvertible]: ...
@property
def num_rows(self) -> int: ...
@property
def num_columns(self) -> int: ...
@property
def schema(self) -> Schema: ...
def append_column(
self: T, field_: str | Field, column: Array | ChunkedArray
) -> T: ...
def column(self, i: int | str) -> _PandasConvertible: ...
def equals(self: T, other: T, check_metadata: bool = False) -> bool: ...
def itercolumns(self) -> Iterator[_PandasConvertible]: ...
def rename_columns(self: T, names: list[str]) -> T: ...
def select(self: T, columns: Sequence[str | int]) -> T: ...
def set_column(
self: T, i: int, field_: str | Field, column: Array | ChunkedArray
) -> T: ...
def slice( # noqa: A003
self: T,
offset: int = 0,
length: int | None = None,
) -> T: ...
def sort_by(
self: T,
sorting: str | list[tuple[str, Literal["ascending", "descending"]]],
**kwargs: Any,
) -> T: ...
def to_pylist(self) -> list[dict[str, Any]]: ...
class RecordBatch(_Tabular): ...
class Table(_Tabular):
@classmethod
def from_batches(
cls,
batches: Iterable[RecordBatch],
schema: Schema | None = None,
) -> "Table": ...
def to_batches(self) -> list[RecordBatch]: ...
def scalar(value: Any, type: DataType) -> Scalar: ... # noqa: A002
def array(
obj: Iterable,
type: DataType | None = None, # noqa: A002
mask: Array | None = None,
size: int | None = None,
from_pandas: bool | None = None,
safe: bool = True,
memory_pool: MemoryPool | None = None,
) -> Array | ChunkedArray: ...
def concat_arrays(
arrays: Iterable[Array], memory_pool: MemoryPool | None = None
) -> Array: ...
def nulls(
size: int,
type: DataType | None = None, # noqa: A002
memory_pool: MemoryPool | None = None,
) -> Array: ...
def table(
data: pd.DataFrame
| Mapping[str, _PandasConvertible | list]
| list[_PandasConvertible],
names: list[str] | None = None,
schema: Schema | None = None,
metadata: Mapping | None = None,
nthreads: int | None = None,
) -> Table: ...
def set_timezone_db_path(path: str) -> None: ...