Adding upstream version 1.34.4.
Signed-off-by: Daniel Baumann <daniel@debian.org>
This commit is contained in:
parent
e393c3af3f
commit
4978089aab
4963 changed files with 677545 additions and 0 deletions
97
plugins/processors/noise/README.md
Normal file
97
plugins/processors/noise/README.md
Normal file
|
@ -0,0 +1,97 @@
|
|||
# Noise Processor Plugin
|
||||
|
||||
The _Noise_ processor is used to add noise to numerical field values. For each
|
||||
field a noise is generated using a defined probability density function and
|
||||
added to the value. The function type can be configured as _Laplace_, _Gaussian_
|
||||
or _Uniform_. Depending on the function, various parameters need to be
|
||||
configured:
|
||||
|
||||
## Global configuration options <!-- @/docs/includes/plugin_config.md -->
|
||||
|
||||
In addition to the plugin-specific configuration settings, plugins support
|
||||
additional global and plugin configuration settings. These settings are used to
|
||||
modify metrics, tags, and field or create aliases and configure ordering, etc.
|
||||
See the [CONFIGURATION.md][CONFIGURATION.md] for more details.
|
||||
|
||||
[CONFIGURATION.md]: ../../../docs/CONFIGURATION.md#plugins
|
||||
|
||||
## Configuration
|
||||
|
||||
```toml @sample.conf
|
||||
# Adds noise to numerical fields
|
||||
[[processors.noise]]
|
||||
## Specified the type of the random distribution.
|
||||
## Can be "laplacian", "gaussian" or "uniform".
|
||||
# type = "laplacian
|
||||
|
||||
## Center of the distribution.
|
||||
## Only used for Laplacian and Gaussian distributions.
|
||||
# mu = 0.0
|
||||
|
||||
## Scale parameter for the Laplacian or Gaussian distribution
|
||||
# scale = 1.0
|
||||
|
||||
## Upper and lower bound of the Uniform distribution
|
||||
# min = -1.0
|
||||
# max = 1.0
|
||||
|
||||
## Apply the noise only to numeric fields matching the filter criteria below.
|
||||
## Excludes takes precedence over includes.
|
||||
# include_fields = []
|
||||
# exclude_fields = []
|
||||
```
|
||||
|
||||
Depending on the choice of the distribution function, the respective parameters
|
||||
must be set. Default settings are `noise_type = "laplacian"` with `mu = 0.0` and
|
||||
`scale = 1.0`:
|
||||
|
||||
Using the `include_fields` and `exclude_fields` options a filter can be
|
||||
configured to apply noise only to numeric fields matching it. The following
|
||||
distribution functions are available.
|
||||
|
||||
### Laplacian
|
||||
|
||||
- `noise_type = laplacian`
|
||||
- `scale`: also referred to as _diversity_ parameter, regulates the width & height of the function, a bigger `scale` value means a higher probability of larger noise, default set to 1.0
|
||||
- `mu`: location of the curve, default set to 0.0
|
||||
|
||||
### Gaussian
|
||||
|
||||
- `noise_type = gaussian`
|
||||
- `mu`: mean value, default set to 0.0
|
||||
- `scale`: standard deviation, default set to 1.0
|
||||
|
||||
### Uniform
|
||||
|
||||
- `noise_type = uniform`
|
||||
- `min`: minimal interval value, default set to -1.0
|
||||
- `max`: maximal interval value, default set to 1.0
|
||||
|
||||
## Example
|
||||
|
||||
Add noise to each value the _inputs.cpu_ plugin generates, except for the
|
||||
_usage\_steal_, _usage\_user_, _uptime\_format_, _usage\_idle_ field and all
|
||||
fields of the metrics _swap_, _disk_ and _net_:
|
||||
|
||||
```toml
|
||||
[[inputs.cpu]]
|
||||
percpu = true
|
||||
totalcpu = true
|
||||
collect_cpu_time = false
|
||||
report_active = false
|
||||
|
||||
[[processors.noise]]
|
||||
scale = 1.0
|
||||
mu = 0.0
|
||||
noise_type = "laplacian"
|
||||
include_fields = []
|
||||
exclude_fields = ["usage_steal", "usage_user", "uptime_format", "usage_idle" ]
|
||||
namedrop = ["swap", "disk", "net"]
|
||||
```
|
||||
|
||||
Result of noise added to the _cpu_ metric:
|
||||
|
||||
```diff
|
||||
- cpu map[cpu:cpu11 host:98d5b8dbad1c] map[usage_guest:0 usage_guest_nice:0 usage_idle:94.3999999994412 usage_iowait:0 usage_irq:0.1999999999998181 usage_nice:0 usage_softirq:0.20000000000209184 usage_steal:0 usage_system:1.2000000000080036 usage_user:4.000000000014552]
|
||||
+ cpu map[cpu:cpu11 host:98d5b8dbad1c] map[usage_guest:1.0078071583066057 usage_guest_nice:0.523063861602435 usage_idle:95.53920223476884 usage_iowait:0.5162661526251292 usage_irq:0.7138529816101375 usage_nice:0.6119678488887954 usage_softirq:0.5573585443688622 usage_steal:0.2006120911289802 usage_system:1.2954475820198437 usage_user:6.885664792615023]
|
||||
```
|
136
plugins/processors/noise/noise.go
Normal file
136
plugins/processors/noise/noise.go
Normal file
|
@ -0,0 +1,136 @@
|
|||
//go:generate ../../../tools/readme_config_includer/generator
|
||||
package noise
|
||||
|
||||
import (
|
||||
_ "embed"
|
||||
"fmt"
|
||||
"math"
|
||||
"reflect"
|
||||
|
||||
"gonum.org/v1/gonum/stat/distuv"
|
||||
|
||||
"github.com/influxdata/telegraf"
|
||||
"github.com/influxdata/telegraf/filter"
|
||||
"github.com/influxdata/telegraf/plugins/processors"
|
||||
)
|
||||
|
||||
//go:embed sample.conf
|
||||
var sampleConfig string
|
||||
|
||||
const (
|
||||
defaultScale = 1.0
|
||||
defaultMin = -1.0
|
||||
defaultMax = 1.0
|
||||
defaultMu = 0.0
|
||||
defaultNoiseType = "laplacian"
|
||||
)
|
||||
|
||||
type Noise struct {
|
||||
Scale float64 `toml:"scale"`
|
||||
Min float64 `toml:"min"`
|
||||
Max float64 `toml:"max"`
|
||||
Mu float64 `toml:"mu"`
|
||||
IncludeFields []string `toml:"include_fields"`
|
||||
ExcludeFields []string `toml:"exclude_fields"`
|
||||
NoiseType string `toml:"type"`
|
||||
Log telegraf.Logger `toml:"-"`
|
||||
generator distuv.Rander
|
||||
fieldFilter filter.Filter
|
||||
}
|
||||
|
||||
// generates a random noise value depending on the defined probability density
|
||||
// function and adds that to the original value. If any integer overflows
|
||||
// happen during the calculation, the result is set to MaxInt or 0 (for uint)
|
||||
func (p *Noise) addNoise(value interface{}) interface{} {
|
||||
n := p.generator.Rand()
|
||||
switch v := value.(type) {
|
||||
case int:
|
||||
case int8:
|
||||
case int16:
|
||||
case int32:
|
||||
case int64:
|
||||
if v > 0 && (n > math.Nextafter(float64(math.MaxInt64), 0) || int64(n) > math.MaxInt64-v) {
|
||||
p.Log.Debug("Int64 overflow, setting value to MaxInt64")
|
||||
return int64(math.MaxInt64)
|
||||
}
|
||||
if v < 0 && (n < math.Nextafter(float64(math.MinInt64), 0) || int64(n) < math.MinInt64-v) {
|
||||
p.Log.Debug("Int64 (negative) overflow, setting value to MinInt64")
|
||||
return int64(math.MinInt64)
|
||||
}
|
||||
return v + int64(n)
|
||||
case uint:
|
||||
case uint8:
|
||||
case uint16:
|
||||
case uint32:
|
||||
case uint64:
|
||||
if n < 0 {
|
||||
if uint64(-n) > v {
|
||||
p.Log.Debug("Uint64 (negative) overflow, setting value to 0")
|
||||
return uint64(0)
|
||||
}
|
||||
return v - uint64(-n)
|
||||
}
|
||||
if n > math.Nextafter(float64(math.MaxUint64), 0) || uint64(n) > math.MaxUint64-v {
|
||||
p.Log.Debug("Uint64 overflow, setting value to MaxUint64")
|
||||
return uint64(math.MaxUint64)
|
||||
}
|
||||
return v + uint64(n)
|
||||
case float32:
|
||||
return v + float32(n)
|
||||
case float64:
|
||||
return v + n
|
||||
default:
|
||||
p.Log.Debugf("Value (%v) type invalid: [%v] is not an int, uint or float", v, reflect.TypeOf(value))
|
||||
}
|
||||
return value
|
||||
}
|
||||
|
||||
func (*Noise) SampleConfig() string {
|
||||
return sampleConfig
|
||||
}
|
||||
|
||||
// Creates a filter for Include and Exclude fields and sets the desired noise
|
||||
// distribution
|
||||
func (p *Noise) Init() error {
|
||||
fieldFilter, err := filter.NewIncludeExcludeFilter(p.IncludeFields, p.ExcludeFields)
|
||||
if err != nil {
|
||||
return fmt.Errorf("creating fieldFilter failed: %w", err)
|
||||
}
|
||||
p.fieldFilter = fieldFilter
|
||||
|
||||
switch p.NoiseType {
|
||||
case "", "laplacian":
|
||||
p.generator = &distuv.Laplace{Mu: p.Mu, Scale: p.Scale}
|
||||
case "uniform":
|
||||
p.generator = &distuv.Uniform{Min: p.Min, Max: p.Max}
|
||||
case "gaussian":
|
||||
p.generator = &distuv.Normal{Mu: p.Mu, Sigma: p.Scale}
|
||||
default:
|
||||
return fmt.Errorf("unknown distribution type %q", p.NoiseType)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (p *Noise) Apply(metrics ...telegraf.Metric) []telegraf.Metric {
|
||||
for _, metric := range metrics {
|
||||
for _, field := range metric.FieldList() {
|
||||
if !p.fieldFilter.Match(field.Key) {
|
||||
continue
|
||||
}
|
||||
field.Value = p.addNoise(field.Value)
|
||||
}
|
||||
}
|
||||
return metrics
|
||||
}
|
||||
|
||||
func init() {
|
||||
processors.Add("noise", func() telegraf.Processor {
|
||||
return &Noise{
|
||||
NoiseType: defaultNoiseType,
|
||||
Mu: defaultMu,
|
||||
Scale: defaultScale,
|
||||
Min: defaultMin,
|
||||
Max: defaultMax,
|
||||
}
|
||||
})
|
||||
}
|
467
plugins/processors/noise/noise_test.go
Normal file
467
plugins/processors/noise/noise_test.go
Normal file
|
@ -0,0 +1,467 @@
|
|||
package noise
|
||||
|
||||
import (
|
||||
"math"
|
||||
"sync"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/stretchr/testify/require"
|
||||
"gonum.org/v1/gonum/stat/distuv"
|
||||
|
||||
"github.com/influxdata/telegraf"
|
||||
"github.com/influxdata/telegraf/metric"
|
||||
"github.com/influxdata/telegraf/testutil"
|
||||
)
|
||||
|
||||
type testDistribution struct {
|
||||
value float64
|
||||
}
|
||||
|
||||
func (t *testDistribution) Rand() float64 {
|
||||
return t.value
|
||||
}
|
||||
|
||||
// Verifies that field values are modified by the Laplace noise
|
||||
func TestAddNoiseToMetric(t *testing.T) {
|
||||
generators := []string{"laplacian", "gaussian", "uniform"}
|
||||
for _, generator := range generators {
|
||||
p := Noise{
|
||||
NoiseType: generator,
|
||||
Scale: 1.0,
|
||||
Mu: 0.0,
|
||||
Min: -1,
|
||||
Max: 1,
|
||||
Log: testutil.Logger{},
|
||||
}
|
||||
require.NoError(t, p.Init())
|
||||
for _, m := range testutil.MockMetrics() {
|
||||
after := p.Apply(m.Copy())
|
||||
require.Len(t, after, 1)
|
||||
require.NotEqual(t, m, after[0])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that a given noise is added correctly to values
|
||||
func TestAddNoise(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input []telegraf.Metric
|
||||
expected []telegraf.Metric
|
||||
distribution distuv.Rander
|
||||
}{
|
||||
{
|
||||
name: "int64",
|
||||
input: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(5)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(-10)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
expected: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(4)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(-11)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
distribution: &testDistribution{value: -1.5},
|
||||
},
|
||||
{
|
||||
name: "uint64",
|
||||
input: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(25)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(0)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
expected: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(26)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(1)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
distribution: &testDistribution{value: 1.5},
|
||||
},
|
||||
{
|
||||
name: "float64",
|
||||
input: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(0.0005)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(1000.5)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
expected: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(5.0005)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(1005.5)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
distribution: &testDistribution{value: 5.0},
|
||||
},
|
||||
{
|
||||
name: "float64",
|
||||
input: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(0.0005)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(1000.5)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
expected: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(-0.4995)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(1000)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
distribution: &testDistribution{value: -0.5},
|
||||
},
|
||||
}
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
plugin := Noise{
|
||||
NoiseType: "laplacian",
|
||||
Scale: 1.0,
|
||||
Log: testutil.Logger{},
|
||||
}
|
||||
require.NoError(t, plugin.Init())
|
||||
plugin.generator = tt.distribution
|
||||
|
||||
actual := plugin.Apply(tt.input...)
|
||||
testutil.RequireMetricsEqual(t, tt.expected, actual)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Tests that int64 & uint64 overflow errors are caught
|
||||
func TestAddNoiseOverflowCheck(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input []telegraf.Metric
|
||||
expected []telegraf.Metric
|
||||
distribution distuv.Rander
|
||||
}{
|
||||
{
|
||||
name: "underflow",
|
||||
input: []telegraf.Metric{
|
||||
testutil.MustMetric("underflow_int64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(math.MinInt64)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("underflow_uint64_1",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(5)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("underflow_uint64_2",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(0)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
expected: []telegraf.Metric{
|
||||
testutil.MustMetric("underflow_int64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(math.MinInt64)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("underflow_uint64_1",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(4)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("underflow_uint64_2",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(0)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
distribution: &testDistribution{value: -1.0},
|
||||
},
|
||||
{
|
||||
name: "overflow",
|
||||
input: []telegraf.Metric{
|
||||
testutil.MustMetric("overflow_int64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(math.MaxInt64)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("overflow_uint",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(math.MaxUint)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("overflow_uint64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(math.MaxUint64)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
expected: []telegraf.Metric{
|
||||
testutil.MustMetric("overflow_int64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(math.MaxInt64)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("overflow_uint",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(math.MaxUint)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("overflow_uint64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(math.MaxUint64)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
distribution: &testDistribution{value: 0.0},
|
||||
},
|
||||
{
|
||||
name: "non-numeric fields",
|
||||
input: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{
|
||||
"a": "test",
|
||||
"b": true,
|
||||
},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
expected: []telegraf.Metric{
|
||||
testutil.MustMetric("cpu",
|
||||
map[string]string{},
|
||||
map[string]interface{}{
|
||||
"a": "test",
|
||||
"b": true,
|
||||
},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
distribution: &testDistribution{value: 1.0},
|
||||
},
|
||||
}
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
plugin := Noise{
|
||||
NoiseType: "laplacian",
|
||||
Scale: 1.0,
|
||||
Log: testutil.Logger{},
|
||||
}
|
||||
require.NoError(t, plugin.Init())
|
||||
plugin.generator = tt.distribution
|
||||
|
||||
actual := plugin.Apply(tt.input...)
|
||||
testutil.RequireMetricsEqual(t, tt.expected, actual)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that even addNoise() modifies 0 values as well
|
||||
func TestAddNoiseWithZeroValue(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input []telegraf.Metric
|
||||
expected []telegraf.Metric
|
||||
distribution distuv.Rander
|
||||
}{
|
||||
{
|
||||
name: "zeros",
|
||||
input: []telegraf.Metric{
|
||||
testutil.MustMetric("zero_uint64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(0)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("zero_int64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(0)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("zero_float",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(0.0)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
expected: []telegraf.Metric{
|
||||
testutil.MustMetric("zero_uint64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(13)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("zero_int64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(13)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
testutil.MustMetric("zero_float",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(13.37)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
},
|
||||
distribution: &testDistribution{value: 13.37},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
plugin := Noise{
|
||||
NoiseType: "laplacian",
|
||||
Scale: 1.0,
|
||||
Log: testutil.Logger{},
|
||||
}
|
||||
require.NoError(t, plugin.Init())
|
||||
plugin.generator = tt.distribution
|
||||
|
||||
actual := plugin.Apply(tt.input...)
|
||||
testutil.RequireMetricsEqual(t, tt.expected, actual)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that any invalid generator setting (not "laplacian", "gaussian" or
|
||||
// "uniform") raises an error
|
||||
func TestInvalidDistributionFunction(t *testing.T) {
|
||||
p := Noise{
|
||||
NoiseType: "invalid",
|
||||
Log: testutil.Logger{},
|
||||
}
|
||||
err := p.Init()
|
||||
require.EqualError(t, err, "unknown distribution type \"invalid\"")
|
||||
}
|
||||
|
||||
func TestTracking(t *testing.T) {
|
||||
// Setup raw input and expected output
|
||||
inputRaw := []telegraf.Metric{
|
||||
metric.New(
|
||||
"zero_uint64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(0)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
metric.New(
|
||||
"zero_int64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(0)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
metric.New(
|
||||
"zero_float",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(0.0)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
}
|
||||
|
||||
expected := []telegraf.Metric{
|
||||
metric.New(
|
||||
"zero_uint64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": uint64(13)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
metric.New(
|
||||
"zero_int64",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": int64(13)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
metric.New(
|
||||
"zero_float",
|
||||
map[string]string{},
|
||||
map[string]interface{}{"value": float64(13.37)},
|
||||
time.Unix(0, 0),
|
||||
),
|
||||
}
|
||||
|
||||
// Create fake notification for testing
|
||||
var mu sync.Mutex
|
||||
delivered := make([]telegraf.DeliveryInfo, 0, len(inputRaw))
|
||||
notify := func(di telegraf.DeliveryInfo) {
|
||||
mu.Lock()
|
||||
defer mu.Unlock()
|
||||
delivered = append(delivered, di)
|
||||
}
|
||||
|
||||
// Convert raw input to tracking metric
|
||||
input := make([]telegraf.Metric, 0, len(inputRaw))
|
||||
for _, m := range inputRaw {
|
||||
tm, _ := metric.WithTracking(m, notify)
|
||||
input = append(input, tm)
|
||||
}
|
||||
|
||||
// Prepare and start the plugin
|
||||
plugin := &Noise{
|
||||
NoiseType: "laplacian",
|
||||
Scale: 1.0,
|
||||
Log: testutil.Logger{},
|
||||
}
|
||||
require.NoError(t, plugin.Init())
|
||||
plugin.generator = &testDistribution{value: 13.37}
|
||||
|
||||
// Process expected metrics and compare with resulting metrics
|
||||
actual := plugin.Apply(input...)
|
||||
testutil.RequireMetricsEqual(t, expected, actual)
|
||||
|
||||
// Simulate output acknowledging delivery
|
||||
for _, m := range actual {
|
||||
m.Accept()
|
||||
}
|
||||
|
||||
// Check delivery
|
||||
require.Eventuallyf(t, func() bool {
|
||||
mu.Lock()
|
||||
defer mu.Unlock()
|
||||
return len(input) == len(delivered)
|
||||
}, time.Second, 100*time.Millisecond, "%d delivered but %d expected", len(delivered), len(expected))
|
||||
}
|
21
plugins/processors/noise/sample.conf
Normal file
21
plugins/processors/noise/sample.conf
Normal file
|
@ -0,0 +1,21 @@
|
|||
# Adds noise to numerical fields
|
||||
[[processors.noise]]
|
||||
## Specified the type of the random distribution.
|
||||
## Can be "laplacian", "gaussian" or "uniform".
|
||||
# type = "laplacian
|
||||
|
||||
## Center of the distribution.
|
||||
## Only used for Laplacian and Gaussian distributions.
|
||||
# mu = 0.0
|
||||
|
||||
## Scale parameter for the Laplacian or Gaussian distribution
|
||||
# scale = 1.0
|
||||
|
||||
## Upper and lower bound of the Uniform distribution
|
||||
# min = -1.0
|
||||
# max = 1.0
|
||||
|
||||
## Apply the noise only to numeric fields matching the filter criteria below.
|
||||
## Excludes takes precedence over includes.
|
||||
# include_fields = []
|
||||
# exclude_fields = []
|
Loading…
Add table
Add a link
Reference in a new issue