1
0
Fork 0
telegraf/plugins/parsers/parquet/testcases/multitable/generate.py

40 lines
1.4 KiB
Python
Raw Normal View History

#!/usr/bin/env python
import pandas
import pyarrow
import pyarrow.parquet
df1 = pandas.DataFrame({
'tag': ["row1", "row1", "row1", "row1", "row1", "row1", "row1"],
'float_field': [64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0],
'timestamp': [
"1710683608143228692", "1710683608143228692", "1710683608143228692",
"1710683608143228692", "1710683608143228692", "1710683608143228692",
"1710683608143228692",
]
})
df2 = pandas.DataFrame({
'tag': ["row1", "row1", "row1", "row1", "row1", "row1", "row1"],
'float_field': [64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0],
'timestamp': [
"1710683608143228693", "1710683608143228693", "1710683608143228693",
"1710683608143228693", "1710683608143228693", "1710683608143228693",
"1710683608143228693",
]
})
df3 = pandas.DataFrame({
'tag': ["row1", "row1", "row1", "row1", "row1", "row1", "row1"],
'float_field': [64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0],
'timestamp': [
"1710683608143228694", "1710683608143228694", "1710683608143228694",
"1710683608143228694", "1710683608143228694", "1710683608143228694",
"1710683608143228694",
]
})
with pyarrow.parquet.ParquetWriter('input.parquet', pyarrow.Table.from_pandas(df1).schema) as writer:
writer.write_table(pyarrow.Table.from_pandas(df1))
writer.write_table(pyarrow.Table.from_pandas(df2))
writer.write_table(pyarrow.Table.from_pandas(df3))