Adding upstream version 0.12.0.
Signed-off-by: Daniel Baumann <daniel@debian.org>
This commit is contained in:
parent
d887bee5ca
commit
148efc9122
69 changed files with 12923 additions and 0 deletions
166
stubs/pyarrow/__init__.pyi
Normal file
166
stubs/pyarrow/__init__.pyi
Normal file
|
@ -0,0 +1,166 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Iterable, Iterator, Literal, Mapping, Sequence, Type, TypeVar
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from .compute import CastOptions
|
||||
|
||||
class DataType: ...
|
||||
class Date32Type(DataType): ...
|
||||
class Date64Type(DataType): ...
|
||||
class TimestampType(DataType): ...
|
||||
|
||||
def string() -> DataType: ...
|
||||
def null() -> DataType: ...
|
||||
def bool_() -> DataType: ...
|
||||
def int8() -> DataType: ...
|
||||
def int16() -> DataType: ...
|
||||
def int32() -> DataType: ...
|
||||
def int64() -> DataType: ...
|
||||
def uint8() -> DataType: ...
|
||||
def uint16() -> DataType: ...
|
||||
def uint32() -> DataType: ...
|
||||
def uint64() -> DataType: ...
|
||||
def float16() -> DataType: ...
|
||||
def float32() -> DataType: ...
|
||||
def float64() -> DataType: ...
|
||||
def date32() -> DataType: ...
|
||||
def date64() -> DataType: ...
|
||||
def binary(length: int = -1) -> DataType: ...
|
||||
def large_binary() -> DataType: ...
|
||||
def large_string() -> DataType: ...
|
||||
def month_day_nano_interval() -> DataType: ...
|
||||
def time32(unit: Literal["s", "ms", "us", "ns"]) -> DataType: ...
|
||||
def time64(unit: Literal["s", "ms", "us", "ns"]) -> DataType: ...
|
||||
def timestamp(
|
||||
unit: Literal["s", "ms", "us", "ns"], tz: str | None = None
|
||||
) -> DataType: ...
|
||||
def duration(unit: Literal["s", "ms", "us", "ns"]) -> DataType: ...
|
||||
|
||||
class MemoryPool: ...
|
||||
class Schema: ...
|
||||
class Field: ...
|
||||
class NativeFile: ...
|
||||
class MonthDayNano: ...
|
||||
|
||||
class Scalar:
|
||||
def as_py(self) -> Any: ...
|
||||
@property
|
||||
def type(self) -> DataType: ...
|
||||
|
||||
A = TypeVar("A", bound="_PandasConvertible")
|
||||
|
||||
class _PandasConvertible:
|
||||
@property
|
||||
def type(self) -> DataType: ... # noqa: A003
|
||||
def cast(
|
||||
self: A,
|
||||
target_type: DataType | None = None,
|
||||
safe: bool = True,
|
||||
options: CastOptions | None = None,
|
||||
) -> A: ...
|
||||
def __getitem__(self, index: int) -> Scalar: ...
|
||||
def __iter__(self) -> Any: ...
|
||||
def to_pylist(self) -> list[Any]: ...
|
||||
def fill_null(self: A, fill_value: Any) -> A: ...
|
||||
def drop_null(self: A) -> A: ...
|
||||
|
||||
class Array(_PandasConvertible): ...
|
||||
class ChunkedArray(_PandasConvertible): ...
|
||||
|
||||
class StructArray(Array):
|
||||
def flatten(self, memory_pool: MemoryPool | None = None) -> list[Array]: ...
|
||||
|
||||
T = TypeVar("T", bound="_Tabular")
|
||||
|
||||
class _Tabular:
|
||||
@classmethod
|
||||
def from_arrays(
|
||||
cls: Type[T],
|
||||
arrays: list[_PandasConvertible],
|
||||
names: list[str] | None = None,
|
||||
schema: Schema | None = None,
|
||||
metadata: Mapping | None = None,
|
||||
) -> T: ...
|
||||
@classmethod
|
||||
def from_pydict(
|
||||
cls: Type[T],
|
||||
mapping: Mapping,
|
||||
schema: Schema | None = None,
|
||||
metadata: Mapping | None = None,
|
||||
) -> T: ...
|
||||
def __getitem__(self, index: int) -> _PandasConvertible: ...
|
||||
def __len__(self) -> int: ...
|
||||
@property
|
||||
def column_names(self) -> list[str]: ...
|
||||
@property
|
||||
def columns(self) -> list[_PandasConvertible]: ...
|
||||
@property
|
||||
def num_rows(self) -> int: ...
|
||||
@property
|
||||
def num_columns(self) -> int: ...
|
||||
@property
|
||||
def schema(self) -> Schema: ...
|
||||
def append_column(
|
||||
self: T, field_: str | Field, column: Array | ChunkedArray
|
||||
) -> T: ...
|
||||
def column(self, i: int | str) -> _PandasConvertible: ...
|
||||
def equals(self: T, other: T, check_metadata: bool = False) -> bool: ...
|
||||
def itercolumns(self) -> Iterator[_PandasConvertible]: ...
|
||||
def rename_columns(self: T, names: list[str]) -> T: ...
|
||||
def select(self: T, columns: Sequence[str | int]) -> T: ...
|
||||
def set_column(
|
||||
self: T, i: int, field_: str | Field, column: Array | ChunkedArray
|
||||
) -> T: ...
|
||||
def slice( # noqa: A003
|
||||
self: T,
|
||||
offset: int = 0,
|
||||
length: int | None = None,
|
||||
) -> T: ...
|
||||
def sort_by(
|
||||
self: T,
|
||||
sorting: str | list[tuple[str, Literal["ascending", "descending"]]],
|
||||
**kwargs: Any,
|
||||
) -> T: ...
|
||||
def to_pylist(self) -> list[dict[str, Any]]: ...
|
||||
|
||||
class RecordBatch(_Tabular): ...
|
||||
|
||||
class Table(_Tabular):
|
||||
@classmethod
|
||||
def from_batches(
|
||||
cls,
|
||||
batches: Iterable[RecordBatch],
|
||||
schema: Schema | None = None,
|
||||
) -> "Table": ...
|
||||
def to_batches(self) -> list[RecordBatch]: ...
|
||||
|
||||
def scalar(value: Any, type: DataType) -> Scalar: ... # noqa: A002
|
||||
def array(
|
||||
obj: Iterable,
|
||||
type: DataType | None = None, # noqa: A002
|
||||
mask: Array | None = None,
|
||||
size: int | None = None,
|
||||
from_pandas: bool | None = None,
|
||||
safe: bool = True,
|
||||
memory_pool: MemoryPool | None = None,
|
||||
) -> Array | ChunkedArray: ...
|
||||
def concat_arrays(
|
||||
arrays: Iterable[Array], memory_pool: MemoryPool | None = None
|
||||
) -> Array: ...
|
||||
def nulls(
|
||||
size: int,
|
||||
type: DataType | None = None, # noqa: A002
|
||||
memory_pool: MemoryPool | None = None,
|
||||
) -> Array: ...
|
||||
def table(
|
||||
data: pd.DataFrame
|
||||
| Mapping[str, _PandasConvertible | list]
|
||||
| list[_PandasConvertible],
|
||||
names: list[str] | None = None,
|
||||
schema: Schema | None = None,
|
||||
metadata: Mapping | None = None,
|
||||
nthreads: int | None = None,
|
||||
) -> Table: ...
|
||||
def set_timezone_db_path(path: str) -> None: ...
|
64
stubs/pyarrow/compute.pyi
Normal file
64
stubs/pyarrow/compute.pyi
Normal file
|
@ -0,0 +1,64 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from datetime import datetime
|
||||
from typing import Any, Callable, Literal
|
||||
|
||||
from . import DataType, MemoryPool, Scalar, _PandasConvertible
|
||||
|
||||
class Expression: ...
|
||||
class ScalarAggregateOptions: ...
|
||||
|
||||
class CastOptions:
|
||||
def __init__(
|
||||
self,
|
||||
target_type: DataType | None = None,
|
||||
allow_int_overflow: bool | None = None,
|
||||
allow_time_truncate: bool | None = None,
|
||||
allow_time_overflow: bool | None = None,
|
||||
allow_decimal_truncate: bool | None = None,
|
||||
allow_float_truncate: bool | None = None,
|
||||
allow_invalid_utf8: bool | None = None,
|
||||
) -> None: ...
|
||||
|
||||
def max( # noqa: A001
|
||||
array: _PandasConvertible,
|
||||
/,
|
||||
*,
|
||||
skip_nulls: bool = True,
|
||||
min_count: int = 1,
|
||||
options: ScalarAggregateOptions | None = None,
|
||||
memory_pool: MemoryPool | None = None,
|
||||
) -> Scalar: ...
|
||||
def min( # noqa: A001
|
||||
array: _PandasConvertible,
|
||||
/,
|
||||
*,
|
||||
skip_nulls: bool = True,
|
||||
min_count: int = 1,
|
||||
options: ScalarAggregateOptions | None = None,
|
||||
memory_pool: MemoryPool | None = None,
|
||||
) -> Scalar: ...
|
||||
def utf8_length(
|
||||
strings: _PandasConvertible, /, *, memory_pool: MemoryPool | None = None
|
||||
) -> _PandasConvertible: ...
|
||||
def register_scalar_function(
|
||||
func: Callable,
|
||||
function_name: str,
|
||||
function_doc: dict[Literal["summary", "description"], str],
|
||||
in_types: dict[str, DataType],
|
||||
out_type: DataType,
|
||||
func_registry: Any | None = None,
|
||||
) -> None: ...
|
||||
def call_function(
|
||||
function_name: str, target: list[_PandasConvertible]
|
||||
) -> _PandasConvertible: ...
|
||||
def assume_timezone(
|
||||
timestamps: _PandasConvertible | Scalar | datetime,
|
||||
/,
|
||||
timezone: str,
|
||||
*,
|
||||
ambiguous: Literal["raise", "earliest", "latest"] = "raise",
|
||||
nonexistent: Literal["raise", "earliest", "latest"] = "raise",
|
||||
options: Any | None = None,
|
||||
memory_pool: MemoryPool | None = None,
|
||||
) -> _PandasConvertible: ...
|
1
stubs/pyarrow/dataset.pyi
Normal file
1
stubs/pyarrow/dataset.pyi
Normal file
|
@ -0,0 +1 @@
|
|||
class Partitioning: ...
|
1
stubs/pyarrow/fs.pyi
Normal file
1
stubs/pyarrow/fs.pyi
Normal file
|
@ -0,0 +1 @@
|
|||
class FileSystem: ...
|
32
stubs/pyarrow/lib.pyi
Normal file
32
stubs/pyarrow/lib.pyi
Normal file
|
@ -0,0 +1,32 @@
|
|||
from . import Date32Type, Date64Type, Scalar, TimestampType
|
||||
|
||||
class ArrowException(Exception): ...
|
||||
class ArrowInvalid(ValueError, ArrowException): ...
|
||||
class ArrowMemoryError(MemoryError, ArrowException): ...
|
||||
class ArrowKeyError(KeyError, Exception): ...
|
||||
class ArrowTypeError(TypeError, Exception): ...
|
||||
class ArrowNotImplementedError(NotImplementedError, ArrowException): ...
|
||||
class ArrowCapacityError(ArrowException): ...
|
||||
class ArrowIndexError(IndexError, ArrowException): ...
|
||||
class ArrowSerializationError(ArrowException): ...
|
||||
class ArrowCancelled(ArrowException): ...
|
||||
|
||||
ArrowIOError = IOError
|
||||
|
||||
class Date32Scalar(Scalar):
|
||||
@property
|
||||
def type(self) -> Date32Type: ...
|
||||
@property
|
||||
def value(self) -> int: ...
|
||||
|
||||
class Date64Scalar(Scalar):
|
||||
@property
|
||||
def type(self) -> Date64Type: ...
|
||||
@property
|
||||
def value(self) -> int: ...
|
||||
|
||||
class TimestampScalar(Scalar):
|
||||
@property
|
||||
def type(self) -> TimestampType: ...
|
||||
@property
|
||||
def value(self) -> int: ...
|
60
stubs/pyarrow/parquet.pyi
Normal file
60
stubs/pyarrow/parquet.pyi
Normal file
|
@ -0,0 +1,60 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from typing import Any, BinaryIO, Literal
|
||||
|
||||
from . import NativeFile, Schema, Table
|
||||
from .compute import Expression
|
||||
from .dataset import Partitioning
|
||||
from .fs import FileSystem
|
||||
|
||||
class FileMetaData: ...
|
||||
|
||||
def read_table(
|
||||
source: str | NativeFile | BinaryIO,
|
||||
*,
|
||||
columns: list | None = None,
|
||||
use_threads: bool = True,
|
||||
metadata: FileMetaData | None = None,
|
||||
schema: Schema | None = None,
|
||||
use_pandas_metadata: bool = False,
|
||||
read_dictionary: list | None = None,
|
||||
memory_map: bool = False,
|
||||
buffer_size: int = 0,
|
||||
partitioning: Partitioning | str | list[str] = "hive",
|
||||
filesystem: FileSystem | None = None,
|
||||
filters: Expression | list[tuple] | list[list[tuple]] | None = None,
|
||||
use_legacy_dataset: bool = False,
|
||||
ignore_prefixes: list | None = None,
|
||||
pre_buffer: bool = True,
|
||||
coerce_int96_timestamp_unit: str | None = None,
|
||||
decryption_properties: Any | None = None,
|
||||
thrift_string_size_limit: int | None = None,
|
||||
thrift_container_size_limit: int | None = None,
|
||||
) -> Table: ...
|
||||
def write_table(
|
||||
table: Table,
|
||||
where: str | NativeFile,
|
||||
row_group_size: int | None = None,
|
||||
version: Literal["1.0", "2.4", "2.6"] = "2.6",
|
||||
use_dictionary: bool | list = True,
|
||||
compression: Literal["none", "snappy", "gzip", "brotli", "lz4", "zstd"]
|
||||
| dict[str, Literal["none", "snappy", "gzip", "brotli", "lz4", "zstd"]] = "snappy",
|
||||
write_statistics: bool | list = True,
|
||||
use_deprecated_int96_timestamps: bool | None = None,
|
||||
coerce_timestamps: str | None = None,
|
||||
allow_truncated_timestamps: bool = False,
|
||||
data_page_size: int | None = None,
|
||||
flavor: Literal["spark"] | None = None,
|
||||
filesystem: FileSystem | None = None,
|
||||
compression_level: int | dict | None = None,
|
||||
use_byte_stream_split: bool | list = False,
|
||||
column_encoding: str | dict | None = None,
|
||||
data_page_version: Literal["1.0", "2.0"] = "1.0",
|
||||
use_compliant_nested_type: bool = True,
|
||||
encryption_properties: Any | None = None,
|
||||
write_batch_size: int | None = None,
|
||||
dictionary_pagesize_limit: int | None = None,
|
||||
store_schema: bool = True,
|
||||
write_page_index: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> None: ...
|
27
stubs/pyarrow/types.pyi
Normal file
27
stubs/pyarrow/types.pyi
Normal file
|
@ -0,0 +1,27 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from . import DataType, Date32Type, Date64Type, TimestampType
|
||||
|
||||
def is_null(t: DataType) -> bool: ...
|
||||
def is_struct(t: DataType) -> bool: ...
|
||||
def is_boolean(t: DataType) -> bool: ...
|
||||
def is_integer(t: DataType) -> bool: ...
|
||||
def is_floating(t: DataType) -> bool: ...
|
||||
def is_decimal(t: DataType) -> bool: ...
|
||||
def is_temporal(t: DataType) -> bool: ...
|
||||
def is_date(t: DataType) -> bool: ...
|
||||
def is_date32(t: DataType) -> bool:
|
||||
if isinstance(t, Date32Type):
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_date64(t: DataType) -> bool:
|
||||
if isinstance(t, Date64Type):
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_time(t: DataType) -> bool: ...
|
||||
def is_timestamp(t: DataType) -> bool:
|
||||
if isinstance(t, TimestampType):
|
||||
return True
|
||||
return False
|
Loading…
Add table
Add a link
Reference in a new issue