1
0
Fork 0
telegraf/plugins/processors/noise/noise.go

137 lines
3.5 KiB
Go
Raw Normal View History

//go:generate ../../../tools/readme_config_includer/generator
package noise
import (
_ "embed"
"fmt"
"math"
"reflect"
"gonum.org/v1/gonum/stat/distuv"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/filter"
"github.com/influxdata/telegraf/plugins/processors"
)
//go:embed sample.conf
var sampleConfig string
const (
defaultScale = 1.0
defaultMin = -1.0
defaultMax = 1.0
defaultMu = 0.0
defaultNoiseType = "laplacian"
)
type Noise struct {
Scale float64 `toml:"scale"`
Min float64 `toml:"min"`
Max float64 `toml:"max"`
Mu float64 `toml:"mu"`
IncludeFields []string `toml:"include_fields"`
ExcludeFields []string `toml:"exclude_fields"`
NoiseType string `toml:"type"`
Log telegraf.Logger `toml:"-"`
generator distuv.Rander
fieldFilter filter.Filter
}
// generates a random noise value depending on the defined probability density
// function and adds that to the original value. If any integer overflows
// happen during the calculation, the result is set to MaxInt or 0 (for uint)
func (p *Noise) addNoise(value interface{}) interface{} {
n := p.generator.Rand()
switch v := value.(type) {
case int:
case int8:
case int16:
case int32:
case int64:
if v > 0 && (n > math.Nextafter(float64(math.MaxInt64), 0) || int64(n) > math.MaxInt64-v) {
p.Log.Debug("Int64 overflow, setting value to MaxInt64")
return int64(math.MaxInt64)
}
if v < 0 && (n < math.Nextafter(float64(math.MinInt64), 0) || int64(n) < math.MinInt64-v) {
p.Log.Debug("Int64 (negative) overflow, setting value to MinInt64")
return int64(math.MinInt64)
}
return v + int64(n)
case uint:
case uint8:
case uint16:
case uint32:
case uint64:
if n < 0 {
if uint64(-n) > v {
p.Log.Debug("Uint64 (negative) overflow, setting value to 0")
return uint64(0)
}
return v - uint64(-n)
}
if n > math.Nextafter(float64(math.MaxUint64), 0) || uint64(n) > math.MaxUint64-v {
p.Log.Debug("Uint64 overflow, setting value to MaxUint64")
return uint64(math.MaxUint64)
}
return v + uint64(n)
case float32:
return v + float32(n)
case float64:
return v + n
default:
p.Log.Debugf("Value (%v) type invalid: [%v] is not an int, uint or float", v, reflect.TypeOf(value))
}
return value
}
func (*Noise) SampleConfig() string {
return sampleConfig
}
// Creates a filter for Include and Exclude fields and sets the desired noise
// distribution
func (p *Noise) Init() error {
fieldFilter, err := filter.NewIncludeExcludeFilter(p.IncludeFields, p.ExcludeFields)
if err != nil {
return fmt.Errorf("creating fieldFilter failed: %w", err)
}
p.fieldFilter = fieldFilter
switch p.NoiseType {
case "", "laplacian":
p.generator = &distuv.Laplace{Mu: p.Mu, Scale: p.Scale}
case "uniform":
p.generator = &distuv.Uniform{Min: p.Min, Max: p.Max}
case "gaussian":
p.generator = &distuv.Normal{Mu: p.Mu, Sigma: p.Scale}
default:
return fmt.Errorf("unknown distribution type %q", p.NoiseType)
}
return nil
}
func (p *Noise) Apply(metrics ...telegraf.Metric) []telegraf.Metric {
for _, metric := range metrics {
for _, field := range metric.FieldList() {
if !p.fieldFilter.Match(field.Key) {
continue
}
field.Value = p.addNoise(field.Value)
}
}
return metrics
}
func init() {
processors.Add("noise", func() telegraf.Processor {
return &Noise{
NoiseType: defaultNoiseType,
Mu: defaultMu,
Scale: defaultScale,
Min: defaultMin,
Max: defaultMax,
}
})
}