# Produces a new Line of statistics about the Fields # Drops the original metric # # Example Input: # logstash,environment_id=EN456,property_id=PR789,request_type=ingress,stack_id=engd asn=1313i,cache_response_code=202i,colo_code="LAX",colo_id=12i,compute_time=28736i,edge_end_timestamp=1611085500320i,edge_start_timestamp=1611085496208i,id="1b5c67ed-dfd0-4d30-99bd-84f0a9c5297b_76af1809-29d1-4b35-a0cf-39797458275c",parent_ray_id="00",processing_details="ok",rate_limit_id=0i,ray_id="76af1809-29d1-4b35-a0cf-39797458275c",request_bytes=7777i,request_host="engd-08364a825824e04f0a494115.reactorstream.dev",request_id="1b5c67ed-dfd0-4d30-99bd-84f0a9c5297b",request_result="succeeded",request_uri="/ENafcb2798a9be4bb7bfddbf35c374db15",response_code=200i,subrequest=false,subrequest_count=1i,user_agent="curl/7.64.1" 1611085496208 # # Example Output: # sizing,measurement=logstash,environment_id=EN456,property_id=PR789,request_type=ingress,stack_id=engd tag_count=4,tag_key_avg_length=11.25,tag_value_avg_length=5.25,int_key_avg_length=13.4,int_avg_length=4.9,int_count=10,bool_key_avg_length=10,bool_avg_length=5,bool_count=1,str_key_avg_length=10.5,str_avg_length=25.4,str_count=10 1611085496208 def apply(metric): new_metric = Metric("sizing") num_tags = len(metric.tags.items()) new_metric.fields["tag_count"] = float(num_tags) new_metric.fields["tag_key_avg_length"] = sum(map(len, metric.tags.keys())) / num_tags new_metric.fields["tag_value_avg_length"] = sum(map(len, metric.tags.values())) / num_tags new_metric.tags["measurement"] = metric.name new_metric.tags.update(metric.tags) ints, floats, bools, strs = [], [], [], [] for field in metric.fields.items(): key, value = field[0], field[1] if type(value) == "int": ints.append(field) elif type(value) == "float": floats.append(field) elif type(value) == "bool": bools.append(field) elif type(value) == "string": strs.append(field) if len(ints) > 0: int_keys = [i[0] for i in ints] int_vals = [i[1] for i in ints] produce_pairs(new_metric, int_keys, "int", key=True) produce_pairs(new_metric, int_vals, "int") if len(floats) > 0: float_keys = [i[0] for i in floats] float_vals = [i[1] for i in floats] produce_pairs(new_metric, float_keys, "float", key=True) produce_pairs(new_metric, float_vals, "float") if len(bools) > 0: bool_keys = [i[0] for i in bools] bool_vals = [i[1] for i in bools] produce_pairs(new_metric, bool_keys, "bool", key=True) produce_pairs(new_metric, bool_vals, "bool") if len(strs) > 0: str_keys = [i[0] for i in strs] str_vals = [i[1] for i in strs] produce_pairs(new_metric, str_keys, "str", key=True) produce_pairs(new_metric, str_vals, "str") new_metric.time = metric.time return new_metric def produce_pairs(metric, li, field_type, key=False): lens = elem_lengths(li) counts = count_lengths(lens) metric.fields["{}_count".format(field_type)] = float(len(li)) if key: metric.fields["{}_key_avg_length".format(field_type)] = float(mean(lens)) else: metric.fields["{}_avg_length".format(field_type)] = float(mean(lens)) def elem_lengths(li): if type(li[0]) in ("int", "float", "bool"): return [len(str(elem)) for elem in li] else: return [len(elem) for elem in li] def count_lengths(li): # Returns dict of counts of each occurrence of length in a list of lengths lens = [] counts = [] for elem in li: if elem not in lens: lens.append(elem) counts.append(1) else: index = lens.index(elem) counts[index] += 1 return dict(zip(lens, counts)) def map(f, li): return [f(x) for x in li] def sum(li): sum = 0 for i in li: sum += i return sum def mean(li): return sum(li)/len(li)