1
0
Fork 0

Merging upstream version 4.3+20241108.

Signed-off-by: Daniel Baumann <daniel@debian.org>
This commit is contained in:
Daniel Baumann 2025-02-14 06:11:53 +01:00
parent 1e24552bfc
commit 60ccb5b596
Signed by: daniel
GPG key ID: FBB4F0E80A80222F
64 changed files with 2015 additions and 1768 deletions

View file

@ -19,6 +19,8 @@
#include "mdadm.h"
#include "platform-intel.h"
#include "probe_roms.h"
#include "xmalloc.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@ -105,12 +107,75 @@ static void free_sys_dev(struct sys_dev **list)
}
}
/**
* vmd_find_pci_bus() - look for PCI bus created by VMD.
* @vmd_path: path to vmd driver.
* @buf: return buffer, must be PATH_MAX.
*
* Each VMD device represents one domain and each VMD device adds separate PCI bus.
* IMSM must know VMD domains, therefore it needs to determine and follow buses.
*
*/
mdadm_status_t vmd_find_pci_bus(char *vmd_path, char *buf)
{
char tmp[PATH_MAX];
struct dirent *ent;
DIR *vmd_dir;
char *rp_ret;
snprintf(tmp, PATH_MAX, "%s/domain/device", vmd_path);
rp_ret = realpath(tmp, buf);
if (rp_ret)
return MDADM_STATUS_SUCCESS;
if (errno != ENOENT)
return MDADM_STATUS_ERROR;
/*
* If it is done early, there is a chance that kernel is still enumerating VMD device but
* kernel did enough to start enumerating child devices, {vmd_path}/domain/device link may
* not exist yet. We have to look into @vmd_path directory and find it ourselves.
*/
vmd_dir = opendir(vmd_path);
if (!vmd_dir)
return MDADM_STATUS_ERROR;
for (ent = readdir(vmd_dir); ent; ent = readdir(vmd_dir)) {
static const char pci[] = "pci";
/**
* Pci bus must have form pciXXXXX:XX, where X is a digit i.e pci10000:00.
* We do not check digits here, it is sysfs so it should be safe to check
* length and ':' position only.
*/
if (strncmp(ent->d_name, pci, strlen(pci)) != 0)
continue;
if (ent->d_name[8] != ':' || ent->d_name[11] != 0)
continue;
break;
}
if (!ent) {
closedir(vmd_dir);
return MDADM_STATUS_ERROR;
}
snprintf(buf, PATH_MAX, "%s/%s", vmd_path, ent->d_name);
closedir(vmd_dir);
return MDADM_STATUS_SUCCESS;
}
struct sys_dev *find_driver_devices(const char *bus, const char *driver)
{
/* search sysfs for devices driven by 'driver' */
char path[PATH_MAX];
char link[PATH_MAX];
char *c, *p;
char *c;
DIR *driver_dir;
struct dirent *de;
struct sys_dev *head = NULL;
@ -142,8 +207,9 @@ struct sys_dev *find_driver_devices(const char *bus, const char *driver)
return NULL;
}
for (de = readdir(driver_dir); de; de = readdir(driver_dir)) {
int n;
int skip = 0;
char *p;
int n;
/* is 'de' a device? check that the 'subsystem' link exists and
* that its target matches 'bus'
@ -195,18 +261,20 @@ struct sys_dev *find_driver_devices(const char *bus, const char *driver)
if (devpath_to_ll(path, "class", &class) != 0)
continue;
/*
* Each VMD device (domain) adds separate PCI bus, it is better
* to store path as a path to that bus (easier further
* determination which NVMe dev is connected to this particular
* VMD domain).
*/
if (type == SYS_DEV_VMD) {
sprintf(path, "/sys/bus/%s/drivers/%s/%s/domain/device",
bus, driver, de->d_name);
char vmd_path[PATH_MAX];
sprintf(vmd_path, "/sys/bus/%s/drivers/%s/%s", bus, driver, de->d_name);
if (vmd_find_pci_bus(vmd_path, path)) {
pr_err("Cannot determine VMD bus for %s\n", vmd_path);
continue;
}
}
p = realpath(path, NULL);
if (p == NULL) {
if (!p) {
pr_err("Unable to get real path for '%s'\n", path);
continue;
}
@ -577,6 +645,9 @@ static const struct imsm_orom *find_imsm_hba_orom(struct sys_dev *hba)
#define SYS_EFI_VAR_PATH "/sys/firmware/efi/vars"
#define SYS_EFIVARS_PATH "/sys/firmware/efi/efivars"
#define ACPI_TABLES_PATH "/sys/firmware/acpi/tables/"
#define ACPI_UEFI_TABLE_BASE_NAME "UEFI"
#define ACPI_UEFI_DATA_OFFSET 52
#define SCU_PROP "RstScuV"
#define AHCI_PROP "RstSataV"
#define AHCI_SSATA_PROP "RstsSatV"
@ -584,10 +655,73 @@ static const struct imsm_orom *find_imsm_hba_orom(struct sys_dev *hba)
#define VROC_VMD_PROP "RstUefiV"
#define RST_VMD_PROP "RstVmdV"
#define VENDOR_GUID \
#define PCI_CLASS_RAID_CNTRL 0x010400
/* GUID length in Bytes */
#define GUID_LENGTH 16
/* GUID entry in 'UEFI' for Sata controller. */
#define RST_SATA_V_GUID \
EFI_GUID(0xe4dd92e0, 0xac7d, 0x11df, 0x94, 0xe2, 0x08, 0x00, 0x20, 0x0c, 0x9a, 0x66)
/* GUID entry in 'UEFI' for sSata controller. */
#define RST_SSATA_V_GUID \
EFI_GUID(0xb002be42, 0x901d, 0x4018, 0xb4, 0x1e, 0xd7, 0x04, 0xab, 0x3a, 0x0f, 0x15)
/* GUID entry in 'UEFI' for tSata controller. */
#define RST_TSATA_V_GUID \
EFI_GUID(0x101ce8f1, 0xb873, 0x4362, 0xa9, 0x76, 0xb5, 0x54, 0x31, 0x74, 0x52, 0x7e)
/* GUID entry in 'UEFI' for Intel(R) VROC VMD. */
#define RST_UEFI_V_GUID \
EFI_GUID(0x4bf2da96, 0xde6e, 0x4d8a, 0xa8, 0x8b, 0xb3, 0xd, 0x33, 0xf6, 0xf, 0x3e)
/**
* GUID entry in 'UEFI' for Intel(R) RST VMD.
* Currently is the same like in 'UEFI' for Sata controller.
*/
#define RST_VMD_V_GUID RST_SATA_V_GUID
/* GUID of intel RST vendor EFI var. */
#define INTEL_RST_VENDOR_GUID \
EFI_GUID(0x193dfefa, 0xa445, 0x4302, 0x99, 0xd8, 0xef, 0x3a, 0xad, 0x1a, 0x04, 0xc6)
#define PCI_CLASS_RAID_CNTRL 0x010400
/*
* Unified Extensible Firmware Interface (UEFI) Specification Release 2.10
* UEFI ACPI DATA TABLE, Table O.1
*/
typedef struct uefi_acpi_table {
char signature[4];
__u32 length;
__u8 revision;
__u8 checksum;
char oemid[6];
/* controller name */
char oem_table_id[8];
__u32 oem_revision;
__u32 creator_id;
__u32 creator_revision;
/* controller GUID */
struct efi_guid identifier;
/* OROM data offeset */
__u16 dataOffset;
} uefi_acpi_table_t;
typedef struct uefi_acpi_table_with_orom {
struct uefi_acpi_table table;
struct imsm_orom orom;
} uefi_acpi_table_with_orom_t;
/* imsm_orom_id - Identifier used to match imsm efi var or acpi table
* @name: name of the UEFI property, it is part of efivar name or ACPI table oem_table_id
* @guid: acpi table guid identifier
*
* vendor guid (second part of evifar name) is not added here because it is cost.
*/
typedef struct imsm_orom_id {
char *name;
struct efi_guid guid;
} imsm_orom_id_t;
static int read_efi_var(void *buffer, ssize_t buf_size,
const char *variable_name, struct efi_guid guid)
@ -669,14 +803,238 @@ static int read_efi_variable(void *buffer, ssize_t buf_size,
return 0;
}
/**
* is_efi_guid_equal() - check if EFI guids are equal.
* @guid: EFI guid.
* @guid1: EFI guid to compare.
*
* Return: %true if guid are equal, %false otherwise.
*/
static inline bool is_efi_guid_equal(struct efi_guid guid, struct efi_guid guid1)
{
if (memcmp(guid.b, guid1.b, GUID_LENGTH) == 0)
return true;
return false;
}
/**
* acpi_any_imsm_orom_id_matching() - match ACPI table with any of given imsm_orom_id.
* @imsm_orom_ids: array of IMSM OROM Identifiers.
* @imsm_orom_ids_number: number of IMSM OROM Identifiers.
* @table: struct with read ACPI UEFI table.
*
* Check if read UEFI table contains requested OROM id.
* EFI GUID and controller name are compared with expected.
*
* Return: %true if length is proper table, %false otherwise.
*/
bool acpi_any_imsm_orom_id_matching(imsm_orom_id_t *imsm_orom_ids, int imsm_orom_ids_number,
struct uefi_acpi_table table)
{
int index;
for (index = 0; index < imsm_orom_ids_number; index++)
if (strncmp(table.oem_table_id, imsm_orom_ids[index].name,
strlen(imsm_orom_ids[index].name)) == 0 &&
is_efi_guid_equal(table.identifier,
imsm_orom_ids[index].guid) == true)
return true;
return false;
}
/**
* read_uefi_acpi_orom_data() - read OROM data from UEFI ACPI table.
* @fd: file descriptor.
* @uefi_table: struct to fill out.
*
* Read OROM from ACPI UEFI table under given file descriptor.
* Table must have the appropriate OROM data, which should be confirmed before call this function.
* In case of success, &orom in structure in &uefi_table will be filled..
*
* Return: %MDADM_STATUS_SUCCESS on success, %MDADM_STATUS_ERROR otherwise.
*/
mdadm_status_t
read_uefi_acpi_orom_data(int fd, uefi_acpi_table_with_orom_t *uefi_table)
{
assert(is_fd_valid(fd));
if (lseek(fd, uefi_table->table.dataOffset, 0) == -1L)
return MDADM_STATUS_ERROR;
if (read(fd, &uefi_table->orom, sizeof(uefi_table->orom)) == -1)
return MDADM_STATUS_ERROR;
return MDADM_STATUS_SUCCESS;
}
/**
* verify_uefi_acpi_table_length() - verify if ACPI UEFI table have correct length with focus at
* OROM.
* @table: struct with UEFI table.
*
* Verify if ACPI UEFI table have correct length with focus at OROM. Make sure that the file is
* correct and contains the appropriate length data based on the length of the OROM.
*
* Return: %true if length is correct, %false otherwise.
*/
bool verify_uefi_acpi_table_length(struct uefi_acpi_table table)
{
if (table.length < ACPI_UEFI_DATA_OFFSET)
return false;
if (table.length - table.dataOffset != sizeof(struct imsm_orom))
return false;
return true;
}
/**
* find_orom_in_acpi_uefi_tables() - find OROM in UEFI ACPI tables based on requested OROM ids.
* @imsm_orom_ids: array of IMSM OROM Identifiers.
* @imsm_orom_ids_number: number of IMSM OROM Identifiers.
* @orom: OROM struct buffer to fill out.
*
* Find OROM in UEFI ACPI tables provided by Intel, based on requested controllers.
* The first one to be matched, will be used.
* If found, the buffer with the OROM structure will be filled.
*
* Return: %MDADM_STATUS_SUCCESS on success, %MDADM_STATUS_ERROR otherwise.
*/
mdadm_status_t
find_orom_in_acpi_uefi_tables(imsm_orom_id_t *imsm_orom_ids, int imsm_orom_ids_number,
struct imsm_orom *orom)
{
mdadm_status_t status = MDADM_STATUS_ERROR;
uefi_acpi_table_with_orom_t uefi_table;
char path[PATH_MAX];
struct dirent *ent;
int fd = -1;
DIR *dir;
dir = opendir(ACPI_TABLES_PATH);
if (!dir)
return MDADM_STATUS_ERROR;
for (ent = readdir(dir); ent; ent = readdir(dir)) {
close_fd(&fd);
/* Check if file is a UEFI table */
if (strncmp(ent->d_name, ACPI_UEFI_TABLE_BASE_NAME,
strlen(ACPI_UEFI_TABLE_BASE_NAME)) != 0)
continue;
snprintf(path, PATH_MAX, "%s/%s", ACPI_TABLES_PATH, ent->d_name);
fd = open(path, O_RDONLY);
if (!is_fd_valid(fd)) {
pr_err("Fail to open ACPI UEFI table file. File: %s, Error: %s\n",
ent->d_name, strerror(errno));
continue;
}
if (read(fd, &uefi_table.table, sizeof(struct uefi_acpi_table)) == -1) {
pr_err("Fail to read IMSM OROM from ACPI UEFI table file. File: %s\n",
ent->d_name);
continue;
}
if (!acpi_any_imsm_orom_id_matching(imsm_orom_ids, imsm_orom_ids_number,
uefi_table.table))
continue;
if (!verify_uefi_acpi_table_length(uefi_table.table))
continue;
if (read_uefi_acpi_orom_data(fd, &uefi_table)) {
pr_err("Fail to read IMSM OROM from ACPI UEFI table file. File: %s\n",
ent->d_name);
continue;
}
memcpy(orom, &uefi_table.orom, sizeof(uefi_table.orom));
status = MDADM_STATUS_SUCCESS;
break;
}
close_fd(&fd);
closedir(dir);
return status;
}
/**
* find_orom_in_efi_variables() - find first IMSM OROM in EFI vars that matches any imsm_orom_id.
* @imsm_orom_ids: array of IMSM OROM Identifiers.
* @imsm_orom_ids_number: number of IMSM OROM Identifiers.
* @orom: OROM struct buffer to fill out.
*
* Find IMSM OROM that matches on of imsm_orom_id in EFI variables. The first match is used.
* If found, the buffer with the OROM structure is filled.
*
* Return: %MDADM_STATUS_SUCCESS on success, %MDADM_STATUS_ERROR otherwise.
*/
mdadm_status_t
find_orom_in_efi_variables(imsm_orom_id_t *imsm_orom_ids, int imsm_orom_ids_number,
struct imsm_orom *orom)
{
int index;
for (index = 0; index < imsm_orom_ids_number; index++)
if (!read_efi_variable(orom, sizeof(struct imsm_orom), imsm_orom_ids[index].name,
INTEL_RST_VENDOR_GUID))
return MDADM_STATUS_SUCCESS;
return MDADM_STATUS_ERROR;
}
/**
* find_imsm_efi_orom() - find OROM for requested controller.
* @orom: buffer for OROM.
* @controller_type: requested controller type.
*
* Based on controller type, function first search in EFI vars then in ACPI UEFI tables.
* For each controller there is defined an array of OROM ids from which we can read OROM,
* the first one to be matched, will be used.
* In case of success, the structure &orom will be filed out.
*
* Return: %MDADM_STATUS_SUCCESS on success.
*/
static mdadm_status_t
find_imsm_efi_orom(struct imsm_orom *orom, enum sys_dev_type controller_type)
{
static imsm_orom_id_t sata_imsm_orrom_ids[] = {
{AHCI_PROP, RST_SATA_V_GUID},
{AHCI_SSATA_PROP, RST_SSATA_V_GUID},
{AHCI_TSATA_PROP, RST_TSATA_V_GUID},
};
static imsm_orom_id_t vmd_imsm_orom_ids[] = {
{VROC_VMD_PROP, RST_UEFI_V_GUID},
{RST_VMD_PROP, RST_VMD_V_GUID},
};
static imsm_orom_id_t *imsm_orom_ids;
int imsm_orom_ids_number;
switch (controller_type) {
case SYS_DEV_SATA:
imsm_orom_ids = sata_imsm_orrom_ids;
imsm_orom_ids_number = ARRAY_SIZE(sata_imsm_orrom_ids);
break;
case SYS_DEV_VMD:
case SYS_DEV_SATA_VMD:
imsm_orom_ids = vmd_imsm_orom_ids;
imsm_orom_ids_number = ARRAY_SIZE(vmd_imsm_orom_ids);
break;
default:
return MDADM_STATUS_UNDEF;
}
if (!find_orom_in_efi_variables(imsm_orom_ids, imsm_orom_ids_number, orom))
return MDADM_STATUS_SUCCESS;
return find_orom_in_acpi_uefi_tables(imsm_orom_ids, imsm_orom_ids_number, orom);
}
const struct imsm_orom *find_imsm_efi(struct sys_dev *hba)
{
struct imsm_orom orom;
struct orom_entry *ret;
static const char * const sata_efivars[] = {AHCI_PROP, AHCI_SSATA_PROP,
AHCI_TSATA_PROP};
static const char * const vmd_efivars[] = {VROC_VMD_PROP, RST_VMD_PROP};
unsigned long i;
if (check_env("IMSM_TEST_AHCI_EFI") || check_env("IMSM_TEST_SCU_EFI"))
return imsm_platform_test(hba);
@ -687,36 +1045,20 @@ const struct imsm_orom *find_imsm_efi(struct sys_dev *hba)
switch (hba->type) {
case SYS_DEV_SAS:
if (!read_efi_variable(&orom, sizeof(orom), SCU_PROP,
VENDOR_GUID))
if (!read_efi_variable(&orom, sizeof(orom), SCU_PROP, INTEL_RST_VENDOR_GUID))
break;
return NULL;
case SYS_DEV_SATA:
if (hba->class != PCI_CLASS_RAID_CNTRL)
return NULL;
for (i = 0; i < ARRAY_SIZE(sata_efivars); i++) {
if (!read_efi_variable(&orom, sizeof(orom),
sata_efivars[i], VENDOR_GUID))
break;
}
if (i == ARRAY_SIZE(sata_efivars))
if (find_imsm_efi_orom(&orom, hba->type))
return NULL;
break;
case SYS_DEV_VMD:
case SYS_DEV_SATA_VMD:
for (i = 0; i < ARRAY_SIZE(vmd_efivars); i++) {
if (!read_efi_variable(&orom, sizeof(orom),
vmd_efivars[i], VENDOR_GUID))
break;
}
if (i == ARRAY_SIZE(vmd_efivars))
if (find_imsm_efi_orom(&orom, hba->type))
return NULL;
break;
default:
return NULL;
@ -749,7 +1091,8 @@ const struct imsm_orom *find_imsm_nvme(struct sys_dev *hba)
.vpa = IMSM_OROM_VOLUMES_PER_ARRAY,
.vphba = IMSM_OROM_TOTAL_DISKS_NVME / 2 * IMSM_OROM_VOLUMES_PER_ARRAY,
.attr = IMSM_OROM_ATTR_2TB | IMSM_OROM_ATTR_2TB_DISK,
.driver_features = IMSM_OROM_CAPABILITIES_EnterpriseSystem
.driver_features = IMSM_OROM_CAPABILITIES_EnterpriseSystem |
IMSM_OROM_CAPABILITIES_TPV
};
nvme_orom = add_orom(&nvme_orom_compat);
}
@ -991,31 +1334,28 @@ char *diskfd_to_devpath(int fd, int dev_level, char *buf)
return devt_to_devpath(st.st_rdev, dev_level, buf);
}
int path_attached_to_hba(const char *disk_path, const char *hba_path)
/**
* is_path_attached_to_hba() - Check if disk is attached to hba
*
* @disk_path: Path to disk.
* @hba_path: Path to hba.
*
* Returns: true if disk is attached to hba, false otherwise.
*/
bool is_path_attached_to_hba(const char *disk_path, const char *hba_path)
{
int rc;
if (check_env("IMSM_TEST_AHCI_DEV") ||
check_env("IMSM_TEST_SCU_DEV")) {
return 1;
}
if (!disk_path || !hba_path)
return 0;
dprintf("hba: %s - disk: %s\n", hba_path, disk_path);
return false;
if (strncmp(disk_path, hba_path, strlen(hba_path)) == 0)
rc = 1;
else
rc = 0;
return true;
return rc;
return false;
}
int devt_attached_to_hba(dev_t dev, const char *hba_path)
{
char *disk_path = devt_to_devpath(dev, 1, NULL);
int rc = path_attached_to_hba(disk_path, hba_path);
int rc = is_path_attached_to_hba(disk_path, hba_path);
if (disk_path)
free(disk_path);
@ -1026,7 +1366,7 @@ int devt_attached_to_hba(dev_t dev, const char *hba_path)
int disk_attached_to_hba(int fd, const char *hba_path)
{
char *disk_path = diskfd_to_devpath(fd, 1, NULL);
int rc = path_attached_to_hba(disk_path, hba_path);
int rc = is_path_attached_to_hba(disk_path, hba_path);
if (disk_path)
free(disk_path);