1
0
Fork 0
nvme-cli/plugins/intel/intel-nvme.c

1317 lines
36 KiB
C
Raw Normal View History

#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <inttypes.h>
#include "linux/nvme_ioctl.h"
#include "common.h"
#include "nvme.h"
#include "nvme-print.h"
#include "nvme-ioctl.h"
#include "json.h"
#include "plugin.h"
#include "argconfig.h"
#include "suffix.h"
#define CREATE_CMD
#include "intel-nvme.h"
struct __attribute__((packed)) nvme_additional_smart_log_item {
__u8 key;
__u8 _kp[2];
__u8 norm;
__u8 _np;
union __attribute__((packed)) {
__u8 raw[6];
struct __attribute__((packed)) wear_level {
__le16 min;
__le16 max;
__le16 avg;
} wear_level;
struct __attribute__((packed)) thermal_throttle {
__u8 pct;
__u32 count;
} thermal_throttle;
} ;
__u8 _rp;
} ;
struct nvme_additional_smart_log {
struct nvme_additional_smart_log_item program_fail_cnt;
struct nvme_additional_smart_log_item erase_fail_cnt;
struct nvme_additional_smart_log_item wear_leveling_cnt;
struct nvme_additional_smart_log_item e2e_err_cnt;
struct nvme_additional_smart_log_item crc_err_cnt;
struct nvme_additional_smart_log_item timed_workload_media_wear;
struct nvme_additional_smart_log_item timed_workload_host_reads;
struct nvme_additional_smart_log_item timed_workload_timer;
struct nvme_additional_smart_log_item thermal_throttle_status;
struct nvme_additional_smart_log_item retry_buffer_overflow_cnt;
struct nvme_additional_smart_log_item pll_lock_loss_cnt;
struct nvme_additional_smart_log_item nand_bytes_written;
struct nvme_additional_smart_log_item host_bytes_written;
};
struct nvme_vu_id_ctrl_field { /* CDR MR5 */
__u8 rsvd1[3];
__u8 ss;
__u8 health[20];
__u8 cls;
__u8 nlw;
__u8 scap;
__u8 sstat;
__u8 bl[8];
__u8 rsvd2[38];
__u8 ww[8]; /* little endian */
__u8 mic_bl[4];
__u8 mic_fw[4];
};
static void json_intel_id_ctrl(struct nvme_vu_id_ctrl_field *id,
char *health, char *bl, char *ww, char *mic_bl, char *mic_fw,
struct json_object *root)
{
json_object_add_value_int(root, "ss", id->ss);
json_object_add_value_string(root, "health", health );
json_object_add_value_int(root, "cls", id->cls);
json_object_add_value_int(root, "nlw", id->nlw);
json_object_add_value_int(root, "scap", id->scap);
json_object_add_value_int(root, "sstat", id->sstat);
json_object_add_value_string(root, "bl", bl);
json_object_add_value_string(root, "ww", ww);
json_object_add_value_string(root, "mic_bl", mic_bl);
json_object_add_value_string(root, "mic_fw", mic_fw);
}
static void intel_id_ctrl(__u8 *vs, struct json_object *root)
{
struct nvme_vu_id_ctrl_field* id = (struct nvme_vu_id_ctrl_field *)vs;
char health[21] = { 0 };
char bl[9] = { 0 };
char ww[19] = { 0 };
char mic_bl[5] = { 0 };
char mic_fw[5] = { 0 };
if (id->health[0]==0)
{
snprintf(health, 21, "%s", "healthy");
}
else
{
snprintf(health, 21, "%s", id->health);
}
snprintf(bl, 9, "%s", id->bl);
snprintf(ww, 19, "%02X%02X%02X%02X%02X%02X%02X%02X", id->ww[7],
id->ww[6], id->ww[5], id->ww[4], id->ww[3], id->ww[2],
id->ww[1], id->ww[0]);
snprintf(mic_bl, 5, "%s", id->mic_bl);
snprintf(mic_fw, 5, "%s", id->mic_fw);
if (root) {
json_intel_id_ctrl(id, health, bl, ww, mic_bl, mic_fw, root);
return;
}
printf("ss : %d\n", id->ss);
printf("health : %s\n", health);
printf("cls : %d\n", id->cls);
printf("nlw : %d\n", id->nlw);
printf("scap : %d\n", id->scap);
printf("sstat : %d\n", id->sstat);
printf("bl : %s\n", bl);
printf("ww : %s\n", ww);
printf("mic_bl : %s\n", mic_bl);
printf("mic_fw : %s\n", mic_fw);
}
static int id_ctrl(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
return __id_ctrl(argc, argv, cmd, plugin, intel_id_ctrl);
}
static void show_intel_smart_log_jsn(struct nvme_additional_smart_log *smart,
unsigned int nsid, const char *devname)
{
struct json_object *root, *entry_stats, *dev_stats, *multi;
root = json_create_object();
json_object_add_value_string(root, "Intel Smart log", devname);
dev_stats = json_create_object();
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->program_fail_cnt.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->program_fail_cnt.raw));
json_object_add_value_object(dev_stats, "program_fail_count", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->erase_fail_cnt.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->erase_fail_cnt.raw));
json_object_add_value_object(dev_stats, "erase_fail_count", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->wear_leveling_cnt.norm);
multi = json_create_object();
json_object_add_value_int(multi, "min", le16_to_cpu(smart->wear_leveling_cnt.wear_level.min));
json_object_add_value_int(multi, "max", le16_to_cpu(smart->wear_leveling_cnt.wear_level.max));
json_object_add_value_int(multi, "avg", le16_to_cpu(smart->wear_leveling_cnt.wear_level.avg));
json_object_add_value_object(entry_stats, "raw", multi);
json_object_add_value_object(dev_stats, "wear_leveling", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->e2e_err_cnt.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->e2e_err_cnt.raw));
json_object_add_value_object(dev_stats, "end_to_end_error_detection_count", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->crc_err_cnt.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->crc_err_cnt.raw));
json_object_add_value_object(dev_stats, "crc_error_count", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->timed_workload_media_wear.norm);
json_object_add_value_float(entry_stats, "raw", ((long double)int48_to_long(smart->timed_workload_media_wear.raw)) / 1024);
json_object_add_value_object(dev_stats, "timed_workload_media_wear", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->timed_workload_host_reads.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->timed_workload_host_reads.raw));
json_object_add_value_object(dev_stats, "timed_workload_host_reads", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->timed_workload_timer.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->timed_workload_timer.raw));
json_object_add_value_object(dev_stats, "timed_workload_timer", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->thermal_throttle_status.norm);
multi = json_create_object();
json_object_add_value_int(multi, "pct", smart->thermal_throttle_status.thermal_throttle.pct);
json_object_add_value_int(multi, "cnt", smart->thermal_throttle_status.thermal_throttle.count);
json_object_add_value_object(entry_stats, "raw", multi);
json_object_add_value_object(dev_stats, "thermal_throttle_status", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->retry_buffer_overflow_cnt.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->retry_buffer_overflow_cnt.raw));
json_object_add_value_object(dev_stats, "retry_buffer_overflow_count", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->pll_lock_loss_cnt.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->pll_lock_loss_cnt.raw));
json_object_add_value_object(dev_stats, "pll_lock_loss_count", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->nand_bytes_written.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->nand_bytes_written.raw));
json_object_add_value_object(dev_stats, "nand_bytes_written", entry_stats);
entry_stats = json_create_object();
json_object_add_value_int(entry_stats, "normalized", smart->host_bytes_written.norm);
json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->host_bytes_written.raw));
json_object_add_value_object(dev_stats, "host_bytes_written", entry_stats);
json_object_add_value_object(root, "Device stats", dev_stats);
json_print_object(root, NULL);
json_free_object(root);
}
static void show_intel_smart_log(struct nvme_additional_smart_log *smart,
unsigned int nsid, const char *devname)
{
printf("Additional Smart Log for NVME device:%s namespace-id:%x\n",
devname, nsid);
printf("key normalized raw\n");
printf("program_fail_count : %3d%% %"PRIu64"\n",
smart->program_fail_cnt.norm,
int48_to_long(smart->program_fail_cnt.raw));
printf("erase_fail_count : %3d%% %"PRIu64"\n",
smart->erase_fail_cnt.norm,
int48_to_long(smart->erase_fail_cnt.raw));
printf("wear_leveling : %3d%% min: %u, max: %u, avg: %u\n",
smart->wear_leveling_cnt.norm,
le16_to_cpu(smart->wear_leveling_cnt.wear_level.min),
le16_to_cpu(smart->wear_leveling_cnt.wear_level.max),
le16_to_cpu(smart->wear_leveling_cnt.wear_level.avg));
printf("end_to_end_error_detection_count: %3d%% %"PRIu64"\n",
smart->e2e_err_cnt.norm,
int48_to_long(smart->e2e_err_cnt.raw));
printf("crc_error_count : %3d%% %"PRIu64"\n",
smart->crc_err_cnt.norm,
int48_to_long(smart->crc_err_cnt.raw));
printf("timed_workload_media_wear : %3d%% %.3f%%\n",
smart->timed_workload_media_wear.norm,
((float)int48_to_long(smart->timed_workload_media_wear.raw)) / 1024);
printf("timed_workload_host_reads : %3d%% %"PRIu64"%%\n",
smart->timed_workload_host_reads.norm,
int48_to_long(smart->timed_workload_host_reads.raw));
printf("timed_workload_timer : %3d%% %"PRIu64" min\n",
smart->timed_workload_timer.norm,
int48_to_long(smart->timed_workload_timer.raw));
printf("thermal_throttle_status : %3d%% %u%%, cnt: %u\n",
smart->thermal_throttle_status.norm,
smart->thermal_throttle_status.thermal_throttle.pct,
smart->thermal_throttle_status.thermal_throttle.count);
printf("retry_buffer_overflow_count : %3d%% %"PRIu64"\n",
smart->retry_buffer_overflow_cnt.norm,
int48_to_long(smart->retry_buffer_overflow_cnt.raw));
printf("pll_lock_loss_count : %3d%% %"PRIu64"\n",
smart->pll_lock_loss_cnt.norm,
int48_to_long(smart->pll_lock_loss_cnt.raw));
printf("nand_bytes_written : %3d%% sectors: %"PRIu64"\n",
smart->nand_bytes_written.norm,
int48_to_long(smart->nand_bytes_written.raw));
printf("host_bytes_written : %3d%% sectors: %"PRIu64"\n",
smart->host_bytes_written.norm,
int48_to_long(smart->host_bytes_written.raw));
}
static int get_additional_smart_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc = "Get Intel vendor specific additional smart log (optionally, "\
"for the specified namespace), and show it.";
const char *namespace = "(optional) desired namespace";
const char *raw = "Dump output in binary format";
const char *json= "Dump output in json format";
struct nvme_additional_smart_log smart_log;
int err, fd;
struct config {
__u32 namespace_id;
int raw_binary;
int json;
};
struct config cfg = {
.namespace_id = NVME_NSID_ALL,
};
OPT_ARGS(opts) = {
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace),
OPT_FLAG("raw-binary", 'b', &cfg.raw_binary, raw),
OPT_FLAG("json", 'j', &cfg.json, json),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
err = nvme_get_log(fd, cfg.namespace_id, 0xca, false,
sizeof(smart_log), &smart_log);
if (!err) {
if (cfg.json)
show_intel_smart_log_jsn(&smart_log, cfg.namespace_id, devicename);
else if (!cfg.raw_binary)
show_intel_smart_log(&smart_log, cfg.namespace_id, devicename);
else
d_raw((unsigned char *)&smart_log, sizeof(smart_log));
}
else if (err > 0)
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(err), err);
return err;
}
static int get_market_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc = "Get Intel Marketing Name log and show it.";
const char *raw = "dump output in binary format";
char log[512];
int err, fd;
struct config {
int raw_binary;
};
struct config cfg = {
};
OPT_ARGS(opts) = {
OPT_FLAG("raw-binary", 'b', &cfg.raw_binary, raw),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
err = nvme_get_log(fd, NVME_NSID_ALL, 0xdd, false,
sizeof(log), log);
if (!err) {
if (!cfg.raw_binary)
printf("Intel Marketing Name Log:\n%s\n", log);
else
d_raw((unsigned char *)&log, sizeof(log));
} else if (err > 0)
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(err), err);
return err;
}
struct intel_temp_stats {
__le64 curr;
__le64 last_overtemp;
__le64 life_overtemp;
__le64 highest_temp;
__le64 lowest_temp;
__u8 rsvd[40];
__le64 max_operating_temp;
__le64 min_operating_temp;
__le64 est_offset;
};
static void show_temp_stats(struct intel_temp_stats *stats)
{
printf(" Intel Temperature Statistics\n");
printf("--------------------------------\n");
printf("Current temperature : %"PRIu64"\n", le64_to_cpu(stats->curr));
printf("Last critical overtemp flag : %"PRIu64"\n", le64_to_cpu(stats->last_overtemp));
printf("Life critical overtemp flag : %"PRIu64"\n", le64_to_cpu(stats->life_overtemp));
printf("Highest temperature : %"PRIu64"\n", le64_to_cpu(stats->highest_temp));
printf("Lowest temperature : %"PRIu64"\n", le64_to_cpu(stats->lowest_temp));
printf("Max operating temperature : %"PRIu64"\n", le64_to_cpu(stats->max_operating_temp));
printf("Min operating temperature : %"PRIu64"\n", le64_to_cpu(stats->min_operating_temp));
printf("Estimated offset : %"PRIu64"\n", le64_to_cpu(stats->est_offset));
}
static int get_temp_stats_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
struct intel_temp_stats stats;
int err, fd;
const char *desc = "Get Intel Marketing Name log and show it.";
const char *raw = "dump output in binary format";
struct config {
int raw_binary;
};
struct config cfg = {
};
OPT_ARGS(opts) = {
OPT_FLAG("raw-binary", 'b', &cfg.raw_binary, raw),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
err = nvme_get_log(fd, NVME_NSID_ALL, 0xc5, false,
sizeof(stats), &stats);
if (!err) {
if (!cfg.raw_binary)
show_temp_stats(&stats);
else
d_raw((unsigned char *)&stats, sizeof(stats));
} else if (err > 0)
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(err), err);
return err;
}
struct intel_lat_stats {
__u16 maj;
__u16 min;
__u32 data[1216];
};
enum FormatUnit {
US,
MS,
S
};
/*
* COL_WIDTH controls width of columns in human-readable output.
* BUFSIZE is for local temp char[]
* US_IN_S and US_IN_MS are for unit conversions when printing.
*/
#define COL_WIDTH 12
#define BUFSIZE 10
#define US_IN_S 1000000
#define US_IN_MS 1000
static const enum FormatUnit get_seconds_magnitude(__u32 microseconds)
{
if (microseconds > US_IN_S)
return S;
else if (microseconds > US_IN_MS)
return MS;
else
return US;
}
static const float convert_seconds(__u32 microseconds)
{
float divisor = 1.0;
if (microseconds > US_IN_S)
divisor = US_IN_S;
else if (microseconds > US_IN_MS)
divisor = US_IN_MS;
return microseconds / divisor;
}
/*
* For control over whether a string will format to +/-INF or
* print out ####.##US normally.
*/
enum inf_bound_type {
NEGINF,
POSINF,
NOINF
};
/*
* Edge buckets may have range [#s, inf) or (-inf, #US] in some
* latency statistics formats.
* Passing in NEGINF to POSINF to bound_type overrides the string to
* either of "-INF" or "+INF", respectively.
*/
static void set_unit_string(char *buffer, __u32 microseconds,
enum FormatUnit unit, enum inf_bound_type bound_type)
{
if (bound_type != NOINF) {
snprintf(buffer, 5, "%s", bound_type ? "+INF" : "-INF");
return;
}
char *string;
switch (unit) {
case US:
string = "us";
break;
case MS:
string = "ms";
break;
case S:
string = "s";
break;
default:
string = "_s";
break;
}
snprintf(buffer, 11, "%4.2f%s",
convert_seconds(microseconds), string);
}
static void init_buffer(char *buffer, size_t size)
{
size_t i;
for (i = 0; i < size; i++)
buffer[i] = i + '0';
}
static void show_lat_stats_bucket(struct intel_lat_stats *stats,
__u32 lower_us, enum inf_bound_type start_type,
__u32 upper_us, enum inf_bound_type end_type, int i)
{
enum FormatUnit fu = S;
char buffer[BUFSIZE];
init_buffer(buffer, BUFSIZE);
printf("%-*d", COL_WIDTH, i);
fu = get_seconds_magnitude(lower_us);
set_unit_string(buffer, lower_us, fu, start_type);
printf("%-*s", COL_WIDTH, buffer);
fu = get_seconds_magnitude(upper_us);
set_unit_string(buffer, upper_us, fu, end_type);
printf("%-*s", COL_WIDTH, buffer);
printf("%-*d\n", COL_WIDTH, stats->data[i]);
}
static void show_lat_stats_linear(struct intel_lat_stats *stats,
__u32 start_offset, __u32 end_offset, __u32 bytes_per,
__u32 us_step, bool nonzero_print)
{
for (int i = (start_offset / bytes_per) - 1;
i < end_offset / bytes_per; i++) {
if (nonzero_print && stats->data[i] == 0)
continue;
show_lat_stats_bucket(stats, us_step * i, NOINF,
us_step * (i + 1), NOINF, i);
}
}
/*
* For 4.0-4.5 revision.
*/
static int lat_stats_log_scale(int i)
{
static const int LATENCY_STATS_V4_BASE_BITS = 6;
static const int LATENCY_STATS_V4_BASE_VAL = (
1 << LATENCY_STATS_V4_BASE_BITS);
// if (i < 128)
if (i < (LATENCY_STATS_V4_BASE_VAL << 1))
return i;
int error_bits = (i >> LATENCY_STATS_V4_BASE_BITS) - 1;
int base = 1 << (error_bits + LATENCY_STATS_V4_BASE_BITS);
int k = i % LATENCY_STATS_V4_BASE_VAL;
return base + ((k + 0.5) * (1 << error_bits));
}
/*
* Creates a subroot in the following manner:
* {
* "latstats" : {
* "type" : "write" or "read",
* "values" : {
*/
static void lat_stats_make_json_root(
struct json_object *root, struct json_object *bucket_list,
int write)
{
struct json_object *subroot = json_create_object();
json_object_add_value_object(root, "latstats", subroot);
json_object_add_value_string(subroot, "type", write ? "write" : "read");
json_object_add_value_object(subroot, "values", bucket_list);
}
/*
* Creates a bucket under the "values" json_object. Format is:
* "values" : {
* "bucket" : {
* "id" : #,
* "start" : string,
* "end" : string,
* "value" : 0,
* },
*/
static void json_add_bucket(struct intel_lat_stats *stats,
struct json_object *bucket_list, __u32 id,
__u32 lower_us, enum inf_bound_type start_type,
__u32 upper_us, enum inf_bound_type end_type, __u32 val)
{
char buffer[BUFSIZE];
struct json_object *bucket = json_create_object();
init_buffer(buffer, BUFSIZE);
json_object_add_value_object(bucket_list,
"bucket", bucket);
json_object_add_value_int(bucket, "id", id);
set_unit_string(buffer, lower_us,
get_seconds_magnitude(lower_us), start_type);
json_object_add_value_string(bucket, "start", buffer);
set_unit_string(buffer, upper_us,
get_seconds_magnitude(upper_us), end_type);
json_object_add_value_string(bucket, "end", buffer);
json_object_add_value_int(bucket, "value", val);
}
static void json_lat_stats_linear(struct intel_lat_stats *stats,
struct json_object *bucket_list, __u32 start_offset,
__u32 end_offset, __u32 bytes_per,
__u32 us_step, bool nonzero_print)
{
for (int i = (start_offset / bytes_per) - 1;
i < end_offset / bytes_per; i++) {
if (nonzero_print && stats->data[i] == 0)
continue;
json_add_bucket(stats, bucket_list,
i, us_step * i, NOINF, us_step * (i + 1),
NOINF, stats->data[i]);
}
}
static void json_lat_stats_3_0(struct intel_lat_stats *stats,
int write)
{
struct json_object *root = json_create_object();
struct json_object *bucket_list = json_create_object();
lat_stats_make_json_root(root, bucket_list, write);
json_lat_stats_linear(stats, bucket_list, 4, 131, 4, 32, false);
json_lat_stats_linear(stats, bucket_list, 132, 255, 4, 1024, false);
json_lat_stats_linear(stats, bucket_list, 256, 379, 4, 32768, false);
json_lat_stats_linear(stats, bucket_list, 380, 383, 4, 32, true);
json_lat_stats_linear(stats, bucket_list, 384, 387, 4, 32, true);
json_lat_stats_linear(stats, bucket_list, 388, 391, 4, 32, true);
json_print_object(root, NULL);
json_free_object(root);
}
static void json_lat_stats_4_0(struct intel_lat_stats *stats,
int write)
{
struct json_object *root = json_create_object();
struct json_object *bucket_list = json_create_object();
lat_stats_make_json_root(root, bucket_list, write);
__u32 lower_us = 0;
__u32 upper_us = 1;
bool end = false;
int max = 1216;
for (int i = 0; i < max; i++) {
lower_us = lat_stats_log_scale(i);
if (i >= max - 1)
end = true;
else
upper_us = lat_stats_log_scale(i + 1);
json_add_bucket(stats, bucket_list, i,
lower_us, NOINF, upper_us,
end ? POSINF : NOINF, stats->data[i]);
}
json_print_object(root, NULL);
json_free_object(root);
}
static void show_lat_stats_3_0(struct intel_lat_stats *stats)
{
show_lat_stats_linear(stats, 4, 131, 4, 32, false);
show_lat_stats_linear(stats, 132, 255, 4, 1024, false);
show_lat_stats_linear(stats, 256, 379, 4, 32768, false);
show_lat_stats_linear(stats, 380, 383, 4, 32, true);
show_lat_stats_linear(stats, 384, 387, 4, 32, true);
show_lat_stats_linear(stats, 388, 391, 4, 32, true);
}
static void show_lat_stats_4_0(struct intel_lat_stats *stats)
{
int lower_us = 0;
int upper_us = 1;
bool end = false;
int max = 1216;
for (int i = 0; i < max; i++) {
lower_us = lat_stats_log_scale(i);
if (i >= max - 1)
end = true;
else
upper_us = lat_stats_log_scale(i + 1);
show_lat_stats_bucket(stats, lower_us, NOINF,
upper_us, end ? POSINF : NOINF, i);
}
}
static void json_lat_stats(struct intel_lat_stats *stats, int write)
{
switch (stats->maj) {
case 3:
json_lat_stats_3_0(stats, write);
break;
case 4:
switch (stats->min) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
json_lat_stats_4_0(stats, write);
break;
default:
printf(("Unsupported minor revision (%u.%u)\n"
"Defaulting to format for rev4.0"),
stats->maj, stats->min);
break;
}
break;
default:
printf("Unsupported revision (%u.%u)\n",
stats->maj, stats->min);
break;
}
printf("\n");
}
static void print_dash_separator(int count)
{
for (int i = 0; i < count; i++)
putchar('-');
putchar('\n');
}
static void show_lat_stats(struct intel_lat_stats *stats, int write)
{
static const int separator_length = 50;
printf("Intel IO %s Command Latency Statistics\n",
write ? "Write" : "Read");
printf("Major Revision : %u\nMinor Revision : %u\n",
stats->maj, stats->min);
print_dash_separator(separator_length);
printf("%-12s%-12s%-12s%-20s\n", "Bucket", "Start", "End", "Value");
print_dash_separator(separator_length);
switch (stats->maj) {
case 3:
show_lat_stats_3_0(stats);
break;
case 4:
switch (stats->min) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
show_lat_stats_4_0(stats);
break;
default:
printf(("Unsupported minor revision (%u.%u)\n"
"Defaulting to format for rev4.0"),
stats->maj, stats->min);
break;
}
break;
default:
printf("Unsupported revision (%u.%u)\n",
stats->maj, stats->min);
break;
}
}
static int get_lat_stats_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
struct intel_lat_stats stats;
enum nvme_print_flags flags;
int err, fd;
const char *desc = "Get Intel Latency Statistics log and show it.";
const char *raw = "dump output in binary format";
const char *write = "Get write statistics (read default)";
struct config {
char *output_format;
int raw_binary;
int write;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FLAG("write", 'w', &cfg.write, write),
OPT_FMT("output-format", 'o', &cfg.output_format, "Output format: normal|json|binary"),
OPT_FLAG("raw-binary", 'b', &cfg.raw_binary, raw),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
err = flags = validate_output_format(cfg.output_format);
if (flags < 0)
goto close_fd;
if (cfg.raw_binary)
flags = BINARY;
err = nvme_get_log(fd, NVME_NSID_ALL, cfg.write ? 0xc2 : 0xc1,
false, sizeof(stats), &stats);
if (!err) {
if (flags & JSON)
json_lat_stats(&stats, cfg.write);
else if (flags & BINARY)
d_raw((unsigned char *)&stats, sizeof(stats));
else
show_lat_stats(&stats, cfg.write);
} else if (err > 0)
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(err), err);
close_fd:
close(fd);
return err;
}
struct intel_assert_dump {
__u32 coreoffset;
__u32 assertsize;
__u8 assertdumptype;
__u8 assertvalid;
__u8 reserved[2];
};
struct intel_event_dump {
__u32 numeventdumps;
__u32 coresize;
__u32 coreoffset;
__u32 eventidoffset[16];
__u8 eventIdValidity[16];
};
struct intel_vu_version {
__u16 major;
__u16 minor;
};
struct intel_event_header {
__u32 eventidsize;
struct intel_event_dump edumps[0];
};
struct intel_vu_log {
struct intel_vu_version ver;
__u32 header;
__u32 size;
__u32 numcores;
__u8 reserved[4080];
};
struct intel_vu_nlog {
struct intel_vu_version ver;
__u32 logselect;
__u32 totalnlogs;
__u32 nlognum;
__u32 nlogname;
__u32 nlogbytesize;
__u32 nlogprimarybuffsize;
__u32 tickspersecond;
__u32 corecount;
__u32 nlogpausestatus;
__u32 selectoffsetref;
__u32 selectnlogpause;
__u32 selectaddedoffset;
__u32 nlogbufnum;
__u32 nlogbufnummax;
__u32 coreselected;
__u32 reserved[3];
};
struct intel_cd_log {
union {
struct {
__u32 selectLog : 3;
__u32 selectCore : 2;
__u32 selectNlog : 8;
__u8 selectOffsetRef : 1;
__u32 selectNlogPause : 2;
__u32 reserved2 : 16;
} fields;
__u32 entireDword;
} u;
};
static void print_intel_nlog(struct intel_vu_nlog *intel_nlog)
{
printf("Version Major %u\n"
"Version Minor %u\n"
"Log_select %u\n"
"totalnlogs %u\n"
"nlognum %u\n"
"nlogname %u\n"
"nlogbytesze %u\n"
"nlogprimarybuffsize %u\n"
"tickspersecond %u\n"
"corecount %u\n"
"nlogpausestatus %u\n"
"selectoffsetref %u\n"
"selectnlogpause %u\n"
"selectaddedoffset %u\n"
"nlogbufnum %u\n"
"nlogbufnummax %u\n"
"coreselected %u\n",
intel_nlog->ver.major, intel_nlog->ver.minor,
intel_nlog->logselect, intel_nlog->totalnlogs, intel_nlog->nlognum,
intel_nlog->nlogname, intel_nlog->nlogbytesize,
intel_nlog->nlogprimarybuffsize, intel_nlog->tickspersecond,
intel_nlog->corecount, intel_nlog->nlogpausestatus,
intel_nlog->selectoffsetref, intel_nlog->selectnlogpause,
intel_nlog->selectaddedoffset, intel_nlog->nlogbufnum,
intel_nlog->nlogbufnummax, intel_nlog->coreselected);
}
static int read_entire_cmd(struct nvme_passthru_cmd *cmd, int total_size,
const size_t max_tfer, int out_fd, int ioctl_fd,
__u8 *buf)
{
int err = 0;
size_t dword_tfer = 0;
dword_tfer = min(max_tfer, total_size);
while (total_size > 0) {
err = nvme_submit_admin_passthru(ioctl_fd, cmd);
if (err) {
fprintf(stderr,
"failed on cmd.data_len %u cmd.cdw13 %u cmd.cdw12 %x cmd.cdw10 %u err %x remaining size %d\n",
cmd->data_len, cmd->cdw13, cmd->cdw12,
cmd->cdw10, err, total_size);
goto out;
}
if (out_fd > 0) {
err = write(out_fd, buf, cmd->data_len);
if (err < 0) {
perror("write failure");
goto out;
}
err = 0;
}
total_size -= dword_tfer;
cmd->cdw13 += dword_tfer;
cmd->cdw10 = dword_tfer = min(max_tfer, total_size);
cmd->data_len = (min(max_tfer, total_size)) * 4;
}
out:
return err;
}
static int write_header(__u8 *buf, int fd, size_t amnt)
{
if (write(fd, buf, amnt) < 0)
return 1;
return 0;
}
static int read_header(struct nvme_passthru_cmd *cmd,__u8 *buf, int ioctl_fd,
__u32 dw12, int nsid)
{
memset(cmd, 0, sizeof(*cmd));
memset(buf, 0, 4096);
cmd->opcode = 0xd2;
cmd->nsid = nsid;
cmd->cdw10 = 0x400;
cmd->cdw12 = dw12;
cmd->data_len = 0x1000;
cmd->addr = (unsigned long)(void *)buf;
return read_entire_cmd(cmd, 0x400, 0x400, -1, ioctl_fd, buf);
}
static int setup_file(char *f, char *file, int fd, int type)
{
struct nvme_id_ctrl ctrl;
int err = 0, i = sizeof(ctrl.sn) - 1;
err = nvme_identify_ctrl(fd, &ctrl);
if (err)
return err;
/* Remove trailing spaces from the name */
while (i && ctrl.sn[i] == ' ') {
ctrl.sn[i] = '\0';
i--;
}
sprintf(f, "%s_%-.*s.bin", type == 0 ? "Nlog" :
type == 1 ? "EventLog" : "AssertLog",
(int)sizeof(ctrl.sn), ctrl.sn);
return err;
}
static int get_internal_log_old(__u8 *buf, int output, int fd,
struct nvme_passthru_cmd *cmd)
{
struct intel_vu_log *intel;
int err = 0;
const int dwmax = 0x400;
const int dmamax = 0x1000;
intel = (struct intel_vu_log *)buf;
printf("Log major:%d minor:%d header:%d size:%d\n",
intel->ver.major, intel->ver.minor, intel->header, intel->size);
err = write(output, buf, 0x1000);
if (err < 0) {
perror("write failure");
goto out;
}
intel->size -= 0x400;
cmd->opcode = 0xd2;
cmd->cdw10 = min(dwmax, intel->size);
cmd->data_len = min(dmamax, intel->size);
err = read_entire_cmd(cmd, intel->size, dwmax, output, fd, buf);
if (err)
goto out;
err = 0;
out:
return err;
}
static int get_internal_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
__u8 buf[0x2000];
char f[0x100];
int err, fd, output, i, j, count = 0, core_num = 1;
struct nvme_passthru_cmd cmd;
struct intel_cd_log cdlog;
struct intel_vu_log *intel = malloc(sizeof(struct intel_vu_log));
struct intel_vu_nlog *intel_nlog = (struct intel_vu_nlog *)buf;
struct intel_assert_dump *ad = (struct intel_assert_dump *) intel->reserved;
struct intel_event_header *ehdr = (struct intel_event_header *)intel->reserved;
const char *desc = "Get Intel Firmware Log and save it.";
const char *log = "Log type: 0, 1, or 2 for nlog, event log, and assert log, respectively.";
const char *core = "Select which region log should come from. -1 for all";
const char *nlognum = "Select which nlog to read. -1 for all nlogs";
const char *file = "Output file; defaults to device name provided";
const char *verbose = "To print out verbose nlog info";
const char *namespace_id = "Namespace to get logs from";
struct config {
__u32 namespace_id;
__u32 log;
int core;
int lnum;
char *file;
bool verbose;
};
struct config cfg = {
.namespace_id = -1,
.file = NULL,
.lnum = -1,
.core = -1
};
OPT_ARGS(opts) = {
OPT_UINT("log", 'l', &cfg.log, log),
OPT_INT("region", 'r', &cfg.core, core),
OPT_INT("nlognum", 'm', &cfg.lnum, nlognum),
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_FLAG("verbose-nlog", 'v', &cfg.verbose, verbose),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0) {
free(intel);
return fd;
}
if (cfg.log > 2 || cfg.core > 4 || cfg.lnum > 255) {
free(intel);
return EINVAL;
}
if (!cfg.file) {
err = setup_file(f, cfg.file, fd, cfg.log);
if (err)
goto out;
cfg.file = f;
}
cdlog.u.entireDword = 0;
cdlog.u.fields.selectLog = cfg.log;
cdlog.u.fields.selectCore = cfg.core < 0 ? 0 : cfg.core;
cdlog.u.fields.selectNlog = cfg.lnum < 0 ? 0 : cfg.lnum;
output = open(cfg.file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
err = read_header(&cmd, buf, fd, cdlog.u.entireDword, cfg.namespace_id);
if (err)
goto out;
memcpy(intel, buf, sizeof(*intel));
/* for 1.1 Fultondales will use old nlog, but current assert/event */
if ((intel->ver.major < 1 && intel->ver.minor < 1) ||
(intel->ver.major <= 1 && intel->ver.minor <= 1 && cfg.log == 0)) {
cmd.addr = (unsigned long)(void *)buf;
err = get_internal_log_old(buf, output, fd, &cmd);
goto out;
}
if (cfg.log == 2) {
if (cfg.verbose)
printf("Log major:%d minor:%d header:%d size:%d numcores:%d\n",
intel->ver.major, intel->ver.minor,
intel->header, intel->size, intel->numcores);
err = write_header(buf, output, 0x1000);
if (err) {
perror("write failure");
goto out;
}
count = intel->numcores;
} else if (cfg.log == 0) {
if (cfg.lnum < 0)
count = intel_nlog->totalnlogs;
else
count = 1;
if (cfg.core < 0)
core_num = intel_nlog->corecount;
} else if (cfg.log == 1) {
core_num = intel->numcores;
count = 1;
err = write_header(buf, output, sizeof(*intel));
if (err)
goto out;
}
for (j = (cfg.core < 0 ? 0 : cfg.core);
j < (cfg.core < 0 ? core_num : cfg.core + 1);
j++) {
cdlog.u.fields.selectCore = j;
for (i = 0; i < count; i++) {
if (cfg.log == 2) {
if (!ad[i].assertvalid)
continue;
cmd.cdw13 = ad[i].coreoffset;
cmd.cdw10 = 0x400;
cmd.data_len = min(0x400, ad[i].assertsize) * 4;
err = read_entire_cmd(&cmd, ad[i].assertsize,
0x400, output, fd, buf);
if (err)
goto out;
} else if(cfg.log == 0) {
/* If the user selected to read the entire nlog */
if (count > 1)
cdlog.u.fields.selectNlog = i;
err = read_header(&cmd, buf, fd, cdlog.u.entireDword,
cfg.namespace_id);
if (err)
goto out;
err = write_header(buf, output, sizeof(*intel_nlog));
if (err)
goto out;
if (cfg.verbose)
print_intel_nlog(intel_nlog);
cmd.cdw13 = 0x400;
cmd.cdw10 = 0x400;
cmd.data_len = min(0x1000, intel_nlog->nlogbytesize);
err = read_entire_cmd(&cmd, intel_nlog->nlogbytesize / 4,
0x400, output, fd, buf);
if (err)
goto out;
} else if (cfg.log == 1) {
cmd.cdw13 = ehdr->edumps[j].coreoffset;
cmd.cdw10 = 0x400;
cmd.data_len = 0x400;
err = read_entire_cmd(&cmd, ehdr->edumps[j].coresize,
0x400, output, fd, buf);
if (err)
goto out;
}
}
}
err = 0;
out:
if (err > 0) {
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(err), err);
} else if (err < 0) {
perror("intel log");
err = EIO;
} else
printf("Successfully wrote log to %s\n", cfg.file);
free(intel);
return err;
}
static int enable_lat_stats_tracking(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
int err, fd;
const char *desc = (
"Enable/Disable Intel Latency Statistics Tracking.\n"
"No argument prints current status.");
const char *enable_desc = "Enable LST";
const char *disable_desc = "Disable LST";
const __u32 nsid = 0;
const __u8 fid = 0xe2;
const __u8 sel = 0;
const __u32 cdw11 = 0x0;
const __u32 cdw12 = 0x0;
const __u32 data_len = 32;
const __u32 save = 0;
__u32 result;
void *buf = NULL;
struct config {
bool enable, disable;
};
struct config cfg = {
.enable = false,
.disable = false,
};
const struct argconfig_commandline_options command_line_options[] = {
{"enable", 'e', "", CFG_NONE, &cfg.enable, no_argument, enable_desc},
{"disable", 'd', "", CFG_NONE, &cfg.disable, no_argument, disable_desc},
{NULL}
};
fd = parse_and_open(argc, argv, desc, command_line_options);
enum Option {
None = -1,
True = 1,
False = 0,
};
enum Option option = None;
if (cfg.enable && cfg.disable)
printf("Cannot enable and disable simultaneously.");
else if (cfg.enable || cfg.disable)
option = cfg.enable;
if (fd < 0)
return fd;
switch (option) {
case None:
err = nvme_get_feature(fd, nsid, fid, sel, cdw11, data_len, buf,
&result);
if (!err) {
printf(
"Latency Statistics Tracking (FID 0x%X) is currently (%i).\n",
fid, result);
} else {
printf("Could not read feature id 0xE2.\n");
return err;
}
break;
case True:
case False:
err = nvme_set_feature(fd, nsid, fid, option, cdw12, save,
data_len, buf, &result);
if (err > 0) {
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(err), err);
} else if (err < 0) {
perror("Enable latency tracking");
fprintf(stderr, "Command failed while parsing.\n");
} else {
printf("Successfully set enable bit for FID (0x%X) to %i.\n",
fid, option);
}
break;
default:
printf("%d not supported.\n", option);
return EINVAL;
}
return fd;
}