1
0
Fork 0
telegraf/plugins/inputs/statsd/running_stats.go

151 lines
3.4 KiB
Go
Raw Permalink Normal View History

package statsd
import (
"math"
"math/rand"
"sort"
)
const defaultPercentileLimit = 1000
const defaultMedianLimit = 1000
// runningStats calculates a running mean, variance, standard deviation,
// lower bound, upper bound, count, and can calculate estimated percentiles.
// It is based on the incremental algorithm described here:
//
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
type runningStats struct {
k float64
n int64
ex float64
ex2 float64
// Array used to calculate estimated percentiles
// We will store a maximum of percLimit values, at which point we will start
// randomly replacing old values, hence it is an estimated percentile.
perc []float64
percLimit int
totalSum float64
lowerBound float64
upperBound float64
// cache if we have sorted the list so that we never re-sort a sorted list,
// which can have very bad performance.
sortedPerc bool
// Array used to calculate estimated median values
// We will store a maximum of medLimit values, at which point we will start
// slicing old values
med []float64
medLimit int
medInsertIndex int
}
func (rs *runningStats) addValue(v float64) {
// Whenever a value is added, the list is no longer sorted.
rs.sortedPerc = false
if rs.n == 0 {
rs.k = v
rs.upperBound = v
rs.lowerBound = v
if rs.percLimit == 0 {
rs.percLimit = defaultPercentileLimit
}
if rs.medLimit == 0 {
rs.medLimit = defaultMedianLimit
rs.medInsertIndex = 0
}
rs.perc = make([]float64, 0, rs.percLimit)
rs.med = make([]float64, 0, rs.medLimit)
}
// These are used for the running mean and variance
rs.n++
rs.ex += v - rs.k
rs.ex2 += (v - rs.k) * (v - rs.k)
// add to running sum
rs.totalSum += v
// track upper and lower bounds
if v > rs.upperBound {
rs.upperBound = v
} else if v < rs.lowerBound {
rs.lowerBound = v
}
if len(rs.perc) < rs.percLimit {
rs.perc = append(rs.perc, v)
} else {
// Reached limit, choose random index to overwrite in the percentile array
rs.perc[rand.Intn(len(rs.perc))] = v //nolint:gosec // G404: not security critical
}
if len(rs.med) < rs.medLimit {
rs.med = append(rs.med, v)
} else {
// Reached limit, start over
rs.med[rs.medInsertIndex] = v
}
rs.medInsertIndex = (rs.medInsertIndex + 1) % rs.medLimit
}
func (rs *runningStats) mean() float64 {
return rs.k + rs.ex/float64(rs.n)
}
func (rs *runningStats) median() float64 {
// Need to sort for median, but keep temporal order
var values []float64
values = append(values, rs.med...)
sort.Float64s(values)
count := len(values)
if count == 0 {
return 0
} else if count%2 == 0 {
return (values[count/2-1] + values[count/2]) / 2
}
return values[count/2]
}
func (rs *runningStats) variance() float64 {
return (rs.ex2 - (rs.ex*rs.ex)/float64(rs.n)) / float64(rs.n)
}
func (rs *runningStats) stddev() float64 {
return math.Sqrt(rs.variance())
}
func (rs *runningStats) sum() float64 {
return rs.totalSum
}
func (rs *runningStats) upper() float64 {
return rs.upperBound
}
func (rs *runningStats) lower() float64 {
return rs.lowerBound
}
func (rs *runningStats) count() int64 {
return rs.n
}
func (rs *runningStats) percentile(n float64) float64 {
if n > 100 {
n = 100
}
if !rs.sortedPerc {
sort.Float64s(rs.perc)
rs.sortedPerc = true
}
i := float64(len(rs.perc)) * n / float64(100)
return rs.perc[max(0, min(int(i), len(rs.perc)-1))]
}