1
0
Fork 0
nvme-cli/plugins/micron/micron-nvme.c

3297 lines
89 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) Micron, Inc 2024.
*
* @file: micron-nvme.c
* @brief: This module contains all the constructs needed for micron nvme-cli plugin.
* @authors:Chaithanya Shoba <ashoba@micron.com>,
*/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <string.h>
#include <libgen.h>
#include <stddef.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "common.h"
#include "nvme.h"
#include "libnvme.h"
#include <limits.h>
#include "linux/types.h"
#include "nvme-print.h"
#include "util/cleanup.h"
#include "util/utils.h"
#define CREATE_CMD
#include "micron-nvme.h"
/* Supported Vendor specific feature ids */
#define MICRON_FEATURE_CLEAR_PCI_CORRECTABLE_ERRORS 0xC3
#define MICRON_FEATURE_CLEAR_FW_ACTIVATION_HISTORY 0xC1
#define MICRON_FEATURE_TELEMETRY_CONTROL_OPTION 0xCF
#define MICRON_FEATURE_SMBUS_OPTION 0xD5
/* Supported Vendor specific log page sizes */
#define C5_log_size (((452 + 16 * 1024) / 4) * 4096)
#define C0_log_size 512
#define C2_log_size 4096
#define D0_log_size 512
#define FB_log_size 512
#define E1_log_size 256
#define MaxLogChunk (16 * 1024)
#define CommonChunkSize (16 * 4096)
#define min(x, y) ((x) > (y) ? (y) : (x))
#define SensorCount 8
/* Plugin version major_number.minor_number.patch */
static const char *__version_major = "1";
static const char *__version_minor = "0";
static const char *__version_patch = "14";
/*
* supported models of micron plugin; new models should be added at the end
* before UNKNOWN_MODEL. Make sure M5410 is first in the list !
*/
enum eDriveModel {
M5410 = 0,
M51AX,
M51BX,
M51CX,
M5407,
M5411,
UNKNOWN_MODEL
};
#define MICRON_VENDOR_ID 0x1344
static char *fvendorid1 = "/sys/class/nvme/nvme%d/device/vendor";
static char *fvendorid2 = "/sys/class/misc/nvme%d/device/vendor";
static char *fdeviceid1 = "/sys/class/nvme/nvme%d/device/device";
static char *fdeviceid2 = "/sys/class/misc/nvme%d/device/device";
static unsigned short vendor_id;
static unsigned short device_id;
struct LogPageHeader_t {
unsigned char numDwordsInLogPageHeaderLo;
unsigned char logPageHeaderFormatVersion;
unsigned char logPageId;
unsigned char numDwordsInLogPageHeaderHi;
unsigned int numValidDwordsInPayload;
unsigned int numDwordsInEntireLogPage;
};
static void WriteData(__u8 *data, __u32 len, const char *dir, const char *file, const char *msg)
{
char tempFolder[8192] = { 0 };
FILE *fpOutFile = NULL;
sprintf(tempFolder, "%s/%s", dir, file);
fpOutFile = fopen(tempFolder, "ab+");
if (fpOutFile) {
if (fwrite(data, 1, len, fpOutFile) != len)
printf("Failed to write %s data to %s\n", msg, tempFolder);
fclose(fpOutFile);
} else {
printf("Failed to open %s file to write %s\n", tempFolder, msg);
}
}
static int ReadSysFile(const char *file, unsigned short *id)
{
int ret = 0;
char idstr[32] = { '\0' };
int fd = open(file, O_RDONLY);
if (fd < 0) {
perror(file);
return fd;
}
ret = read(fd, idstr, sizeof(idstr));
close(fd);
if (ret < 0)
perror("read");
else
*id = strtol(idstr, NULL, 16);
return ret;
}
static enum eDriveModel GetDriveModel(int idx)
{
enum eDriveModel eModel = UNKNOWN_MODEL;
char path[512];
sprintf(path, fvendorid1, idx);
if (ReadSysFile(path, &vendor_id) < 0) {
sprintf(path, fvendorid2, idx);
ReadSysFile(path, &vendor_id);
}
sprintf(path, fdeviceid1, idx);
if (ReadSysFile(path, &device_id) < 0) {
sprintf(path, fdeviceid2, idx);
ReadSysFile(path, &device_id);
}
if (vendor_id == MICRON_VENDOR_ID) {
switch (device_id) {
case 0x5196:
case 0x51A0:
case 0x51A1:
case 0x51A2:
eModel = M51AX;
break;
case 0x51B0:
case 0x51B1:
case 0x51B2:
eModel = M51BX;
break;
case 0x51C0:
case 0x51C1:
case 0x51C2:
case 0x51C3:
eModel = M51CX;
break;
case 0x5405:
case 0x5406:
case 0x5407:
eModel = M5407;
break;
case 0x5410:
eModel = M5410;
break;
case 0x5411:
eModel = M5411;
break;
default:
break;
}
}
return eModel;
}
static int ZipAndRemoveDir(char *strDirName, char *strFileName)
{
int err = 0;
char strBuffer[PATH_MAX];
int nRet;
bool is_tgz = false;
struct stat sb;
if (strstr(strFileName, ".tar.gz") || strstr(strFileName, ".tgz")) {
sprintf(strBuffer, "tar -zcf \"%s\" \"%s\"", strFileName, strDirName);
is_tgz = true;
} else {
sprintf(strBuffer, "zip -r \"%s\" \"%s\" >temp.txt 2>&1", strFileName,
strDirName);
}
err = EINVAL;
nRet = system(strBuffer);
/* check if log file is created, if not print error message */
if (nRet < 0 || (stat(strFileName, &sb) == -1)) {
if (is_tgz)
sprintf(strBuffer, "check if tar and gzip commands are installed");
else
sprintf(strBuffer, "check if zip command is installed");
fprintf(stderr, "Failed to create log data package, %s!\n", strBuffer);
}
sprintf(strBuffer, "rm -f -R \"%s\" >temp.txt 2>&1", strDirName);
nRet = system(strBuffer);
if (nRet < 0)
printf("Failed to remove temporary files!\n");
err = system("rm -f temp.txt");
return err;
}
static int SetupDebugDataDirectories(char *strSN, char *strFilePath,
char *strMainDirName, char *strOSDirName,
char *strCtrlDirName)
{
int err = 0;
char strAppend[250];
struct stat st;
char *fileLocation = NULL;
char *fileName;
int length = 0;
int nIndex = 0;
char *strTemp = NULL;
int j;
int k = 0;
int i = 0;
if (strchr(strFilePath, '/')) {
fileName = strrchr(strFilePath, '\\');
if (!fileName)
fileName = strrchr(strFilePath, '/');
if (fileName) {
if (!strcmp(fileName, "/"))
goto exit_status;
while (strFilePath[nIndex] != '\0') {
if ('\\' == strFilePath[nIndex] && '\\' == strFilePath[nIndex + 1])
goto exit_status;
nIndex++;
}
length = (int)strlen(strFilePath) - (int)strlen(fileName);
if (fileName == strFilePath)
length = 1;
fileLocation = (char *)malloc(length + 1);
if (!fileLocation)
goto exit_status;
strncpy(fileLocation, strFilePath, length);
fileLocation[length] = '\0';
while (fileLocation[k] != '\0') {
if (fileLocation[k] == '\\')
fileLocation[k] = '/';
k++;
}
length = (int)strlen(fileLocation);
if (':' == fileLocation[length - 1]) {
strTemp = (char *)malloc(length + 2);
if (!strTemp) {
free(fileLocation);
goto exit_status;
}
strcpy(strTemp, fileLocation);
strcat(strTemp, "/");
free(fileLocation);
length = (int)strlen(strTemp);
fileLocation = (char *)malloc(length + 1);
if (!fileLocation) {
free(strTemp);
goto exit_status;
}
memcpy(fileLocation, strTemp, length + 1);
free(strTemp);
}
if (stat(fileLocation, &st)) {
free(fileLocation);
goto exit_status;
}
free(fileLocation);
} else {
goto exit_status;
}
}
nIndex = 0;
for (i = 0; i < (int)strlen(strSN); i++) {
if (strSN[i] != ' ' && strSN[i] != '\n' && strSN[i] != '\t' && strSN[i] != '\r')
strMainDirName[nIndex++] = strSN[i];
}
strMainDirName[nIndex] = '\0';
j = 1;
while (mkdir(strMainDirName, 0777) < 0) {
if (errno != EEXIST) {
err = -1;
goto exit_status;
}
strMainDirName[nIndex] = '\0';
sprintf(strAppend, "-%d", j);
strcat(strMainDirName, strAppend);
j++;
}
if (strOSDirName) {
sprintf(strOSDirName, "%s/%s", strMainDirName, "OS");
if (mkdir(strOSDirName, 0777) < 0) {
rmdir(strMainDirName);
err = -1;
goto exit_status;
}
}
if (strCtrlDirName) {
sprintf(strCtrlDirName, "%s/%s", strMainDirName, "Controller");
if (mkdir(strCtrlDirName, 0777) < 0) {
if (strOSDirName)
rmdir(strOSDirName);
rmdir(strMainDirName);
err = -1;
}
}
exit_status:
return err;
}
static int GetLogPageSize(int nFD, unsigned char ucLogID, int *nLogSize)
{
int err = 0;
unsigned char pTmpBuf[CommonChunkSize] = { 0 };
struct LogPageHeader_t *pLogHeader = NULL;
if (ucLogID == 0xC1 || ucLogID == 0xC2 || ucLogID == 0xC4) {
err = nvme_get_log_simple(nFD, ucLogID, CommonChunkSize, pTmpBuf);
if (!err) {
pLogHeader = (struct LogPageHeader_t *) pTmpBuf;
struct LogPageHeader_t *pLogHeader1 = (struct LogPageHeader_t *) pLogHeader;
*nLogSize = (int)(pLogHeader1->numDwordsInEntireLogPage) * 4;
if (!pLogHeader1->logPageHeaderFormatVersion) {
printf("Unsupported log page format version %d of log page : 0x%X\n",
ucLogID, err);
*nLogSize = 0;
err = -1;
}
} else {
printf("Getting size of log page : 0x%X failed with %d (ignored)!\n",
ucLogID, err);
*nLogSize = 0;
}
}
return err;
}
static int NVMEGetLogPage(int nFD, unsigned char ucLogID, unsigned char *pBuffer, int nBuffSize)
{
int err = 0;
struct nvme_passthru_cmd cmd = { 0 };
unsigned int uiNumDwords = (unsigned int)nBuffSize / sizeof(unsigned int);
unsigned int uiMaxChunk = uiNumDwords;
unsigned int uiNumChunks = 1;
unsigned int uiXferDwords = 0;
unsigned long long ullBytesRead = 0;
unsigned char *pTempPtr = pBuffer;
unsigned char ucOpCode = 0x02;
if (!ullBytesRead && (ucLogID == 0xE6 || ucLogID == 0xE7))
uiMaxChunk = 4096;
else if (uiMaxChunk > 16 * 1024)
uiMaxChunk = 16 * 1024;
uiNumChunks = uiNumDwords / uiMaxChunk;
if (uiNumDwords % uiMaxChunk > 0)
uiNumChunks += 1;
for (unsigned int i = 0; i < uiNumChunks; i++) {
memset(&cmd, 0, sizeof(cmd));
uiXferDwords = uiMaxChunk;
if (i == uiNumChunks - 1 && uiNumDwords % uiMaxChunk > 0)
uiXferDwords = uiNumDwords % uiMaxChunk;
cmd.opcode = ucOpCode;
cmd.cdw10 |= ucLogID;
cmd.cdw10 |= ((uiXferDwords - 1) & 0x0000FFFF) << 16;
if (ucLogID == 0x7)
cmd.cdw10 |= 0x80;
if (!ullBytesRead && (ucLogID == 0xE6 || ucLogID == 0xE7))
cmd.cdw11 = 1;
if (ullBytesRead > 0 && !(ucLogID == 0xE6 || ucLogID == 0xE7)) {
unsigned long long ullOffset = ullBytesRead;
cmd.cdw12 = ullOffset & 0xFFFFFFFF;
cmd.cdw13 = (ullOffset >> 32) & 0xFFFFFFFF;
}
cmd.addr = (__u64) (uintptr_t) pTempPtr;
cmd.nsid = 0xFFFFFFFF;
cmd.data_len = uiXferDwords * 4;
err = nvme_submit_admin_passthru(nFD, &cmd, NULL);
ullBytesRead += uiXferDwords * 4;
pTempPtr = pBuffer + ullBytesRead;
}
return err;
}
static int NVMEResetLog(int nFD, unsigned char ucLogID, int nBufferSize,
long long llMaxSize)
{
unsigned int *pBuffer = NULL;
int err = 0;
pBuffer = (unsigned int *)calloc(1, nBufferSize);
if (!pBuffer)
return err;
while (!err && llMaxSize > 0) {
err = NVMEGetLogPage(nFD, ucLogID, (unsigned char *)pBuffer, nBufferSize);
if (err) {
free(pBuffer);
return err;
}
if (pBuffer[0] == 0xdeadbeef)
break;
llMaxSize = llMaxSize - nBufferSize;
}
free(pBuffer);
return err;
}
static int GetCommonLogPage(int nFD, unsigned char ucLogID,
unsigned char **pBuffer, int nBuffSize)
{
unsigned char *pTempPtr = NULL;
int err = 0;
pTempPtr = (unsigned char *)malloc(nBuffSize);
if (!pTempPtr)
goto exit_status;
memset(pTempPtr, 0, nBuffSize);
err = nvme_get_log_simple(nFD, ucLogID, nBuffSize, pTempPtr);
*pBuffer = pTempPtr;
exit_status:
return err;
}
/*
* Plugin Commands
*/
static int micron_parse_options(struct nvme_dev **dev, int argc, char **argv,
const char *desc,
struct argconfig_commandline_options *opts,
enum eDriveModel *modelp)
{
int idx;
int err = parse_and_open(dev, argc, argv, desc, opts);
if (err) {
perror("open");
return -1;
}
if (modelp) {
if (sscanf(argv[optind], "/dev/nvme%d", &idx) != 1)
idx = 0;
*modelp = GetDriveModel(idx);
}
return 0;
}
static int micron_fw_commit(int fd, int select)
{
struct nvme_passthru_cmd cmd = {
.opcode = nvme_admin_fw_commit,
.cdw10 = 8,
.cdw12 = select,
};
return ioctl(fd, NVME_IOCTL_ADMIN_CMD, &cmd);
}
static int micron_selective_download(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
const char *desc =
"This performs a selective firmware download, which allows the user to\n"
"select which firmware binary to update for 9200 devices. This requires\n"
"a power cycle once the update completes. The options available are:\n\n"
"OOB - This updates the OOB and main firmware\n"
"EEP - This updates the eeprom and main firmware\n"
"ALL - This updates the eeprom, OOB, and main firmware";
const char *fw = "firmware file (required)";
const char *select = "FW Select (e.g., --select=ALL)";
int xfer = 4096;
void *fw_buf;
int selectNo, fw_fd, fw_size, err, offset = 0;
struct nvme_dev *dev;
struct stat sb;
struct config {
char *fw;
char *select;
};
struct config cfg = {
.fw = "",
.select = "\0",
};
OPT_ARGS(opts) = {
OPT_STRING("fw", 'f', "FILE", &cfg.fw, fw),
OPT_STRING("select", 's', "flag", &cfg.select, select),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
if (strlen(cfg.select) != 3) {
fprintf(stderr, "Invalid select flag\n");
dev_close(dev);
return -EINVAL;
}
for (int i = 0; i < 3; i++)
cfg.select[i] = toupper(cfg.select[i]);
if (!strncmp(cfg.select, "OOB", 3)) {
selectNo = 18;
} else if (!strncmp(cfg.select, "EEP", 3)) {
selectNo = 10;
} else if (!strncmp(cfg.select, "ALL", 3)) {
selectNo = 26;
} else {
fprintf(stderr, "Invalid select flag\n");
dev_close(dev);
return -EINVAL;
}
fw_fd = open(cfg.fw, O_RDONLY);
if (fw_fd < 0) {
fprintf(stderr, "no firmware file provided\n");
dev_close(dev);
return -EINVAL;
}
err = fstat(fw_fd, &sb);
if (err < 0) {
perror("fstat");
err = errno;
goto out;
}
fw_size = sb.st_size;
if (fw_size & 0x3) {
fprintf(stderr, "Invalid size:%d for f/w image\n", fw_size);
err = EINVAL;
goto out;
}
if (posix_memalign(&fw_buf, getpagesize(), fw_size)) {
fprintf(stderr, "No memory for f/w size:%d\n", fw_size);
err = ENOMEM;
goto out;
}
if (read(fw_fd, fw_buf, fw_size) != ((ssize_t) (fw_size))) {
err = errno;
goto out_free;
}
while (fw_size > 0) {
xfer = min(xfer, fw_size);
struct nvme_fw_download_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.offset = offset,
.data_len = xfer,
.data = fw_buf,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
err = nvme_fw_download(&args);
if (err < 0) {
perror("fw-download");
goto out_free;
} else if (err) {
nvme_show_status(err);
goto out_free;
}
fw_buf += xfer;
fw_size -= xfer;
offset += xfer;
}
err = micron_fw_commit(dev_fd(dev), selectNo);
if (err == 0x10B || err == 0x20B) {
err = 0;
fprintf(stderr,
"Update successful! Power cycle for changes to take effect\n");
}
out_free:
free(fw_buf);
out:
close(fw_fd);
dev_close(dev);
return err;
}
static int micron_smbus_option(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
__u32 result = 0;
__u32 cdw11 = 0;
const char *desc = "Enable/Disable/Get status of SMBUS option on controller";
const char *option = "enable or disable or status";
const char *value =
"1 - hottest component temperature, 0 - composite temperature (default) for enable option, 0 (current), 1 (default), 2 (saved) for status options";
const char *save = "1 - persistent, 0 - non-persistent (default)";
int fid = MICRON_FEATURE_SMBUS_OPTION;
enum eDriveModel model = UNKNOWN_MODEL;
struct nvme_dev *dev;
int err = 0;
struct {
char *option;
int value;
int save;
int status;
} opt = {
.option = "disable",
.value = 0,
.save = 0,
.status = 0,
};
OPT_ARGS(opts) = {
OPT_STRING("option", 'o', "option", &opt.option, option),
OPT_UINT("value", 'v', &opt.value, value),
OPT_UINT("save", 's', &opt.save, save),
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &model);
if (err < 0)
return err;
if (model != M5407 && model != M5411) {
printf("This option is not supported for specified drive\n");
dev_close(dev);
return err;
}
if (!strcmp(opt.option, "enable")) {
cdw11 = opt.value << 1 | 1;
err = nvme_set_features_simple(dev_fd(dev), fid, 1, cdw11, opt.save,
&result);
if (!err)
printf("successfully enabled SMBus on drive\n");
else
printf("Failed to enabled SMBus on drive\n");
} else if (!strcmp(opt.option, "status")) {
struct nvme_get_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = 1,
.sel = opt.value,
.cdw11 = 0,
.uuidx = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_get_features(&args);
if (!err)
printf("SMBus status on the drive: %s (returns %s temperature)\n",
(result & 1) ? "enabled" : "disabled",
(result & 2) ? "hottest component" : "composite");
else
printf("Failed to retrieve SMBus status on the drive\n");
} else if (!strcmp(opt.option, "disable")) {
cdw11 = opt.value << 1 | 0;
err = nvme_set_features_simple(dev_fd(dev), fid, 1, cdw11, opt.save,
&result);
if (!err)
printf("Successfully disabled SMBus on drive\n");
else
printf("Failed to disable SMBus on drive\n");
} else {
printf("Invalid option %s, valid values are enable, disable or status\n",
opt.option);
dev_close(dev);
return -1;
}
close(dev_fd(dev));
return err;
}
static int micron_temp_stats(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
struct nvme_smart_log smart_log;
unsigned int temperature = 0, i = 0, err = 0;
unsigned int tempSensors[SensorCount] = { 0 };
const char *desc = "Retrieve Micron temperature info for the given device ";
const char *fmt = "output format normal|json";
struct format {
char *fmt;
};
struct format cfg = {
.fmt = "normal",
};
bool is_json = false;
struct json_object *root;
struct json_object *logPages;
struct nvme_dev *dev;
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err) {
printf("\nDevice not found\n");
return -1;
}
if (!strcmp(cfg.fmt, "json"))
is_json = true;
err = nvme_get_log_smart(dev_fd(dev), 0xffffffff, false, &smart_log);
if (!err) {
temperature = ((smart_log.temperature[1] << 8) | smart_log.temperature[0]);
temperature = temperature ? temperature - 273 : 0;
for (i = 0; i < SensorCount && tempSensors[i]; i++) {
tempSensors[i] = le16_to_cpu(smart_log.temp_sensor[i]);
tempSensors[i] = tempSensors[i] ? tempSensors[i] - 273 : 0;
}
if (is_json) {
struct json_object *stats = json_create_object();
char tempstr[64] = { 0 };
root = json_create_object();
logPages = json_create_array();
json_object_add_value_array(root, "Micron temperature information", logPages);
sprintf(tempstr, "%u C", temperature);
json_object_add_value_string(stats, "Current Composite Temperature", tempstr);
for (i = 0; i < SensorCount && tempSensors[i]; i++) {
char sensor_str[256] = { 0 };
char datastr[64] = { 0 };
sprintf(sensor_str, "Temperature Sensor #%d", (i + 1));
sprintf(datastr, "%u C", tempSensors[i]);
json_object_add_value_string(stats, sensor_str, datastr);
}
json_array_add_value_object(logPages, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else {
printf("Micron temperature information:\n");
printf("%-10s : %u C\n", "Current Composite Temperature", temperature);
for (i = 0; i < SensorCount && tempSensors[i]; i++)
printf("%-10s%d : %u C\n", "Temperature Sensor #", i + 1, tempSensors[i]);
}
}
dev_close(dev);
return err;
}
static int micron_pcie_stats(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
int i, err = 0, bus, domain, device, function, ctrlIdx;
char strTempFile[1024], strTempFile2[1024], command[1024];
struct nvme_dev *dev;
char *businfo = NULL;
char *devicename = NULL;
char tdevice[NAME_MAX] = { 0 };
ssize_t sLinkSize = 0;
FILE *fp;
char correctable[8] = { 0 };
char uncorrectable[8] = { 0 };
struct nvme_passthru_cmd admin_cmd = { 0 };
enum eDriveModel eModel = UNKNOWN_MODEL;
char *res;
bool is_json = true;
bool counters = false;
struct format {
char *fmt;
};
const char *desc = "Retrieve PCIe event counters";
const char *fmt = "output format json|normal";
struct format cfg = {
.fmt = "json",
};
struct pcie_error_counters {
__u16 receiver_error;
__u16 bad_tlp;
__u16 bad_dllp;
__u16 replay_num_rollover;
__u16 replay_timer_timeout;
__u16 advisory_non_fatal_error;
__u16 DLPES;
__u16 poisoned_tlp;
__u16 FCPC;
__u16 completion_timeout;
__u16 completion_abort;
__u16 unexpected_completion;
__u16 receiver_overflow;
__u16 malformed_tlp;
__u16 ecrc_error;
__u16 unsupported_request_error;
} pcie_error_counters = { 0 };
struct {
char *err;
int bit;
int val;
} pcie_correctable_errors[] = {
{ "Unsupported Request Error Status (URES)", 20,
offsetof(struct pcie_error_counters, unsupported_request_error)},
{ "ECRC Error Status (ECRCES)", 19,
offsetof(struct pcie_error_counters, ecrc_error)},
{ "Malformed TLP Status (MTS)", 18,
offsetof(struct pcie_error_counters, malformed_tlp)},
{ "Receiver Overflow Status (ROS)", 17,
offsetof(struct pcie_error_counters, receiver_overflow)},
{ "Unexpected Completion Status (UCS)", 16,
offsetof(struct pcie_error_counters, unexpected_completion)},
{ "Completer Abort Status (CAS)", 15,
offsetof(struct pcie_error_counters, completion_abort)},
{ "Completion Timeout Status (CTS)", 14,
offsetof(struct pcie_error_counters, completion_timeout)},
{ "Flow Control Protocol Error Status (FCPES)", 13,
offsetof(struct pcie_error_counters, FCPC)},
{ "Poisoned TLP Status (PTS)", 12,
offsetof(struct pcie_error_counters, poisoned_tlp)},
{ "Data Link Protocol Error Status (DLPES)", 4,
offsetof(struct pcie_error_counters, DLPES)},
},
pcie_uncorrectable_errors[] = {
{ "Advisory Non-Fatal Error Status (ANFES)", 13,
offsetof(struct pcie_error_counters, advisory_non_fatal_error)},
{ "Replay Timer Timeout Status (RTS)", 12,
offsetof(struct pcie_error_counters, replay_timer_timeout)},
{ "REPLAY_NUM Rollover Status (RRS)", 8,
offsetof(struct pcie_error_counters, replay_num_rollover)},
{ "Bad DLLP Status (BDS)", 7,
offsetof(struct pcie_error_counters, bad_dllp)},
{ "Bad TLP Status (BTS)", 6,
offsetof(struct pcie_error_counters, bad_tlp)},
{ "Receiver Error Status (RES)", 0,
offsetof(struct pcie_error_counters, receiver_error)},
};
__u32 correctable_errors;
__u32 uncorrectable_errors;
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err) {
printf("\nDevice not found\n");
return -1;
}
/* pull log details based on the model name */
if (sscanf(argv[optind], "/dev/nvme%d", &ctrlIdx) != 1)
ctrlIdx = 0;
eModel = GetDriveModel(ctrlIdx);
if (eModel == UNKNOWN_MODEL) {
printf("Unsupported drive model for vs-pcie-stats command\n");
goto out;
}
if (!strcmp(cfg.fmt, "normal"))
is_json = false;
if (eModel == M5407) {
admin_cmd.opcode = 0xD6;
admin_cmd.addr = (__u64)(uintptr_t)&pcie_error_counters;
admin_cmd.data_len = sizeof(pcie_error_counters);
admin_cmd.cdw10 = 1;
err = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
if (!err) {
counters = true;
correctable_errors = 10;
uncorrectable_errors = 6;
goto print_stats;
}
}
if (strstr(argv[optind], "/dev/nvme") && strstr(argv[optind], "n1")) {
devicename = strrchr(argv[optind], '/');
} else if (strstr(argv[optind], "/dev/nvme")) {
devicename = strrchr(argv[optind], '/');
sprintf(tdevice, "%s%s", devicename, "n1");
devicename = tdevice;
} else {
printf("Invalid device specified!\n");
goto out;
}
sprintf(strTempFile, "/sys/block/%s/device", devicename);
memset(strTempFile2, 0x0, 1024);
sLinkSize = readlink(strTempFile, strTempFile2, 1023);
if (sLinkSize < 0) {
err = -errno;
printf("Failed to read device\n");
goto out;
}
if (strstr(strTempFile2, "../../nvme")) {
sprintf(strTempFile, "/sys/block/%s/device/device", devicename);
memset(strTempFile2, 0x0, 1024);
sLinkSize = readlink(strTempFile, strTempFile2, 1023);
if (sLinkSize < 0) {
err = -errno;
printf("Failed to read device\n");
goto out;
}
}
businfo = strrchr(strTempFile2, '/');
if (sscanf(businfo, "/%x:%x:%x.%x", &domain, &bus, &device, &function) != 4)
domain = bus = device = function = 0;
sprintf(command, "setpci -s %x:%x.%x ECAP_AER+10.L", bus, device,
function);
fp = popen(command, "r");
if (!fp) {
printf("Failed to retrieve error count\n");
goto out;
}
res = fgets(correctable, sizeof(correctable), fp);
if (!res) {
printf("Failed to retrieve error count\n");
pclose(fp);
goto out;
}
pclose(fp);
sprintf(command, "setpci -s %x:%x.%x ECAP_AER+0x4.L", bus, device,
function);
fp = popen(command, "r");
if (!fp) {
printf("Failed to retrieve error count\n");
goto out;
}
res = fgets(uncorrectable, sizeof(uncorrectable), fp);
if (!res) {
printf("Failed to retrieve error count\n");
pclose(fp);
goto out;
}
pclose(fp);
correctable_errors = (__u32)strtol(correctable, NULL, 16);
uncorrectable_errors = (__u32)strtol(uncorrectable, NULL, 16);
print_stats:
if (is_json) {
struct json_object *root = json_create_object();
struct json_object *pcieErrors = json_create_array();
struct json_object *stats = json_create_object();
__u8 *pcounter = (__u8 *)&pcie_error_counters;
json_object_add_value_array(root, "PCIE Stats", pcieErrors);
for (i = 0; i < ARRAY_SIZE(pcie_correctable_errors); i++) {
__u16 val = counters ? *(__u16 *)(pcounter + pcie_correctable_errors[i].val) :
(correctable_errors >> pcie_correctable_errors[i].bit) & 1;
json_object_add_value_int(stats, pcie_correctable_errors[i].err, val);
}
for (i = 0; i < ARRAY_SIZE(pcie_uncorrectable_errors); i++) {
__u16 val = counters ? *(__u16 *)(pcounter + pcie_uncorrectable_errors[i].val) :
(uncorrectable_errors >> pcie_uncorrectable_errors[i].bit) & 1;
json_object_add_value_int(stats, pcie_uncorrectable_errors[i].err, val);
}
json_array_add_value_object(pcieErrors, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else if (counters == true) {
__u8 *pcounter = (__u8 *)&pcie_error_counters;
for (i = 0; i < ARRAY_SIZE(pcie_correctable_errors); i++)
printf("%-42s : %-1hu\n", pcie_correctable_errors[i].err,
*(__u16 *)(pcounter + pcie_correctable_errors[i].val));
for (i = 0; i < ARRAY_SIZE(pcie_uncorrectable_errors); i++)
printf("%-42s : %-1hu\n", pcie_uncorrectable_errors[i].err,
*(__u16 *)(pcounter + pcie_uncorrectable_errors[i].val));
} else if (eModel == M5407 || eModel == M5410) {
for (i = 0; i < ARRAY_SIZE(pcie_correctable_errors); i++)
printf("%-42s : %-1d\n", pcie_correctable_errors[i].err,
((correctable_errors >> pcie_correctable_errors[i].bit) & 1));
for (i = 0; i < ARRAY_SIZE(pcie_uncorrectable_errors); i++)
printf("%-42s : %-1d\n", pcie_uncorrectable_errors[i].err,
((uncorrectable_errors >> pcie_uncorrectable_errors[i].bit) & 1));
} else {
printf("PCIE Stats:\n");
printf("Device correctable errors detected: %s\n", correctable);
printf("Device uncorrectable errors detected: %s\n", uncorrectable);
}
out:
dev_close(dev);
return err;
}
static int micron_clear_pcie_correctable_errors(int argc, char **argv,
struct command *cmd,
struct plugin *plugin)
{
int err = -EINVAL, bus, domain, device, function;
char strTempFile[1024], strTempFile2[1024], command[1024];
struct nvme_dev *dev;
char *businfo = NULL;
char *devicename = NULL;
char tdevice[PATH_MAX] = { 0 };
ssize_t sLinkSize = 0;
enum eDriveModel model = UNKNOWN_MODEL;
struct nvme_passthru_cmd admin_cmd = { 0 };
char correctable[8] = { 0 };
FILE *fp;
char *res;
const char *desc = "Clear PCIe Device Correctable Errors";
__u32 result = 0;
__u8 fid = MICRON_FEATURE_CLEAR_PCI_CORRECTABLE_ERRORS;
OPT_ARGS(opts) = {
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &model);
if (err < 0)
return err;
/* For M51CX models, PCIe errors are cleared using 0xC3 feature */
if (model == M51CX) {
err = nvme_set_features_simple(dev_fd(dev), fid, 0, (1 << 31), false,
&result);
if (!err)
err = (int)result;
if (!err) {
printf("Device correctable errors are cleared!\n");
goto out;
}
} else if (model == M5407) {
admin_cmd.opcode = 0xD6;
admin_cmd.addr = 0;
admin_cmd.cdw10 = 0;
err = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
if (!err) {
printf("Device correctable error counters are cleared!\n");
goto out;
} else {
/* proceed to clear status bits using sysfs interface */
}
}
if (strstr(argv[optind], "/dev/nvme") && strstr(argv[optind], "n1")) {
devicename = strrchr(argv[optind], '/');
} else if (strstr(argv[optind], "/dev/nvme")) {
devicename = strrchr(argv[optind], '/');
sprintf(tdevice, "%s%s", devicename, "n1");
devicename = tdevice;
} else {
printf("Invalid device specified!\n");
goto out;
}
err = snprintf(strTempFile, sizeof(strTempFile),
"/sys/block/%s/device", devicename);
if (err < 0)
goto out;
memset(strTempFile2, 0x0, 1024);
sLinkSize = readlink(strTempFile, strTempFile2, 1023);
if (sLinkSize < 0) {
err = -errno;
printf("Failed to read device\n");
goto out;
}
if (strstr(strTempFile2, "../../nvme")) {
err = snprintf(strTempFile, sizeof(strTempFile),
"/sys/block/%s/device/device", devicename);
if (err < 0)
goto out;
memset(strTempFile2, 0x0, 1024);
sLinkSize = readlink(strTempFile, strTempFile2, 1023);
if (sLinkSize < 0) {
err = -errno;
printf("Failed to read device\n");
goto out;
}
}
businfo = strrchr(strTempFile2, '/');
if (sscanf(businfo, "/%x:%x:%x.%x", &domain, &bus, &device, &function) != 4)
domain = bus = device = function = 0;
sprintf(command, "setpci -s %x:%x.%x ECAP_AER+0x10.L=0xffffffff", bus,
device, function);
err = -1;
fp = popen(command, "r");
if (!fp) {
printf("Failed to clear error count\n");
goto out;
}
pclose(fp);
sprintf(command, "setpci -s %x:%x.%x ECAP_AER+0x10.L", bus, device,
function);
fp = popen(command, "r");
if (!fp) {
printf("Failed to retrieve error count\n");
goto out;
}
res = fgets(correctable, sizeof(correctable), fp);
if (!res) {
printf("Failed to retrieve error count\n");
pclose(fp);
goto out;
}
pclose(fp);
printf("Device correctable errors cleared!\n");
printf("Device correctable errors detected: %s\n", correctable);
err = 0;
out:
dev_close(dev);
return err;
}
static struct logpage {
const char *field;
char datastr[128];
} d0_log_page[] = {
{ "NAND Writes (Bytes Written)", { 0 }},
{ "Program Failure Count", { 0 }},
{ "Erase Failures", { 0 }},
{ "Bad Block Count", { 0 }},
{ "NAND XOR/RAID Recovery Trigger Events", { 0 }},
{ "NSZE Change Supported", { 0 }},
{ "Number of NSZE Modifications", { 0 }}
};
static void init_d0_log_page(__u8 *buf, __u8 nsze)
{
unsigned int logD0[D0_log_size/sizeof(int)] = { 0 };
__u64 count_lo, count_hi, count;
memcpy(logD0, buf, sizeof(logD0));
count = ((__u64)logD0[45] << 32) | logD0[44];
sprintf(d0_log_page[0].datastr, "0x%"PRIx64, le64_to_cpu(count));
count_hi = ((__u64)logD0[39] << 32) | logD0[38];
count_lo = ((__u64)logD0[37] << 32) | logD0[36];
if (count_hi)
sprintf(d0_log_page[1].datastr, "0x%"PRIx64"%016"PRIx64,
le64_to_cpu(count_hi), le64_to_cpu(count_lo));
else
sprintf(d0_log_page[1].datastr, "0x%"PRIx64, le64_to_cpu(count_lo));
count = ((__u64)logD0[25] << 32) | logD0[24];
sprintf(d0_log_page[2].datastr, "0x%"PRIx64, le64_to_cpu(count));
sprintf(d0_log_page[3].datastr, "0x%x", logD0[3]);
count_lo = ((__u64)logD0[37] << 32) | logD0[36];
count = ((__u64)logD0[25] << 32) | logD0[24];
count = (__u64)logD0[3] - (count_lo + count);
sprintf(d0_log_page[4].datastr, "0x%"PRIx64, le64_to_cpu(count));
sprintf(d0_log_page[5].datastr, "0x%x", nsze);
sprintf(d0_log_page[6].datastr, "0x%x", logD0[1]);
}
/* Smart Health Log information as per OCP spec M51CX models */
struct request_data ocp_c0_log_page[] = {
{ "Physical Media Units Written", 16},
{ "Physical Media Units Read", 16 },
{ "Raw Bad User NAND Block Count", 6},
{ "Normalized Bad User NAND Block Count", 2},
{ "Raw Bad System NAND Block Count", 6},
{ "Normalized Bad System NAND Block Count", 2},
{ "XOR Recovery Count", 8},
{ "Uncorrectable Read Error Count", 8},
{ "Soft ECC Error Count", 8},
{ "SSD End to End Detected Counts", 4},
{ "SSD End to End Corrected Errors", 4},
{ "System data % life-used", 1},
{ "Refresh Count", 7},
{ "Maximum User Data Erase Count", 4},
{ "Minimum User Data Erase Count", 4},
{ "Thermal Throttling Count", 1},
{ "Thermal Throttling Status", 1},
{ "Reserved", 6},
{ "PCIe Correctable Error count", 8},
{ "Incomplete Shutdowns", 4},
{ "Reserved", 4},
{ "% Free Blocks", 1},
{ "Reserved", 7},
{ "Capacitor Health", 2},
{ "Reserved", 6},
{ "Unaligned I/O", 8},
{ "Security Version Number", 8},
{ "NUSE", 8},
{ "PLP Start Count", 16},
{ "Endurance Estimate", 16},
{ "Reserved", 302},
{ "Log Page Version", 2},
{ "Log Page GUID", 16},
},
/* Extended SMART log information */
e1_log_page[] = {
{ "Reserved", 12},
{ "Grown Bad Block Count", 4},
{ "Per Block Max Erase Count", 4},
{ "Power On Minutes", 4},
{ "Reserved", 24},
{ "Write Protect Reason", 4},
{ "Reserved", 12},
{ "Drive Capacity", 8},
{ "Reserved", 8},
{ "Total Erase Count", 8},
{ "Lifetime Use Rate", 8},
{ "Erase Fail Count", 8},
{ "Reserved", 8},
{ "Reported UC Errors", 8},
{ "Reserved", 24},
{ "Program Fail Count", 16},
{ "Total Bytes Read", 16},
{ "Total Bytes Written", 16},
{ "Reserved", 16},
{ "TU Size", 4},
{ "Total Block Stripe Count", 4},
{ "Free Block Stripe Count", 4},
{ "Block Stripe Size", 8},
{ "Reserved", 16},
{ "User Block Min Erase Count", 4},
{ "User Block Avg Erase Count", 4},
{ "User Block Max Erase Count", 4},
},
/* Vendor Specific Health Log information */
fb_log_page[] = {
{ "Physical Media Units Written - TLC", 16, 16 },
{ "Physical Media Units Written - SLC", 16, 16 },
{ "Normalized Bad User NAND Block Count", 2, 2},
{ "Raw Bad User NAND Block Count", 6, 6},
{ "XOR Recovery Count", 8, 8},
{ "Uncorrectable Read Error Count", 8, 8},
{ "SSD End to End Corrected Errors", 8, 8},
{ "SSD End to End Detected Counts", 4, 8},
{ "SSD End to End Uncorrected Counts", 4, 8},
{ "System data % life-used", 1, 1},
{ "Reserved", 0, 3},
{ "Minimum User Data Erase Count - TLC", 8, 8},
{ "Maximum User Data Erase Count - TLC", 8, 8},
{ "Average User Data Erase Count - TLC", 0, 8},
{ "Minimum User Data Erase Count - SLC", 8, 8},
{ "Maximum User Data Erase Count - SLC", 8, 8},
{ "Average User Data Erase Count - SLC", 0, 8},
{ "Normalized Program Fail Count", 2, 2},
{ "Raw Program Fail Count", 6, 6},
{ "Normalized Erase Fail Count", 2, 2},
{ "Raw Erase Fail Count", 6, 6},
{ "Pcie Correctable Error Count", 8, 8},
{ "% Free Blocks (User)", 1, 1},
{ "Reserved", 0, 3},
{ "Security Version Number", 8, 8},
{ "% Free Blocks (System)", 1, 1},
{ "Reserved", 0, 3},
{ "Dataset Management (Deallocate) Commands", 16, 16},
{ "Incomplete TRIM Data", 8, 8},
{ "% Age of Completed TRIM", 1, 2},
{ "Background Back-Pressure Gauge", 1, 1},
{ "Reserved", 0, 3},
{ "Soft ECC Error Count", 8, 8},
{ "Refresh Count", 8, 8},
{ "Normalized Bad System NAND Block Count", 2, 2},
{ "Raw Bad System NAND Block Count", 6, 6},
{ "Endurance Estimate", 16, 16},
{ "Thermal Throttling Status", 1, 1},
{ "Thermal Throttling Count", 1, 1},
{ "Unaligned I/O", 8, 8},
{ "Physical Media Units Read", 16, 16},
{ "Reserved", 279, 0},
{ "Log Page Version", 2, 0},
{ "READ CMDs exceeding threshold", 0, 4},
{ "WRITE CMDs exceeding threshold", 0, 4},
{ "TRIMs CMDs exceeding threshold", 0, 4},
{ "Reserved", 0, 4},
{ "Reserved", 0, 210},
{ "Log Page Version", 0, 2},
{ "Log Page GUID", 0, 16},
};
static void print_smart_cloud_health_log(__u8 *buf, bool is_json)
{
struct json_object *root;
struct json_object *logPages;
struct json_object *stats = NULL;
int field_count = ARRAY_SIZE(ocp_c0_log_page);
if (is_json) {
root = json_create_object();
stats = json_create_object();
logPages = json_create_array();
json_object_add_value_array(root, "OCP SMART Cloud Health Log: 0xC0",
logPages);
}
generic_structure_parser(buf, ocp_c0_log_page, field_count, stats, 0, NULL);
if (is_json) {
json_array_add_value_object(logPages, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
}
static void print_nand_stats_fb(__u8 *buf, __u8 *buf2, __u8 nsze, bool is_json, __u8 spec)
{
struct json_object *root;
struct json_object *logPages;
struct json_object *stats = NULL;
int field_count = ARRAY_SIZE(fb_log_page);
if (is_json) {
root = json_create_object();
stats = json_create_object();
logPages = json_create_array();
json_object_add_value_array(root, "Extended Smart Log Page : 0xFB",
logPages);
}
generic_structure_parser(buf, fb_log_page, field_count, stats, spec, NULL);
/* print last three entries from D0 log page */
if (buf2) {
init_d0_log_page(buf2, nsze);
if (is_json) {
for (int i = 0; i < 7; i++)
json_object_add_value_string(stats,
d0_log_page[i].field,
d0_log_page[i].datastr);
} else {
for (int i = 0; i < 7; i++)
printf("%-40s : %s\n", d0_log_page[i].field, d0_log_page[i].datastr);
}
}
if (is_json) {
json_array_add_value_object(logPages, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
}
static void print_nand_stats_d0(__u8 *buf, __u8 oacs, bool is_json)
{
init_d0_log_page(buf, oacs);
if (is_json) {
struct json_object *root = json_create_object();
struct json_object *stats = json_create_object();
struct json_object *logPages = json_create_array();
json_object_add_value_array(root,
"Extended Smart Log Page : 0xD0",
logPages);
for (int i = 0; i < 7; i++)
json_object_add_value_string(stats,
d0_log_page[i].field,
d0_log_page[i].datastr);
json_array_add_value_object(logPages, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else {
for (int i = 0; i < 7; i++)
printf("%-40s : %s\n", d0_log_page[i].field, d0_log_page[i].datastr);
}
}
static bool nsze_from_oacs; /* read nsze for now from idd[4059] */
static int micron_nand_stats(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
const char *desc = "Retrieve Micron NAND stats for the given device ";
unsigned int extSmartLog[D0_log_size/sizeof(int)] = { 0 };
unsigned int logFB[FB_log_size/sizeof(int)] = { 0 };
enum eDriveModel eModel = UNKNOWN_MODEL;
struct nvme_id_ctrl ctrl;
struct nvme_dev *dev;
int err, ctrlIdx;
__u8 nsze;
bool has_d0_log = true;
bool has_fb_log = false;
bool is_json = true;
struct format {
char *fmt;
};
const char *fmt = "output format json|normal";
struct format cfg = {
.fmt = "json",
};
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err) {
printf("\nDevice not found\n");
return -1;
}
if (!strcmp(cfg.fmt, "normal"))
is_json = false;
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (err) {
printf("Error %d retrieving controller identification data\n", err);
goto out;
}
/* pull log details based on the model name */
if (sscanf(argv[optind], "/dev/nvme%d", &ctrlIdx) != 1)
ctrlIdx = 0;
eModel = GetDriveModel(ctrlIdx);
if ((eModel == UNKNOWN_MODEL) || (eModel == M51CX)) {
printf("Unsupported drive model for vs-nand-stats command\n");
err = -1;
goto out;
}
err = nvme_get_log_simple(dev_fd(dev), 0xD0, D0_log_size, extSmartLog);
has_d0_log = !err;
/* should check for firmware version if this log is supported or not */
if (eModel == M5407 || eModel == M5410) {
err = nvme_get_log_simple(dev_fd(dev), 0xFB, FB_log_size, logFB);
has_fb_log = !err;
}
nsze = (ctrl.vs[987] == 0x12);
if (!nsze && nsze_from_oacs)
nsze = ((ctrl.oacs >> 3) & 0x1);
err = 0;
if (has_fb_log) {
__u8 spec = (eModel == M5410) ? 0 : 1; /* FB spec version */
print_nand_stats_fb((__u8 *)logFB, (__u8 *)extSmartLog, nsze, is_json, spec);
} else if (has_d0_log) {
print_nand_stats_d0((__u8 *)extSmartLog, nsze, is_json);
} else {
printf("Unable to retrieve extended smart log for the drive\n");
err = -ENOTTY;
}
out:
dev_close(dev);
if (err > 0)
nvme_show_status(err);
return err;
}
static void print_ext_smart_logs_e1(__u8 *buf, bool is_json)
{
struct json_object *root;
struct json_object *logPages;
struct json_object *stats = NULL;
int field_count = ARRAY_SIZE(e1_log_page);
if (is_json) {
root = json_create_object();
stats = json_create_object();
logPages = json_create_array();
json_object_add_value_array(root, "SMART Extended Log:0xE1", logPages);
} else {
printf("SMART Extended Log:0xE1\n");
}
generic_structure_parser(buf, e1_log_page, field_count, stats, 0, NULL);
if (is_json) {
json_array_add_value_object(logPages, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
}
static int micron_smart_ext_log(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
const char *desc = "Retrieve extended SMART logs for the given device ";
unsigned int extSmartLog[E1_log_size/sizeof(int)] = { 0 };
enum eDriveModel eModel = UNKNOWN_MODEL;
int err = 0, ctrlIdx;
struct nvme_dev *dev;
bool is_json = true;
struct format {
char *fmt;
};
const char *fmt = "output format json|normal";
struct format cfg = {
.fmt = "json",
};
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err) {
printf("\nDevice not found\n");
return -1;
}
if (!strcmp(cfg.fmt, "normal"))
is_json = false;
if (sscanf(argv[optind], "/dev/nvme%d", &ctrlIdx) != 1)
ctrlIdx = 0;
eModel = GetDriveModel(ctrlIdx);
if (eModel != M51CX) {
printf("Unsupported drive model for vs-smart-ext-log command\n");
err = -1;
goto out;
}
err = nvme_get_log_simple(dev_fd(dev), 0xE1, E1_log_size, extSmartLog);
if (!err)
print_ext_smart_logs_e1((__u8 *)extSmartLog, is_json);
out:
dev_close(dev);
if (err > 0)
nvme_show_status(err);
return err;
}
static void GetDriveInfo(const char *strOSDirName, int nFD,
struct nvme_id_ctrl *ctrlp)
{
FILE *fpOutFile = NULL;
char tempFile[256] = { 0 };
char strBuffer[1024] = { 0 };
char model[41] = { 0 };
char serial[21] = { 0 };
char fwrev[9] = { 0 };
char *strPDir = strdup(strOSDirName);
char *strDest = dirname(strPDir);
sprintf(tempFile, "%s/%s", strDest, "drive-info.txt");
fpOutFile = fopen(tempFile, "w+");
if (!fpOutFile) {
printf("Failed to create %s\n", tempFile);
free(strPDir);
return;
}
strncpy(model, ctrlp->mn, 40);
strncpy(serial, ctrlp->sn, 20);
strncpy(fwrev, ctrlp->fr, 8);
sprintf(strBuffer,
"********************\nDrive Info\n********************\n");
fprintf(fpOutFile, "%s", strBuffer);
sprintf(strBuffer,
"%-20s : /dev/nvme%d\n%-20s : %s\n%-20s : %-20s\n%-20s : %-20s\n",
"Device Name", nFD,
"Model No", (char *)model,
"Serial No", (char *)serial, "FW-Rev", (char *)fwrev);
fprintf(fpOutFile, "%s", strBuffer);
sprintf(strBuffer,
"\n********************\nPCI Info\n********************\n");
fprintf(fpOutFile, "%s", strBuffer);
sprintf(strBuffer,
"%-22s : %04X\n%-22s : %04X\n",
"VendorId", vendor_id, "DeviceId", device_id);
fprintf(fpOutFile, "%s", strBuffer);
fclose(fpOutFile);
free(strPDir);
}
static void GetTimestampInfo(const char *strOSDirName)
{
__u8 outstr[1024];
time_t t;
struct tm *tmp;
size_t num;
char *strPDir;
char *strDest;
t = time(NULL);
tmp = localtime(&t);
if (!tmp)
return;
num = strftime((char *)outstr, sizeof(outstr),
"Timestamp (UTC): %a, %d %b %Y %T %z", tmp);
num += sprintf((char *)(outstr + num), "\nPackage Version: 1.4");
if (num) {
strPDir = strdup(strOSDirName);
strDest = dirname(strPDir);
WriteData(outstr, num, strDest, "timestamp_info.txt", "timestamp");
free(strPDir);
}
}
static void GetCtrlIDDInfo(const char *dir, struct nvme_id_ctrl *ctrlp)
{
WriteData((__u8 *)ctrlp, sizeof(*ctrlp), dir,
"nvme_controller_identify_data.bin", "id-ctrl");
}
static void GetSmartlogData(int fd, const char *dir)
{
struct nvme_smart_log smart_log;
if (!nvme_get_log_smart(fd, -1, false, &smart_log))
WriteData((__u8 *)&smart_log, sizeof(smart_log), dir,
"smart_data.bin", "smart log");
}
static void GetErrorlogData(int fd, int entries, const char *dir)
{
int logSize = entries * sizeof(struct nvme_error_log_page);
struct nvme_error_log_page *error_log =
(struct nvme_error_log_page *)calloc(1, logSize);
if (!error_log)
return;
if (!nvme_get_log_error(fd, entries, false, error_log))
WriteData((__u8 *)error_log, logSize, dir,
"error_information_log.bin", "error log");
free(error_log);
}
static void GetGenericLogs(int fd, const char *dir)
{
struct nvme_self_test_log self_test_log;
struct nvme_firmware_slot fw_log;
struct nvme_cmd_effects_log effects;
struct nvme_persistent_event_log pevent_log;
_cleanup_huge_ struct nvme_mem_huge mh = { 0, };
void *pevent_log_info = NULL;
__u32 log_len = 0;
int err = 0;
/* get self test log */
if (!nvme_get_log_device_self_test(fd, &self_test_log))
WriteData((__u8 *)&self_test_log, sizeof(self_test_log), dir,
"drive_self_test.bin", "self test log");
/* get fw slot info log */
if (!nvme_get_log_fw_slot(fd, false, &fw_log))
WriteData((__u8 *)&fw_log, sizeof(fw_log), dir,
"firmware_slot_info_log.bin", "firmware log");
/* get effects log */
if (!nvme_get_log_cmd_effects(fd, NVME_CSI_NVM, &effects))
WriteData((__u8 *)&effects, sizeof(effects), dir,
"command_effects_log.bin", "effects log");
/* get persistent event log */
(void)nvme_get_log_persistent_event(fd, NVME_PEVENT_LOG_RELEASE_CTX,
sizeof(pevent_log), &pevent_log);
memset(&pevent_log, 0, sizeof(pevent_log));
err = nvme_get_log_persistent_event(fd, NVME_PEVENT_LOG_EST_CTX_AND_READ,
sizeof(pevent_log), &pevent_log);
if (err) {
fprintf(stderr, "Setting persistent event log read ctx failed (ignored)!\n");
return;
}
log_len = le64_to_cpu(pevent_log.tll);
pevent_log_info = nvme_alloc_huge(log_len, &mh);
if (!pevent_log_info) {
perror("could not alloc buffer for persistent event log page (ignored)!\n");
return;
}
err = nvme_get_log_persistent_event(fd, NVME_PEVENT_LOG_READ,
log_len, pevent_log_info);
if (!err)
WriteData((__u8 *)pevent_log_info, log_len, dir,
"persistent_event_log.bin", "persistent event log");
}
static void GetNSIDDInfo(int fd, const char *dir, int nsid)
{
char file[PATH_MAX] = { 0 };
struct nvme_id_ns ns;
if (!nvme_identify_ns(fd, nsid, &ns)) {
sprintf(file, "identify_namespace_%d_data.bin", nsid);
WriteData((__u8 *)&ns, sizeof(ns), dir, file, "id-ns");
}
}
static void GetOSConfig(const char *strOSDirName)
{
FILE *fpOSConfig = NULL;
char strBuffer[1024];
char strFileName[PATH_MAX];
int i;
struct {
char *strcmdHeader;
char *strCommand;
} cmdArray[] = {
{ (char *)"SYSTEM INFORMATION", (char *)"uname -a >> %s" },
{ (char *)"LINUX KERNEL MODULE INFORMATION", (char *)"lsmod >> %s" },
{ (char *)"LINUX SYSTEM MEMORY INFORMATION", (char *)"cat /proc/meminfo >> %s" },
{ (char *)"SYSTEM INTERRUPT INFORMATION", (char *)"cat /proc/interrupts >> %s" },
{ (char *)"CPU INFORMATION", (char *)"cat /proc/cpuinfo >> %s" },
{ (char *)"IO MEMORY MAP INFORMATION", (char *)"cat /proc/iomem >> %s" },
{ (char *)"MAJOR NUMBER AND DEVICE GROUP", (char *)"cat /proc/devices >> %s" },
{ (char *)"KERNEL DMESG", (char *)"dmesg >> %s" },
{ (char *)"/VAR/LOG/MESSAGES", (char *)"cat /var/log/messages >> %s" }
};
sprintf(strFileName, "%s/%s", strOSDirName, "os_config.txt");
for (i = 0; i < 7; i++) {
fpOSConfig = fopen(strFileName, "a+");
if (fpOSConfig) {
fprintf(fpOSConfig,
"\n\n\n\n%s\n-----------------------------------------------\n",
cmdArray[i].strcmdHeader);
fclose(fpOSConfig);
fpOSConfig = NULL;
}
snprintf(strBuffer, sizeof(strBuffer) - 1,
cmdArray[i].strCommand, strFileName);
if (system(strBuffer))
fprintf(stderr, "Failed to send \"%s\"\n", strBuffer);
}
}
static int micron_telemetry_log(int fd, __u8 type, __u8 **data,
int *logSize, int da)
{
int err, bs = 512, offset = bs;
unsigned short data_area[4];
unsigned char ctrl_init = (type == 0x8);
__u8 *buffer = (unsigned char *)calloc(bs, 1);
if (!buffer)
return -1;
if (ctrl_init)
err = nvme_get_log_telemetry_ctrl(fd, true, 0, bs, buffer);
else
err = nvme_get_log_telemetry_host(fd, 0, bs, buffer);
if (err) {
fprintf(stderr, "Failed to get telemetry log header for 0x%X\n", type);
if (buffer)
free(buffer);
return err;
}
/* compute size of the log */
data_area[1] = buffer[9] << 8 | buffer[8];
data_area[2] = buffer[11] << 8 | buffer[10];
data_area[3] = buffer[13] << 8 | buffer[12];
data_area[0] = data_area[1] > data_area[2] ? data_area[1] : data_area[2];
data_area[0] = data_area[3] > data_area[0] ? data_area[3] : data_area[0];
if (!data_area[da]) {
fprintf(stderr, "Requested telemetry data for 0x%X is empty\n", type);
if (buffer) {
free(buffer);
buffer = NULL;
}
return -1;
}
*logSize = data_area[da] * bs;
offset = bs;
err = 0;
buffer = (unsigned char *)realloc(buffer, (size_t)(*logSize));
if (buffer) {
while (!err && offset != *logSize) {
if (ctrl_init)
err = nvme_get_log_telemetry_ctrl(fd, true, 0, *logSize, buffer + offset);
else
err = nvme_get_log_telemetry_host(fd, 0, *logSize, buffer + offset);
offset += bs;
}
}
if (!err && buffer) {
*data = buffer;
} else {
fprintf(stderr, "Failed to get telemetry data for 0x%x\n", type);
if (buffer)
free(buffer);
}
return err;
}
static int GetTelemetryData(int fd, const char *dir)
{
unsigned char *buffer = NULL;
int i, err, logSize = 0;
char msg[256] = { 0 };
struct {
__u8 log;
char *file;
} tmap[] = {
{0x07, "nvmetelemetrylog.bin"},
{0x08, "nvmetelemetrylog.bin"},
};
for (i = 0; i < (int)(ARRAY_SIZE(tmap)); i++) {
err = micron_telemetry_log(fd, tmap[i].log, &buffer, &logSize, 0);
if (!err && logSize > 0 && buffer) {
sprintf(msg, "telemetry log: 0x%X", tmap[i].log);
WriteData(buffer, logSize, dir, tmap[i].file, msg);
}
if (buffer) {
free(buffer);
buffer = NULL;
}
logSize = 0;
}
return err;
}
static int GetFeatureSettings(int fd, const char *dir)
{
unsigned char *bufp, buf[4096] = { 0 };
int i, err, len, errcnt = 0;
__u32 attrVal = 0;
char msg[256] = { 0 };
struct features {
int id;
char *file;
} fmap[] = {
{0x01, "nvme_feature_setting_arbitration.bin"},
{0x02, "nvme_feature_setting_pm.bin"},
{0x03, "nvme_feature_setting_lba_range_namespace_1.bin"},
{0x04, "nvme_feature_setting_temp_threshold.bin"},
{0x05, "nvme_feature_setting_error_recovery.bin"},
{0x06, "nvme_feature_setting_volatile_write_cache.bin"},
{0x07, "nvme_feature_setting_num_queues.bin"},
{0x08, "nvme_feature_setting_interrupt_coalescing.bin"},
{0x09, "nvme_feature_setting_interrupt_vec_config.bin"},
{0x0A, "nvme_feature_setting_write_atomicity.bin"},
{0x0B, "nvme_feature_setting_async_event_config.bin"},
{0x80, "nvme_feature_setting_sw_progress_marker.bin"},
};
for (i = 0; i < (int)(ARRAY_SIZE(fmap)); i++) {
if (fmap[i].id == 0x03) {
len = 4096;
bufp = (unsigned char *)(&buf[0]);
} else {
len = 0;
bufp = NULL;
}
struct nvme_get_features_args args = {
.args_size = sizeof(args),
.fd = fd,
.fid = fmap[i].id,
.nsid = 1,
.sel = 0,
.cdw11 = 0x0,
.uuidx = 0,
.data_len = len,
.data = bufp,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &attrVal,
};
err = nvme_get_features(&args);
if (!err) {
sprintf(msg, "feature: 0x%X", fmap[i].id);
WriteData((__u8 *)&attrVal, sizeof(attrVal), dir, fmap[i].file, msg);
if (bufp)
WriteData(bufp, len, dir, fmap[i].file, msg);
} else {
fprintf(stderr, "Feature 0x%x data not retrieved, error %d (ignored)!\n",
fmap[i].id, err);
errcnt++;
}
}
return (int)(errcnt == ARRAY_SIZE(fmap));
}
static int micron_drive_info(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Get drive HW information";
struct nvme_id_ctrl ctrl = { 0 };
struct nvme_passthru_cmd admin_cmd = { 0 };
struct fb_drive_info {
unsigned char hw_ver_major;
unsigned char hw_ver_minor;
unsigned char ftl_unit_size;
unsigned char bs_ver_major;
unsigned char bs_ver_minor;
} dinfo = { 0 };
enum eDriveModel model = UNKNOWN_MODEL;
bool is_json = false;
struct json_object *root, *driveInfo;
struct nvme_dev *dev;
struct format {
char *fmt;
};
int err = 0;
const char *fmt = "output format normal";
struct format cfg = {
.fmt = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &model);
if (err < 0)
return err;
if (model == UNKNOWN_MODEL) {
fprintf(stderr, "ERROR : Unsupported drive for vs-drive-info cmd");
dev_close(dev);
return -1;
}
if (!strcmp(cfg.fmt, "json"))
is_json = true;
if (model == M5407) {
admin_cmd.opcode = 0xD4,
admin_cmd.addr = (__u64) (uintptr_t) &dinfo;
admin_cmd.data_len = (__u32)sizeof(dinfo);
admin_cmd.cdw12 = 3;
err = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
if (err) {
fprintf(stderr, "ERROR : drive-info opcode failed with 0x%x\n", err);
dev_close(dev);
return -1;
}
} else {
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (err) {
fprintf(stderr, "ERROR : identify_ctrl() failed with 0x%x\n", err);
dev_close(dev);
return -1;
}
dinfo.hw_ver_major = ctrl.vs[820];
dinfo.hw_ver_minor = ctrl.vs[821];
dinfo.ftl_unit_size = ctrl.vs[822];
}
if (is_json) {
struct json_object *pinfo = json_create_object();
char tempstr[64] = { 0 };
root = json_create_object();
driveInfo = json_create_array();
json_object_add_value_array(root, "Micron Drive HW Information", driveInfo);
sprintf(tempstr, "%u.%u", dinfo.hw_ver_major, dinfo.hw_ver_minor);
json_object_add_value_string(pinfo, "Drive Hardware Version", tempstr);
if (dinfo.ftl_unit_size) {
sprintf(tempstr, "%u KB", dinfo.ftl_unit_size);
json_object_add_value_string(pinfo, "FTL_unit_size", tempstr);
}
if (dinfo.bs_ver_major || dinfo.bs_ver_minor) {
sprintf(tempstr, "%u.%u", dinfo.bs_ver_major, dinfo.bs_ver_minor);
json_object_add_value_string(pinfo, "Boot Spec.Version", tempstr);
}
json_array_add_value_object(driveInfo, pinfo);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else {
printf("Drive Hardware Version: %u.%u\n",
dinfo.hw_ver_major, dinfo.hw_ver_minor);
if (dinfo.ftl_unit_size)
printf("FTL_unit_size: %u KB\n", dinfo.ftl_unit_size);
if (dinfo.bs_ver_major || dinfo.bs_ver_minor)
printf("Boot Spec.Version: %u.%u\n",
dinfo.bs_ver_major, dinfo.bs_ver_minor);
}
dev_close(dev);
return 0;
}
static int micron_cloud_ssd_plugin_version(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
printf("nvme-cli Micron cloud SSD plugin version: %s.%s\n",
__version_major, __version_minor);
return 0;
}
static int micron_plugin_version(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
printf("nvme-cli Micron plugin version: %s.%s.%s\n",
__version_major, __version_minor, __version_patch);
return 0;
}
/* Binary format of firmware activation history entry */
struct __packed fw_activation_history_entry {
__u8 version;
__u8 length;
__u16 rsvd1;
__le16 valid;
__le64 power_on_hour;
__le64 rsvd2;
__le64 power_cycle_count;
__u8 previous_fw[8];
__u8 activated_fw[8];
__u8 slot;
__u8 commit_action_type;
__le16 result;
__u8 rsvd3[14];
};
/* Binary format for firmware activation history table */
struct __packed micron_fw_activation_history_table {
__u8 log_page;
__u8 rsvd1[3];
__le32 num_entries;
struct fw_activation_history_entry entries[20];
__u8 rsvd2[2790];
__u16 version;
__u8 GUID[16];
};
static int display_fw_activate_entry(int entry_count, struct fw_activation_history_entry *entry,
char *formatted_entry, struct json_object *stats)
{
time_t timestamp, hours;
char buffer[32];
__u8 minutes, seconds;
static const char * const ca[] = {"000b", "001b", "010b", "011b"};
char *ptr = formatted_entry;
int index = 0, entry_size = 82;
if ((entry->version != 1 && entry->version != 2) || entry->length != 64)
return -EINVAL;
sprintf(ptr, "%d", entry_count);
ptr += 10;
timestamp = (le64_to_cpu(entry->power_on_hour) & 0x0000FFFFFFFFFFFFUL) / 1000;
hours = timestamp / 3600;
minutes = (timestamp % 3600) / 60;
seconds = (timestamp % 3600) % 60;
sprintf(ptr, "|%"PRIu64":%u:%u", (uint64_t)hours, minutes, seconds);
ptr += 12;
sprintf(ptr, "| %"PRIu64, le64_to_cpu(entry->power_cycle_count));
ptr += 10;
/* firmware details */
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, entry->previous_fw, sizeof(entry->previous_fw));
sprintf(ptr, "| %s", buffer);
ptr += 11;
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, entry->activated_fw, sizeof(entry->activated_fw));
sprintf(ptr, "| %s", buffer);
ptr += 12;
/* firmware slot and commit action*/
sprintf(ptr, "| %d", entry->slot);
ptr += 9;
if (entry->commit_action_type <= 3)
sprintf(ptr, "| %s", ca[entry->commit_action_type]);
else
sprintf(ptr, "| xxxb");
ptr += 9;
/* result */
if (entry->result)
sprintf(ptr, "| Fail #%d", entry->result);
else
sprintf(ptr, "| pass");
/* replace all null characters with spaces */
ptr = formatted_entry;
while (index < entry_size) {
if (ptr[index] == '\0')
ptr[index] = ' ';
index++;
}
return 0;
}
static void micron_fw_activation_history_header_print(void)
{
/* header to be printed field widths = 10 | 12 | 10 | 11 | 12 | 9 | 9 | 9 */
printf("__________________________________________________________________________________\n");
printf(" | | | | | | |\n");
printf("Firmware | Power On | Power | Previous | New FW | Slot | Commit | Result\n");
printf("Activation| Hour | cycle | firmware | activated | number | Action |\n");
printf("Counter | | count | | | | Type |\n");
printf("__________|___________|_________|__________|___________|________|________|________\n");
}
static int micron_fw_activation_history(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Retrieve Firmware Activation history of the given drive";
char formatted_output[100];
int count = 0;
unsigned int logC2[C2_log_size/sizeof(int)] = { 0 };
enum eDriveModel eModel = UNKNOWN_MODEL;
struct nvme_dev *dev;
struct format {
char *fmt;
};
int err;
const char *fmt = "output format normal";
struct format cfg = {
.fmt = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &eModel);
if (err < 0)
return -1;
if (strcmp(cfg.fmt, "normal")) {
fprintf(stderr, "only normal format is supported currently\n");
dev_close(dev);
return -1;
}
/* check if product supports fw_history log */
err = -EINVAL;
if (eModel != M51CX) {
fprintf(stderr, "Unsupported drive model for vs-fw-activate-history command\n");
goto out;
}
err = nvme_get_log_simple(dev_fd(dev), 0xC2, C2_log_size, logC2);
if (err) {
fprintf(stderr, "Failed to retrieve fw activation history log, error: %x\n", err);
goto out;
}
/* check if we have at least one entry to print */
struct micron_fw_activation_history_table *table =
(struct micron_fw_activation_history_table *)logC2;
/* check version and log page */
if (table->log_page != 0xC2 || (table->version != 2 && table->version != 1)) {
fprintf(stderr, "Unsupported fw activation history page: %x, version: %x\n",
table->log_page, table->version);
goto out;
}
if (!table->num_entries) {
fprintf(stderr, "No entries were found in fw activation history log\n");
goto out;
}
micron_fw_activation_history_header_print();
for (count = 0; count < table->num_entries; count++) {
memset(formatted_output, '\0', 100);
if (!display_fw_activate_entry(count, &table->entries[count], formatted_output,
NULL))
printf("%s\n", formatted_output);
}
out:
dev_close(dev);
return err;
}
#define MICRON_FID_LATENCY_MONITOR 0xD0
#define MICRON_LOG_LATENCY_MONITOR 0xD1
static int micron_latency_stats_track(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
int err = 0;
__u32 result = 0;
const char *desc = "Enable, Disable or Get cmd latency monitoring stats";
const char *option = "enable or disable or status, default is status";
const char *command =
"commands to monitor for - all|read|write|trim, default is all i.e, enabled for all commands";
const char *thrtime =
"The threshold value to use for latency monitoring in milliseconds, default is 800ms";
int fid = MICRON_FID_LATENCY_MONITOR;
enum eDriveModel model = UNKNOWN_MODEL;
uint32_t command_mask = 0x7; /* 1:read 2:write 4:trim 7:all */
uint32_t timing_mask = 0x08080800; /* R[31-24]:W[23:16]:T[15:8]:0 */
uint32_t enable = 2;
struct nvme_dev *dev;
struct {
char *option;
char *command;
uint32_t threshold;
} opt = {
.option = "status",
.command = "all",
.threshold = 0
};
OPT_ARGS(opts) = {
OPT_STRING("option", 'o', "option", &opt.option, option),
OPT_STRING("command", 'c', "command", &opt.command, command),
OPT_UINT("threshold", 't', &opt.threshold, thrtime),
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &model);
if (err < 0)
return -1;
if (!strcmp(opt.option, "enable")) {
enable = 1;
} else if (!strcmp(opt.option, "disable")) {
enable = 0;
} else if (strcmp(opt.option, "status")) {
printf("Invalid control option %s specified\n", opt.option);
dev_close(dev);
return -1;
}
struct nvme_get_features_args g_args = {
.args_size = sizeof(g_args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = 0,
.sel = 0,
.cdw11 = 0,
.uuidx = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_get_features(&g_args);
if (err) {
printf("Failed to retrieve latency monitoring feature status\n");
dev_close(dev);
return err;
}
/* If it is to retrieve the status only */
if (enable == 2) {
printf("Latency Tracking Statistics is currently %s",
(result & 0xFFFF0000) ? "enabled" : "disabled");
if ((result & 7) == 7) {
printf(" for All commands\n");
} else if ((result & 7) > 0) {
printf(" for");
if (result & 1)
printf(" Read");
if (result & 2)
printf(" Write");
if (result & 4)
printf(" Trim");
printf(" commands\n");
} else if (!result) {
printf("\n");
}
dev_close(dev);
return err;
}
/* read and validate threshold values if enable option is specified */
if (enable == 1) {
if (opt.threshold > 2550) {
printf("The maximum threshold value cannot be more than 2550 ms\n");
dev_close(dev);
return -1;
} else if (opt.threshold % 10) {
/* timing mask is in terms of 10ms units, so min allowed is 10ms */
printf("The threshold value should be multiple of 10 ms\n");
dev_close(dev);
return -1;
}
opt.threshold /= 10;
}
/* read-in command(s) to be monitored */
if (!strcmp(opt.command, "read")) {
command_mask = 0x1;
timing_mask = (opt.threshold << 24);
} else if (!strcmp(opt.command, "write")) {
command_mask = 0x2;
timing_mask = (opt.threshold << 16);
} else if (!strcmp(opt.command, "trim")) {
command_mask = 0x4;
timing_mask = (opt.threshold << 8);
} else if (strcmp(opt.command, "all")) {
printf("Invalid command %s specified for option %s\n",
opt.command, opt.option);
dev_close(dev);
return -1;
}
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = MICRON_FID_LATENCY_MONITOR,
.nsid = 0,
.cdw11 = enable,
.cdw12 = command_mask,
.save = 1,
.uuidx = 0,
.cdw13 = timing_mask,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (!err) {
printf("Successfully %sd latency monitoring for %s commands with %dms threshold\n",
opt.option, opt.command, !opt.threshold ? 800 : opt.threshold * 10);
} else {
printf("Failed to %s latency monitoring for %s commands with %dms threshold\n",
opt.option, opt.command, !opt.threshold ? 800 : opt.threshold * 10);
}
dev_close(dev);
return err;
}
static int micron_latency_stats_logs(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
#define LATENCY_LOG_ENTRIES 16
struct latency_log_entry {
uint64_t timestamp;
uint32_t latency;
uint32_t cmdtag;
union {
struct {
uint32_t opcode:8;
uint32_t fuse:2;
uint32_t rsvd1:4;
uint32_t psdt:2;
uint32_t cid:16;
};
uint32_t dw0;
};
uint32_t nsid;
uint32_t slba_low;
uint32_t slba_high;
union {
struct {
uint32_t nlb:16;
uint32_t rsvd2:9;
uint32_t deac:1;
uint32_t prinfo:4;
uint32_t fua:1;
uint32_t lr:1;
};
uint32_t dw12;
};
uint32_t dsm;
uint32_t rfu[6];
} log[LATENCY_LOG_ENTRIES];
enum eDriveModel model = UNKNOWN_MODEL;
struct nvme_dev *dev;
int err = -1;
const char *desc = "Display Latency tracking log information";
OPT_ARGS(opts) = {
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &model);
if (err)
return err;
memset(&log, 0, sizeof(log));
err = nvme_get_log_simple(dev_fd(dev), 0xD1, sizeof(log), &log);
if (err) {
if (err < 0)
printf("Unable to retrieve latency stats log the drive\n");
dev_close(dev);
return err;
}
/* print header and each log entry */
printf("Timestamp, Latency, CmdTag, Opcode, Fuse, Psdt, Cid, Nsid, Slba_L, Slba_H, Nlb, ");
printf("DEAC, PRINFO, FUA, LR\n");
for (int i = 0; i < LATENCY_LOG_ENTRIES; i++)
printf("%"PRIu64",%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u\n",
log[i].timestamp, log[i].latency, log[i].cmdtag, log[i].opcode,
log[i].fuse, log[i].psdt, log[i].cid, log[i].nsid,
log[i].slba_low, log[i].slba_high, log[i].nlb,
log[i].deac, log[i].prinfo, log[i].fua, log[i].lr);
printf("\n");
dev_close(dev);
return err;
}
static int micron_latency_stats_info(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "display command latency statistics";
const char *command = "command to display stats - all|read|write|trimdefault is all";
int err = 0;
struct nvme_dev *dev;
enum eDriveModel model = UNKNOWN_MODEL;
#define LATENCY_BUCKET_COUNT 32
#define LATENCY_BUCKET_RSVD 32
struct micron_latency_stats {
uint64_t version; /* major << 32 | minior */
uint64_t all_cmds[LATENCY_BUCKET_COUNT + LATENCY_BUCKET_RSVD];
uint64_t read_cmds[LATENCY_BUCKET_COUNT + LATENCY_BUCKET_RSVD];
uint64_t write_cmds[LATENCY_BUCKET_COUNT + LATENCY_BUCKET_RSVD];
uint64_t trim_cmds[LATENCY_BUCKET_COUNT + LATENCY_BUCKET_RSVD];
uint32_t reserved[255]; /* round up to 4K */
} log;
struct latency_thresholds {
uint32_t start;
uint32_t end;
char *unit;
} thresholds[LATENCY_BUCKET_COUNT] = {
{0, 50, "us"}, {50, 100, "us"}, {100, 150, "us"}, {150, 200, "us"},
{200, 300, "us"}, {300, 400, "us"}, {400, 500, "us"}, {500, 600, "us"},
{600, 700, "us"}, {700, 800, "us"}, {800, 900, "us"}, {900, 1000, "us"},
{1, 5, "ms"}, {5, 10, "ms"}, {10, 20, "ms"}, {20, 50, "ms"}, {50, 100, "ms"},
{100, 200, "ms"}, {200, 300, "ms"}, {300, 400, "ms"}, {400, 500, "ms"},
{500, 600, "ms"}, {600, 700, "ms"}, {700, 800, "ms"}, {800, 900, "ms"},
{900, 1000, "ms"}, {1, 2, "s"}, {2, 3, "s"}, {3, 4, "s"}, {4, 5, "s"},
{5, 8, "s"},
{8, INT_MAX, "s"},
};
struct {
char *command;
} opt = {
.command = "all"
};
uint64_t *cmd_stats = &log.all_cmds[0];
char *cmd_str = "All";
OPT_ARGS(opts) = {
OPT_STRING("command", 'c', "command", &opt.command, command),
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &model);
if (err < 0)
return err;
if (!strcmp(opt.command, "read")) {
cmd_stats = &log.read_cmds[0];
cmd_str = "Read";
} else if (!strcmp(opt.command, "write")) {
cmd_stats = &log.write_cmds[0];
cmd_str = "Write";
} else if (!strcmp(opt.command, "trim")) {
cmd_stats = &log.trim_cmds[0];
cmd_str = "Trim";
} else if (strcmp(opt.command, "all")) {
printf("Invalid command option %s to display latency stats\n", opt.command);
dev_close(dev);
return -1;
}
memset(&log, 0, sizeof(log));
err = nvme_get_log_simple(dev_fd(dev), 0xD0, sizeof(log), &log);
if (err) {
if (err < 0)
printf("Unable to retrieve latency stats log the drive\n");
dev_close(dev);
return err;
}
printf("Micron IO %s Command Latency Statistics\n"
"Major Revision : %d\nMinor Revision : %d\n",
cmd_str, (int)(log.version >> 32), (int)(log.version & 0xFFFFFFFF));
printf("=============================================\n");
printf("Bucket Start End Command Count\n");
printf("=============================================\n");
for (int b = 0; b < LATENCY_BUCKET_COUNT; b++) {
int bucket = b + 1;
char start[32] = { 0 };
char end[32] = { 0 };
sprintf(start, "%u%s", thresholds[b].start, thresholds[b].unit);
if (thresholds[b].end == INT_MAX)
sprintf(end, "INF");
else
sprintf(end, "%u%s", thresholds[b].end, thresholds[b].unit);
printf("%2d %8s %8s %8"PRIu64"\n", bucket, start, end, cmd_stats[b]);
}
dev_close(dev);
return err;
}
static int micron_ocp_smart_health_logs(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Retrieve Smart or Extended Smart Health log for the given device ";
unsigned int logC0[C0_log_size/sizeof(int)] = { 0 };
unsigned int logFB[FB_log_size/sizeof(int)] = { 0 };
struct nvme_id_ctrl ctrl;
enum eDriveModel eModel = UNKNOWN_MODEL;
struct nvme_dev *dev;
bool is_json = true;
struct format {
char *fmt;
};
const char *fmt = "output format normal|json";
struct format cfg = {
.fmt = "json",
};
int err = 0;
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &eModel);
if (err < 0)
return -1;
if (!strcmp(cfg.fmt, "normal"))
is_json = false;
/* For M5410 and M5407, this option prints 0xFB log page */
if (eModel == M5410 || eModel == M5407) {
__u8 spec = (eModel == M5410) ? 0 : 1;
__u8 nsze;
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (!err)
err = nvme_get_log_simple(dev_fd(dev), 0xFB, FB_log_size, logFB);
if (err) {
if (err < 0)
printf("Unable to retrieve smart log 0xFB for the drive\n");
goto out;
}
nsze = (ctrl.vs[987] == 0x12);
if (!nsze && nsze_from_oacs)
nsze = ((ctrl.oacs >> 3) & 0x1);
print_nand_stats_fb((__u8 *)logFB, NULL, nsze, is_json, spec);
goto out;
}
/* check for models that support 0xC0 log */
if (eModel != M51CX) {
printf("Unsupported drive model for vs-smart-add-log command\n");
err = -1;
goto out;
}
err = nvme_get_log_simple(dev_fd(dev), 0xC0, C0_log_size, logC0);
if (!err)
print_smart_cloud_health_log((__u8 *)logC0, is_json);
else if (err < 0)
printf("Unable to retrieve extended smart log 0xC0 for the drive\n");
out:
dev_close(dev);
if (err > 0)
nvme_show_status(err);
return err;
}
static int micron_clr_fw_activation_history(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
const char *desc = "Clear FW activation history";
__u32 result = 0;
__u8 fid = MICRON_FEATURE_CLEAR_FW_ACTIVATION_HISTORY;
enum eDriveModel model = UNKNOWN_MODEL;
struct nvme_dev *dev;
OPT_ARGS(opts) = {
OPT_END()
};
int err = 0;
err = micron_parse_options(&dev, argc, argv, desc, opts, &model);
if (err < 0)
return err;
if (model != M51CX) {
printf("This option is not supported for specified drive\n");
dev_close(dev);
return err;
}
err = nvme_set_features_simple(dev_fd(dev), fid, 1 << 31, 0, 0, &result);
if (!err)
err = (int)result;
else
printf("Failed to clear fw activation history, error = 0x%x\n", err);
dev_close(dev);
return err;
}
static int micron_telemetry_cntrl_option(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
int err = 0;
__u32 result = 0;
const char *desc = "Enable or Disable Controller telemetry log generation";
const char *option = "enable or disable or status";
const char *select =
"select/save values: enable/disable options1 - save (persistent), 0 - non-persistent and for status options: 0 - current, 1 - default, 2-saved";
int fid = MICRON_FEATURE_TELEMETRY_CONTROL_OPTION;
enum eDriveModel model = UNKNOWN_MODEL;
struct nvme_id_ctrl ctrl = { 0 };
struct nvme_dev *dev;
struct {
char *option;
int select;
} opt = {
.option = "disable",
.select = 0,
};
OPT_ARGS(opts) = {
OPT_STRING("option", 'o', "option", &opt.option, option),
OPT_UINT("select", 's', &opt.select, select),
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &model);
if (err < 0)
return -1;
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if ((ctrl.lpa & 0x8) != 0x8) {
printf("drive doesn't support host/controller generated telemetry logs\n");
dev_close(dev);
return err;
}
if (!strcmp(opt.option, "enable")) {
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = 1,
.cdw11 = 1,
.cdw12 = 0,
.save = (opt.select & 0x1),
.uuidx = 0,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (!err)
printf("successfully set controller telemetry option\n");
else
printf("Failed to set controller telemetry option\n");
} else if (!strcmp(opt.option, "disable")) {
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = 1,
.cdw11 = 0,
.cdw12 = 0,
.save = (opt.select & 0x1),
.uuidx = 0,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (!err)
printf("successfully disabled controller telemetry option\n");
else
printf("Failed to disable controller telemetry option\n");
} else if (!strcmp(opt.option, "status")) {
struct nvme_get_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = 1,
.sel = opt.select & 0x3,
.cdw11 = 0,
.uuidx = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_get_features(&args);
if (!err)
printf("Controller telemetry option : %s\n",
(result) ? "enabled" : "disabled");
else
printf("Failed to retrieve controller telemetry option\n");
} else {
printf("invalid option %s, valid values are enable,disable or status\n",
opt.option);
dev_close(dev);
return -1;
}
dev_close(dev);
return err;
}
/* M51XX models log page header */
struct micron_common_log_header {
uint8_t id;
uint8_t version;
uint16_t pn;
uint32_t log_size;
uint32_t max_size;
uint32_t write_pointer;
uint32_t next_pointer;
uint32_t overwritten_bytes;
uint8_t flags;
uint8_t reserved[7];
};
/* helper function to retrieve logs with specific offset and max chunk size */
int nvme_get_log_lpo(int fd, __u8 log_id, __u32 lpo, __u32 chunk,
__u32 data_len, void *data)
{
__u32 offset = lpo, xfer_len = data_len;
void *ptr = data;
struct nvme_get_log_args args = {
.lpo = offset,
.result = NULL,
.log = ptr,
.args_size = sizeof(args),
.fd = fd,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.lid = log_id,
.len = xfer_len,
.nsid = NVME_NSID_ALL,
.csi = NVME_CSI_NVM,
.lsi = NVME_LOG_LSI_NONE,
.lsp = NVME_LOG_LSP_NONE,
.uuidx = NVME_UUID_NONE,
.rae = false,
.ot = false,
};
int ret = 0;
/* divide data into multiple chunks */
do {
xfer_len = data_len - offset;
if (xfer_len > chunk)
xfer_len = chunk;
args.lpo = offset;
args.log = ptr;
args.len = xfer_len;
ret = nvme_get_log(&args);
if (ret)
return ret;
offset += xfer_len;
ptr += xfer_len;
} while (offset < data_len);
return ret;
}
/* retrieves logs with common log format */
static int get_common_log(int fd, uint8_t id, uint8_t **buf, int *size)
{
struct micron_common_log_header hdr = { 0 };
int log_size = sizeof(hdr), first = 0, second = 0;
uint8_t *buffer = NULL;
int ret = -1;
int chunk = 0x4000; /* max chunk size to be used for these logs */
ret = nvme_get_log_simple(fd, id, sizeof(hdr), &hdr);
if (ret) {
fprintf(stderr, "pull hdr failed for %u with error: 0x%x\n", id, ret);
return ret;
}
if (hdr.id != id || !hdr.log_size || !hdr.max_size ||
hdr.write_pointer < sizeof(hdr)) {
fprintf(stderr,
"invalid log data for LOG: 0x%X, id: 0x%X, size: %u, max: %u, wp: %u, flags: %u, np: %u\n",
id, hdr.id, hdr.log_size, hdr.max_size, hdr.write_pointer, hdr.flags,
hdr.next_pointer);
return 1;
}
/*
* we may have just 32-bytes for some models; write to wfile if log hasn't
* yet reached its max size
*/
if (hdr.log_size == sizeof(hdr)) {
buffer = (uint8_t *)malloc(sizeof(hdr));
if (!buffer) {
fprintf(stderr, "malloc of %zu bytes failed for log: 0x%X\n",
sizeof(hdr), id);
return -ENOMEM;
}
memcpy(buffer, (uint8_t *)&hdr, sizeof(hdr));
} else if (hdr.log_size < hdr.max_size) {
buffer = (uint8_t *)malloc(sizeof(hdr) + hdr.log_size);
if (!buffer) {
fprintf(stderr, "malloc of %zu bytes failed for log: 0x%X\n",
hdr.log_size + sizeof(hdr), id);
return -ENOMEM;
}
memcpy(buffer, &hdr, sizeof(hdr));
ret = nvme_get_log_lpo(fd, id, sizeof(hdr), chunk, hdr.log_size,
buffer + sizeof(hdr));
if (!ret)
log_size += hdr.log_size;
} else if (hdr.log_size >= hdr.max_size) {
/*
* reached maximum, to maintain, sequence we need to depend on write
* pointer to detect wrap-overs. FW doesn't yet implement the condition
* hdr.log_size > hdr.max_size; also ignore over-written log data; we
* also ignore collisions for now
*/
buffer = (uint8_t *)malloc(hdr.max_size + sizeof(hdr));
if (!buffer) {
fprintf(stderr, "malloc of %zu bytes failed for log: 0x%X\n",
hdr.max_size + sizeof(hdr), id);
return -ENOMEM;
}
memcpy(buffer, &hdr, sizeof(hdr));
first = hdr.max_size - hdr.write_pointer;
second = hdr.write_pointer - sizeof(hdr);
if (first) {
ret = nvme_get_log_lpo(fd, id, hdr.write_pointer, chunk, first,
buffer + sizeof(hdr));
if (ret) {
free(buffer);
fprintf(stderr, "failed to get log: 0x%X\n", id);
return ret;
}
log_size += first;
}
if (second) {
ret = nvme_get_log_lpo(fd, id, sizeof(hdr), chunk, second,
buffer + sizeof(hdr) + first);
if (ret) {
fprintf(stderr, "failed to get log: 0x%X\n", id);
free(buffer);
return ret;
}
log_size += second;
}
}
*buf = buffer;
*size = log_size;
return ret;
}
static int micron_internal_logs(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
int err = -EINVAL;
int ctrlIdx, telemetry_option = 0;
char strOSDirName[1024];
char strCtrlDirName[1024];
char strMainDirName[256];
unsigned int *puiIDDBuf;
unsigned int uiMask;
struct nvme_id_ctrl ctrl;
char sn[20] = { 0 };
char msg[256] = { 0 };
int c_logs_index = 8; /* should be current size of aVendorLogs */
struct nvme_dev *dev;
struct {
unsigned char ucLogPage;
const char *strFileName;
int nLogSize;
int nMaxSize;
} aVendorLogs[32] = {
{ 0x03, "firmware_slot_info_log.bin", 512, 0 },
{ 0xC1, "nvmelog_C1.bin", 0, 0 },
{ 0xC2, "nvmelog_C2.bin", 0, 0 },
{ 0xC4, "nvmelog_C4.bin", 0, 0 },
{ 0xC5, "nvmelog_C5.bin", C5_log_size, 0 },
{ 0xD0, "nvmelog_D0.bin", D0_log_size, 0 },
{ 0xE6, "nvmelog_E6.bin", 0, 0 },
{ 0xE7, "nvmelog_E7.bin", 0, 0 }
},
aM51XXLogs[] = {
{ 0xFB, "nvmelog_FB.bin", 4096, 0 }, /* this should be collected first for M51AX */
{ 0xD0, "nvmelog_D0.bin", 512, 0 },
{ 0x03, "firmware_slot_info_log.bin", 512, 0},
{ 0xF7, "nvmelog_F7.bin", 4096, 512 * 1024 },
{ 0xF8, "nvmelog_F8.bin", 4096, 512 * 1024 },
{ 0xF9, "nvmelog_F9.bin", 4096, 200 * 1024 * 1024 },
{ 0xFC, "nvmelog_FC.bin", 4096, 200 * 1024 * 1024 },
{ 0xFD, "nvmelog_FD.bin", 4096, 80 * 1024 * 1024 }
},
aM51AXLogs[] = {
{ 0xCA, "nvmelog_CA.bin", 512, 0 },
{ 0xFA, "nvmelog_FA.bin", 4096, 15232 },
{ 0xF6, "nvmelog_F6.bin", 4096, 512 * 1024 },
{ 0xFE, "nvmelog_FE.bin", 4096, 512 * 1024 },
{ 0xFF, "nvmelog_FF.bin", 4096, 162 * 1024 },
{ 0x04, "changed_namespace_log.bin", 4096, 0 },
{ 0x05, "command_effects_log.bin", 4096, 0 },
{ 0x06, "drive_self_test.bin", 4096, 0 }
},
aM51BXLogs[] = {
{ 0xFA, "nvmelog_FA.bin", 4096, 16376 },
{ 0xFE, "nvmelog_FE.bin", 4096, 256 * 1024 },
{ 0xFF, "nvmelog_FF.bin", 4096, 64 * 1024 },
{ 0xCA, "nvmelog_CA.bin", 512, 1024 }
},
aM51CXLogs[] = {
{ 0xE1, "nvmelog_E1.bin", 0, 0 },
{ 0xE2, "nvmelog_E2.bin", 0, 0 },
{ 0xE3, "nvmelog_E3.bin", 0, 0 },
{ 0xE4, "nvmelog_E4.bin", 0, 0 },
{ 0xE5, "nvmelog_E5.bin", 0, 0 },
{ 0xE8, "nvmelog_E8.bin", 0, 0 },
{ 0xE9, "nvmelog_E9.bin", 0, 0 },
{ 0xEA, "nvmelog_EA.bin", 0, 0 },
};
enum eDriveModel eModel;
const char *desc = "This retrieves the micron debug log package";
const char *package = "Log output data file name (required)";
const char *type = "telemetry log type - host or controller";
const char *data_area = "telemetry log data area 1, 2 or 3";
unsigned char *dataBuffer = NULL;
int bSize = 0;
int maxSize = 0;
struct config {
char *type;
char *package;
int data_area;
int log;
};
struct config cfg = {
.type = "",
.package = "",
.data_area = -1,
.log = 0x07,
};
OPT_ARGS(opts) = {
OPT_STRING("type", 't', "log type", &cfg.type, type),
OPT_STRING("package", 'p', "FILE", &cfg.package, package),
OPT_UINT("data_area", 'd', &cfg.data_area, data_area),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
/* if telemetry type is specified, check for data area */
if (strlen(cfg.type)) {
if (!strcmp(cfg.type, "controller")) {
cfg.log = 0x08;
} else if (strcmp(cfg.type, "host")) {
printf("telemetry type (host or controller) should be specified i.e. -t=host\n");
goto out;
}
if (cfg.data_area <= 0 || cfg.data_area > 3) {
printf("data area must be selected using -d option ie --d=1,2,3\n");
goto out;
}
telemetry_option = 1;
} else if (cfg.data_area > 0) {
printf("data area option is valid only for telemetry option (i.e --type=host|controller)\n");
goto out;
}
if (!strlen(cfg.package)) {
if (telemetry_option)
printf("Log data file must be specified. ie -p=logfile.bin\n");
else
printf("Log data file must be specified. ie -p=logfile.zip or -p=logfile.tgz|logfile.tar.gz\n");
goto out;
}
/* pull log details based on the model name */
if (sscanf(argv[optind], "/dev/nvme%d", &ctrlIdx) != 1)
ctrlIdx = 0;
eModel = GetDriveModel(ctrlIdx);
if (eModel == UNKNOWN_MODEL) {
printf("Unsupported drive model for vs-internal-log collection\n");
goto out;
}
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (err)
goto out;
err = -EINVAL;
if (telemetry_option) {
if ((ctrl.lpa & 0x8) != 0x8) {
printf("telemetry option is not supported for specified drive\n");
goto out;
}
int logSize = 0; __u8 *buffer = NULL; const char *dir = ".";
err = micron_telemetry_log(dev_fd(dev), cfg.log, &buffer, &logSize,
cfg.data_area);
if (!err && logSize > 0 && buffer) {
sprintf(msg, "telemetry log: 0x%X", cfg.log);
WriteData(buffer, logSize, dir, cfg.package, msg);
free(buffer);
}
goto out;
}
printf("Preparing log package. This will take a few seconds...\n");
/* trim spaces out of serial number string */
int i, j = 0;
for (i = 0; i < sizeof(ctrl.sn); i++) {
if (isblank((int)ctrl.sn[i]))
continue;
sn[j++] = ctrl.sn[i];
}
sn[j] = '\0';
strcpy(ctrl.sn, sn);
SetupDebugDataDirectories(ctrl.sn, cfg.package, strMainDirName, strOSDirName, strCtrlDirName);
GetTimestampInfo(strOSDirName);
GetCtrlIDDInfo(strCtrlDirName, &ctrl);
GetOSConfig(strOSDirName);
GetDriveInfo(strOSDirName, ctrlIdx, &ctrl);
for (int i = 1; i <= ctrl.nn; i++)
GetNSIDDInfo(dev_fd(dev), strCtrlDirName, i);
GetSmartlogData(dev_fd(dev), strCtrlDirName);
GetErrorlogData(dev_fd(dev), ctrl.elpe, strCtrlDirName);
GetGenericLogs(dev_fd(dev), strCtrlDirName);
/* pull if telemetry log data is supported */
if ((ctrl.lpa & 0x8) == 0x8)
GetTelemetryData(dev_fd(dev), strCtrlDirName);
GetFeatureSettings(dev_fd(dev), strCtrlDirName);
if (eModel != M5410 && eModel != M5407) {
memcpy(&aVendorLogs[c_logs_index], aM51XXLogs, sizeof(aM51XXLogs));
c_logs_index += ARRAY_SIZE(aM51XXLogs);
if (eModel == M51AX)
memcpy((char *)&aVendorLogs[c_logs_index], aM51AXLogs, sizeof(aM51AXLogs));
else if (eModel == M51BX)
memcpy((char *)&aVendorLogs[c_logs_index], aM51BXLogs, sizeof(aM51BXLogs));
else if (eModel == M51CX)
memcpy((char *)&aVendorLogs[c_logs_index], aM51CXLogs, sizeof(aM51CXLogs));
}
for (int i = 0; i < (int)(ARRAY_SIZE(aVendorLogs)) && aVendorLogs[i].ucLogPage; i++) {
err = -1;
switch (aVendorLogs[i].ucLogPage) {
case 0xE1:
case 0xE5:
case 0xE9:
err = 1;
break;
case 0xE2:
case 0xE3:
case 0xE4:
case 0xE8:
case 0xEA:
err = get_common_log(dev_fd(dev), aVendorLogs[i].ucLogPage,
&dataBuffer, &bSize);
break;
case 0xC1:
case 0xC2:
case 0xC4:
err = GetLogPageSize(dev_fd(dev), aVendorLogs[i].ucLogPage,
&bSize);
if (!err && bSize > 0)
err = GetCommonLogPage(dev_fd(dev), aVendorLogs[i].ucLogPage,
&dataBuffer, bSize);
break;
case 0xE6:
case 0xE7:
puiIDDBuf = (unsigned int *)&ctrl;
uiMask = puiIDDBuf[1015];
if (!uiMask || (aVendorLogs[i].ucLogPage == 0xE6 && uiMask == 2) ||
(aVendorLogs[i].ucLogPage == 0xE7 && uiMask == 1)) {
bSize = 0;
} else {
bSize = (int)puiIDDBuf[1023];
if (bSize % (16 * 1024))
bSize += (16 * 1024) - (bSize % (16 * 1024));
}
dataBuffer = (unsigned char *)malloc(bSize);
if (bSize && dataBuffer) {
memset(dataBuffer, 0, bSize);
if (eModel == M5410 || eModel == M5407)
err = NVMEGetLogPage(dev_fd(dev),
aVendorLogs[i].ucLogPage, dataBuffer,
bSize);
else
err = nvme_get_log_simple(dev_fd(dev),
aVendorLogs[i].ucLogPage,
bSize, dataBuffer);
}
break;
case 0xF7:
case 0xF9:
case 0xFC:
case 0xFD:
if (eModel == M51BX)
(void)NVMEResetLog(dev_fd(dev), aVendorLogs[i].ucLogPage,
aVendorLogs[i].nLogSize, aVendorLogs[i].nMaxSize);
fallthrough;
default:
bSize = aVendorLogs[i].nLogSize;
dataBuffer = (unsigned char *)malloc(bSize);
if (!dataBuffer)
break;
memset(dataBuffer, 0, bSize);
err = nvme_get_log_simple(dev_fd(dev), aVendorLogs[i].ucLogPage,
bSize, dataBuffer);
maxSize = aVendorLogs[i].nMaxSize - bSize;
while (!err && maxSize > 0 && ((unsigned int *)dataBuffer)[0] != 0xdeadbeef) {
sprintf(msg, "log 0x%x", aVendorLogs[i].ucLogPage);
WriteData(dataBuffer, bSize, strCtrlDirName, aVendorLogs[i].strFileName, msg);
err = nvme_get_log_simple(dev_fd(dev),
aVendorLogs[i].ucLogPage,
bSize, dataBuffer);
if (err || (((unsigned int *)dataBuffer)[0] == 0xdeadbeef))
break;
maxSize -= bSize;
}
break;
}
if (!err && dataBuffer && ((unsigned int *)dataBuffer)[0] != 0xdeadbeef) {
sprintf(msg, "log 0x%x", aVendorLogs[i].ucLogPage);
WriteData(dataBuffer, bSize, strCtrlDirName, aVendorLogs[i].strFileName, msg);
}
if (dataBuffer) {
free(dataBuffer);
dataBuffer = NULL;
}
}
err = ZipAndRemoveDir(strMainDirName, cfg.package);
out:
dev_close(dev);
return err;
}
#define MIN_LOG_SIZE 512
static int micron_logpage_dir(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
int err = -1;
const char *desc = "List the supported log pages";
enum eDriveModel model = UNKNOWN_MODEL;
char logbuf[MIN_LOG_SIZE];
struct nvme_dev *dev;
int i;
OPT_ARGS(opts) = {
OPT_END()
};
err = micron_parse_options(&dev, argc, argv, desc, opts, &model);
if (err < 0)
return err;
struct nvme_supported_logs {
uint8_t log_id;
uint8_t supported;
char *desc;
} log_list[] = {
{0x00, 0, "Support Log Pages"},
{0x01, 0, "Error Information"},
{0x02, 0, "SMART / Health Information"},
{0x03, 0, "Firmware Slot Information"},
{0x04, 0, "Changed Namespace List"},
{0x05, 0, "Commands Supported and Effects"},
{0x06, 0, "Device Self Test"},
{0x07, 0, "Telemetry Host-Initiated"},
{0x08, 0, "Telemetry Controller-Initiated"},
{0x09, 0, "Endurance Group Information"},
{0x0A, 0, "Predictable Latency Per NVM Set"},
{0x0B, 0, "Predictable Latency Event Aggregate"},
{0x0C, 0, "Asymmetric Namespace Access"},
{0x0D, 0, "Persistent Event Log"},
{0x0E, 0, "Predictable Latency Event Aggregate"},
{0x0F, 0, "Endurance Group Event Aggregate"},
{0x10, 0, "Media Unit Status"},
{0x11, 0, "Supported Capacity Configuration List"},
{0x12, 0, "Feature Identifiers Supported and Effects"},
{0x13, 0, "NVMe-MI Commands Supported and Effects"},
{0x14, 0, "Command and Feature lockdown"},
{0x15, 0, "Boot Partition"},
{0x16, 0, "Rotational Media Information"},
{0x70, 0, "Discovery"},
{0x80, 0, "Reservation Notification"},
{0x81, 0, "Sanitize Status"},
{0xC0, 0, "SMART Cloud Health Log"},
{0xC2, 0, "Firmware Activation History"},
{0xC3, 0, "Latency Monitor Log"},
};
printf("Supported log page list\nLog ID : Description\n");
for (i = 0; i < ARRAY_SIZE(log_list); i++) {
err = nvme_get_log_simple(dev_fd(dev), log_list[i].log_id,
MIN_LOG_SIZE, &logbuf[0]);
if (err)
continue;
printf("%02Xh : %s\n", log_list[i].log_id, log_list[i].desc);
}
return err;
}