# # This code assumes the value parser with data_type='string' is used # in the input collecting the JSON data. The entire JSON obj/doc will # be set to a Field named `value` with which this code will work. # JSON: # ``` # { # "fields": { # "LogEndOffset": 339238, # "LogStartOffset": 339238, # "NumLogSegments": 1, # "Size": 0, # "UnderReplicatedPartitions": 0 # }, # "name": "partition", # "tags": { # "host": "CUD1-001559", # "jolokia_agent_url": "http://localhost:7777/jolokia", # "partition": "1", # "topic": "qa-kafka-connect-logs" # }, # "timestamp": 1591124461 # } ``` # # Example Input: # json value="[{\"fields\": {\"LogEndOffset\": 339238, \"LogStartOffset\": 339238, \"NumLogSegments\": 1, \"Size\": 0, \"UnderReplicatedPartitions\": 0}, \"name\": \"partition\", \"tags\": {\"host\": \"CUD1-001559\", \"jolokia_agent_url\": \"http://localhost:7777/jolokia\", \"partition\": \"1\", \"topic\": \"qa-kafka-connect-logs\"}, \"timestamp\": 1591124461}]" # Example Output: # partition,host=CUD1-001559,jolokia_agent_url=http://localhost:7777/jolokia,partition=1,topic=qa-kafka-connect-logs LogEndOffset=339238i,LogStartOffset=339238i,NumLogSegments=1i,Size=0i,UnderReplicatedPartitions=0i 1591124461000000000 load("json.star", "json") def apply(metric): j_list = json.decode(metric.fields.get('value')) # input JSON may be an arrow of objects metrics = [] for obj in j_list: new_metric = Metric("partition") # We want a new InfluxDB/Telegraf metric each iteration for tag in obj["tags"].items(): # 4 Tags to iterate through new_metric.tags[str(tag[0])] = tag[1] for field in obj["fields"].items(): # 5 Fields to iterate through new_metric.fields[str(field[0])] = field[1] new_metric.time = int(obj["timestamp"] * 1e9) metrics.append(new_metric) return metrics