96 lines
4 KiB
Text
96 lines
4 KiB
Text
# Produces a new Line of statistics about the Fields
|
|
# Drops the original metric
|
|
#
|
|
# Example Input:
|
|
# logstash,environment_id=EN456,property_id=PR789,request_type=ingress,stack_id=engd asn=1313i,cache_response_code=202i,colo_code="LAX",colo_id=12i,compute_time=28736i,edge_end_timestamp=1611085500320i,edge_start_timestamp=1611085496208i,id="1b5c67ed-dfd0-4d30-99bd-84f0a9c5297b_76af1809-29d1-4b35-a0cf-39797458275c",parent_ray_id="00",processing_details="ok",rate_limit_id=0i,ray_id="76af1809-29d1-4b35-a0cf-39797458275c",request_bytes=7777i,request_host="engd-08364a825824e04f0a494115.reactorstream.dev",request_id="1b5c67ed-dfd0-4d30-99bd-84f0a9c5297b",request_result="succeeded",request_uri="/ENafcb2798a9be4bb7bfddbf35c374db15",response_code=200i,subrequest=false,subrequest_count=1i,user_agent="curl/7.64.1" 1611085496208
|
|
#
|
|
# Example Output:
|
|
# sizing,measurement=logstash,environment_id=EN456,property_id=PR789,request_type=ingress,stack_id=engd tag_count=4,tag_key_avg_length=11.25,tag_value_avg_length=5.25,int_key_avg_length=13.4,int_avg_length=4.9,int_count=10,bool_key_avg_length=10,bool_avg_length=5,bool_count=1,str_key_avg_length=10.5,str_avg_length=25.4,str_count=10 1611085496208
|
|
|
|
def apply(metric):
|
|
new_metric = Metric("sizing")
|
|
num_tags = len(metric.tags.items())
|
|
new_metric.fields["tag_count"] = float(num_tags)
|
|
new_metric.fields["tag_key_avg_length"] = sum(map(len, metric.tags.keys())) / num_tags
|
|
new_metric.fields["tag_value_avg_length"] = sum(map(len, metric.tags.values())) / num_tags
|
|
|
|
new_metric.tags["measurement"] = metric.name
|
|
|
|
new_metric.tags.update(metric.tags)
|
|
|
|
ints, floats, bools, strs = [], [], [], []
|
|
for field in metric.fields.items():
|
|
key, value = field[0], field[1]
|
|
if type(value) == "int":
|
|
ints.append(field)
|
|
elif type(value) == "float":
|
|
floats.append(field)
|
|
elif type(value) == "bool":
|
|
bools.append(field)
|
|
elif type(value) == "string":
|
|
strs.append(field)
|
|
|
|
if len(ints) > 0:
|
|
int_keys = [i[0] for i in ints]
|
|
int_vals = [i[1] for i in ints]
|
|
produce_pairs(new_metric, int_keys, "int", key=True)
|
|
produce_pairs(new_metric, int_vals, "int")
|
|
if len(floats) > 0:
|
|
float_keys = [i[0] for i in floats]
|
|
float_vals = [i[1] for i in floats]
|
|
produce_pairs(new_metric, float_keys, "float", key=True)
|
|
produce_pairs(new_metric, float_vals, "float")
|
|
if len(bools) > 0:
|
|
bool_keys = [i[0] for i in bools]
|
|
bool_vals = [i[1] for i in bools]
|
|
produce_pairs(new_metric, bool_keys, "bool", key=True)
|
|
produce_pairs(new_metric, bool_vals, "bool")
|
|
if len(strs) > 0:
|
|
str_keys = [i[0] for i in strs]
|
|
str_vals = [i[1] for i in strs]
|
|
produce_pairs(new_metric, str_keys, "str", key=True)
|
|
produce_pairs(new_metric, str_vals, "str")
|
|
|
|
new_metric.time = metric.time
|
|
return new_metric
|
|
|
|
def produce_pairs(metric, li, field_type, key=False):
|
|
lens = elem_lengths(li)
|
|
counts = count_lengths(lens)
|
|
metric.fields["{}_count".format(field_type)] = float(len(li))
|
|
if key:
|
|
metric.fields["{}_key_avg_length".format(field_type)] = float(mean(lens))
|
|
else:
|
|
metric.fields["{}_avg_length".format(field_type)] = float(mean(lens))
|
|
|
|
|
|
def elem_lengths(li):
|
|
if type(li[0]) in ("int", "float", "bool"):
|
|
return [len(str(elem)) for elem in li]
|
|
else:
|
|
return [len(elem) for elem in li]
|
|
|
|
def count_lengths(li):
|
|
# Returns dict of counts of each occurrence of length in a list of lengths
|
|
lens = []
|
|
counts = []
|
|
for elem in li:
|
|
if elem not in lens:
|
|
lens.append(elem)
|
|
counts.append(1)
|
|
else:
|
|
index = lens.index(elem)
|
|
counts[index] += 1
|
|
return dict(zip(lens, counts))
|
|
|
|
def map(f, li):
|
|
return [f(x) for x in li]
|
|
|
|
def sum(li):
|
|
sum = 0
|
|
for i in li:
|
|
sum += i
|
|
return sum
|
|
|
|
def mean(li):
|
|
return sum(li)/len(li)
|