1
0
Fork 0
nvme-cli/plugins/wdc/wdc-nvme.c

5664 lines
180 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015-2018 Western Digital Corporation or its affiliates.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
* Author: Chaitanya Kulkarni <chaitanya.kulkarni@hgst.com>,
* Dong Ho <dong.ho@hgst.com>,
* Jeff Lien <jeff.lien@wdc.com>
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include <errno.h>
#include <limits.h>
#include <fcntl.h>
#include <unistd.h>
#include "linux/nvme_ioctl.h"
#include "common.h"
#include "nvme.h"
#include "nvme-print.h"
#include "nvme-ioctl.h"
#include "plugin.h"
#include "json.h"
#include "argconfig.h"
#include "suffix.h"
#include <sys/ioctl.h>
#define CREATE_CMD
#include "wdc-nvme.h"
#include "wdc-utils.h"
#define WRITE_SIZE (sizeof(__u8) * 4096)
#define WDC_NVME_SUBCMD_SHIFT 8
#define WDC_NVME_LOG_SIZE_DATA_LEN 0x08
#define WDC_NVME_LOG_SIZE_HDR_LEN 0x08
/* Device Config */
#define WDC_NVME_VID 0x1c58
#define WDC_NVME_VID_2 0x1b96
#define WDC_NVME_SNDK_VID 0x15b7
#define WDC_NVME_SN100_DEV_ID 0x0003
#define WDC_NVME_SN200_DEV_ID 0x0023
#define WDC_NVME_SN630_DEV_ID 0x2200
#define WDC_NVME_SN630_DEV_ID_1 0x2201
#define WDC_NVME_SN840_DEV_ID 0x2300
#define WDC_NVME_SN840_DEV_ID_1 0x2500
#define WDC_NVME_SN640_DEV_ID 0x2400
#define WDC_NVME_SN640_DEV_ID_1 0x2401
#define WDC_NVME_SN640_DEV_ID_2 0x2402
#define WDC_NVME_SN640_DEV_ID_3 0x2404
#define WDC_NVME_ZN440_DEV_ID 0x2600
#define WDC_NVME_SN440_DEV_ID 0x2610
#define WDC_NVME_SN7GC_DEV_ID 0x2700
#define WDC_NVME_SN7GC_DEV_ID_1 0x2701
#define WDC_NVME_SN7GC_DEV_ID_2 0x2702
#define WDC_NVME_SXSLCL_DEV_ID 0x2001
#define WDC_NVME_SN520_DEV_ID 0x5003
#define WDC_NVME_SN520_DEV_ID_1 0x5004
#define WDC_NVME_SN520_DEV_ID_2 0x5005
#define WDC_NVME_SN720_DEV_ID 0x5002
#define WDC_NVME_SN730A_DEV_ID 0x5006
#define WDC_NVME_SN730B_DEV_ID 0x3714
#define WDC_NVME_SN730B_DEV_ID_1 0x3734
#define WDC_NVME_SN340_DEV_ID 0x500d
#define WDC_DRIVE_CAP_CAP_DIAG 0x0000000000000001
#define WDC_DRIVE_CAP_INTERNAL_LOG 0x0000000000000002
#define WDC_DRIVE_CAP_C1_LOG_PAGE 0x0000000000000004
#define WDC_DRIVE_CAP_CA_LOG_PAGE 0x0000000000000008
#define WDC_DRIVE_CAP_D0_LOG_PAGE 0x0000000000000010
#define WDC_DRIVE_CAP_DRIVE_STATUS 0x0000000000000020
#define WDC_DRIVE_CAP_CLEAR_ASSERT 0x0000000000000040
#define WDC_DRIVE_CAP_CLEAR_PCIE 0x0000000000000080
#define WDC_DRIVE_CAP_RESIZE 0x0000000000000100
#define WDC_DRIVE_CAP_NAND_STATS 0x0000000000000200
#define WDC_DRIVE_CAP_DRIVE_LOG 0x0000000000000400
#define WDC_DRIVE_CAP_CRASH_DUMP 0x0000000000000800
#define WDC_DRIVE_CAP_PFAIL_DUMP 0x0000000000001000
#define WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY 0x0000000000002000
#define WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY 0x0000000000004000
#define WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG 0x0000000000008000
#define WDC_DRIVE_CAP_REASON_ID 0x0000000000010000
#define WDC_DRIVE_CAP_LOG_PAGE_DIR 0x0000000000020000
#define WDC_DRIVE_CAP_NS_RESIZE 0x0000000000040000
#define WDC_DRIVE_CAP_INFO 0x0000000000080000
#define WDC_DRIVE_CAP_DRIVE_ESSENTIALS 0x0000000100000000
#define WDC_DRIVE_CAP_DUI_DATA 0x0000000200000000
#define WDC_SN730B_CAP_VUC_LOG 0x0000000400000000
#define WDC_DRIVE_CAP_SN340_DUI 0x0000000800000000
#define WDC_DRIVE_CAP_SMART_LOG_MASK (WDC_DRIVE_CAP_C1_LOG_PAGE | WDC_DRIVE_CAP_CA_LOG_PAGE | \
WDC_DRIVE_CAP_D0_LOG_PAGE)
/* SN730 Get Log Capabilities */
#define SN730_NVME_GET_LOG_OPCODE 0xc2
#define SN730_GET_FULL_LOG_LENGTH 0x00080009
#define SN730_GET_KEY_LOG_LENGTH 0x00090009
#define SN730_GET_COREDUMP_LOG_LENGTH 0x00120009
#define SN730_GET_EXTENDED_LOG_LENGTH 0x00420009
#define SN730_GET_FULL_LOG_SUBOPCODE 0x00010009
#define SN730_GET_KEY_LOG_SUBOPCODE 0x00020009
#define SN730_GET_CORE_LOG_SUBOPCODE 0x00030009
#define SN730_GET_EXTEND_LOG_SUBOPCODE 0x00040009
#define SN730_LOG_CHUNK_SIZE 0x1000
/* Customer ID's */
#define WDC_CUSTOMER_ID_GN 0x0001
#define WDC_CUSTOMER_ID_GD 0x0101
#define WDC_CUSTOMER_ID_0x1004 0x1004
#define WDC_CUSTOMER_ID_0x1005 0x1005
/* Drive Resize */
#define WDC_NVME_DRIVE_RESIZE_OPCODE 0xCC
#define WDC_NVME_DRIVE_RESIZE_CMD 0x03
#define WDC_NVME_DRIVE_RESIZE_SUBCMD 0x01
/* Namespace Resize */
#define WDC_NVME_NAMESPACE_RESIZE_OPCODE 0xFB
/* Drive Info */
#define WDC_NVME_DRIVE_INFO_OPCODE 0xC6
#define WDC_NVME_DRIVE_INFO_CMD 0x22
#define WDC_NVME_DRIVE_INFO_SUBCMD 0x06
/* Capture Diagnostics */
#define WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE WDC_NVME_LOG_SIZE_DATA_LEN
#define WDC_NVME_CAP_DIAG_OPCODE 0xE6
#define WDC_NVME_CAP_DIAG_CMD_OPCODE 0xC6
#define WDC_NVME_CAP_DIAG_SUBCMD 0x00
#define WDC_NVME_CAP_DIAG_CMD 0x00
#define WDC_NVME_CRASH_DUMP_TYPE 1
#define WDC_NVME_PFAIL_DUMP_TYPE 2
/* Capture Device Unit Info */
#define WDC_NVME_CAP_DUI_HEADER_SIZE 0x400
#define WDC_NVME_CAP_DUI_OPCODE 0xFA
#define WDC_NVME_CAP_DUI_DISABLE_IO 0x01
#define WDC_NVME_DUI_MAX_SECTION 0x3A
#define WDC_NVME_DUI_MAX_SECTION_V2 0x26
#define WDC_NVME_DUI_MAX_SECTION_V3 0x23
#define WDC_NVME_DUI_MAX_DATA_AREA 0x05
/* Telemtery types for vs-internal-log command */
#define WDC_TELEMETRY_TYPE_NONE 0x0
#define WDC_TELEMETRY_TYPE_HOST 0x1
#define WDC_TELEMETRY_TYPE_CONTROLLER 0x2
#define WDC_TELEMETRY_HEADER_LENGTH 512
#define WDC_TELEMETRY_BLOCK_SIZE 512
/* Crash dump */
#define WDC_NVME_CRASH_DUMP_SIZE_DATA_LEN WDC_NVME_LOG_SIZE_DATA_LEN
#define WDC_NVME_CRASH_DUMP_SIZE_NDT 0x02
#define WDC_NVME_CRASH_DUMP_SIZE_CMD 0x20
#define WDC_NVME_CRASH_DUMP_SIZE_SUBCMD 0x03
#define WDC_NVME_CRASH_DUMP_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_CRASH_DUMP_CMD 0x20
#define WDC_NVME_CRASH_DUMP_SUBCMD 0x04
/* PFail Crash dump */
#define WDC_NVME_PF_CRASH_DUMP_SIZE_DATA_LEN WDC_NVME_LOG_SIZE_HDR_LEN
#define WDC_NVME_PF_CRASH_DUMP_SIZE_NDT 0x02
#define WDC_NVME_PF_CRASH_DUMP_SIZE_CMD 0x20
#define WDC_NVME_PF_CRASH_DUMP_SIZE_SUBCMD 0x05
#define WDC_NVME_PF_CRASH_DUMP_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_PF_CRASH_DUMP_CMD 0x20
#define WDC_NVME_PF_CRASH_DUMP_SUBCMD 0x06
/* Drive Log */
#define WDC_NVME_DRIVE_LOG_SIZE_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_DRIVE_LOG_SIZE_DATA_LEN WDC_NVME_LOG_SIZE_DATA_LEN
#define WDC_NVME_DRIVE_LOG_SIZE_NDT 0x02
#define WDC_NVME_DRIVE_LOG_SIZE_CMD 0x20
#define WDC_NVME_DRIVE_LOG_SIZE_SUBCMD 0x01
#define WDC_NVME_DRIVE_LOG_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_DRIVE_LOG_CMD 0x20
#define WDC_NVME_DRIVE_LOG_SUBCMD 0x00
/* Purge and Purge Monitor */
#define WDC_NVME_PURGE_CMD_OPCODE 0xDD
#define WDC_NVME_PURGE_MONITOR_OPCODE 0xDE
#define WDC_NVME_PURGE_MONITOR_DATA_LEN 0x2F
#define WDC_NVME_PURGE_MONITOR_CMD_CDW10 0x0000000C
#define WDC_NVME_PURGE_MONITOR_TIMEOUT 0x7530
#define WDC_NVME_PURGE_CMD_SEQ_ERR 0x0C
#define WDC_NVME_PURGE_INT_DEV_ERR 0x06
#define WDC_NVME_PURGE_STATE_IDLE 0x00
#define WDC_NVME_PURGE_STATE_DONE 0x01
#define WDC_NVME_PURGE_STATE_BUSY 0x02
#define WDC_NVME_PURGE_STATE_REQ_PWR_CYC 0x03
#define WDC_NVME_PURGE_STATE_PWR_CYC_PURGE 0x04
/* Clear dumps */
#define WDC_NVME_CLEAR_DUMP_OPCODE 0xFF
#define WDC_NVME_CLEAR_CRASH_DUMP_CMD 0x03
#define WDC_NVME_CLEAR_CRASH_DUMP_SUBCMD 0x05
#define WDC_NVME_CLEAR_PF_CRASH_DUMP_SUBCMD 0x06
/* Clear FW Activate History */
#define WDC_NVME_CLEAR_FW_ACT_HIST_OPCODE 0xC6
#define WDC_NVME_CLEAR_FW_ACT_HIST_CMD 0x23
#define WDC_NVME_CLEAR_FW_ACT_HIST_SUBCMD 0x05
/* Additional Smart Log */
#define WDC_ADD_LOG_BUF_LEN 0x4000
#define WDC_NVME_ADD_LOG_OPCODE 0xC1
#define WDC_GET_LOG_PAGE_SSD_PERFORMANCE 0x37
#define WDC_NVME_GET_STAT_PERF_INTERVAL_LIFETIME 0x0F
/* C2 Log Page */
#define WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE 0xC2
#define WDC_C2_LOG_BUF_LEN 0x1000
#define WDC_C2_LOG_PAGES_SUPPORTED_ID 0x08
#define WDC_C2_CUSTOMER_ID_ID 0x15
#define WDC_C2_THERMAL_THROTTLE_STATUS_ID 0x18
#define WDC_C2_ASSERT_DUMP_PRESENT_ID 0x19
#define WDC_C2_USER_EOL_STATUS_ID 0x1A
#define WDC_C2_USER_EOL_STATE_ID 0x1C
#define WDC_C2_SYSTEM_EOL_STATE_ID 0x1D
#define WDC_C2_FORMAT_CORRUPT_REASON_ID 0x1E
#define WDC_EOL_STATUS_NORMAL cpu_to_le32(0x00000000)
#define WDC_EOL_STATUS_END_OF_LIFE cpu_to_le32(0x00000001)
#define WDC_EOL_STATUS_READ_ONLY cpu_to_le32(0x00000002)
#define WDC_ASSERT_DUMP_NOT_PRESENT cpu_to_le32(0x00000000)
#define WDC_ASSERT_DUMP_PRESENT cpu_to_le32(0x00000001)
#define WDC_THERMAL_THROTTLING_OFF cpu_to_le32(0x00000000)
#define WDC_THERMAL_THROTTLING_ON cpu_to_le32(0x00000001)
#define WDC_THERMAL_THROTTLING_UNAVAILABLE cpu_to_le32(0x00000002)
#define WDC_FORMAT_NOT_CORRUPT cpu_to_le32(0x00000000)
#define WDC_FORMAT_CORRUPT_FW_ASSERT cpu_to_le32(0x00000001)
#define WDC_FORMAT_CORRUPT_UNKNOWN cpu_to_le32(0x000000FF)
/* CA Log Page */
#define WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE 0xCA
#define WDC_FB_CA_LOG_BUF_LEN 0x80
#define WDC_BD_CA_LOG_BUF_LEN 0x9C
/* C0 EOL Status Log Page */
#define WDC_NVME_GET_EOL_STATUS_LOG_OPCODE 0xC0
#define WDC_NVME_EOL_STATUS_LOG_LEN 0x200
/* CB - FW Activate History Log Page */
#define WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID 0xCB
#define WDC_FW_ACT_HISTORY_LOG_BUF_LEN 0x3d0
/* D0 Smart Log Page */
#define WDC_NVME_GET_VU_SMART_LOG_OPCODE 0xD0
#define WDC_NVME_VU_SMART_LOG_LEN 0x200
/* Log Page Directory defines */
#define NVME_LOG_PERSISTENT_EVENT 0x0D
#define WDC_LOG_ID_C0 0xC0
#define WDC_LOG_ID_C2 WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE
#define WDC_LOG_ID_C4 0xC4
#define WDC_LOG_ID_C5 0xC5
#define WDC_LOG_ID_C6 0xC6
#define WDC_LOG_ID_CA WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE
#define WDC_LOG_ID_CB WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID
#define WDC_LOG_ID_D0 WDC_NVME_GET_VU_SMART_LOG_OPCODE
#define WDC_LOG_ID_D6 0xD6
#define WDC_LOG_ID_D7 0xD7
#define WDC_LOG_ID_D8 0xD8
#define WDC_LOG_ID_DE 0xDE
#define WDC_LOG_ID_F0 0xF0
#define WDC_LOG_ID_F1 0xF1
#define WDC_LOG_ID_F2 0xF2
#define WDC_LOG_ID_FA 0xFA
/* Clear PCIe Correctable Errors */
#define WDC_NVME_CLEAR_PCIE_CORR_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_CLEAR_PCIE_CORR_CMD 0x22
#define WDC_NVME_CLEAR_PCIE_CORR_SUBCMD 0x04
/* Clear Assert Dump Status */
#define WDC_NVME_CLEAR_ASSERT_DUMP_OPCODE 0xD8
#define WDC_NVME_CLEAR_ASSERT_DUMP_CMD 0x03
#define WDC_NVME_CLEAR_ASSERT_DUMP_SUBCMD 0x05
#define WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID 0xD2
/* Drive Essentials */
#define WDC_DE_DEFAULT_NUMBER_OF_ERROR_ENTRIES 64
#define WDC_DE_GENERIC_BUFFER_SIZE 80
#define WDC_DE_GLOBAL_NSID 0xFFFFFFFF
#define WDC_DE_DEFAULT_NAMESPACE_ID 0x01
#define WDC_DE_PATH_SEPARATOR "/"
#define WDC_DE_TAR_FILES "*.bin"
#define WDC_DE_TAR_FILE_EXTN ".tar.gz"
#define WDC_DE_TAR_CMD "tar -czf"
/* VS NAND Stats */
#define WDC_NVME_NAND_STATS_LOG_ID 0xFB
#define WDC_NVME_NAND_STATS_SIZE 0x200
/* VU Opcodes */
#define WDC_DE_VU_READ_SIZE_OPCODE 0xC0
#define WDC_DE_VU_READ_BUFFER_OPCODE 0xC2
#define WDC_DE_FILE_HEADER_SIZE 4
#define WDC_DE_FILE_OFFSET_SIZE 2
#define WDC_DE_FILE_NAME_SIZE 32
#define WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET 0x8000
#define WDC_DE_READ_MAX_TRANSFER_SIZE 0x8000
#define WDC_DE_MANUFACTURING_INFO_PAGE_FILE_NAME "manufacturing_info" /* Unique log entry page name. */
#define WDC_DE_CORE_DUMP_FILE_NAME "core_dump"
#define WDC_DE_EVENT_LOG_FILE_NAME "event_log"
#define WDC_DE_DESTN_SPI 1
#define WDC_DE_DUMPTRACE_DESTINATION 6
typedef enum _NVME_FEATURES_SELECT
{
FS_CURRENT = 0,
FS_DEFAULT = 1,
FS_SAVED = 2,
FS_SUPPORTED_CAPBILITIES = 3
} NVME_FEATURES_SELECT;
typedef enum _NVME_FEATURE_IDENTIFIERS
{
FID_ARBITRATION = 0x01,
FID_POWER_MANAGEMENT = 0x02,
FID_LBA_RANGE_TYPE = 0x03,
FID_TEMPERATURE_THRESHOLD = 0x04,
FID_ERROR_RECOVERY = 0x05,
FID_VOLATILE_WRITE_CACHE = 0x06,
FID_NUMBER_OF_QUEUES = 0x07,
FID_INTERRUPT_COALESCING = 0x08,
FID_INTERRUPT_VECTOR_CONFIGURATION = 0x09,
FID_WRITE_ATOMICITY = 0x0A,
FID_ASYNCHRONOUS_EVENT_CONFIGURATION = 0x0B,
FID_AUTONOMOUS_POWER_STATE_TRANSITION = 0x0C,
/*Below FID's are NVM Command Set Specific*/
FID_SOFTWARE_PROGRESS_MARKER = 0x80,
FID_HOST_IDENTIFIER = 0x81,
FID_RESERVATION_NOTIFICATION_MASK = 0x82,
FID_RESERVATION_PERSISTENCE = 0x83
} NVME_FEATURE_IDENTIFIERS;
typedef enum
{
WDC_DE_TYPE_IDENTIFY = 0x1,
WDC_DE_TYPE_SMARTATTRIBUTEDUMP = 0x2,
WDC_DE_TYPE_EVENTLOG = 0x4,
WDC_DE_TYPE_DUMPTRACE = 0x8,
WDC_DE_TYPE_DUMPSNAPSHOT = 0x10,
WDC_DE_TYPE_ATA_LOGS = 0x20,
WDC_DE_TYPE_SMART_LOGS = 0x40,
WDC_DE_TYPE_SCSI_LOGS = 0x80,
WDC_DE_TYPE_SCSI_MODE_PAGES = 0x100,
WDC_DE_TYPE_NVMe_FEATURES = 0x200,
WDC_DE_TYPE_DUMPSMARTERRORLOG3 = 0x400,
WDC_DE_TYPE_DUMPLOG3E = 0x800,
WDC_DE_TYPE_DUMPSCRAM = 0x1000,
WDC_DE_TYPE_PCU_LOG = 0x2000,
WDC_DE_TYPE_DUMP_ERROR_LOGS = 0x4000,
WDC_DE_TYPE_FW_SLOT_LOGS = 0x8000,
WDC_DE_TYPE_MEDIA_SETTINGS = 0x10000,
WDC_DE_TYPE_SMART_DATA = 0x20000,
WDC_DE_TYPE_NVME_SETTINGS = 0x40000,
WDC_DE_TYPE_NVME_ERROR_LOGS = 0x80000,
WDC_DE_TYPE_NVME_LOGS = 0x100000,
WDC_DE_TYPE_UART_LOGS = 0x200000,
WDC_DE_TYPE_DLOGS_SPI = 0x400000,
WDC_DE_TYPE_DLOGS_RAM = 0x800000,
WDC_DE_TYPE_NVME_MANF_INFO = 0x2000000,
WDC_DE_TYPE_NONE = 0x1000000,
WDC_DE_TYPE_ALL = 0xFFFFFFF,
} WDC_DRIVE_ESSENTIAL_TYPE;
typedef struct __attribute__((__packed__)) _WDC_DE_VU_FILE_META_DATA
{
__u8 fileName[WDC_DE_FILE_NAME_SIZE];
__u16 fileID;
__u64 fileSize;
} WDC_DE_VU_FILE_META_DATA, *PWDC_DE_VU_FILE_META_DATA;
typedef struct _WDC_DRIVE_ESSENTIALS
{
WDC_DE_VU_FILE_META_DATA metaData;
WDC_DRIVE_ESSENTIAL_TYPE essentialType;
} WDC_DRIVE_ESSENTIALS;
typedef struct _WDC_DE_VU_LOG_DIRECTORY
{
WDC_DRIVE_ESSENTIALS *logEntry; /* Caller to allocate memory */
__u32 maxNumLogEntries; /* Caller to input memory allocated */
__u32 numOfValidLogEntries; /* API will output this value */
} WDC_DE_VU_LOG_DIRECTORY,*PWDC_DE_VU_LOG_DIRECTORY;
typedef struct _WDC_DE_CSA_FEATURE_ID_LIST
{
NVME_FEATURE_IDENTIFIERS featureId;
__u8 featureName[WDC_DE_GENERIC_BUFFER_SIZE];
} WDC_DE_CSA_FEATURE_ID_LIST;
typedef struct tarfile_metadata {
char fileName[MAX_PATH_LEN];
int8_t bufferFolderPath[MAX_PATH_LEN];
char bufferFolderName[MAX_PATH_LEN];
char tarFileName[MAX_PATH_LEN];
char tarFiles[MAX_PATH_LEN];
char tarCmd[MAX_PATH_LEN+MAX_PATH_LEN];
char currDir[MAX_PATH_LEN];
UtilsTimeInfo timeInfo;
uint8_t* timeString[MAX_PATH_LEN];
} tarfile_metadata;
static WDC_DE_CSA_FEATURE_ID_LIST deFeatureIdList[] =
{
{0x00 , "Dummy Placeholder"},
{FID_ARBITRATION , "Arbitration"},
{FID_POWER_MANAGEMENT , "PowerMgmnt"},
{FID_LBA_RANGE_TYPE , "LbaRangeType"},
{FID_TEMPERATURE_THRESHOLD , "TempThreshold"},
{FID_ERROR_RECOVERY , "ErrorRecovery"},
{FID_VOLATILE_WRITE_CACHE , "VolatileWriteCache"},
{FID_NUMBER_OF_QUEUES , "NumOfQueues"},
{FID_INTERRUPT_COALESCING , "InterruptCoalesing"},
{FID_INTERRUPT_VECTOR_CONFIGURATION , "InterruptVectorConfig"},
{FID_WRITE_ATOMICITY , "WriteAtomicity"},
{FID_ASYNCHRONOUS_EVENT_CONFIGURATION , "AsynEventConfig"},
{FID_AUTONOMOUS_POWER_STATE_TRANSITION , "AutonomousPowerState"},
};
typedef enum _NVME_VU_DE_LOGPAGE_NAMES
{
NVME_DE_LOGPAGE_E3 = 0x01,
NVME_DE_LOGPAGE_C0 = 0x02
} NVME_VU_DE_LOGPAGE_NAMES;
typedef struct _NVME_VU_DE_LOGPAGE_LIST
{
NVME_VU_DE_LOGPAGE_NAMES logPageName;
__u32 logPageId;
__u32 logPageLen;
char logPageIdStr[5];
} NVME_VU_DE_LOGPAGE_LIST, *PNVME_VU_DE_LOGPAGE_LIST;
typedef struct _WDC_NVME_DE_VU_LOGPAGES
{
NVME_VU_DE_LOGPAGE_NAMES vuLogPageReqd;
__u32 numOfVULogPages;
} WDC_NVME_DE_VU_LOGPAGES, *PWDC_NVME_DE_VU_LOGPAGES;
static NVME_VU_DE_LOGPAGE_LIST deVULogPagesList[] =
{
{ NVME_DE_LOGPAGE_E3, 0xE3, 1072, "0xe3"},
{ NVME_DE_LOGPAGE_C0, 0xC0, 512, "0xc0"}
};
static int wdc_get_serial_name(int fd, char *file, size_t len, const char *suffix);
static int wdc_create_log_file(char *file, __u8 *drive_log_data,
__u32 drive_log_length);
static int wdc_do_clear_dump(int fd, __u8 opcode, __u32 cdw12);
static int wdc_do_dump(int fd, __u32 opcode,__u32 data_len,
__u32 cdw12, char *file, __u32 xfer_size);
static int wdc_do_crash_dump(int fd, char *file, int type);
static int wdc_crash_dump(int fd, char *file, int type);
static int wdc_get_crash_dump(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_do_drive_log(int fd, char *file);
static int wdc_drive_log(int argc, char **argv, struct command *command,
struct plugin *plugin);
static const char* wdc_purge_mon_status_to_string(__u32 status);
static int wdc_purge(int argc, char **argv,
struct command *command, struct plugin *plugin);
static int wdc_purge_monitor(int argc, char **argv,
struct command *command, struct plugin *plugin);
static bool wdc_nvme_check_supported_log_page(int fd, __u8 log_id);
static int wdc_clear_pcie_correctable_errors(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_do_drive_essentials(int fd, char *dir, char *key);
static int wdc_drive_essentials(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_drive_status(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_clear_assert_dump(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_drive_resize(int argc, char **argv,
struct command *command, struct plugin *plugin);
static int wdc_do_drive_resize(int fd, uint64_t new_size);
static int wdc_namespace_resize(int argc, char **argv,
struct command *command, struct plugin *plugin);
static int wdc_do_namespace_resize(int fd, __u32 nsid, __u32 op_option);
static int wdc_reason_identifier(int argc, char **argv,
struct command *command, struct plugin *plugin);
static int wdc_do_get_reason_id(int fd, char *file, int log_id);
static int wdc_save_reason_id(int fd, __u8 *rsn_ident, int size);
static int wdc_clear_reason_id(int fd);
static int wdc_dump_telemetry_hdr(int fd, int log_id, struct nvme_telemetry_log_page_hdr *log_hdr);
static int wdc_log_page_directory(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_do_drive_info(int fd, __u32 *result);
static int wdc_vs_drive_info(int argc, char **argv, struct command *command,
struct plugin *plugin);
/* Drive log data size */
struct wdc_log_size {
__le32 log_size;
};
/* E6 log header */
struct wdc_e6_log_hdr {
__le32 eye_catcher;
__u8 log_size[4];
};
/* DUI log header */
struct wdc_dui_log_section {
__le16 section_type;
__le16 data_area_id;
__le32 section_size;
};
/* DUI log header V2 */
struct __attribute__((__packed__)) wdc_dui_log_section_v2 {
__le16 section_type;
__le16 data_area_id;
__le64 section_size;
};
struct wdc_dui_log_hdr {
__u8 telemetry_hdr[512];
__le16 hdr_version;
__le16 section_count;
__le32 log_size;
struct wdc_dui_log_section log_section[WDC_NVME_DUI_MAX_SECTION];
__u8 log_data[40];
};
struct __attribute__((__packed__)) wdc_dui_log_hdr_v2 {
__u8 telemetry_hdr[512];
__u8 hdr_version;
__u8 product_id;
__le16 section_count;
__le64 log_size;
struct wdc_dui_log_section_v2 log_section[WDC_NVME_DUI_MAX_SECTION_V2];
__u8 log_data[40];
};
struct __attribute__((__packed__)) wdc_dui_log_hdr_v3 {
__u8 telemetry_hdr[512];
__u8 hdr_version;
__u8 product_id;
__le16 section_count;
__le64 log_size;
struct wdc_dui_log_section_v2 log_section[WDC_NVME_DUI_MAX_SECTION_V3];
__u8 securityNonce[36];
__u8 log_data[40];
};
/* Purge monitor response */
struct wdc_nvme_purge_monitor_data {
__le16 rsvd1;
__le16 rsvd2;
__le16 first_erase_failure_cnt;
__le16 second_erase_failure_cnt;
__le16 rsvd3;
__le16 programm_failure_cnt;
__le32 rsvd4;
__le32 rsvd5;
__le32 entire_progress_total;
__le32 entire_progress_current;
__u8 rsvd6[14];
};
/* Additional Smart Log */
struct wdc_log_page_header {
uint8_t num_subpages;
uint8_t reserved;
__le16 total_log_size;
};
struct wdc_log_page_subpage_header {
uint8_t spcode;
uint8_t pcset;
__le16 subpage_length;
};
struct wdc_ssd_perf_stats {
__le64 hr_cmds; /* Host Read Commands */
__le64 hr_blks; /* Host Read Blocks */
__le64 hr_ch_cmds; /* Host Read Cache Hit Commands */
__le64 hr_ch_blks; /* Host Read Cache Hit Blocks */
__le64 hr_st_cmds; /* Host Read Stalled Commands */
__le64 hw_cmds; /* Host Write Commands */
__le64 hw_blks; /* Host Write Blocks */
__le64 hw_os_cmds; /* Host Write Odd Start Commands */
__le64 hw_oe_cmds; /* Host Write Odd End Commands */
__le64 hw_st_cmds; /* Host Write Commands Stalled */
__le64 nr_cmds; /* NAND Read Commands */
__le64 nr_blks; /* NAND Read Blocks */
__le64 nw_cmds; /* NAND Write Commands */
__le64 nw_blks; /* NAND Write Blocks */
__le64 nrbw; /* NAND Read Before Write */
};
/* Additional C2 Log Page */
struct wdc_c2_log_page_header {
__le32 length;
__le32 version;
};
struct wdc_c2_log_subpage_header {
__le32 length;
__le32 entry_id;
__le32 data;
};
struct wdc_c2_cbs_data {
__le32 length;
__u8 data[];
};
struct wdc_bd_ca_log_format {
__u8 field_id;
__u8 reserved1[2];
__u8 normalized_value;
__u8 reserved2;
__u8 raw_value[7];
};
struct __attribute__((__packed__)) wdc_ssd_ca_perf_stats {
__le64 nand_bytes_wr_lo; /* 0x00 - NAND Bytes Written lo */
__le64 nand_bytes_wr_hi; /* 0x08 - NAND Bytes Written hi */
__le64 nand_bytes_rd_lo; /* 0x10 - NAND Bytes Read lo */
__le64 nand_bytes_rd_hi; /* 0x18 - NAND Bytes Read hi */
__le64 nand_bad_block; /* 0x20 - NAND Bad Block Count */
__le64 uncorr_read_count; /* 0x28 - Uncorrectable Read Count */
__le64 ecc_error_count; /* 0x30 - Soft ECC Error Count */
__le32 ssd_detect_count; /* 0x38 - SSD End to End Detection Count */
__le32 ssd_correct_count; /* 0x3C - SSD End to End Correction Count */
__u8 data_percent_used; /* 0x40 - System Data Percent Used */
__le32 data_erase_max; /* 0x41 - User Data Erase Counts */
__le32 data_erase_min; /* 0x45 - User Data Erase Counts */
__le64 refresh_count; /* 0x49 - Refresh Count */
__le64 program_fail; /* 0x51 - Program Fail Count */
__le64 user_erase_fail; /* 0x59 - User Data Erase Fail Count */
__le64 system_erase_fail; /* 0x61 - System Area Erase Fail Count */
__u8 thermal_throttle_status; /* 0x69 - Thermal Throttling Status */
__u8 thermal_throttle_count; /* 0x6A - Thermal Throttling Count */
__le64 pcie_corr_error; /* 0x6B - pcie Correctable Error Count */
__le32 incomplete_shutdown_count; /* 0x73 - Incomplete Shutdown Count */
__u8 percent_free_blocks; /* 0x77 - Percent Free Blocks */
__u8 rsvd[392]; /* 0x78 - Reserved bytes 120-511 */
};
struct __attribute__((__packed__)) wdc_ssd_d0_smart_log {
__le32 smart_log_page_header; /* 0x00 - Smart Log Page Header */
__le32 lifetime_realloc_erase_block_count; /* 0x04 - Lifetime reallocated erase block count */
__le32 lifetime_power_on_hours; /* 0x08 - Lifetime power on hours */
__le32 lifetime_uecc_count; /* 0x0C - Lifetime UECC count */
__le32 lifetime_wrt_amp_factor; /* 0x10 - Lifetime write amplification factor */
__le32 trailing_hr_wrt_amp_factor; /* 0x14 - Trailing hour write amplification factor */
__le32 reserve_erase_block_count; /* 0x18 - Reserve erase block count */
__le32 lifetime_program_fail_count; /* 0x1C - Lifetime program fail count */
__le32 lifetime_block_erase_fail_count; /* 0x20 - Lifetime block erase fail count */
__le32 lifetime_die_failure_count; /* 0x24 - Lifetime die failure count */
__le32 lifetime_link_rate_downgrade_count; /* 0x28 - Lifetime link rate downgrade count */
__le32 lifetime_clean_shutdown_count; /* 0x2C - Lifetime clean shutdown count on power loss */
__le32 lifetime_unclean_shutdown_count; /* 0x30 - Lifetime unclean shutdowns on power loss */
__le32 current_temp; /* 0x34 - Current temperature */
__le32 max_recorded_temp; /* 0x38 - Max recorded temperature */
__le32 lifetime_retired_block_count; /* 0x3C - Lifetime retired block count */
__le32 lifetime_read_disturb_realloc_events; /* 0x40 - Lifetime read disturb reallocation events */
__le64 lifetime_nand_writes; /* 0x44 - Lifetime NAND write Lpages */
__le32 capacitor_health; /* 0x4C - Capacitor health */
__le64 lifetime_user_writes; /* 0x50 - Lifetime user writes */
__le64 lifetime_user_reads; /* 0x58 - Lifetime user reads */
__le32 lifetime_thermal_throttle_act; /* 0x60 - Lifetime thermal throttle activations */
__le32 percentage_pe_cycles_remaining; /* 0x64 - Percentage of P/E cycles remaining */
__u8 rsvd[408]; /* 0x68 - 408 Reserved bytes */
};
/* NAND Stats */
struct __attribute__((__packed__)) wdc_nand_stats {
__u8 nand_write_tlc[16];
__u8 nand_write_slc[16];
__le32 nand_prog_failure;
__le32 nand_erase_failure;
__le32 bad_block_count;
__le64 nand_rec_trigger_event;
__le64 e2e_error_counter;
__le64 successful_ns_resize_event;
__u8 rsvd[444];
};
struct wdc_fw_act_history_log_hdr {
__le32 eye_catcher;
__u8 version;
__u8 reserved1;
__u8 num_entries;
__u8 reserved2;
__le32 entry_size;
__le32 reserved3;
};
struct wdc_fw_act_history_log_entry {
__le32 entry_num;
__le32 power_cycle_count;
__le64 power_on_seconds;
__le64 previous_fw_version;
__le64 new_fw_version;
__u8 slot_number;
__u8 commit_action_type;
__le16 result;
__u8 reserved[12];
};
#define WDC_REASON_INDEX_MAX 16
#define WDC_REASON_ID_ENTRY_LEN 128
#define WDC_REASON_ID_PATH_NAME "/usr/local/nvmecli"
static double safe_div_fp(double numerator, double denominator)
{
return denominator ? numerator / denominator : 0;
}
static double calc_percent(uint64_t numerator, uint64_t denominator)
{
return denominator ?
(uint64_t)(((double)numerator / (double)denominator) * 100) : 0;
}
static long double int128_to_double(__u8 *data)
{
int i;
long double result = 0;
for (i = 0; i < 16; i++) {
result *= 256;
result += data[15 - i];
}
return result;
}
static int wdc_get_pci_ids(uint32_t *device_id, uint32_t *vendor_id)
{
int fd, ret = -1;
char *block, path[512], *id;
id = calloc(1, 32);
if (!id) {
fprintf(stderr, "ERROR : WDC : %s : calloc failed\n", __func__);
return -1;
}
block = nvme_char_from_block((char *)devicename);
/* read the vendor ID from sys fs */
sprintf(path, "/sys/class/nvme/%s/device/vendor", block);
fd = open(path, O_RDONLY);
if (fd < 0) {
sprintf(path, "/sys/class/misc/%s/device/vendor", block);
fd = open(path, O_RDONLY);
}
if (fd < 0) {
fprintf(stderr, "ERROR : WDC : %s : Open vendor file failed\n", __func__);
ret = -1;
goto free_id;
}
ret = read(fd, id, 32);
if (ret < 0) {
fprintf(stderr, "%s: Read of pci vendor id failed\n", __func__);
ret = -1;
goto close_fd;
} else {
if (id[strlen(id) - 1] == '\n')
id[strlen(id) - 1] = '\0';
/* convert the device id string to an int */
*vendor_id = (int)strtol(&id[2], NULL, 16);
ret = 0;
}
/* read the device ID from sys fs */
sprintf(path, "/sys/class/nvme/%s/device/device", block);
fd = open(path, O_RDONLY);
if (fd < 0) {
sprintf(path, "/sys/class/misc/%s/device/device", block);
fd = open(path, O_RDONLY);
}
if (fd < 0) {
fprintf(stderr, "ERROR : WDC : %s : Open device file failed\n", __func__);
ret = -1;
goto close_fd;
}
ret = read(fd, id, 32);
if (ret < 0) {
fprintf(stderr, "%s: Read of pci device id failed\n", __func__);
ret = -1;
} else {
if (id[strlen(id) - 1] == '\n')
id[strlen(id) - 1] = '\0';
/* convert the device id string to an int */
*device_id = strtol(&id[2], NULL, 16);
ret = 0;
}
close_fd:
close(fd);
free_id:
free(block);
free(id);
return ret;
}
static bool wdc_check_device(int fd)
{
int ret;
bool supported;
uint32_t read_device_id, read_vendor_id;
ret = wdc_get_pci_ids(&read_device_id, &read_vendor_id);
if (ret < 0)
return false;
supported = false;
if (read_vendor_id == WDC_NVME_VID ||
read_vendor_id == WDC_NVME_VID_2 ||
read_vendor_id == WDC_NVME_SNDK_VID)
supported = true;
else
fprintf(stderr, "ERROR : WDC: unsupported WDC device, Vendor ID = 0x%x, Device ID = 0x%x\n",
read_vendor_id, read_device_id);
return supported;
}
static __u64 wdc_get_drive_capabilities(int fd) {
int ret;
uint32_t read_device_id, read_vendor_id;
__u64 capabilities = 0;
ret = wdc_get_pci_ids(&read_device_id, &read_vendor_id);
if (ret < 0)
return capabilities;
switch (read_vendor_id) {
case WDC_NVME_VID:
switch (read_device_id) {
case WDC_NVME_SN100_DEV_ID:
capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_C1_LOG_PAGE |
WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP);
break;
case WDC_NVME_SN200_DEV_ID:
capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_CLEAR_PCIE |
WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP);
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;
/* verify the 0xC1 log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_ADD_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_C1_LOG_PAGE;
break;
default:
capabilities = 0;
}
break;
case WDC_NVME_VID_2:
switch (read_device_id) {
case WDC_NVME_SN630_DEV_ID:
/* FALLTHRU */
case WDC_NVME_SN630_DEV_ID_1:
capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_CLEAR_PCIE);
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;
/* verify the 0xD0 log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;
break;
case WDC_NVME_SN640_DEV_ID:
/* FALLTHRU */
case WDC_NVME_SN640_DEV_ID_1:
/* FALLTHRU */
case WDC_NVME_SN640_DEV_ID_2:
/* FALLTHRU */
case WDC_NVME_SN640_DEV_ID_3:
/* FALLTHRU */
case WDC_NVME_SN840_DEV_ID:
/* FALLTHRU */
case WDC_NVME_SN840_DEV_ID_1:
/* FALLTHRU */
case WDC_NVME_ZN440_DEV_ID:
/* FALLTHRU */
case WDC_NVME_SN440_DEV_ID:
/* FALLTHRU */
case WDC_NVME_SN7GC_DEV_ID:
case WDC_NVME_SN7GC_DEV_ID_1:
case WDC_NVME_SN7GC_DEV_ID_2:
capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_CLEAR_PCIE |
WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY | WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY |
WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG | WDC_DRIVE_CAP_REASON_ID |
WDC_DRIVE_CAP_LOG_PAGE_DIR | WDC_DRIVE_CAP_INFO);
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;
/* verify the 0xD0 log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;
break;
case WDC_NVME_SN730B_DEV_ID:
/* FALLTHRU */
case WDC_NVME_SN730B_DEV_ID_1:
capabilities = WDC_SN730B_CAP_VUC_LOG;
break;
default:
capabilities = 0;
}
break;
case WDC_NVME_SNDK_VID:
switch (read_device_id) {
case WDC_NVME_SXSLCL_DEV_ID:
capabilities = WDC_DRIVE_CAP_DRIVE_ESSENTIALS;
break;
case WDC_NVME_SN520_DEV_ID:
/* FALLTHRU */
case WDC_NVME_SN520_DEV_ID_1:
/* FALLTHRU */
case WDC_NVME_SN520_DEV_ID_2:
capabilities = WDC_DRIVE_CAP_DUI_DATA;
break;
case WDC_NVME_SN720_DEV_ID:
capabilities = WDC_DRIVE_CAP_DUI_DATA | WDC_DRIVE_CAP_NAND_STATS | WDC_DRIVE_CAP_NS_RESIZE;
break;
case WDC_NVME_SN730A_DEV_ID:
capabilities = WDC_DRIVE_CAP_DUI_DATA | WDC_DRIVE_CAP_NAND_STATS;
break;
case WDC_NVME_SN340_DEV_ID:
capabilities = WDC_DRIVE_CAP_SN340_DUI;
break;
default:
capabilities = 0;
}
break;
default:
capabilities = 0;
}
return capabilities;
}
static int wdc_get_serial_name(int fd, char *file, size_t len, const char *suffix)
{
int i;
int ret;
int res_len = 0;
char orig[PATH_MAX] = {0};
struct nvme_id_ctrl ctrl;
int ctrl_sn_len = sizeof (ctrl.sn);
i = sizeof (ctrl.sn) - 1;
strncpy(orig, file, PATH_MAX - 1);
memset(file, 0, len);
memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
ret = nvme_identify_ctrl(fd, &ctrl);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed "
"0x%x\n", ret);
return -1;
}
/* Remove trailing spaces from the name */
while (i && ctrl.sn[i] == ' ') {
ctrl.sn[i] = '\0';
i--;
}
if (ctrl.sn[sizeof (ctrl.sn) - 1] == '\0') {
ctrl_sn_len = strlen(ctrl.sn);
}
res_len = snprintf(file, len, "%s%.*s%s", orig, ctrl_sn_len, ctrl.sn, suffix);
if (len <= res_len) {
fprintf(stderr, "ERROR : WDC : cannot format serial number due to data "
"of unexpected length\n");
return -1;
}
return 0;
}
static int wdc_create_log_file(char *file, __u8 *drive_log_data,
__u32 drive_log_length)
{
int fd;
int ret;
if (drive_log_length == 0) {
fprintf(stderr, "ERROR : WDC: invalid log file length\n");
return -1;
}
fd = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd < 0) {
fprintf(stderr, "ERROR : WDC: open : %s\n", strerror(errno));
return -1;
}
while (drive_log_length > WRITE_SIZE) {
ret = write(fd, drive_log_data, WRITE_SIZE);
if (ret < 0) {
fprintf (stderr, "ERROR : WDC: write : %s\n", strerror(errno));
return -1;
}
drive_log_data += WRITE_SIZE;
drive_log_length -= WRITE_SIZE;
}
ret = write(fd, drive_log_data, drive_log_length);
if (ret < 0) {
fprintf(stderr, "ERROR : WDC : write : %s\n", strerror(errno));
return -1;
}
if (fsync(fd) < 0) {
fprintf(stderr, "ERROR : WDC : fsync : %s\n", strerror(errno));
return -1;
}
close(fd);
return 0;
}
static bool get_dev_mgment_cbs_data(int fd, __u8 log_id, void **cbs_data)
{
int ret = -1;
__u8* data;
struct wdc_c2_log_page_header *hdr_ptr;
struct wdc_c2_log_subpage_header *sph;
__u32 length = 0;
bool found = false;
*cbs_data = NULL;
if ((data = (__u8*) malloc(sizeof (__u8) * WDC_C2_LOG_BUF_LEN)) == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return false;
}
memset(data, 0, sizeof (__u8) * WDC_C2_LOG_BUF_LEN);
/* get the log page length */
ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE,
false, WDC_C2_LOG_BUF_LEN, data);
if (ret) {
fprintf(stderr, "ERROR : WDC : Unable to get C2 Log Page length, ret = 0x%x\n", ret);
goto end;
}
hdr_ptr = (struct wdc_c2_log_page_header *)data;
if (le32_to_cpu(hdr_ptr->length) > WDC_C2_LOG_BUF_LEN) {
/* Log Page buffer too small, free and reallocate the necessary size */
free(data);
data = calloc(le32_to_cpu(hdr_ptr->length), sizeof(__u8));
if (data == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return false;
}
}
ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE,
false, le32_to_cpu(hdr_ptr->length), data);
/* parse the data until the List of log page ID's is found */
if (ret) {
fprintf(stderr, "ERROR : WDC : Unable to read C2 Log Page data, ret = 0x%x\n", ret);
goto end;
}
length = sizeof(struct wdc_c2_log_page_header);
hdr_ptr = (struct wdc_c2_log_page_header *)data;
while (length < le32_to_cpu(hdr_ptr->length)) {
sph = (struct wdc_c2_log_subpage_header *)(data + length);
if (le32_to_cpu(sph->entry_id) == log_id) {
*cbs_data = (void *)&sph->data;
found = true;
break;
}
length += le32_to_cpu(sph->length);
}
end:
free(data);
return found;
}
static bool wdc_nvme_check_supported_log_page(int fd, __u8 log_id)
{
int i;
bool found = false;
struct wdc_c2_cbs_data *cbs_data = NULL;
if (get_dev_mgment_cbs_data(fd, WDC_C2_LOG_PAGES_SUPPORTED_ID, (void *)&cbs_data)) {
if (cbs_data != NULL) {
for (i = 0; i < le32_to_cpu(cbs_data->length); i++) {
if (log_id == cbs_data->data[i]) {
found = true;
break;
}
}
#ifdef WDC_NVME_CLI_DEBUG
if (!found) {
fprintf(stderr, "ERROR : WDC : Log Page 0x%x not supported\n", log_id);
fprintf(stderr, "WDC : Supported Log Pages:\n");
/* print the supported pages */
d((__u8 *)cbs_data->data, le32_to_cpu(cbs_data->length), 16, 1);
}
#endif
} else
fprintf(stderr, "ERROR : WDC : cbs_data ptr = NULL\n");
} else
fprintf(stderr, "ERROR : WDC : 0xC2 Log Page entry ID 0x%x not found\n", WDC_C2_LOG_PAGES_SUPPORTED_ID);
return found;
}
static bool wdc_nvme_get_dev_status_log_data(int fd, __le32 *ret_data,
__u8 log_id)
{
__u32 *cbs_data = NULL;
if (get_dev_mgment_cbs_data(fd, log_id, (void *)&cbs_data)) {
if (cbs_data != NULL) {
memcpy((void *)ret_data, (void *)cbs_data, 4);
return true;
}
}
*ret_data = 0;
return false;
}
static int wdc_do_clear_dump(int fd, __u8 opcode, __u32 cdw12)
{
int ret;
struct nvme_admin_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = opcode;
admin_cmd.cdw12 = cdw12;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret != 0) {
fprintf(stdout, "ERROR : WDC : Crash dump erase failed\n");
}
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
return ret;
}
static __u32 wdc_dump_length(int fd, __u32 opcode, __u32 cdw10, __u32 cdw12, __u32 *dump_length)
{
int ret;
__u8 buf[WDC_NVME_LOG_SIZE_DATA_LEN] = {0};
struct wdc_log_size *l;
struct nvme_admin_cmd admin_cmd;
l = (struct wdc_log_size *) buf;
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = opcode;
admin_cmd.addr = (__u64)(uintptr_t)buf;
admin_cmd.data_len = WDC_NVME_LOG_SIZE_DATA_LEN;
admin_cmd.cdw10 = cdw10;
admin_cmd.cdw12 = cdw12;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret != 0) {
l->log_size = 0;
ret = -1;
fprintf(stderr, "ERROR : WDC : reading dump length failed\n");
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
return ret;
}
if (opcode == WDC_NVME_CAP_DIAG_OPCODE)
*dump_length = buf[0x04] << 24 | buf[0x05] << 16 | buf[0x06] << 8 | buf[0x07];
else
*dump_length = le32_to_cpu(l->log_size);
return ret;
}
static __u32 wdc_dump_length_e6(int fd, __u32 opcode, __u32 cdw10, __u32 cdw12, struct wdc_e6_log_hdr *dump_hdr)
{
int ret;
struct nvme_admin_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = opcode;
admin_cmd.addr = (__u64)(uintptr_t)dump_hdr;
admin_cmd.data_len = WDC_NVME_LOG_SIZE_HDR_LEN;
admin_cmd.cdw10 = cdw10;
admin_cmd.cdw12 = cdw12;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret != 0) {
fprintf(stderr, "ERROR : WDC : reading dump length failed\n");
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
}
return ret;
}
static __u32 wdc_dump_dui_data(int fd, __u32 dataLen, __u32 offset, __u8 *dump_data, bool last_xfer)
{
int ret;
struct nvme_admin_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = WDC_NVME_CAP_DUI_OPCODE;
admin_cmd.nsid = 0xFFFFFFFF;
admin_cmd.addr = (__u64)(uintptr_t)dump_data;
admin_cmd.data_len = dataLen;
admin_cmd.cdw10 = ((dataLen >> 2) - 1);
admin_cmd.cdw12 = offset;
if (last_xfer)
admin_cmd.cdw14 = 0;
else
admin_cmd.cdw14 = WDC_NVME_CAP_DUI_DISABLE_IO;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret != 0) {
fprintf(stderr, "ERROR : WDC : reading DUI data failed\n");
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
}
return ret;
}
static __u32 wdc_dump_dui_data_v2(int fd, __u32 dataLen, __u64 offset, __u8 *dump_data, bool last_xfer)
{
int ret;
struct nvme_admin_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = WDC_NVME_CAP_DUI_OPCODE;
admin_cmd.nsid = 0xFFFFFFFF;
admin_cmd.addr = (__u64)(uintptr_t)dump_data;
admin_cmd.data_len = dataLen;
admin_cmd.cdw10 = ((dataLen >> 2) - 1);
admin_cmd.cdw12 = (__u32)(offset & 0x00000000FFFFFFFF);
admin_cmd.cdw13 = (__u32)(offset >> 32);
if (last_xfer)
admin_cmd.cdw14 = 0;
else
admin_cmd.cdw14 = WDC_NVME_CAP_DUI_DISABLE_IO;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret != 0) {
fprintf(stderr, "ERROR : WDC : reading DUI data V2 failed\n");
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
}
return ret;
}
static int wdc_do_dump(int fd, __u32 opcode,__u32 data_len,
__u32 cdw12, char *file, __u32 xfer_size)
{
int ret = 0;
__u8 *dump_data;
__u32 curr_data_offset, curr_data_len;
int i;
struct nvme_admin_cmd admin_cmd;
__u32 dump_length = data_len;
dump_data = (__u8 *) malloc(sizeof (__u8) * dump_length);
if (dump_data == NULL) {
fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno));
return -1;
}
memset(dump_data, 0, sizeof (__u8) * dump_length);
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
curr_data_offset = 0;
curr_data_len = xfer_size;
i = 0;
admin_cmd.opcode = opcode;
admin_cmd.addr = (__u64)(uintptr_t)dump_data;
admin_cmd.data_len = curr_data_len;
admin_cmd.cdw10 = curr_data_len >> 2;
admin_cmd.cdw12 = cdw12;
admin_cmd.cdw13 = curr_data_offset;
while (curr_data_offset < data_len) {
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret != 0) {
fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n",
__func__, nvme_status_to_string(ret), ret);
fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n",
__func__, i, admin_cmd.data_len, curr_data_offset, (long unsigned int)admin_cmd.addr);
break;
}
if ((curr_data_offset + xfer_size) <= data_len)
curr_data_len = xfer_size;
else
curr_data_len = data_len - curr_data_offset; /* last transfer */
curr_data_offset += curr_data_len;
admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset;
admin_cmd.data_len = curr_data_len;
admin_cmd.cdw10 = curr_data_len >> 2;
admin_cmd.cdw13 = curr_data_offset >> 2;
i++;
}
if (ret == 0) {
fprintf(stderr, "%s: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret);
ret = wdc_create_log_file(file, dump_data, dump_length);
}
free(dump_data);
return ret;
}
static int wdc_do_dump_e6(int fd, __u32 opcode,__u32 data_len,
__u32 cdw12, char *file, __u32 xfer_size, __u8 *log_hdr)
{
int ret = 0;
__u8 *dump_data;
__u32 curr_data_offset, log_size;
int i;
struct nvme_admin_cmd admin_cmd;
dump_data = (__u8 *) malloc(sizeof (__u8) * data_len);
if (dump_data == NULL) {
fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno));
return -1;
}
memset(dump_data, 0, sizeof (__u8) * data_len);
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
curr_data_offset = WDC_NVME_LOG_SIZE_HDR_LEN;
i = 0;
/* copy the 8 byte header into the dump_data buffer */
memcpy(dump_data, log_hdr, WDC_NVME_LOG_SIZE_HDR_LEN);
admin_cmd.opcode = opcode;
admin_cmd.cdw12 = cdw12;
log_size = data_len;
while (log_size > 0) {
xfer_size = min(xfer_size, log_size);
admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset;
admin_cmd.data_len = xfer_size;
admin_cmd.cdw10 = xfer_size >> 2;
admin_cmd.cdw13 = curr_data_offset >> 2;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret != 0) {
fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret);
fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n",
__func__, i, admin_cmd.data_len, curr_data_offset, (long unsigned int)admin_cmd.addr);
break;
}
log_size -= xfer_size;
curr_data_offset += xfer_size;
i++;
}
if (ret == 0) {
fprintf(stderr, "%s: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret);
} else {
fprintf(stderr, "%s: FAILURE: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret);
fprintf(stderr, "%s: Partial data may have been captured\n", __func__);
snprintf(file + strlen(file), PATH_MAX, "%s", "-PARTIAL");
}
ret = wdc_create_log_file(file, dump_data, data_len);
free(dump_data);
return ret;
}
static int wdc_do_cap_telemetry_log(int fd, char *file, __u32 bs, int type, int data_area)
{
struct nvme_telemetry_log_page_hdr *hdr;
size_t full_size, offset = WDC_TELEMETRY_HEADER_LENGTH;
int err = 0, output;
void *page_log;
__u32 host_gen = 1;
int ctrl_init = 0;
__u32 result;
void *buf = NULL;
if (type == WDC_TELEMETRY_TYPE_HOST) {
host_gen = 1;
ctrl_init = 0;
} else if (type == WDC_TELEMETRY_TYPE_CONTROLLER) {
/* Verify the Controller Initiated Option is enabled */
err = nvme_get_feature(fd, 0, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0, 0,
4, buf, &result);
if (err == 0) {
if (result == 0) {
/* enabled */
host_gen = 0;
ctrl_init = 1;
}
else {
fprintf(stderr, "%s: Controller initiated option telemetry log page disabled\n", __func__);
err = -EINVAL;
goto close_fd;
}
} else {
fprintf(stderr, "ERROR : WDC: Get telemetry option feature failed. NVMe Status:%s(%x)\n",
nvme_status_to_string(err), err);
err = -EPERM;
goto close_fd;
}
} else {
fprintf(stderr, "%s: Invalid type parameter; type = %d\n", __func__, type);
err = -EINVAL;
goto close_fd;
}
if (!file) {
fprintf(stderr, "%s: Please provide an output file!\n", __func__);
err = -EINVAL;
goto close_fd;
}
hdr = malloc(bs);
page_log = malloc(bs);
if (!hdr || !page_log) {
fprintf(stderr, "%s: Failed to allocate 0x%x bytes for log: %s\n",
__func__, bs, strerror(errno));
err = -ENOMEM;
goto free_mem;
}
memset(hdr, 0, bs);
output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (output < 0) {
fprintf(stderr, "%s: Failed to open output file %s: %s!\n",
__func__, file, strerror(errno));
err = output;
goto free_mem;
}
err = nvme_get_telemetry_log(fd, hdr, host_gen, ctrl_init, WDC_TELEMETRY_HEADER_LENGTH, 0);
if (err < 0)
perror("get-telemetry-log");
else if (err > 0) {
nvme_show_status(err);
fprintf(stderr, "%s: Failed to acquire telemetry header!\n", __func__);
goto close_output;
}
err = write(output, (void *) hdr, WDC_TELEMETRY_HEADER_LENGTH);
if (err != WDC_TELEMETRY_HEADER_LENGTH) {
fprintf(stderr, "%s: Failed to flush header data to file!, err = %d\n", __func__, err);
goto close_output;
}
switch (data_area) {
case 1:
full_size = (le16_to_cpu(hdr->dalb1) * WDC_TELEMETRY_BLOCK_SIZE) + WDC_TELEMETRY_HEADER_LENGTH;
break;
case 2:
full_size = (le16_to_cpu(hdr->dalb2) * WDC_TELEMETRY_BLOCK_SIZE) + WDC_TELEMETRY_HEADER_LENGTH;
break;
case 3:
full_size = (le16_to_cpu(hdr->dalb3) * WDC_TELEMETRY_BLOCK_SIZE) + WDC_TELEMETRY_HEADER_LENGTH;
break;
default:
fprintf(stderr, "%s: Invalid data area requested, data area = %d\n", __func__, data_area);
err = -EINVAL;
goto close_output;
}
/*
* Continuously pull data until the offset hits the end of the last
* block.
*/
while (offset < full_size) {
if ((full_size - offset) < bs)
bs = (full_size - offset);
err = nvme_get_telemetry_log(fd, page_log, 0, ctrl_init, bs, offset);
if (err < 0) {
perror("get-telemetry-log");
break;
} else if (err > 0) {
nvme_show_status(err);
fprintf(stderr, "%s: Failed to acquire full telemetry log!\n", __func__);
nvme_show_status(err);
break;
}
err = write(output, (void *) page_log, bs);
if (err != bs) {
fprintf(stderr, "%s: Failed to flush telemetry data to file!, err = %d\n", __func__, err);
break;
}
err = 0;
offset += bs;
}
close_output:
close(output);
free_mem:
free(hdr);
free(page_log);
close_fd:
close(fd);
return err;
}
static int wdc_do_cap_diag(int fd, char *file, __u32 xfer_size, int type, int data_area)
{
int ret = -1;
__u32 e6_log_hdr_size = WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE;
struct wdc_e6_log_hdr *log_hdr;
__u32 cap_diag_length;
log_hdr = (struct wdc_e6_log_hdr *) malloc(e6_log_hdr_size);
if (log_hdr == NULL) {
fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno));
ret = -1;
goto out;
}
memset(log_hdr, 0, e6_log_hdr_size);
if (type == WDC_TELEMETRY_TYPE_NONE) {
ret = wdc_dump_length_e6(fd, WDC_NVME_CAP_DIAG_OPCODE,
WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE>>2,
0x00,
log_hdr);
if (ret == -1) {
ret = -1;
goto out;
}
cap_diag_length = (log_hdr->log_size[0] << 24 | log_hdr->log_size[1] << 16 |
log_hdr->log_size[2] << 8 | log_hdr->log_size[3]);
if (cap_diag_length == 0) {
fprintf(stderr, "INFO : WDC : Capture Diagnostics log is empty\n");
} else {
ret = wdc_do_dump_e6(fd, WDC_NVME_CAP_DIAG_OPCODE, cap_diag_length,
(WDC_NVME_CAP_DIAG_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CAP_DIAG_CMD,
file, xfer_size, (__u8 *)log_hdr);
fprintf(stderr, "INFO : WDC : Capture Diagnostics log, length = 0x%x\n", cap_diag_length);
}
} else if ((type == WDC_TELEMETRY_TYPE_HOST) ||
(type == WDC_TELEMETRY_TYPE_CONTROLLER)) {
/* Get the desired telemetry log page */
ret = wdc_do_cap_telemetry_log(fd, file, xfer_size, type, data_area);
} else
fprintf(stderr, "%s: ERROR : Invalid type : %d\n", __func__, type);
out:
free(log_hdr);
return ret;
}
static int wdc_do_cap_dui(int fd, char *file, __u32 xfer_size, int data_area, int verbose, __u64 file_size, __u64 offset)
{
int ret = 0;
__u32 dui_log_hdr_size = WDC_NVME_CAP_DUI_HEADER_SIZE;
struct wdc_dui_log_hdr *log_hdr;
struct wdc_dui_log_hdr_v3 *log_hdr_v3;
__u32 cap_dui_length;
__u64 cap_dui_length_v3;
__u8 *dump_data = NULL;
__u8 *buffer_addr;
__s64 total_size = 0;
int i;
int j;
bool last_xfer = false;
int err = 0, output = 0;
log_hdr = (struct wdc_dui_log_hdr *) malloc(dui_log_hdr_size);
if (log_hdr == NULL) {
fprintf(stderr, "%s: ERROR : log header malloc failed : status %s, size 0x%x\n",
__func__, strerror(errno), dui_log_hdr_size);
return -1;
}
memset(log_hdr, 0, dui_log_hdr_size);
/* get the dui telemetry and log headers */
ret = wdc_dump_dui_data(fd, WDC_NVME_CAP_DUI_HEADER_SIZE, 0x00, (__u8 *)log_hdr, last_xfer);
if (ret != 0) {
fprintf(stderr, "%s: ERROR : WDC : Get DUI headers failed\n", __func__);
fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret);
goto out;
}
/* Check the Log Header version */
if (((log_hdr->hdr_version & 0xFF) == 0x02) ||
((log_hdr->hdr_version & 0xFF) == 0x03)) { /* Process Version 2 or 3 header */
__s64 log_size = 0;
__u64 curr_data_offset = 0;
__u64 xfer_size_long = (__u64)xfer_size;
log_hdr_v3 = (struct wdc_dui_log_hdr_v3 *)log_hdr;
cap_dui_length_v3 = le64_to_cpu(log_hdr_v3->log_size);
if (verbose) {
fprintf(stderr, "INFO : WDC : Capture V2 or V3 Device Unit Info log, data area = %d\n", data_area);
fprintf(stderr, "INFO : WDC : DUI Header Version = 0x%x\n", log_hdr_v3->hdr_version);
if (log_hdr_v3->hdr_version >= 0x03)
fprintf(stderr, "INFO : WDC : DUI Product ID = %c\n", log_hdr_v3->product_id);
}
if (cap_dui_length_v3 == 0) {
fprintf(stderr, "INFO : WDC : Capture V2 or V3 Device Unit Info log is empty\n");
} else {
/* parse log header for all sections up to specified data area inclusively */
if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) {
for(j = 0; j < WDC_NVME_DUI_MAX_SECTION_V3; j++) {
if (log_hdr_v3->log_section[j].data_area_id <= data_area &&
log_hdr_v3->log_section[j].data_area_id != 0) {
log_size += log_hdr_v3->log_section[j].section_size;
if (verbose)
fprintf(stderr, "%s: Data area ID %d : section size 0x%x, total size = 0x%lx\n",
__func__, log_hdr_v3->log_section[j].data_area_id, (unsigned int)log_hdr_v3->log_section[j].section_size, (long unsigned int)log_size);
}
else {
if (verbose)
fprintf(stderr, "%s: break, total size = 0x%lx\n", __func__, (long unsigned int)log_size);
break;
}
}
} else
log_size = cap_dui_length_v3;
total_size = log_size;
if (offset >= total_size) {
fprintf(stderr, "%s: INFO : WDC : Offset 0x%"PRIx64" exceeds total size 0x%"PRIx64", no data retrieved\n",
__func__, (uint64_t)offset, (uint64_t)total_size);
goto out;
}
dump_data = (__u8 *) malloc(sizeof (__u8) * xfer_size_long);
if (dump_data == NULL) {
fprintf(stderr, "%s: ERROR : dump data v3 malloc failed : status %s, size = 0x%lx\n",
__func__, strerror(errno), (long unsigned int)xfer_size_long);
ret = -1;
goto out;
}
memset(dump_data, 0, sizeof (__u8) * xfer_size_long);
output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (output < 0) {
fprintf(stderr, "%s: Failed to open output file %s: %s!\n",
__func__, file, strerror(errno));
ret = output;
goto free_mem;
}
curr_data_offset = 0;
if (file_size != 0) {
/* Write the DUI data based on the passed in file size */
if ((offset + file_size) > total_size)
log_size = min((total_size - offset), file_size);
else
log_size = min(total_size, file_size);
if (verbose)
fprintf(stderr, "%s: INFO : WDC : Offset 0x%"PRIx64", file size 0x%"PRIx64", total size 0x%"PRIx64", log size 0x%"PRIx64"\n",
__func__, (uint64_t)offset, (uint64_t)file_size, (uint64_t)total_size, (uint64_t)log_size);
curr_data_offset = offset;
}
i = 0;
buffer_addr = dump_data;
for(; log_size > 0; log_size -= xfer_size_long) {
xfer_size_long = min(xfer_size_long, log_size);
if (log_size <= xfer_size_long)
last_xfer = true;
ret = wdc_dump_dui_data_v2(fd, (__u32)xfer_size_long, curr_data_offset, buffer_addr, last_xfer);
if (ret != 0) {
fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%lx, offset = 0x%lx, addr = 0x%lx\n",
__func__, i, (long unsigned int)total_size, (long unsigned int)curr_data_offset, (long unsigned int)buffer_addr);
fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret);
break;
}
/* write the dump data into the file */
err = write(output, (void *)buffer_addr, xfer_size_long);
if (err != xfer_size_long) {
fprintf(stderr, "%s: ERROR : WDC : Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size = 0x%lx\n",
__func__, i, err, (long unsigned int)xfer_size_long);
goto free_mem;
}
curr_data_offset += xfer_size_long;
i++;
}
}
} else {
__s32 log_size = 0;
__u32 curr_data_offset = 0;
cap_dui_length = le32_to_cpu(log_hdr->log_size);
if (verbose) {
fprintf(stderr, "INFO : WDC : Capture V1 Device Unit Info log, data area = %d\n", data_area);
fprintf(stderr, "INFO : WDC : DUI Header Version = 0x%x\n", log_hdr->hdr_version);
}
if (cap_dui_length == 0) {
fprintf(stderr, "INFO : WDC : Capture V1 Device Unit Info log is empty\n");
} else {
/* parse log header for all sections up to specified data area inclusively */
if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) {
for(j = 0; j < WDC_NVME_DUI_MAX_SECTION; j++) {
if (log_hdr->log_section[j].data_area_id <= data_area &&
log_hdr->log_section[j].data_area_id != 0) {
log_size += log_hdr->log_section[j].section_size;
if (verbose)
fprintf(stderr, "%s: Data area ID %d : section size 0x%x, total size = 0x%x\n",
__func__, log_hdr->log_section[j].data_area_id, (unsigned int)log_hdr->log_section[j].section_size, (unsigned int)log_size);
}
else {
if (verbose)
fprintf(stderr, "%s: break, total size = 0x%x\n", __func__, (unsigned int)log_size);
break;
}
}
} else
log_size = cap_dui_length;
total_size = log_size;
dump_data = (__u8 *) malloc(sizeof (__u8) * xfer_size);
if (dump_data == NULL) {
fprintf(stderr, "%s: ERROR : dump data V1 malloc failed : status %s, size = 0x%x\n",
__func__, strerror(errno), (unsigned int)xfer_size);
ret = -1;
goto out;
}
memset(dump_data, 0, sizeof (__u8) * xfer_size);
output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (output < 0) {
fprintf(stderr, "%s: Failed to open output file %s: %s!\n",
__func__, file, strerror(errno));
ret = output;
goto free_mem;
}
/* write the telemetry and log headers into the dump_file */
err = write(output, (void *)log_hdr, WDC_NVME_CAP_DUI_HEADER_SIZE);
if (err != WDC_NVME_CAP_DUI_HEADER_SIZE) {
fprintf(stderr, "%s: Failed to flush header data to file!\n", __func__);
goto free_mem;
}
log_size -= WDC_NVME_CAP_DUI_HEADER_SIZE;
curr_data_offset = WDC_NVME_CAP_DUI_HEADER_SIZE;
i = 0;
buffer_addr = dump_data;
for(; log_size > 0; log_size -= xfer_size) {
xfer_size = min(xfer_size, log_size);
if (log_size <= xfer_size)
last_xfer = true;
ret = wdc_dump_dui_data(fd, xfer_size, curr_data_offset, buffer_addr, last_xfer);
if (ret != 0) {
fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%lx, offset = 0x%x, addr = %p\n",
__func__, i, (long unsigned int)log_size, curr_data_offset, buffer_addr);
fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret);
break;
}
/* write the dump data into the file */
err = write(output, (void *)buffer_addr, xfer_size);
if (err != xfer_size) {
fprintf(stderr, "%s: ERROR : WDC : Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size = 0x%x\n",
__func__, i, err, xfer_size);
goto free_mem;
}
curr_data_offset += xfer_size;
i++;
}
}
}
fprintf(stderr, "%s: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret);
if (verbose)
fprintf(stderr, "INFO : WDC : Capture Device Unit Info log, length = 0x%lx\n", (long unsigned int)total_size);
free_mem:
close(output);
free(dump_data);
out:
free(log_hdr);
return ret;
}
static int wdc_cap_diag(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Capture Diagnostics Log.";
char *file = "Output file pathname.";
char *size = "Data retrieval transfer size.";
char f[PATH_MAX] = {0};
__u32 xfer_size = 0;
int fd;
__u64 capabilities = 0;
struct config {
char *file;
__u32 xfer_size;
};
struct config cfg = {
.file = NULL,
.xfer_size = 0x10000
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_UINT("transfer-size", 's', &cfg.xfer_size, size),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (cfg.file != NULL)
strncpy(f, cfg.file, PATH_MAX - 1);
if (cfg.xfer_size != 0)
xfer_size = cfg.xfer_size;
if (wdc_get_serial_name(fd, f, PATH_MAX, "cap_diag") == -1) {
fprintf(stderr, "ERROR : WDC: failed to generate file name\n");
return -1;
}
if (cfg.file == NULL)
snprintf(f + strlen(f), PATH_MAX, "%s", ".bin");
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_CAP_DIAG) == WDC_DRIVE_CAP_CAP_DIAG)
return wdc_do_cap_diag(fd, f, xfer_size, 0, 0);
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
return 0;
}
static int wdc_do_get_sn730_log_len(int fd, uint32_t *len_buf, uint32_t subopcode)
{
int ret;
uint32_t *output = NULL;
struct nvme_admin_cmd admin_cmd;
if ((output = (uint32_t*)malloc(sizeof(uint32_t))) == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return -1;
}
memset(output, 0, sizeof (uint32_t));
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.data_len = 8;
admin_cmd.opcode = SN730_NVME_GET_LOG_OPCODE;
admin_cmd.addr = (uintptr_t)output;
admin_cmd.cdw12 = subopcode;
admin_cmd.cdw10 = SN730_LOG_CHUNK_SIZE / 4;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret == 0)
*len_buf = *output;
free(output);
return ret;
}
static int wdc_do_get_sn730_log(int fd, void * log_buf, uint32_t offset, uint32_t subopcode)
{
int ret;
uint8_t *output = NULL;
struct nvme_admin_cmd admin_cmd;
if ((output = (uint8_t*)calloc(SN730_LOG_CHUNK_SIZE, sizeof(uint8_t))) == NULL) {
fprintf(stderr, "ERROR : WDC : calloc : %s\n", strerror(errno));
return -1;
}
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.data_len = SN730_LOG_CHUNK_SIZE;
admin_cmd.opcode = SN730_NVME_GET_LOG_OPCODE;
admin_cmd.addr = (uintptr_t)output;
admin_cmd.cdw12 = subopcode;
admin_cmd.cdw13 = offset;
admin_cmd.cdw10 = SN730_LOG_CHUNK_SIZE / 4;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (!ret)
memcpy(log_buf, output, SN730_LOG_CHUNK_SIZE);
return ret;
}
static int get_sn730_log_chunks(int fd, uint8_t* log_buf, uint32_t log_len, uint32_t subopcode)
{
int ret = 0;
uint8_t* chunk_buf = NULL;
int remaining = log_len;
int curr_offset = 0;
if ((chunk_buf = (uint8_t*) malloc(sizeof (uint8_t) * SN730_LOG_CHUNK_SIZE)) == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
ret = -1;
goto out;
}
while (remaining > 0) {
memset(chunk_buf, 0, SN730_LOG_CHUNK_SIZE);
ret = wdc_do_get_sn730_log(fd, chunk_buf, curr_offset, subopcode);
if (!ret) {
if (remaining >= SN730_LOG_CHUNK_SIZE) {
memcpy(log_buf + (curr_offset * SN730_LOG_CHUNK_SIZE),
chunk_buf, SN730_LOG_CHUNK_SIZE);
} else {
memcpy(log_buf + (curr_offset * SN730_LOG_CHUNK_SIZE),
chunk_buf, remaining);
}
remaining -= SN730_LOG_CHUNK_SIZE;
curr_offset += 1;
} else
goto out;
}
out:
free(chunk_buf);
return ret;
}
static int wdc_do_sn730_get_and_tar(int fd, char * outputName)
{
int ret = 0;
void *retPtr;
uint8_t* full_log_buf = NULL;
uint8_t* key_log_buf = NULL;
uint8_t* core_dump_log_buf = NULL;
uint8_t* extended_log_buf = NULL;
uint32_t full_log_len = 0;
uint32_t key_log_len = 0;
uint32_t core_dump_log_len = 0;
uint32_t extended_log_len = 0;
tarfile_metadata* tarInfo = NULL;
tarInfo = (struct tarfile_metadata*) malloc(sizeof(tarfile_metadata));
if (tarInfo == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
ret = -1;
goto free_buf;
}
memset(tarInfo, 0, sizeof(tarfile_metadata));
/* Create Logs directory */
wdc_UtilsGetTime(&tarInfo->timeInfo);
memset(tarInfo->timeString, 0, sizeof(tarInfo->timeString));
wdc_UtilsSnprintf((char*)tarInfo->timeString, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
tarInfo->timeInfo.year, tarInfo->timeInfo.month, tarInfo->timeInfo.dayOfMonth,
tarInfo->timeInfo.hour, tarInfo->timeInfo.minute, tarInfo->timeInfo.second);
wdc_UtilsSnprintf((char*)tarInfo->bufferFolderName, MAX_PATH_LEN, "%s",
(char*)outputName);
retPtr = getcwd((char*)tarInfo->currDir, MAX_PATH_LEN);
if (retPtr != NULL)
wdc_UtilsSnprintf((char*)tarInfo->bufferFolderPath, MAX_PATH_LEN, "%s%s%s",
(char *)tarInfo->currDir, WDC_DE_PATH_SEPARATOR, (char *)tarInfo->bufferFolderName);
else {
fprintf(stderr, "ERROR : WDC : get current working directory failed\n");
goto free_buf;
}
ret = wdc_UtilsCreateDir((char*)tarInfo->bufferFolderPath);
if (ret)
{
fprintf(stderr, "ERROR : WDC : create directory failed, ret = %d, dir = %s\n", ret, tarInfo->bufferFolderPath);
goto free_buf;
} else {
fprintf(stderr, "Stored log files in directory: %s\n", tarInfo->bufferFolderPath);
}
ret = wdc_do_get_sn730_log_len(fd, &full_log_len, SN730_GET_FULL_LOG_LENGTH);
if (ret) {
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
goto free_buf;
}
ret = wdc_do_get_sn730_log_len(fd, &key_log_len, SN730_GET_KEY_LOG_LENGTH);
if (ret) {
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
goto free_buf;
}
ret = wdc_do_get_sn730_log_len(fd, &core_dump_log_len, SN730_GET_COREDUMP_LOG_LENGTH);
if (ret) {
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
goto free_buf;
}
ret = wdc_do_get_sn730_log_len(fd, &extended_log_len, SN730_GET_EXTENDED_LOG_LENGTH);
if (ret) {
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
goto free_buf;
}
full_log_buf = (uint8_t*) calloc(full_log_len, sizeof (uint8_t));
key_log_buf = (uint8_t*) calloc(key_log_len, sizeof (uint8_t));
core_dump_log_buf = (uint8_t*) calloc(core_dump_log_len, sizeof (uint8_t));
extended_log_buf = (uint8_t*) calloc(extended_log_len, sizeof (uint8_t));
if (!full_log_buf || !key_log_buf || !core_dump_log_buf || !extended_log_buf) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
ret = -1;
goto free_buf;
}
/* Get the full log */
ret = get_sn730_log_chunks(fd, full_log_buf, full_log_len, SN730_GET_FULL_LOG_SUBOPCODE);
if (ret) {
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
goto free_buf;
}
/* Get the key log */
ret = get_sn730_log_chunks(fd, key_log_buf, key_log_len, SN730_GET_KEY_LOG_SUBOPCODE);
if (ret) {
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
goto free_buf;
}
/* Get the core dump log */
ret = get_sn730_log_chunks(fd, core_dump_log_buf, core_dump_log_len, SN730_GET_CORE_LOG_SUBOPCODE);
if (ret) {
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
goto free_buf;
}
/* Get the extended log */
ret = get_sn730_log_chunks(fd, extended_log_buf, extended_log_len, SN730_GET_EXTEND_LOG_SUBOPCODE);
if (ret) {
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
goto free_buf;
}
/* Write log files */
wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"full_log", (char*)tarInfo->timeString);
wdc_WriteToFile(tarInfo->fileName, (char*)full_log_buf, full_log_len);
wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"key_log", (char*)tarInfo->timeString);
wdc_WriteToFile(tarInfo->fileName, (char*)key_log_buf, key_log_len);
wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"core_dump_log", (char*)tarInfo->timeString);
wdc_WriteToFile(tarInfo->fileName, (char*)core_dump_log_buf, core_dump_log_len);
wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"extended_log", (char*)tarInfo->timeString);
wdc_WriteToFile(tarInfo->fileName, (char*)extended_log_buf, extended_log_len);
/* Tar the log directory */
wdc_UtilsSnprintf(tarInfo->tarFileName, sizeof(tarInfo->tarFileName), "%s%s", (char*)tarInfo->bufferFolderPath, WDC_DE_TAR_FILE_EXTN);
wdc_UtilsSnprintf(tarInfo->tarFiles, sizeof(tarInfo->tarFiles), "%s%s%s", (char*)tarInfo->bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES);
wdc_UtilsSnprintf(tarInfo->tarCmd, sizeof(tarInfo->tarCmd), "%s %s %s", WDC_DE_TAR_CMD, (char*)tarInfo->tarFileName, (char*)tarInfo->tarFiles);
ret = system(tarInfo->tarCmd);
if (ret)
fprintf(stderr, "ERROR : WDC : Tar of log data failed, ret = %d\n", ret);
free_buf:
free(tarInfo);
free(full_log_buf);
free(core_dump_log_buf);
free(key_log_buf);
free(extended_log_buf);
return ret;
}
static int wdc_vs_internal_fw_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Internal Firmware Log.";
char *file = "Output file pathname.";
char *size = "Data retrieval transfer size.";
char *data_area = "Data area to retrieve up to. Currently only supported on the SN340, SN640, and SN840 devices.";
char *file_size = "Output file size. Currently only supported on the SN340 device.";
char *offset = "Output file data offset. Currently only supported on the SN340 device.";
char *type = "Telemetry type - NONE, HOST, or CONTROLLER. Currently only supported on the SN640 and SN840 devices.";
char *verbose = "Display more debug messages.";
char f[PATH_MAX] = {0};
char fileSuffix[PATH_MAX] = {0};
__u32 xfer_size = 0;
int fd;
int telemetry_type = 0, telemetry_data_area = 0;
UtilsTimeInfo timeInfo;
__u8 timeStamp[MAX_PATH_LEN];
__u64 capabilities = 0;
struct config {
char *file;
__u32 xfer_size;
int data_area;
__u64 file_size;
__u64 offset;
char *type;
int verbose;
};
struct config cfg = {
.file = NULL,
.xfer_size = 0x10000,
.data_area = 3,
.file_size = 0,
.offset = 0,
.type = NULL,
.verbose = 0,
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_UINT("transfer-size", 's', &cfg.xfer_size, size),
OPT_UINT("data-area", 'd', &cfg.data_area, data_area),
OPT_LONG("file-size", 'f', &cfg.file_size, file_size),
OPT_LONG("offset", 'e', &cfg.offset, offset),
OPT_FILE("type", 't', &cfg.type, type),
OPT_FLAG("verbose", 'v', &cfg.verbose, verbose),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (!wdc_check_device(fd))
return -1;
if (cfg.xfer_size != 0)
xfer_size = cfg.xfer_size;
else {
fprintf(stderr, "ERROR : WDC : Invalid length\n");
return -1;
}
if (cfg.file != NULL) {
int verify_file;
/* verify the passed in file name and path is valid before getting the dump data */
verify_file = open(cfg.file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (verify_file < 0) {
fprintf(stderr, "ERROR : WDC: open : %s\n", strerror(errno));
return -1;
}
close(verify_file);
strncpy(f, cfg.file, PATH_MAX - 1);
} else {
wdc_UtilsGetTime(&timeInfo);
memset(timeStamp, 0, sizeof(timeStamp));
wdc_UtilsSnprintf((char*)timeStamp, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
timeInfo.year, timeInfo.month, timeInfo.dayOfMonth,
timeInfo.hour, timeInfo.minute, timeInfo.second);
snprintf(fileSuffix, PATH_MAX, "_internal_fw_log_%s", (char*)timeStamp);
if (wdc_get_serial_name(fd, f, PATH_MAX, fileSuffix) == -1) {
fprintf(stderr, "ERROR : WDC: failed to generate file name\n");
return -1;
}
}
if (cfg.file == NULL)
snprintf(f + strlen(f), PATH_MAX, "%s", ".bin");
fprintf(stderr, "%s: filename = %s\n", __func__, f);
if (cfg.data_area > 5 || cfg.data_area == 0) {
fprintf(stderr, "ERROR : WDC: Data area must be 1-5\n");
return -1;
}
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_INTERNAL_LOG) == WDC_DRIVE_CAP_INTERNAL_LOG) {
if ((cfg.type == NULL) ||
(!strcmp(cfg.type, "NONE")) ||
(!strcmp(cfg.type, "none"))) {
telemetry_type = WDC_TELEMETRY_TYPE_NONE;
data_area = 0;
} else if ((!strcmp(cfg.type, "HOST")) ||
(!strcmp(cfg.type, "host"))) {
telemetry_type = WDC_TELEMETRY_TYPE_HOST;
telemetry_data_area = cfg.data_area;
} else if ((!strcmp(cfg.type, "CONTROLLER")) ||
(!strcmp(cfg.type, "controller"))) {
telemetry_type = WDC_TELEMETRY_TYPE_CONTROLLER;
telemetry_data_area = cfg.data_area;
} else {
fprintf(stderr, "ERROR : WDC: Invalid type - Must be NONE, HOST or CONTROLLER\n");
return -1;
}
return wdc_do_cap_diag(fd, f, xfer_size, telemetry_type, telemetry_data_area);
}
if ((capabilities & WDC_DRIVE_CAP_SN340_DUI) == WDC_DRIVE_CAP_SN340_DUI) {
/* FW requirement - xfer size must be 256k for data area 4 */
if (cfg.data_area >= 4)
xfer_size = 0x40000;
return wdc_do_cap_dui(fd, f, xfer_size, cfg.data_area, cfg.verbose, cfg.file_size, cfg.offset);
}
if ((capabilities & WDC_DRIVE_CAP_DUI_DATA) == WDC_DRIVE_CAP_DUI_DATA)
return wdc_do_cap_dui(fd, f, xfer_size, WDC_NVME_DUI_MAX_DATA_AREA, cfg.verbose, 0, 0);
if ((capabilities & WDC_SN730B_CAP_VUC_LOG) == WDC_SN730B_CAP_VUC_LOG)
return wdc_do_sn730_get_and_tar(fd, f);
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
return -1;
}
static int wdc_do_crash_dump(int fd, char *file, int type)
{
int ret;
__u32 crash_dump_length;
__u32 opcode;
__u32 cdw12;
__u32 cdw10_size;
__u32 cdw12_size;
__u32 cdw12_clear;
if (type == WDC_NVME_PFAIL_DUMP_TYPE) {
/* set parms to get the PFAIL Crash Dump */
opcode = WDC_NVME_PF_CRASH_DUMP_OPCODE;
cdw10_size = WDC_NVME_PF_CRASH_DUMP_SIZE_NDT;
cdw12_size = ((WDC_NVME_PF_CRASH_DUMP_SIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_PF_CRASH_DUMP_SIZE_CMD);
cdw12 = (WDC_NVME_PF_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_PF_CRASH_DUMP_CMD;
cdw12_clear = ((WDC_NVME_CLEAR_PF_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_CRASH_DUMP_CMD);
} else {
/* set parms to get the Crash Dump */
opcode = WDC_NVME_CRASH_DUMP_OPCODE;
cdw10_size = WDC_NVME_CRASH_DUMP_SIZE_NDT;
cdw12_size = ((WDC_NVME_CRASH_DUMP_SIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CRASH_DUMP_SIZE_CMD);
cdw12 = (WDC_NVME_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CRASH_DUMP_CMD;
cdw12_clear = ((WDC_NVME_CLEAR_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_CRASH_DUMP_CMD);
}
ret = wdc_dump_length(fd,
opcode,
cdw10_size,
cdw12_size,
&crash_dump_length);
if (ret == -1) {
if (type == WDC_NVME_PFAIL_DUMP_TYPE)
fprintf(stderr, "INFO : WDC: Pfail dump get size failed\n");
else
fprintf(stderr, "INFO : WDC: Crash dump get size failed\n");
return -1;
}
if (crash_dump_length == 0) {
if (type == WDC_NVME_PFAIL_DUMP_TYPE)
fprintf(stderr, "INFO : WDC: Pfail dump is empty\n");
else
fprintf(stderr, "INFO : WDC: Crash dump is empty\n");
} else {
ret = wdc_do_dump(fd,
opcode,
crash_dump_length,
cdw12,
file,
crash_dump_length);
if (ret == 0)
ret = wdc_do_clear_dump(fd, WDC_NVME_CLEAR_DUMP_OPCODE, cdw12_clear);
}
return ret;
}
static int wdc_crash_dump(int fd, char *file, int type)
{
char f[PATH_MAX] = {0};
const char *dump_type;
if (file != NULL) {
strncpy(f, file, PATH_MAX - 1);
}
if (type == WDC_NVME_PFAIL_DUMP_TYPE)
dump_type = "_pfail_dump";
else
dump_type = "_crash_dump";
if (wdc_get_serial_name(fd, f, PATH_MAX, dump_type) == -1) {
fprintf(stderr, "ERROR : WDC : failed to generate file name\n");
return -1;
}
return wdc_do_crash_dump(fd, f, type);
}
static int wdc_do_drive_log(int fd, char *file)
{
int ret;
__u8 *drive_log_data;
__u32 drive_log_length;
struct nvme_admin_cmd admin_cmd;
ret = wdc_dump_length(fd, WDC_NVME_DRIVE_LOG_SIZE_OPCODE,
WDC_NVME_DRIVE_LOG_SIZE_NDT,
(WDC_NVME_DRIVE_LOG_SIZE_SUBCMD <<
WDC_NVME_SUBCMD_SHIFT | WDC_NVME_DRIVE_LOG_SIZE_CMD),
&drive_log_length);
if (ret == -1) {
return -1;
}
drive_log_data = (__u8 *) malloc(sizeof (__u8) * drive_log_length);
if (drive_log_data == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return -1;
}
memset(drive_log_data, 0, sizeof (__u8) * drive_log_length);
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = WDC_NVME_DRIVE_LOG_OPCODE;
admin_cmd.addr = (__u64)(uintptr_t)drive_log_data;
admin_cmd.data_len = drive_log_length;
admin_cmd.cdw10 = drive_log_length;
admin_cmd.cdw12 = ((WDC_NVME_DRIVE_LOG_SUBCMD <<
WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_DRIVE_LOG_SIZE_CMD);
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret),
ret);
if (ret == 0) {
ret = wdc_create_log_file(file, drive_log_data, drive_log_length);
}
free(drive_log_data);
return ret;
}
static int wdc_drive_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Capture Drive Log.";
const char *file = "Output file pathname.";
char f[PATH_MAX] = {0};
int fd;
int ret;
__u64 capabilities = 0;
struct config {
char *file;
};
struct config cfg = {
.file = NULL
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (!wdc_check_device(fd))
return -1;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_DRIVE_LOG) == 0) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
} else {
if (cfg.file != NULL) {
strncpy(f, cfg.file, PATH_MAX - 1);
}
if (wdc_get_serial_name(fd, f, PATH_MAX, "drive_log") == -1) {
fprintf(stderr, "ERROR : WDC : failed to generate file name\n");
return -1;
}
ret = wdc_do_drive_log(fd, f);
}
return ret;
}
static int wdc_get_crash_dump(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Get Crash Dump.";
const char *file = "Output file pathname.";
int fd, ret;
__u64 capabilities = 0;
struct config {
char *file;
};
struct config cfg = {
.file = NULL,
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (!wdc_check_device(fd))
return -1;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_CRASH_DUMP) == 0) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
} else {
ret = wdc_crash_dump(fd, cfg.file, WDC_NVME_CRASH_DUMP_TYPE);
if (ret != 0) {
fprintf(stderr, "ERROR : WDC : failed to read crash dump\n");
}
}
return ret;
}
static int wdc_get_pfail_dump(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Get Pfail Crash Dump.";
char *file = "Output file pathname.";
int fd;
int ret;
__u64 capabilities = 0;
struct config {
char *file;
};
struct config cfg = {
.file = NULL,
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (!wdc_check_device(fd))
return -1;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_PFAIL_DUMP) == 0) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
} else {
ret = wdc_crash_dump(fd, cfg.file, WDC_NVME_PFAIL_DUMP_TYPE);
if (ret != 0) {
fprintf(stderr, "ERROR : WDC : failed to read pfail crash dump\n");
}
}
return ret;
}
static void wdc_do_id_ctrl(__u8 *vs, struct json_object *root)
{
char vsn[24] = {0};
int base = 3072;
int vsn_start = 3081;
memcpy(vsn, &vs[vsn_start - base], sizeof(vsn));
if (root)
json_object_add_value_string(root, "wdc vsn", strlen(vsn) > 1 ? vsn : "NULL");
else
printf("wdc vsn : %s\n", strlen(vsn) > 1 ? vsn : "NULL");
}
static int wdc_id_ctrl(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
return __id_ctrl(argc, argv, cmd, plugin, wdc_do_id_ctrl);
}
static const char* wdc_purge_mon_status_to_string(__u32 status)
{
const char *str;
switch (status) {
case WDC_NVME_PURGE_STATE_IDLE:
str = "Purge State Idle.";
break;
case WDC_NVME_PURGE_STATE_DONE:
str = "Purge State Done.";
break;
case WDC_NVME_PURGE_STATE_BUSY:
str = "Purge State Busy.";
break;
case WDC_NVME_PURGE_STATE_REQ_PWR_CYC:
str = "Purge Operation resulted in an error that requires "
"power cycle.";
break;
case WDC_NVME_PURGE_STATE_PWR_CYC_PURGE:
str = "The previous purge operation was interrupted by a power "
"cycle\nor reset interruption. Other commands may be "
"rejected until\nPurge Execute is issued and "
"completed.";
break;
default:
str = "Unknown.";
}
return str;
}
static int wdc_purge(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a Purge command.";
char *err_str;
int fd, ret;
struct nvme_passthru_cmd admin_cmd;
OPT_ARGS(opts) = {
OPT_END()
};
err_str = "";
memset(&admin_cmd, 0, sizeof (admin_cmd));
admin_cmd.opcode = WDC_NVME_PURGE_CMD_OPCODE;
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (!wdc_check_device(fd))
return -1;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret > 0) {
switch (ret) {
case WDC_NVME_PURGE_CMD_SEQ_ERR:
err_str = "ERROR : WDC : Cannot execute purge, "
"Purge operation is in progress.\n";
break;
case WDC_NVME_PURGE_INT_DEV_ERR:
err_str = "ERROR : WDC : Internal Device Error.\n";
break;
default:
err_str = "ERROR : WDC\n";
}
}
fprintf(stderr, "%s", err_str);
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
return ret;
}
static int wdc_purge_monitor(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a Purge Monitor command.";
int fd, ret;
__u8 output[WDC_NVME_PURGE_MONITOR_DATA_LEN];
double progress_percent;
struct nvme_passthru_cmd admin_cmd;
struct wdc_nvme_purge_monitor_data *mon;
OPT_ARGS(opts) = {
OPT_END()
};
memset(output, 0, sizeof (output));
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = WDC_NVME_PURGE_MONITOR_OPCODE;
admin_cmd.addr = (__u64)(uintptr_t)output;
admin_cmd.data_len = WDC_NVME_PURGE_MONITOR_DATA_LEN;
admin_cmd.cdw10 = WDC_NVME_PURGE_MONITOR_CMD_CDW10;
admin_cmd.timeout_ms = WDC_NVME_PURGE_MONITOR_TIMEOUT;
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (!wdc_check_device(fd))
return -1;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (ret == 0) {
mon = (struct wdc_nvme_purge_monitor_data *) output;
printf("Purge state = 0x%0x\n", admin_cmd.result);
printf("%s\n", wdc_purge_mon_status_to_string(admin_cmd.result));
if (admin_cmd.result == WDC_NVME_PURGE_STATE_BUSY) {
progress_percent =
((double)le32_to_cpu(mon->entire_progress_current) * 100) /
le32_to_cpu(mon->entire_progress_total);
printf("Purge Progress = %f%%\n", progress_percent);
}
}
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
return ret;
}
static void wdc_print_log_normal(struct wdc_ssd_perf_stats *perf)
{
printf(" C1 Log Page Performance Statistics :- \n");
printf(" Host Read Commands %20"PRIu64"\n",
le64_to_cpu(perf->hr_cmds));
printf(" Host Read Blocks %20"PRIu64"\n",
le64_to_cpu(perf->hr_blks));
printf(" Average Read Size %20lf\n",
safe_div_fp((le64_to_cpu(perf->hr_blks)), (le64_to_cpu(perf->hr_cmds))));
printf(" Host Read Cache Hit Commands %20"PRIu64"\n",
le64_to_cpu(perf->hr_ch_cmds));
printf(" Host Read Cache Hit_Percentage %20"PRIu64"%%\n",
(uint64_t) calc_percent(le64_to_cpu(perf->hr_ch_cmds), le64_to_cpu(perf->hr_cmds)));
printf(" Host Read Cache Hit Blocks %20"PRIu64"\n",
le64_to_cpu(perf->hr_ch_blks));
printf(" Average Read Cache Hit Size %20f\n",
safe_div_fp((le64_to_cpu(perf->hr_ch_blks)), (le64_to_cpu(perf->hr_ch_cmds))));
printf(" Host Read Commands Stalled %20"PRIu64"\n",
le64_to_cpu(perf->hr_st_cmds));
printf(" Host Read Commands Stalled Percentage %20"PRIu64"%%\n",
(uint64_t)calc_percent((le64_to_cpu(perf->hr_st_cmds)), le64_to_cpu(perf->hr_cmds)));
printf(" Host Write Commands %20"PRIu64"\n",
le64_to_cpu(perf->hw_cmds));
printf(" Host Write Blocks %20"PRIu64"\n",
le64_to_cpu(perf->hw_blks));
printf(" Average Write Size %20f\n",
safe_div_fp((le64_to_cpu(perf->hw_blks)), (le64_to_cpu(perf->hw_cmds))));
printf(" Host Write Odd Start Commands %20"PRIu64"\n",
le64_to_cpu(perf->hw_os_cmds));
printf(" Host Write Odd Start Commands Percentage %20"PRIu64"%%\n",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_os_cmds)), (le64_to_cpu(perf->hw_cmds))));
printf(" Host Write Odd End Commands %20"PRIu64"\n",
le64_to_cpu(perf->hw_oe_cmds));
printf(" Host Write Odd End Commands Percentage %20"PRIu64"%%\n",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_oe_cmds)), (le64_to_cpu((perf->hw_cmds)))));
printf(" Host Write Commands Stalled %20"PRIu64"\n",
le64_to_cpu(perf->hw_st_cmds));
printf(" Host Write Commands Stalled Percentage %20"PRIu64"%%\n",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_st_cmds)), (le64_to_cpu(perf->hw_cmds))));
printf(" NAND Read Commands %20"PRIu64"\n",
le64_to_cpu(perf->nr_cmds));
printf(" NAND Read Blocks Commands %20"PRIu64"\n",
le64_to_cpu(perf->nr_blks));
printf(" Average NAND Read Size %20f\n",
safe_div_fp((le64_to_cpu(perf->nr_blks)), (le64_to_cpu((perf->nr_cmds)))));
printf(" Nand Write Commands %20"PRIu64"\n",
le64_to_cpu(perf->nw_cmds));
printf(" NAND Write Blocks %20"PRIu64"\n",
le64_to_cpu(perf->nw_blks));
printf(" Average NAND Write Size %20f\n",
safe_div_fp((le64_to_cpu(perf->nw_blks)), (le64_to_cpu(perf->nw_cmds))));
printf(" NAND Read Before Write %20"PRIu64"\n",
le64_to_cpu(perf->nrbw));
}
static void wdc_print_log_json(struct wdc_ssd_perf_stats *perf)
{
struct json_object *root;
root = json_create_object();
json_object_add_value_int(root, "Host Read Commands", le64_to_cpu(perf->hr_cmds));
json_object_add_value_int(root, "Host Read Blocks", le64_to_cpu(perf->hr_blks));
json_object_add_value_int(root, "Average Read Size",
safe_div_fp((le64_to_cpu(perf->hr_blks)), (le64_to_cpu(perf->hr_cmds))));
json_object_add_value_int(root, "Host Read Cache Hit Commands",
le64_to_cpu(perf->hr_ch_cmds));
json_object_add_value_int(root, "Host Read Cache Hit Percentage",
(uint64_t) calc_percent(le64_to_cpu(perf->hr_ch_cmds), le64_to_cpu(perf->hr_cmds)));
json_object_add_value_int(root, "Host Read Cache Hit Blocks",
le64_to_cpu(perf->hr_ch_blks));
json_object_add_value_int(root, "Average Read Cache Hit Size",
safe_div_fp((le64_to_cpu(perf->hr_ch_blks)), (le64_to_cpu(perf->hr_ch_cmds))));
json_object_add_value_int(root, "Host Read Commands Stalled",
le64_to_cpu(perf->hr_st_cmds));
json_object_add_value_int(root, "Host Read Commands Stalled Percentage",
(uint64_t)calc_percent((le64_to_cpu(perf->hr_st_cmds)), le64_to_cpu(perf->hr_cmds)));
json_object_add_value_int(root, "Host Write Commands",
le64_to_cpu(perf->hw_cmds));
json_object_add_value_int(root, "Host Write Blocks",
le64_to_cpu(perf->hw_blks));
json_object_add_value_int(root, "Average Write Size",
safe_div_fp((le64_to_cpu(perf->hw_blks)), (le64_to_cpu(perf->hw_cmds))));
json_object_add_value_int(root, "Host Write Odd Start Commands",
le64_to_cpu(perf->hw_os_cmds));
json_object_add_value_int(root, "Host Write Odd Start Commands Percentage",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_os_cmds)), (le64_to_cpu(perf->hw_cmds))));
json_object_add_value_int(root, "Host Write Odd End Commands",
le64_to_cpu(perf->hw_oe_cmds));
json_object_add_value_int(root, "Host Write Odd End Commands Percentage",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_oe_cmds)), (le64_to_cpu((perf->hw_cmds)))));
json_object_add_value_int(root, "Host Write Commands Stalled",
le64_to_cpu(perf->hw_st_cmds));
json_object_add_value_int(root, "Host Write Commands Stalled Percentage",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_st_cmds)), (le64_to_cpu(perf->hw_cmds))));
json_object_add_value_int(root, "NAND Read Commands",
le64_to_cpu(perf->nr_cmds));
json_object_add_value_int(root, "NAND Read Blocks Commands",
le64_to_cpu(perf->nr_blks));
json_object_add_value_int(root, "Average NAND Read Size",
safe_div_fp((le64_to_cpu(perf->nr_blks)), (le64_to_cpu((perf->nr_cmds)))));
json_object_add_value_int(root, "Nand Write Commands",
le64_to_cpu(perf->nw_cmds));
json_object_add_value_int(root, "NAND Write Blocks",
le64_to_cpu(perf->nw_blks));
json_object_add_value_int(root, "Average NAND Write Size",
safe_div_fp((le64_to_cpu(perf->nw_blks)), (le64_to_cpu(perf->nw_cmds))));
json_object_add_value_int(root, "NAND Read Before Written",
le64_to_cpu(perf->nrbw));
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static int wdc_print_log(struct wdc_ssd_perf_stats *perf, int fmt)
{
if (!perf) {
fprintf(stderr, "ERROR : WDC : Invalid buffer to read perf stats\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_log_normal(perf);
break;
case JSON:
wdc_print_log_json(perf);
break;
}
return 0;
}
static void wdc_print_fb_ca_log_normal(struct wdc_ssd_ca_perf_stats *perf)
{
uint64_t converted = 0;
printf(" CA Log Page Performance Statistics :- \n");
printf(" NAND Bytes Written %20"PRIu64 "%20"PRIu64"\n",
le64_to_cpu(perf->nand_bytes_wr_hi), le64_to_cpu(perf->nand_bytes_wr_lo));
printf(" NAND Bytes Read %20"PRIu64 "%20"PRIu64"\n",
le64_to_cpu(perf->nand_bytes_rd_hi), le64_to_cpu(perf->nand_bytes_rd_lo));
converted = le64_to_cpu(perf->nand_bad_block);
printf(" NAND Bad Block Count (Normalized) %20"PRIu64"\n",
converted & 0xFFFF);
printf(" NAND Bad Block Count (Raw) %20"PRIu64"\n",
converted >> 16);
printf(" Uncorrectable Read Count %20"PRIu64"\n",
le64_to_cpu(perf->uncorr_read_count));
printf(" Soft ECC Error Count %20"PRIu64"\n",
le64_to_cpu(perf->ecc_error_count));
printf(" SSD End to End Detected Correction Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->ssd_detect_count));
printf(" SSD End to End Corrected Correction Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->ssd_correct_count));
printf(" System Data Percent Used %20"PRIu32"%%\n",
perf->data_percent_used);
printf(" User Data Erase Counts Max %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->data_erase_max));
printf(" User Data Erase Counts Min %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->data_erase_min));
printf(" Refresh Count %20"PRIu64"\n",
le64_to_cpu(perf->refresh_count));
converted = le64_to_cpu(perf->program_fail);
printf(" Program Fail Count (Normalized) %20"PRIu64"\n",
converted & 0xFFFF);
printf(" Program Fail Count (Raw) %20"PRIu64"\n",
converted >> 16);
converted = le64_to_cpu(perf->user_erase_fail);
printf(" User Data Erase Fail Count (Normalized) %20"PRIu64"\n",
converted & 0xFFFF);
printf(" User Data Erase Fail Count (Raw) %20"PRIu64"\n",
converted >> 16);
converted = le64_to_cpu(perf->system_erase_fail);
printf(" System Area Erase Fail Count (Normalized) %20"PRIu64"\n",
converted & 0xFFFF);
printf(" System Area Erase Fail Count (Raw) %20"PRIu64"\n",
converted >> 16);
printf(" Thermal Throttling Status %20"PRIu8"\n",
perf->thermal_throttle_status);
printf(" Thermal Throttling Count %20"PRIu8"\n",
perf->thermal_throttle_count);
printf(" PCIe Correctable Error Count %20"PRIu64"\n",
le64_to_cpu(perf->pcie_corr_error));
printf(" Incomplete Shutdown Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->incomplete_shutdown_count));
printf(" Percent Free Blocks %20"PRIu32"%%\n",
perf->percent_free_blocks);
}
static void wdc_print_fb_ca_log_json(struct wdc_ssd_ca_perf_stats *perf)
{
struct json_object *root;
uint64_t converted = 0;
root = json_create_object();
json_object_add_value_int(root, "NAND Bytes Written Hi", le64_to_cpu(perf->nand_bytes_wr_hi));
json_object_add_value_int(root, "NAND Bytes Written Lo", le64_to_cpu(perf->nand_bytes_wr_lo));
json_object_add_value_int(root, "NAND Bytes Read Hi", le64_to_cpu(perf->nand_bytes_rd_hi));
json_object_add_value_int(root, "NAND Bytes Read Lo", le64_to_cpu(perf->nand_bytes_rd_lo));
converted = le64_to_cpu(perf->nand_bad_block);
json_object_add_value_int(root, "NAND Bad Block Count (Normalized)",
converted & 0xFFFF);
json_object_add_value_int(root, "NAND Bad Block Count (Raw)",
converted >> 16);
json_object_add_value_int(root, "Uncorrectable Read Count", le64_to_cpu(perf->uncorr_read_count));
json_object_add_value_int(root, "Soft ECC Error Count", le64_to_cpu(perf->ecc_error_count));
json_object_add_value_int(root, "SSD End to End Detected Correction Count",
le32_to_cpu(perf->ssd_detect_count));
json_object_add_value_int(root, "SSD End to End Corrected Correction Count",
le32_to_cpu(perf->ssd_correct_count));
json_object_add_value_int(root, "System Data Percent Used",
perf->data_percent_used);
json_object_add_value_int(root, "User Data Erase Counts Max",
le32_to_cpu(perf->data_erase_max));
json_object_add_value_int(root, "User Data Erase Counts Min",
le32_to_cpu(perf->data_erase_min));
json_object_add_value_int(root, "Refresh Count", le64_to_cpu(perf->refresh_count));
converted = le64_to_cpu(perf->program_fail);
json_object_add_value_int(root, "Program Fail Count (Normalized)",
converted & 0xFFFF);
json_object_add_value_int(root, "Program Fail Count (Raw)",
converted >> 16);
converted = le64_to_cpu(perf->user_erase_fail);
json_object_add_value_int(root, "User Data Erase Fail Count (Normalized)",
converted & 0xFFFF);
json_object_add_value_int(root, "User Data Erase Fail Count (Raw)",
converted >> 16);
converted = le64_to_cpu(perf->system_erase_fail);
json_object_add_value_int(root, "System Area Erase Fail Count (Normalized)",
converted & 0xFFFF);
json_object_add_value_int(root, "System Area Erase Fail Count (Raw)",
converted >> 16);
json_object_add_value_int(root, "Thermal Throttling Status",
perf->thermal_throttle_status);
json_object_add_value_int(root, "Thermal Throttling Count",
perf->thermal_throttle_count);
json_object_add_value_int(root, "PCIe Correctable Error", le64_to_cpu(perf->pcie_corr_error));
json_object_add_value_int(root, "Incomplete Shutdown Counte", le32_to_cpu(perf->incomplete_shutdown_count));
json_object_add_value_int(root, "Percent Free Blocks", perf->percent_free_blocks);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_print_bd_ca_log_normal(void *data)
{
struct wdc_bd_ca_log_format *bd_data = (struct wdc_bd_ca_log_format *)data;
__u64 *raw;
__u16 *word_raw;
__u32 *dword_raw;
__u8 *byte_raw;
if (bd_data->field_id == 0x00) {
raw = (__u64*)bd_data->raw_value;
printf(" CA Log Page values :- \n");
printf(" Program fail counts %20"PRIu64"\n",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
printf(" %% Remaining of allowable program fails %3"PRIu8"\n",
bd_data->normalized_value);
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x01) {
raw = (__u64*)bd_data->raw_value;
printf(" Erase fail count %20"PRIu64"\n",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
printf(" %% Remaining of allowable erase fails %3"PRIu8"\n",
bd_data->normalized_value);
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x02) {
word_raw = (__u16*)bd_data->raw_value;
printf(" Min erase cycles %10"PRIu16"\n",
le16_to_cpu(*word_raw));
word_raw = (__u16*)&bd_data->raw_value[2];
printf(" Max erase cycles %10"PRIu16"\n",
le16_to_cpu(*word_raw));
word_raw = (__u16*)&bd_data->raw_value[4];
printf(" Ave erase cycles %10"PRIu16"\n",
le16_to_cpu(*word_raw));
printf(" Wear Leveling Normalized %3"PRIu8"\n",
bd_data->normalized_value);
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x03) {
raw = (__u64*)bd_data->raw_value;
printf(" End to end error detection count %20"PRIu64"\n",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x04) {
raw = (__u64*)bd_data->raw_value;
printf(" Crc error count %20"PRIu64"\n",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x05) {
raw = (__u64*)bd_data->raw_value;
printf(" Timed workload media error %20.3f\n",
safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 1024.0));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x06) {
raw = (__u64*)bd_data->raw_value;
printf(" Timed workload host reads %% %3"PRIu64"\n",
le64_to_cpu(*raw & 0x00000000000000FF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x07) {
raw = (__u64*)bd_data->raw_value;
printf(" Timed workload timer %20"PRIu64"\n",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x08) {
byte_raw = (__u8*)bd_data->raw_value;
printf(" Throttle status %% %10"PRIu16"\n",
*byte_raw);
dword_raw = (__u32*)&bd_data->raw_value[1];
printf(" Throttling event counter %10"PRIu16"\n",
le32_to_cpu(*dword_raw));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x09) {
raw = (__u64*)bd_data->raw_value;
printf(" Retry buffer overflow count %20"PRIu64"\n",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0A) {
raw = (__u64*)bd_data->raw_value;
printf(" Pll lock loss count %20"PRIu64"\n",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0B) {
raw = (__u64*)bd_data->raw_value;
printf(" Nand bytes written (32mb) %20.0f\n",
safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
raw = (__u64*)bd_data->raw_value;
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0C) {
raw = (__u64*)bd_data->raw_value;
printf(" Host bytes written (32mb) %20.0f\n",
safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
raw = (__u64*)bd_data->raw_value;
} else {
goto invalid_id;
}
goto done;
invalid_id:
printf(" Invalid Field ID = %d\n", bd_data->field_id);
done:
return;
}
static void wdc_print_bd_ca_log_json(void *data)
{
struct wdc_bd_ca_log_format *bd_data = (struct wdc_bd_ca_log_format *)data;
__u64 *raw;
__u16 *word_raw;
__u32 *dword_raw;
__u8 *byte_raw;
struct json_object *root;
root = json_create_object();
if (bd_data->field_id == 0x00) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_int(root, "Program fail counts",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
json_object_add_value_int(root, "% Remaining of allowable program fails",
bd_data->normalized_value);
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x01) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_int(root, "Erase fail count",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
json_object_add_value_int(root, "% Remaining of allowable erase fails",
bd_data->normalized_value);
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x02) {
word_raw = (__u16*)bd_data->raw_value;
json_object_add_value_int(root, "Min erase cycles", le16_to_cpu(*word_raw));
word_raw = (__u16*)&bd_data->raw_value[2];
json_object_add_value_int(root, "Max erase cycles", le16_to_cpu(*word_raw));
word_raw = (__u16*)&bd_data->raw_value[4];
json_object_add_value_int(root, "Ave erase cycles", le16_to_cpu(*word_raw));
json_object_add_value_int(root, "Wear Leveling Normalized", bd_data->normalized_value);
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x03) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_int(root, "End to end error detection count",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x04) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_int(root, "Crc error count",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x05) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_float(root, "Timed workload media error",
safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 1024.0));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x06) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_int(root, "Timed workload host reads %",
le64_to_cpu(*raw & 0x00000000000000FF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x07) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_int(root, "Timed workload timer",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x08) {
byte_raw = (__u8*)bd_data->raw_value;
json_object_add_value_int(root, "Throttle status %", *byte_raw);
dword_raw = (__u32*)&bd_data->raw_value[1];
json_object_add_value_int(root, "Throttling event counter", le32_to_cpu(*dword_raw));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x09) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_int(root, "Retry buffer overflow count",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0A) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_int(root, "Pll lock loss count",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0B) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_float(root, "Nand bytes written (32mb)",
safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0C) {
raw = (__u64*)bd_data->raw_value;
json_object_add_value_float(root, "Host bytes written (32mb)",
safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
raw = (__u64*)bd_data->raw_value;
} else {
goto invalid_id;
}
goto done;
invalid_id:
printf(" Invalid Field ID = %d\n", bd_data->field_id);
done:
return;
}
static void wdc_print_d0_log_normal(struct wdc_ssd_d0_smart_log *perf)
{
printf(" D0 Smart Log Page Statistics :- \n");
printf(" Lifetime Reallocated Erase Block Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_realloc_erase_block_count));
printf(" Lifetime Power on Hours %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_power_on_hours));
printf(" Lifetime UECC Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_uecc_count));
printf(" Lifetime Write Amplification Factor %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_wrt_amp_factor));
printf(" Trailing Hour Write Amplification Factor %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->trailing_hr_wrt_amp_factor));
printf(" Reserve Erase Block Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->reserve_erase_block_count));
printf(" Lifetime Program Fail Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_program_fail_count));
printf(" Lifetime Block Erase Fail Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_block_erase_fail_count));
printf(" Lifetime Die Failure Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_die_failure_count));
printf(" Lifetime Link Rate Downgrade Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_link_rate_downgrade_count));
printf(" Lifetime Clean Shutdown Count on Power Loss %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_clean_shutdown_count));
printf(" Lifetime Unclean Shutdowns on Power Loss %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_unclean_shutdown_count));
printf(" Current Temperature %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->current_temp));
printf(" Max Recorded Temperature %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->max_recorded_temp));
printf(" Lifetime Retired Block Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_retired_block_count));
printf(" Lifetime Read Disturb Reallocation Events %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_read_disturb_realloc_events));
printf(" Lifetime NAND Writes %20"PRIu64"\n",
le64_to_cpu(perf->lifetime_nand_writes));
printf(" Capacitor Health %20"PRIu32"%%\n",
(uint32_t)le32_to_cpu(perf->capacitor_health));
printf(" Lifetime User Writes %20"PRIu64"\n",
le64_to_cpu(perf->lifetime_user_writes));
printf(" Lifetime User Reads %20"PRIu64"\n",
le64_to_cpu(perf->lifetime_user_reads));
printf(" Lifetime Thermal Throttle Activations %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_thermal_throttle_act));
printf(" Percentage of P/E Cycles Remaining %20"PRIu32"%%\n",
(uint32_t)le32_to_cpu(perf->percentage_pe_cycles_remaining));
}
static void wdc_print_d0_log_json(struct wdc_ssd_d0_smart_log *perf)
{
struct json_object *root;
root = json_create_object();
json_object_add_value_int(root, "Lifetime Reallocated Erase Block Count",
le32_to_cpu(perf->lifetime_realloc_erase_block_count));
json_object_add_value_int(root, "Lifetime Power on Hours",
le32_to_cpu(perf->lifetime_power_on_hours));
json_object_add_value_int(root, "Lifetime UECC Count",
le32_to_cpu(perf->lifetime_uecc_count));
json_object_add_value_int(root, "Lifetime Write Amplification Factor",
le32_to_cpu(perf->lifetime_wrt_amp_factor));
json_object_add_value_int(root, "Trailing Hour Write Amplification Factor",
le32_to_cpu(perf->trailing_hr_wrt_amp_factor));
json_object_add_value_int(root, "Reserve Erase Block Count",
le32_to_cpu(perf->reserve_erase_block_count));
json_object_add_value_int(root, "Lifetime Program Fail Count",
le32_to_cpu(perf->lifetime_program_fail_count));
json_object_add_value_int(root, "Lifetime Block Erase Fail Count",
le32_to_cpu(perf->lifetime_block_erase_fail_count));
json_object_add_value_int(root, "Lifetime Die Failure Count",
le32_to_cpu(perf->lifetime_die_failure_count));
json_object_add_value_int(root, "Lifetime Link Rate Downgrade Count",
le32_to_cpu(perf->lifetime_link_rate_downgrade_count));
json_object_add_value_int(root, "Lifetime Clean Shutdown Count on Power Loss",
le32_to_cpu(perf->lifetime_clean_shutdown_count));
json_object_add_value_int(root, "Lifetime Unclean Shutdowns on Power Loss",
le32_to_cpu(perf->lifetime_unclean_shutdown_count));
json_object_add_value_int(root, "Current Temperature",
le32_to_cpu(perf->current_temp));
json_object_add_value_int(root, "Max Recorded Temperature",
le32_to_cpu(perf->max_recorded_temp));
json_object_add_value_int(root, "Lifetime Retired Block Count",
le32_to_cpu(perf->lifetime_retired_block_count));
json_object_add_value_int(root, "Lifetime Read Disturb Reallocation Events",
le32_to_cpu(perf->lifetime_read_disturb_realloc_events));
json_object_add_value_int(root, "Lifetime NAND Writes",
le64_to_cpu(perf->lifetime_nand_writes));
json_object_add_value_int(root, "Capacitor Health",
le32_to_cpu(perf->capacitor_health));
json_object_add_value_int(root, "Lifetime User Writes",
le64_to_cpu(perf->lifetime_user_writes));
json_object_add_value_int(root, "Lifetime User Reads",
le64_to_cpu(perf->lifetime_user_reads));
json_object_add_value_int(root, "Lifetime Thermal Throttle Activations",
le32_to_cpu(perf->lifetime_thermal_throttle_act));
json_object_add_value_int(root, "Percentage of P/E Cycles Remaining",
le32_to_cpu(perf->percentage_pe_cycles_remaining));
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_get_commit_action_bin(__u8 commit_action_type, char *action_bin)
{
switch (commit_action_type)
{
case(0):
strcpy(action_bin, "000b");
break;
case(1):
strcpy(action_bin, "001b");
break;
case(2):
strcpy(action_bin, "010b");
break;
case(3):
strcpy(action_bin, "011b");
break;
case(4):
strcpy(action_bin, "100b");
break;
case(5):
strcpy(action_bin, "101b");
break;
case(6):
strcpy(action_bin, "110b");
break;
case(7):
strcpy(action_bin, "111b");
break;
default:
strcpy(action_bin, "INVALID");
}
}
static void wdc_print_fw_act_history_log_normal(struct wdc_fw_act_history_log_entry *fw_act_history_entry,
int num_entries)
{
int i;
char previous_fw[9];
char new_fw[9];
char commit_action_bin[8];
memset((void *)previous_fw, 0, 9);
memset((void *)new_fw, 0, 9);
memset((void *)commit_action_bin, 0, 8);
char *null_fw = "--------";
printf(" Firmware Activate History Log \n");
printf(" Power on Hour Power Cycle Previous New \n");
printf(" Entry hh:mm:ss Count Firmware Firmware Slot Action Result \n");
printf(" ----- -------------- ------------ ---------- ---------- ----- ------ -------\n");
for (i = 0; i < num_entries; i++) {
memcpy(previous_fw, (char *)&(fw_act_history_entry->previous_fw_version), 8);
if (strlen((char *)&(fw_act_history_entry->new_fw_version)) > 1)
memcpy(new_fw, (char *)&(fw_act_history_entry->new_fw_version), 8);
else
memcpy(new_fw, null_fw, 8);
printf("%5"PRIu32"", (uint32_t)le32_to_cpu(fw_act_history_entry->entry_num));
printf(" ");
printf("%02d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry->power_on_seconds)/3600),
(int)((le64_to_cpu(fw_act_history_entry->power_on_seconds)%3600)/60),
(int)(le64_to_cpu(fw_act_history_entry->power_on_seconds)%60));
printf(" ");
printf("%8"PRIu32"", (uint32_t)le32_to_cpu(fw_act_history_entry->power_cycle_count));
printf(" ");
printf("%s", (char *)previous_fw);
printf(" ");
printf("%s", (char *)new_fw);
printf(" ");
printf("%2"PRIu8"", (uint8_t)fw_act_history_entry->slot_number);
printf(" ");
wdc_get_commit_action_bin(fw_act_history_entry->commit_action_type,(char *)&commit_action_bin);
printf(" %s", (char *)commit_action_bin);
printf(" ");
if (le16_to_cpu(fw_act_history_entry->result) == 0)
printf("pass");
else
printf("fail #%d", (uint16_t)le16_to_cpu(fw_act_history_entry->result));
printf("\n");
fw_act_history_entry++;
}
}
static void wdc_print_fw_act_history_log_json(struct wdc_fw_act_history_log_entry *fw_act_history_entry,
int num_entries)
{
struct json_object *root;
int i;
char previous_fw[9];
char new_fw[9];
char commit_action_bin[8];
char fail_str[32];
char time_str[9];
memset((void *)previous_fw, 0, 9);
memset((void *)new_fw, 0, 9);
memset((void *)commit_action_bin, 0, 8);
memset((void *)time_str, 0, 9);
memset((void *)fail_str, 0, 11);
char *null_fw = "--------";
root = json_create_object();
for (i = 0; i < num_entries; i++) {
memcpy(previous_fw, (char *)&(fw_act_history_entry->previous_fw_version), 8);
if (strlen((char *)&(fw_act_history_entry->new_fw_version)) > 1)
memcpy(new_fw, (char *)&(fw_act_history_entry->new_fw_version), 8);
else
memcpy(new_fw, null_fw, 8);
json_object_add_value_int(root, "Entry",
le32_to_cpu(fw_act_history_entry->entry_num));
sprintf((char *)time_str, "%02d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry->power_on_seconds)/3600),
(int)((le64_to_cpu(fw_act_history_entry->power_on_seconds)%3600)/60),
(int)(le64_to_cpu(fw_act_history_entry->power_on_seconds)%60));
json_object_add_value_string(root, "Power on Hour", time_str);
json_object_add_value_int(root, "Power Cycle Count",
le32_to_cpu(fw_act_history_entry->power_cycle_count));
json_object_add_value_string(root, "Previous Firmware",
previous_fw);
json_object_add_value_string(root, "New Firmware",
new_fw);
json_object_add_value_int(root, "Slot",
fw_act_history_entry->slot_number);
wdc_get_commit_action_bin(fw_act_history_entry->commit_action_type,(char *)&commit_action_bin);
json_object_add_value_string(root, "Action", commit_action_bin);
if (le16_to_cpu(fw_act_history_entry->result) == 0)
json_object_add_value_string(root, "Result", "pass");
else {
sprintf((char *)fail_str, "fail #%d", (int)(le16_to_cpu(fw_act_history_entry->result)));
json_object_add_value_string(root, "Result", fail_str);
}
fw_act_history_entry++;
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static int wdc_print_fb_ca_log(struct wdc_ssd_ca_perf_stats *perf, int fmt)
{
if (!perf) {
fprintf(stderr, "ERROR : WDC : Invalid buffer to read perf stats\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_fb_ca_log_normal(perf);
break;
case JSON:
wdc_print_fb_ca_log_json(perf);
break;
}
return 0;
}
static int wdc_print_bd_ca_log(void *bd_data, int fmt)
{
if (!bd_data) {
fprintf(stderr, "ERROR : WDC : Invalid buffer to read data\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_bd_ca_log_normal(bd_data);
break;
case JSON:
wdc_print_bd_ca_log_json(bd_data);
break;
}
return 0;
}
static int wdc_print_d0_log(struct wdc_ssd_d0_smart_log *perf, int fmt)
{
if (!perf) {
fprintf(stderr, "ERROR : WDC : Invalid buffer to read perf stats\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_d0_log_normal(perf);
break;
case JSON:
wdc_print_d0_log_json(perf);
break;
}
return 0;
}
static int wdc_print_fw_act_history_log(struct wdc_fw_act_history_log_entry *fw_act_history_entries,
int num_entries,
int fmt)
{
if (!fw_act_history_entries) {
fprintf(stderr, "ERROR : WDC : Invalid buffer to read fw activate history entries\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_fw_act_history_log_normal(fw_act_history_entries, num_entries);
break;
case JSON:
wdc_print_fw_act_history_log_json(fw_act_history_entries, num_entries);
break;
}
return 0;
}
static int wdc_get_ca_log_page(int fd, char *format)
{
int ret = 0;
int fmt = -1;
__u8 *data;
__u32 *cust_id;
struct wdc_ssd_ca_perf_stats *perf;
uint32_t read_device_id, read_vendor_id;
if (!wdc_check_device(fd))
return -1;
fmt = validate_output_format(format);
if (fmt < 0) {
fprintf(stderr, "ERROR : WDC : invalid output format\n");
return fmt;
}
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == false) {
fprintf(stderr, "ERROR : WDC : 0xCA Log Page not supported\n");
return -1;
}
if (!get_dev_mgment_cbs_data(fd, WDC_C2_CUSTOMER_ID_ID, (void*)&data)) {
fprintf(stderr, "%s: ERROR : WDC : 0xC2 Log Page entry ID 0x%x not found\n", __func__, WDC_C2_CUSTOMER_ID_ID);
return -1;
}
ret = wdc_get_pci_ids(&read_device_id, &read_vendor_id);
cust_id = (__u32*)data;
switch (read_device_id) {
case WDC_NVME_SN200_DEV_ID:
if (*cust_id == WDC_CUSTOMER_ID_0x1005) {
if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN)) == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN);
ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE,
false, WDC_FB_CA_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
if (ret == 0) {
/* parse the data */
perf = (struct wdc_ssd_ca_perf_stats *)(data);
ret = wdc_print_fb_ca_log(perf, fmt);
} else {
fprintf(stderr, "ERROR : WDC : Unable to read CA Log Page data\n");
ret = -1;
}
} else {
fprintf(stderr, "ERROR : WDC : Unsupported Customer id, id = %d\n", *cust_id);
return -1;
}
break;
case WDC_NVME_SN640_DEV_ID:
case WDC_NVME_SN640_DEV_ID_1:
case WDC_NVME_SN640_DEV_ID_2:
case WDC_NVME_SN640_DEV_ID_3:
case WDC_NVME_SN840_DEV_ID:
case WDC_NVME_SN840_DEV_ID_1:
if (*cust_id == WDC_CUSTOMER_ID_0x1005) {
if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN)) == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN);
ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE,
false, WDC_FB_CA_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
if (ret == 0) {
/* parse the data */
perf = (struct wdc_ssd_ca_perf_stats *)(data);
ret = wdc_print_fb_ca_log(perf, fmt);
} else {
fprintf(stderr, "ERROR : WDC : Unable to read CA Log Page data\n");
ret = -1;
}
} else if ((*cust_id == WDC_CUSTOMER_ID_GN) || (*cust_id == WDC_CUSTOMER_ID_GD)) {
if ((data = (__u8*) malloc(sizeof (__u8) * WDC_BD_CA_LOG_BUF_LEN)) == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof (__u8) * WDC_BD_CA_LOG_BUF_LEN);
ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE,
false, WDC_BD_CA_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
if (ret == 0) {
/* parse the data */
ret = wdc_print_bd_ca_log(data, fmt);
} else {
fprintf(stderr, "ERROR : WDC : Unable to read CA Log Page data\n");
ret = -1;
}
break;
} else {
fprintf(stderr, "ERROR : WDC : Unsupported Customer id, id = %d\n", *cust_id);
return -1;
}
break;
default:
fprintf(stderr, "ERROR : WDC : Log page 0xCA not supported for this device\n");
return -1;
break;
}
free(data);
return ret;
}
static int wdc_get_c1_log_page(int fd, char *format, uint8_t interval)
{
int ret = 0;
int fmt = -1;
__u8 *data;
__u8 *p;
int i;
int skip_cnt = 4;
int total_subpages;
struct wdc_log_page_header *l;
struct wdc_log_page_subpage_header *sph;
struct wdc_ssd_perf_stats *perf;
if (!wdc_check_device(fd))
return -1;
fmt = validate_output_format(format);
if (fmt < 0) {
fprintf(stderr, "ERROR : WDC : invalid output format\n");
return fmt;
}
if (interval < 1 || interval > 15) {
fprintf(stderr, "ERROR : WDC : interval out of range [1-15]\n");
return -1;
}
if ((data = (__u8*) malloc(sizeof (__u8) * WDC_ADD_LOG_BUF_LEN)) == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof (__u8) * WDC_ADD_LOG_BUF_LEN);
ret = nvme_get_log(fd, 0x01, WDC_NVME_ADD_LOG_OPCODE, false,
WDC_ADD_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
if (ret == 0) {
l = (struct wdc_log_page_header*)data;
total_subpages = l->num_subpages + WDC_NVME_GET_STAT_PERF_INTERVAL_LIFETIME - 1;
for (i = 0, p = data + skip_cnt; i < total_subpages; i++, p += skip_cnt) {
sph = (struct wdc_log_page_subpage_header *) p;
if (sph->spcode == WDC_GET_LOG_PAGE_SSD_PERFORMANCE) {
if (sph->pcset == interval) {
perf = (struct wdc_ssd_perf_stats *) (p + 4);
ret = wdc_print_log(perf, fmt);
break;
}
}
skip_cnt = le16_to_cpu(sph->subpage_length) + 4;
}
if (ret) {
fprintf(stderr, "ERROR : WDC : Unable to read data from buffer\n");
}
}
free(data);
return ret;
}
static int wdc_get_d0_log_page(int fd, char *format)
{
int ret = 0;
int fmt = -1;
__u8 *data;
struct wdc_ssd_d0_smart_log *perf;
if (!wdc_check_device(fd))
return -1;
fmt = validate_output_format(format);
if (fmt < 0) {
fprintf(stderr, "ERROR : WDC : invalid output format\n");
return fmt;
}
/* verify the 0xD0 log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == false) {
fprintf(stderr, "ERROR : WDC : 0xD0 Log Page not supported\n");
return -1;
}
if ((data = (__u8*) malloc(sizeof (__u8) * WDC_NVME_VU_SMART_LOG_LEN)) == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof (__u8) * WDC_NVME_VU_SMART_LOG_LEN);
ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_VU_SMART_LOG_OPCODE,
false, WDC_NVME_VU_SMART_LOG_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
if (ret == 0) {
/* parse the data */
perf = (struct wdc_ssd_d0_smart_log *)(data);
ret = wdc_print_d0_log(perf, fmt);
} else {
fprintf(stderr, "ERROR : WDC : Unable to read D0 Log Page data\n");
ret = -1;
}
free(data);
return ret;
}
static int wdc_vs_smart_add_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve additional performance statistics.";
const char *interval = "Interval to read the statistics from [1, 15].";
int fd;
int ret = 0;
__u64 capabilities = 0;
struct config {
uint8_t interval;
int vendor_specific;
char *output_format;
};
struct config cfg = {
.interval = 14,
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_UINT("interval", 'i', &cfg.interval, interval),
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_SMART_LOG_MASK) == 0) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
if ((capabilities & (WDC_DRIVE_CAP_CA_LOG_PAGE)) == (WDC_DRIVE_CAP_CA_LOG_PAGE)) {
/* Get the CA Log Page */
ret = wdc_get_ca_log_page(fd, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : WDC : Failure reading the CA Log Page, ret = %d\n", ret);
}
if ((capabilities & WDC_DRIVE_CAP_C1_LOG_PAGE) == WDC_DRIVE_CAP_C1_LOG_PAGE) {
/* Get the C1 Log Page */
ret = wdc_get_c1_log_page(fd, cfg.output_format, cfg.interval);
if (ret)
fprintf(stderr, "ERROR : WDC : Failure reading the C1 Log Page, ret = %d\n", ret);
}
if ((capabilities & WDC_DRIVE_CAP_D0_LOG_PAGE) == WDC_DRIVE_CAP_D0_LOG_PAGE) {
/* Get the D0 Log Page */
ret = wdc_get_d0_log_page(fd, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : WDC : Failure reading the D0 Log Page, ret = %d\n", ret);
}
out:
return ret;
}
static int wdc_clear_pcie_correctable_errors(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Clear PCIE Correctable Errors.";
int fd, ret;
__u64 capabilities = 0;
struct nvme_passthru_cmd admin_cmd;
OPT_ARGS(opts) = {
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (!wdc_check_device(fd)) {
ret = -1;
goto out;
}
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_CLEAR_PCIE) == 0) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
memset(&admin_cmd, 0, sizeof (admin_cmd));
admin_cmd.opcode = WDC_NVME_CLEAR_PCIE_CORR_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_CLEAR_PCIE_CORR_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_PCIE_CORR_CMD);
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
out:
return ret;
}
static int wdc_drive_status(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Get Drive Status.";
int fd;
int ret = -1;
__le32 system_eol_state;
__le32 user_eol_state;
__le32 format_corrupt_reason = cpu_to_le32(0xFFFFFFFF);
__le32 eol_status;
__le32 assert_status = cpu_to_le32(0xFFFFFFFF);
__le32 thermal_status = cpu_to_le32(0xFFFFFFFF);
__u64 capabilities = 0;
OPT_ARGS(opts) = {
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_DRIVE_STATUS) != WDC_DRIVE_CAP_DRIVE_STATUS) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
/* verify the 0xC2 Device Manageability log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE) == false) {
fprintf(stderr, "ERROR : WDC : 0xC2 Log Page not supported\n");
ret = -1;
goto out;
}
/* Get the assert dump present status */
if (!wdc_nvme_get_dev_status_log_data(fd, &assert_status,
WDC_C2_ASSERT_DUMP_PRESENT_ID))
fprintf(stderr, "ERROR : WDC : Get Assert Status Failed\n");
/* Get the thermal throttling status */
if (!wdc_nvme_get_dev_status_log_data(fd, &thermal_status,
WDC_C2_THERMAL_THROTTLE_STATUS_ID))
fprintf(stderr, "ERROR : WDC : Get Thermal Throttling Status Failed\n");
/* Get EOL status */
if (!wdc_nvme_get_dev_status_log_data(fd, &eol_status,
WDC_C2_USER_EOL_STATUS_ID)) {
fprintf(stderr, "ERROR : WDC : Get User EOL Status Failed\n");
eol_status = cpu_to_le32(-1);
}
/* Get Customer EOL state */
if (!wdc_nvme_get_dev_status_log_data(fd, &user_eol_state,
WDC_C2_USER_EOL_STATE_ID))
fprintf(stderr, "ERROR : WDC : Get User EOL State Failed\n");
/* Get System EOL state*/
if (!wdc_nvme_get_dev_status_log_data(fd, &system_eol_state,
WDC_C2_SYSTEM_EOL_STATE_ID))
fprintf(stderr, "ERROR : WDC : Get System EOL State Failed\n");
/* Get format corrupt reason*/
if (!wdc_nvme_get_dev_status_log_data(fd, &format_corrupt_reason,
WDC_C2_FORMAT_CORRUPT_REASON_ID))
fprintf(stderr, "ERROR : WDC : Get Format Corrupt Reason Failed\n");
printf(" Drive Status :- \n");
if (le32_to_cpu(eol_status) >= 0) {
printf(" Percent Used: %"PRIu32"%%\n",
le32_to_cpu(eol_status));
}
else
printf(" Percent Used: Unknown\n");
if (system_eol_state == WDC_EOL_STATUS_NORMAL && user_eol_state == WDC_EOL_STATUS_NORMAL)
printf(" Drive Life Status: Normal\n");
else if (system_eol_state == WDC_EOL_STATUS_END_OF_LIFE || user_eol_state == WDC_EOL_STATUS_END_OF_LIFE)
printf(" Drive Life Status: End Of Life\n");
else if (system_eol_state == WDC_EOL_STATUS_READ_ONLY || user_eol_state == WDC_EOL_STATUS_READ_ONLY)
printf(" Drive Life Status: Read Only\n");
else
printf(" Drive Life Status: Unknown : 0x%08x/0x%08x\n",
le32_to_cpu(user_eol_state), le32_to_cpu(system_eol_state));
if (assert_status == WDC_ASSERT_DUMP_PRESENT)
printf(" Assert Dump Status: Present\n");
else if (assert_status == WDC_ASSERT_DUMP_NOT_PRESENT)
printf(" Assert Dump Status: Not Present\n");
else
printf(" Assert Dump Status: Unknown : 0x%08x\n", le32_to_cpu(assert_status));
if (thermal_status == WDC_THERMAL_THROTTLING_OFF)
printf(" Thermal Throttling Status: Off\n");
else if (thermal_status == WDC_THERMAL_THROTTLING_ON)
printf(" Thermal Throttling Status: On\n");
else if (thermal_status == WDC_THERMAL_THROTTLING_UNAVAILABLE)
printf(" Thermal Throttling Status: Unavailable\n");
else
printf(" Thermal Throttling Status: Unknown : 0x%08x\n", le32_to_cpu(thermal_status));
if (format_corrupt_reason == WDC_FORMAT_NOT_CORRUPT)
printf(" Format Corrupt Reason: Format Not Corrupted\n");
else if (format_corrupt_reason == WDC_FORMAT_CORRUPT_FW_ASSERT)
printf(" Format Corrupt Reason: Format Corrupt due to FW Assert\n");
else if (format_corrupt_reason == WDC_FORMAT_CORRUPT_UNKNOWN)
printf(" Format Corrupt Reason: Format Corrupt for Unknown Reason\n");
else
printf(" Format Corrupt Reason: Unknown : 0x%08x\n", le32_to_cpu(format_corrupt_reason));
out:
return ret;
}
static int wdc_clear_assert_dump(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Clear Assert Dump Present Status.";
int fd;
int ret = -1;
__le32 assert_status = cpu_to_le32(0xFFFFFFFF);
__u64 capabilities = 0;
struct nvme_passthru_cmd admin_cmd;
OPT_ARGS(opts) = {
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_CLEAR_ASSERT) != WDC_DRIVE_CAP_CLEAR_ASSERT) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
if (!wdc_nvme_get_dev_status_log_data(fd, &assert_status,
WDC_C2_ASSERT_DUMP_PRESENT_ID)) {
fprintf(stderr, "ERROR : WDC : Get Assert Status Failed\n");
ret = -1;
goto out;
}
/* Get the assert dump present status */
if (assert_status == WDC_ASSERT_DUMP_PRESENT) {
memset(&admin_cmd, 0, sizeof (admin_cmd));
admin_cmd.opcode = WDC_NVME_CLEAR_ASSERT_DUMP_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_CLEAR_ASSERT_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_ASSERT_DUMP_CMD);
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
} else
fprintf(stderr, "INFO : WDC : No Assert Dump Present\n");
out:
return ret;
}
static int wdc_get_fw_act_history(int fd, char *format)
{
int ret = 0;
int fmt = -1;
__u8 *data;
struct wdc_fw_act_history_log_hdr *fw_act_history_hdr;
struct wdc_fw_act_history_log_entry *fw_act_history_entry;
if (!wdc_check_device(fd))
return -1;
fmt = validate_output_format(format);
if (fmt < 0) {
fprintf(stderr, "ERROR : WDC : invalid output format\n");
return fmt;
}
/* verify the FW Activate History log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID) == false) {
fprintf(stderr, "ERROR : WDC : %d Log Page not supported\n", WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID);
return -1;
}
if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FW_ACT_HISTORY_LOG_BUF_LEN)) == NULL) {
fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof (__u8) * WDC_FW_ACT_HISTORY_LOG_BUF_LEN);
ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID,
false, WDC_FW_ACT_HISTORY_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
if (ret == 0) {
/* parse the data */
fw_act_history_hdr = (struct wdc_fw_act_history_log_hdr *)(data);
fw_act_history_entry = (struct wdc_fw_act_history_log_entry *)(data + sizeof(struct wdc_fw_act_history_log_hdr));
if (fw_act_history_hdr->num_entries > 0)
ret = wdc_print_fw_act_history_log(fw_act_history_entry, fw_act_history_hdr->num_entries, fmt);
else
fprintf(stderr, "INFO : WDC : No entries found in FW Activate History Log Page\n");
} else {
fprintf(stderr, "ERROR : WDC : Unable to read FW Activate History Log Page data\n");
ret = -1;
}
free(data);
return ret;
}
static int wdc_vs_fw_activate_history(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
int fd;
int ret = 0;
__u64 capabilities = 0;
const char *desc = "Retrieve FW activate history table.";
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY) == WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY) {
ret = wdc_get_fw_act_history(fd, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : WDC : Failure reading the FW Activate History, ret = %d\n", ret);
} else {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
}
return ret;
}
static int wdc_clear_fw_activate_history(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Clear FW activate history table.";
int fd;
int ret = -1;
__u64 capabilities = 0;
struct nvme_passthru_cmd admin_cmd;
OPT_ARGS(opts) = {
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY) != WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
memset(&admin_cmd, 0, sizeof (admin_cmd));
admin_cmd.opcode = WDC_NVME_CLEAR_FW_ACT_HIST_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_CLEAR_FW_ACT_HIST_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_FW_ACT_HIST_CMD);
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
out:
return ret;
}
static int wdc_vs_telemetry_controller_option(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Disable/Enable Controller Option of the Telemetry Log Page.";
char *disable = "Disable controller option of the telemetry log page.";
char *enable = "Enable controller option of the telemetry log page.";
char *status = "Displays the current state of the controller initiated log page.";
int fd;
int ret = -1;
__u64 capabilities = 0;
__u32 result;
void *buf = NULL;
struct config {
int disable;
int enable;
int status;
};
struct config cfg = {
.disable = 0,
.enable = 0,
.status = 0,
};
OPT_ARGS(opts) = {
OPT_FLAG("disable", 'd', &cfg.disable, disable),
OPT_FLAG("enable", 'e', &cfg.enable, enable),
OPT_FLAG("status", 's', &cfg.status, status),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG) != WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
/* allow only one option at a time */
if ((cfg.disable + cfg.enable + cfg.status) > 1) {
fprintf(stderr, "ERROR : WDC : Invalid option\n");
ret = -1;
goto out;
}
if (cfg.disable) {
ret = nvme_set_feature(fd, 0, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 1,
0, 0, 0, buf, &result);
wdc_clear_reason_id(fd);
}
else {
if (cfg.enable) {
ret = nvme_set_feature(fd, 0, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0,
0, 0, 0, buf, &result);
}
else if (cfg.status) {
ret = nvme_get_feature(fd, 0, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0, 0,
4, buf, &result);
if (ret == 0) {
if (result)
fprintf(stderr, "Controller Option Telemetry Log Page State: Disabled\n");
else
fprintf(stderr, "Controller Option Telemetry Log Page State: Enabled\n");
} else {
fprintf(stderr, "ERROR : WDC: NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
}
}
else {
fprintf(stderr, "ERROR : WDC: unsupported option for this command\n");
fprintf(stderr, "Please provide an option, -d, -e or -s\n");
ret = -1;
goto out;
}
}
out:
return ret;
}
static int wdc_get_serial_and_fw_rev(int fd, char *sn, char *fw_rev)
{
int i;
int ret;
struct nvme_id_ctrl ctrl;
i = sizeof (ctrl.sn) - 1;
memset(sn, 0, WDC_SERIAL_NO_LEN);
memset(fw_rev, 0, WDC_NVME_FIRMWARE_REV_LEN);
memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
ret = nvme_identify_ctrl(fd, &ctrl);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed "
"0x%x\n", ret);
return -1;
}
/* Remove trailing spaces from the name */
while (i && ctrl.sn[i] == ' ') {
ctrl.sn[i] = '\0';
i--;
}
snprintf(sn, WDC_SERIAL_NO_LEN, "%s", ctrl.sn);
snprintf(fw_rev, WDC_NVME_FIRMWARE_REV_LEN, "%s", ctrl.fr);
return 0;
}
static int wdc_get_max_transfer_len(int fd, __u32 *maxTransferLen)
{
int ret = 0;
struct nvme_id_ctrl ctrl;
__u32 maxTransferLenDevice = 0;
memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
ret = nvme_identify_ctrl(fd, &ctrl);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed 0x%x\n", ret);
return -1;
}
maxTransferLenDevice = (1 << ctrl.mdts) * getpagesize();
*maxTransferLen = maxTransferLenDevice;
return ret;
}
static int wdc_de_VU_read_size(int fd, __u32 fileId, __u16 spiDestn, __u32* logSize)
{
int ret = WDC_STATUS_FAILURE;
struct nvme_admin_cmd cmd;
if(!fd || !logSize )
{
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
memset(&cmd,0,sizeof(struct nvme_admin_cmd));
cmd.opcode = WDC_DE_VU_READ_SIZE_OPCODE;
cmd.nsid = WDC_DE_DEFAULT_NAMESPACE_ID;
cmd.cdw13 = fileId<<16;
cmd.cdw14 = spiDestn;
ret = nvme_submit_admin_passthru(fd, &cmd);
if (!ret && logSize)
*logSize = cmd.result;
if( ret != WDC_STATUS_SUCCESS)
fprintf(stderr, "ERROR : WDC : VUReadSize() failed, status:%s(0x%x)\n", nvme_status_to_string(ret), ret);
end:
return ret;
}
static int wdc_de_VU_read_buffer(int fd, __u32 fileId, __u16 spiDestn, __u32 offsetInDwords, __u8* dataBuffer, __u32* bufferSize)
{
int ret = WDC_STATUS_FAILURE;
struct nvme_admin_cmd cmd;
__u32 noOfDwordExpected = 0;
if(!fd || !dataBuffer || !bufferSize)
{
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
memset(&cmd,0,sizeof(struct nvme_admin_cmd));
noOfDwordExpected = *bufferSize/sizeof(__u32);
cmd.opcode = WDC_DE_VU_READ_BUFFER_OPCODE;
cmd.nsid = WDC_DE_DEFAULT_NAMESPACE_ID;
cmd.cdw10 = noOfDwordExpected;
cmd.cdw13 = fileId<<16;
cmd.cdw14 = spiDestn;
cmd.cdw15 = offsetInDwords;
cmd.addr = (__u64)(__u64)(uintptr_t)dataBuffer;
cmd.data_len = *bufferSize;
ret = nvme_submit_admin_passthru(fd, &cmd);
if( ret != WDC_STATUS_SUCCESS)
fprintf(stderr, "ERROR : WDC : VUReadBuffer() failed, status:%s(0x%x)\n", nvme_status_to_string(ret), ret);
end:
return ret;
}
static int wdc_get_log_dir_max_entries(int fd, __u32* maxNumOfEntries)
{
int ret = WDC_STATUS_FAILURE;
__u32 headerPayloadSize = 0;
__u8* fileIdOffsetsBuffer = NULL;
__u32 fileIdOffsetsBufferSize = 0;
__u32 fileNum = 0;
__u16 fileOffset = 0;
if (!fd || !maxNumOfEntries)
{
ret = WDC_STATUS_INVALID_PARAMETER;
return ret;
}
/* 1.Get log directory first four bytes */
if (WDC_STATUS_SUCCESS != (ret = wdc_de_VU_read_size(fd, 0, 5, (__u32*)&headerPayloadSize)))
{
fprintf(stderr, "ERROR : WDC : %s: Failed to get headerPayloadSize from file directory 0x%x\n",
__func__, ret);
goto end;
}
fileIdOffsetsBufferSize = WDC_DE_FILE_HEADER_SIZE + (headerPayloadSize * WDC_DE_FILE_OFFSET_SIZE);
fileIdOffsetsBuffer = (__u8*)calloc(1, fileIdOffsetsBufferSize);
/* 2.Read to get file offsets */
if (WDC_STATUS_SUCCESS != (ret = wdc_de_VU_read_buffer(fd, 0, 5, 0, fileIdOffsetsBuffer, &fileIdOffsetsBufferSize)))
{
fprintf(stderr, "ERROR : WDC : %s: Failed to get fileIdOffsets from file directory 0x%x\n",
__func__, ret);
goto end;
}
/* 3.Determine valid entries */
for (fileNum = 0; fileNum < (headerPayloadSize - WDC_DE_FILE_HEADER_SIZE) / WDC_DE_FILE_OFFSET_SIZE; fileNum++)
{
fileOffset = (fileIdOffsetsBuffer[WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE)] << 8) +
fileIdOffsetsBuffer[WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE) + 1];
if (!fileOffset)
continue;
(*maxNumOfEntries)++;
}
end:
if (!fileIdOffsetsBuffer)
free(fileIdOffsetsBuffer);
return ret;
}
static WDC_DRIVE_ESSENTIAL_TYPE wdc_get_essential_type(__u8 fileName[])
{
WDC_DRIVE_ESSENTIAL_TYPE essentialType = WDC_DE_TYPE_NONE;
if (wdc_UtilsStrCompare((char*)fileName, WDC_DE_CORE_DUMP_FILE_NAME) == 0)
{
essentialType = WDC_DE_TYPE_DUMPSNAPSHOT;
}
else if (wdc_UtilsStrCompare((char*)fileName, WDC_DE_EVENT_LOG_FILE_NAME) == 0)
{
essentialType = WDC_DE_TYPE_EVENTLOG;
}
else if (wdc_UtilsStrCompare((char*)fileName, WDC_DE_MANUFACTURING_INFO_PAGE_FILE_NAME) == 0)
{
essentialType = WDC_DE_TYPE_NVME_MANF_INFO;
}
return essentialType;
}
static int wdc_fetch_log_directory(int fd, PWDC_DE_VU_LOG_DIRECTORY directory)
{
int ret = WDC_STATUS_FAILURE;
__u8 *fileOffset = NULL;
__u8 *fileDirectory = NULL;
__u32 headerSize = 0;
__u32 fileNum = 0, startIdx = 0;
__u16 fileOffsetTemp = 0;
__u32 entryId = 0;
__u32 fileDirectorySize = 0;
if (!fd || !directory) {
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
ret = wdc_de_VU_read_size(fd, 0, 5, &fileDirectorySize);
if (WDC_STATUS_SUCCESS != ret) {
fprintf(stderr,
"ERROR : WDC : %s: Failed to get filesystem directory size, ret = %d\n",
__func__, ret);
goto end;
}
fileDirectory = (__u8*)calloc(1, fileDirectorySize);
ret = wdc_de_VU_read_buffer(fd, 0, 5, 0, fileDirectory, &fileDirectorySize);
if (WDC_STATUS_SUCCESS != ret) {
fprintf(stderr,
"ERROR : WDC : %s: Failed to get filesystem directory, ret = %d\n",
__func__, ret);
goto end;
}
/* First four bytes of header directory is headerSize */
memcpy(&headerSize, fileDirectory, WDC_DE_FILE_HEADER_SIZE);
/* minimum buffer for 1 entry is required */
if (directory->maxNumLogEntries == 0) {
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
for (fileNum = 0;
fileNum < (headerSize - WDC_DE_FILE_HEADER_SIZE) / WDC_DE_FILE_OFFSET_SIZE;
fileNum++) {
if (entryId >= directory->maxNumLogEntries)
break;
startIdx = WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE);
memcpy(&fileOffsetTemp, fileDirectory + startIdx, sizeof(fileOffsetTemp));
fileOffset = fileDirectory + fileOffsetTemp;
if (0 == fileOffsetTemp)
continue;
memset(&directory->logEntry[entryId], 0, sizeof(WDC_DRIVE_ESSENTIALS));
memcpy(&directory->logEntry[entryId].metaData, fileOffset, sizeof(WDC_DE_VU_FILE_META_DATA));
directory->logEntry[entryId].metaData.fileName[WDC_DE_FILE_NAME_SIZE - 1] = '\0';
wdc_UtilsDeleteCharFromString((char*)directory->logEntry[entryId].metaData.fileName,
WDC_DE_FILE_NAME_SIZE, ' ');
if (0 == directory->logEntry[entryId].metaData.fileID)
continue;
directory->logEntry[entryId].essentialType = wdc_get_essential_type(directory->logEntry[entryId].metaData.fileName);
/*fprintf(stderr, "WDC : %s: NVMe VU Log Entry %d, fileName = %s, fileSize = 0x%lx, fileId = 0x%x\n",
__func__, entryId, directory->logEntry[entryId].metaData.fileName,
(long unsigned int)directory->logEntry[entryId].metaData.fileSize, directory->logEntry[entryId].metaData.fileID);
*/
entryId++;
}
directory->numOfValidLogEntries = entryId;
end:
if (fileDirectory != NULL)
free(fileDirectory);
return ret;
}
static int wdc_fetch_log_file_from_device(int fd, __u32 fileId, __u16 spiDestn, __u64 fileSize, __u8* dataBuffer)
{
int ret = WDC_STATUS_FAILURE;
__u32 chunckSize = WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET;
__u32 maximumTransferLength = 0;
__u32 buffSize = 0;
__u64 offsetIdx = 0;
if (!fd || !dataBuffer || !fileSize)
{
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
wdc_get_max_transfer_len(fd, &maximumTransferLength);
/* Fetch Log File Data */
if ((fileSize >= maximumTransferLength) || (fileSize > 0xFFFFFFFF))
{
chunckSize = WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET;
if (maximumTransferLength < WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET)
chunckSize = maximumTransferLength;
buffSize = chunckSize;
for (offsetIdx = 0; (offsetIdx * chunckSize) < fileSize; offsetIdx++)
{
if (((offsetIdx * chunckSize) + buffSize) > fileSize)
buffSize = (__u32)(fileSize - (offsetIdx * chunckSize));
/* Limitation in VU read buffer - offsetIdx and bufferSize are not greater than u32 */
ret = wdc_de_VU_read_buffer(fd, fileId, spiDestn,
(__u32)((offsetIdx * chunckSize) / sizeof(__u32)), dataBuffer + (offsetIdx * chunckSize), &buffSize);
if (ret != WDC_STATUS_SUCCESS)
{
fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_buffer failed with ret = %d, fileId = 0x%x, fileSize = 0x%lx\n",
__func__, ret, fileId, (long unsigned int)fileSize);
break;
}
}
} else {
buffSize = (__u32)fileSize;
ret = wdc_de_VU_read_buffer(fd, fileId, spiDestn,
(__u32)((offsetIdx * chunckSize) / sizeof(__u32)), dataBuffer, &buffSize);
if (ret != WDC_STATUS_SUCCESS)
{
fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_buffer failed with ret = %d, fileId = 0x%x, fileSize = 0x%lx\n",
__func__, ret, fileId, (long unsigned int)fileSize);
}
}
end:
return ret;
}
static int wdc_de_get_dump_trace(int fd, char * filePath, __u16 binFileNameLen, char *binFileName)
{
int ret = WDC_STATUS_FAILURE;
__u8 *readBuffer = NULL;
__u32 readBufferLen = 0;
__u32 lastPktReadBufferLen = 0;
__u32 maxTransferLen = 0;
__u32 dumptraceSize = 0;
__u32 chunkSize = 0;
__u32 chunks = 0;
__u32 offset = 0;
__u8 loop = 0;
__u16 i = 0;
__u32 maximumTransferLength = 0;
if (!fd || !binFileName || !filePath)
{
ret = WDC_STATUS_INVALID_PARAMETER;
return ret;
}
wdc_get_max_transfer_len(fd, &maximumTransferLength);
do
{
/* Get dumptrace size */
ret = wdc_de_VU_read_size(fd, 0, WDC_DE_DUMPTRACE_DESTINATION, &dumptraceSize);
if (ret != WDC_STATUS_SUCCESS)
{
fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_size failed with ret = %d\n",
__func__, ret);
break;
}
/* Make sure the size requested is greater than dword */
if (dumptraceSize < 4)
{
ret = WDC_STATUS_FAILURE;
fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_size failed, read size is less than 4 bytes, dumptraceSize = 0x%x\n",
__func__, dumptraceSize);
break;
}
/* Choose the least max transfer length */
maxTransferLen = maximumTransferLength < WDC_DE_READ_MAX_TRANSFER_SIZE ? maximumTransferLength : WDC_DE_READ_MAX_TRANSFER_SIZE;
/* Comment from FW Team:
* The max non - block transfer size is 0xFFFF (16 bits allowed as the block size).Use 0x8000
* to keep it on a word - boundary.
* max_xfer = int(pow(2, id_data['MDTS'])) * 4096 # 4k page size as reported in pcie capabiltiies
*/
chunkSize = dumptraceSize < maxTransferLen ? dumptraceSize : maxTransferLen;
chunks = (dumptraceSize / maxTransferLen) + ((dumptraceSize % maxTransferLen) ? 1 : 0);
readBuffer = (unsigned char *)calloc(dumptraceSize, sizeof(unsigned char));
readBufferLen = chunkSize;
lastPktReadBufferLen = (dumptraceSize % maxTransferLen) ? (dumptraceSize % maxTransferLen) : chunkSize;
if (readBuffer == NULL)
{
fprintf(stderr, "ERROR : WDC : %s: readBuffer calloc failed\n", __func__);
ret = WDC_STATUS_INSUFFICIENT_MEMORY;
break;
}
for (i = 0; i < chunks; i++)
{
offset = ((i*chunkSize) / 4);
/* Last loop call, Assign readBufferLen to read only left over bytes */
if (i == (chunks - 1))
{
readBufferLen = lastPktReadBufferLen;
}
ret = wdc_de_VU_read_buffer(fd, 0, WDC_DE_DUMPTRACE_DESTINATION, 0, readBuffer + offset, &readBufferLen);
if (ret != WDC_STATUS_SUCCESS)
{
fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_buffer failed, ret = %d on offset 0x%x\n",
__func__, ret, offset);
break;
}
}
} while (loop);
if (ret == WDC_STATUS_SUCCESS)
{
ret = wdc_WriteToFile(binFileName, (char*)readBuffer, dumptraceSize);
if (ret != WDC_STATUS_SUCCESS)
fprintf(stderr, "ERROR : WDC : %s: wdc_WriteToFile failed, ret = %d\n", __func__, ret);
} else {
fprintf(stderr, "ERROR : WDC : %s: Read Buffer Loop failed, ret = %d\n", __func__, ret);
}
if (readBuffer)
{
free(readBuffer);
}
return ret;
}
static int wdc_do_drive_essentials(int fd, char *dir, char *key)
{
int ret = 0;
void *retPtr;
char fileName[MAX_PATH_LEN];
__s8 bufferFolderPath[MAX_PATH_LEN];
char bufferFolderName[MAX_PATH_LEN];
char tarFileName[MAX_PATH_LEN];
char tarFiles[MAX_PATH_LEN];
char tarCmd[MAX_PATH_LEN+MAX_PATH_LEN];
UtilsTimeInfo timeInfo;
__u8 timeString[MAX_PATH_LEN];
__u8 serialNo[WDC_SERIAL_NO_LEN];
__u8 firmwareRevision[WDC_NVME_FIRMWARE_REV_LEN];
__u8 idSerialNo[WDC_SERIAL_NO_LEN];
__u8 idFwRev[WDC_NVME_FIRMWARE_REV_LEN];
__u8 featureIdBuff[4];
char currDir[MAX_PATH_LEN];
char *dataBuffer = NULL;
__u32 elogNumEntries, elogBufferSize;
__u32 dataBufferSize;
__u32 listIdx = 0;
__u32 vuLogIdx = 0;
__u32 result;
__u32 maxNumOfVUFiles = 0;
struct nvme_id_ctrl ctrl;
struct nvme_id_ns ns;
struct nvme_error_log_page *elogBuffer;
struct nvme_smart_log smart_log;
struct nvme_firmware_log_page fw_log;
PWDC_NVME_DE_VU_LOGPAGES vuLogInput = NULL;
WDC_DE_VU_LOG_DIRECTORY deEssentialsList;
memset(bufferFolderPath,0,sizeof(bufferFolderPath));
memset(bufferFolderName,0,sizeof(bufferFolderName));
memset(tarFileName,0,sizeof(tarFileName));
memset(tarFiles,0,sizeof(tarFiles));
memset(tarCmd,0,sizeof(tarCmd));
memset(&timeInfo,0,sizeof(timeInfo));
memset(&vuLogInput, 0, sizeof(vuLogInput));
if (wdc_get_serial_and_fw_rev(fd, (char *)idSerialNo, (char *)idFwRev))
{
fprintf(stderr, "ERROR : WDC : get serial # and fw revision failed\n");
return -1;
} else {
fprintf(stderr, "Get Drive Essentials Data for device serial #: %s and fw revision: %s\n",
idSerialNo, idFwRev);
}
/* Create Drive Essentials directory */
wdc_UtilsGetTime(&timeInfo);
memset(timeString, 0, sizeof(timeString));
wdc_UtilsSnprintf((char*)timeString, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
timeInfo.year, timeInfo.month, timeInfo.dayOfMonth,
timeInfo.hour, timeInfo.minute, timeInfo.second);
wdc_UtilsSnprintf((char*)serialNo,WDC_SERIAL_NO_LEN,(char*)idSerialNo);
/* Remove any space form serialNo */
wdc_UtilsDeleteCharFromString((char*)serialNo, WDC_SERIAL_NO_LEN, ' ');
memset(firmwareRevision, 0, sizeof(firmwareRevision));
wdc_UtilsSnprintf((char*)firmwareRevision, WDC_NVME_FIRMWARE_REV_LEN, (char*)idFwRev);
/* Remove any space form FirmwareRevision */
wdc_UtilsDeleteCharFromString((char*)firmwareRevision, WDC_NVME_FIRMWARE_REV_LEN, ' ');
wdc_UtilsSnprintf((char*)bufferFolderName, MAX_PATH_LEN, "%s_%s_%s_%s",
"DRIVE_ESSENTIALS", (char*)serialNo, (char*)firmwareRevision, (char*)timeString);
if (dir != NULL) {
wdc_UtilsSnprintf((char*)bufferFolderPath, MAX_PATH_LEN, "%s%s%s",
(char *)dir, WDC_DE_PATH_SEPARATOR, (char *)bufferFolderName);
} else {
retPtr = getcwd((char*)currDir, MAX_PATH_LEN);
if (retPtr != NULL)
wdc_UtilsSnprintf((char*)bufferFolderPath, MAX_PATH_LEN, "%s%s%s",
(char *)currDir, WDC_DE_PATH_SEPARATOR, (char *)bufferFolderName);
else {
fprintf(stderr, "ERROR : WDC : get current working directory failed\n");
return -1;
}
}
ret = wdc_UtilsCreateDir((char*)bufferFolderPath);
if (ret != 0)
{
fprintf(stderr, "ERROR : WDC : create directory failed, ret = %d, dir = %s\n", ret, bufferFolderPath);
return -1;
} else {
fprintf(stderr, "Store Drive Essentials bin files in directory: %s\n", bufferFolderPath);
}
/* Get Identify Controller Data */
memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
ret = nvme_identify_ctrl(fd, &ctrl);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed, ret = %d\n", ret);
return -1;
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"IdentifyController", (char*)serialNo, (char*)timeString);
wdc_WriteToFile(fileName, (char*)&ctrl, sizeof (struct nvme_id_ctrl));
}
memset(&ns, 0, sizeof (struct nvme_id_ns));
ret = nvme_identify_ns(fd, 1, 0, &ns);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_identify_ns() failed, ret = %d\n", ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"IdentifyNamespace", (char*)serialNo, (char*)timeString);
wdc_WriteToFile(fileName, (char*)&ns, sizeof (struct nvme_id_ns));
}
/* Get Log Pages (0x01, 0x02, 0x03, 0xC0 and 0xE3) */
elogNumEntries = WDC_DE_DEFAULT_NUMBER_OF_ERROR_ENTRIES;
elogBufferSize = elogNumEntries*sizeof(struct nvme_error_log_page);
dataBuffer = calloc(1, elogBufferSize);
elogBuffer = (struct nvme_error_log_page *)dataBuffer;
ret = nvme_error_log(fd, elogNumEntries, elogBuffer);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_error_log() failed, ret = %d\n", ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"ErrorLog", (char*)serialNo, (char*)timeString);
wdc_WriteToFile(fileName, (char*)elogBuffer, elogBufferSize);
}
free(dataBuffer);
dataBuffer = NULL;
/* Get Smart log page */
memset(&smart_log, 0, sizeof (struct nvme_smart_log));
ret = nvme_smart_log(fd, NVME_NSID_ALL, &smart_log);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_smart_log() failed, ret = %d\n", ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"SmartLog", (char*)serialNo, (char*)timeString);
wdc_WriteToFile(fileName, (char*)&smart_log, sizeof(struct nvme_smart_log));
}
/* Get FW Slot log page */
memset(&fw_log, 0, sizeof (struct nvme_firmware_log_page));
ret = nvme_fw_log(fd, &fw_log);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_fw_log() failed, ret = %d\n", ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"FwSLotLog", (char*)serialNo, (char*)timeString);
wdc_WriteToFile(fileName, (char*)&fw_log, sizeof(struct nvme_firmware_log_page));
}
/* Get VU log pages */
/* define inputs for vendor unique log pages */
vuLogInput = (PWDC_NVME_DE_VU_LOGPAGES)calloc(1, sizeof(WDC_NVME_DE_VU_LOGPAGES));
vuLogInput->numOfVULogPages = sizeof(deVULogPagesList) / sizeof(deVULogPagesList[0]);
for (vuLogIdx = 0; vuLogIdx < vuLogInput->numOfVULogPages; vuLogIdx++)
{
dataBufferSize = deVULogPagesList[vuLogIdx].logPageLen;
dataBuffer = calloc(1, dataBufferSize);
memset(dataBuffer, 0, dataBufferSize);
ret = nvme_get_log(fd, WDC_DE_GLOBAL_NSID, deVULogPagesList[vuLogIdx].logPageId,
false, dataBufferSize, dataBuffer);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_get_log() for log page 0x%x failed, ret = %d\n",
deVULogPagesList[vuLogIdx].logPageId, ret);
} else {
wdc_UtilsDeleteCharFromString((char*)deVULogPagesList[vuLogIdx].logPageIdStr, 4, ' ');
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"LogPage", (char*)&deVULogPagesList[vuLogIdx].logPageIdStr, (char*)serialNo, (char*)timeString);
wdc_WriteToFile(fileName, (char*)dataBuffer, dataBufferSize);
}
free(dataBuffer);
dataBuffer = NULL;
}
free(vuLogInput);
/* Get NVMe Features (0x01, 0x02, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C) */
for (listIdx = 1; listIdx < (sizeof(deFeatureIdList) / sizeof(deFeatureIdList[0])); listIdx++)
{
memset(featureIdBuff, 0, sizeof(featureIdBuff));
/* skipping LbaRangeType as it is an optional nvme command and not supported */
if (deFeatureIdList[listIdx].featureId == FID_LBA_RANGE_TYPE)
continue;
ret = nvme_get_feature(fd, WDC_DE_GLOBAL_NSID, deFeatureIdList[listIdx].featureId, FS_CURRENT, 0,
sizeof(featureIdBuff), &featureIdBuff, &result);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_get_feature id 0x%x failed, ret = %d\n",
deFeatureIdList[listIdx].featureId, ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s0x%x_%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"FEATURE_ID_", deFeatureIdList[listIdx].featureId,
deFeatureIdList[listIdx].featureName, serialNo, timeString);
wdc_WriteToFile(fileName, (char*)featureIdBuff, sizeof(featureIdBuff));
}
}
/* Read Debug Directory */
ret = wdc_get_log_dir_max_entries(fd, &maxNumOfVUFiles);
if (ret == WDC_STATUS_SUCCESS)
{
memset(&deEssentialsList, 0, sizeof(deEssentialsList));
deEssentialsList.logEntry = (WDC_DRIVE_ESSENTIALS*)calloc(1, sizeof(WDC_DRIVE_ESSENTIALS)*maxNumOfVUFiles);
deEssentialsList.maxNumLogEntries = maxNumOfVUFiles;
/* Fetch VU File Directory */
ret = wdc_fetch_log_directory(fd, &deEssentialsList);
if (ret == WDC_STATUS_SUCCESS)
{
/* Get Debug Data Files */
for (listIdx = 0; listIdx < deEssentialsList.numOfValidLogEntries; listIdx++)
{
if (0 == deEssentialsList.logEntry[listIdx].metaData.fileSize)
{
fprintf(stderr, "ERROR : WDC : File Size for %s is 0\n",
deEssentialsList.logEntry[listIdx].metaData.fileName);
ret = WDC_STATUS_FILE_SIZE_ZERO;
} else {
/* Fetch Log File Data */
dataBuffer = (char *)calloc(1, (size_t)deEssentialsList.logEntry[listIdx].metaData.fileSize);
ret = wdc_fetch_log_file_from_device(fd, deEssentialsList.logEntry[listIdx].metaData.fileID, WDC_DE_DESTN_SPI, deEssentialsList.logEntry[listIdx].metaData.fileSize,
(__u8 *)dataBuffer);
/* Write databuffer to file */
if (ret == WDC_STATUS_SUCCESS)
{
memset(fileName, 0, sizeof(fileName));
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", bufferFolderPath, WDC_DE_PATH_SEPARATOR,
deEssentialsList.logEntry[listIdx].metaData.fileName, serialNo, timeString);
if (deEssentialsList.logEntry[listIdx].metaData.fileSize > 0xFFFFFFFF)
{
wdc_WriteToFile(fileName, dataBuffer, 0xFFFFFFFF);
wdc_WriteToFile(fileName, dataBuffer + 0xFFFFFFFF, (__u32)(deEssentialsList.logEntry[listIdx].metaData.fileSize - 0xFFFFFFFF));
} else {
wdc_WriteToFile(fileName, dataBuffer, (__u32)deEssentialsList.logEntry[listIdx].metaData.fileSize);
}
} else {
fprintf(stderr, "ERROR : WDC : wdc_fetch_log_file_from_device: %s failed, ret = %d\n",
deEssentialsList.logEntry[listIdx].metaData.fileName, ret);
}
free(dataBuffer);
dataBuffer = NULL;
}
}
} else {
fprintf(stderr, "WDC : wdc_fetch_log_directory failed, ret = %d\n", ret);
}
free(deEssentialsList.logEntry);
deEssentialsList.logEntry = NULL;
} else {
fprintf(stderr, "WDC : wdc_get_log_dir_max_entries failed, ret = %d\n", ret);
}
/* Get Dump Trace Data */
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "dumptrace", serialNo, timeString);
if (WDC_STATUS_SUCCESS != (ret = wdc_de_get_dump_trace(fd, (char*)bufferFolderPath, 0, fileName)))
{
fprintf(stderr, "ERROR : WDC : wdc_de_get_dump_trace failed, ret = %d\n", ret);
}
/* Tar the Drive Essentials directory */
wdc_UtilsSnprintf(tarFileName, sizeof(tarFileName), "%s%s", (char*)bufferFolderPath, WDC_DE_TAR_FILE_EXTN);
if (dir != NULL) {
wdc_UtilsSnprintf(tarFiles, sizeof(tarFiles), "%s%s%s%s%s",
(char*)dir, WDC_DE_PATH_SEPARATOR, (char*)bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES);
} else {
wdc_UtilsSnprintf(tarFiles, sizeof(tarFiles), "%s%s%s", (char*)bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES);
}
wdc_UtilsSnprintf(tarCmd, sizeof(tarCmd), "%s %s %s", WDC_DE_TAR_CMD, (char*)tarFileName, (char*)tarFiles);
ret = system(tarCmd);
if (ret) {
fprintf(stderr, "ERROR : WDC : Tar of Drive Essentials data failed, ret = %d\n", ret);
}
fprintf(stderr, "Get of Drive Essentials data successful\n");
return 0;
}
static int wdc_drive_essentials(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Capture Drive Essentials.";
char *dirName = "Output directory pathname.";
char d[PATH_MAX] = {0};
char k[PATH_MAX] = {0};
char *d_ptr;
int fd;
__u64 capabilities = 0;
struct config {
char *dirName;
};
struct config cfg = {
.dirName = NULL,
};
OPT_ARGS(opts) = {
OPT_STRING("dir-name", 'd', "DIRECTORY", &cfg.dirName, dirName),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_DRIVE_ESSENTIALS) != WDC_DRIVE_CAP_DRIVE_ESSENTIALS) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
return -1;
}
if (cfg.dirName != NULL) {
strncpy(d, cfg.dirName, PATH_MAX - 1);
d_ptr = d;
} else {
d_ptr = NULL;
}
return wdc_do_drive_essentials(fd, d_ptr, k);
}
static int wdc_do_drive_resize(int fd, uint64_t new_size)
{
int ret;
struct nvme_admin_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = WDC_NVME_DRIVE_RESIZE_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_DRIVE_RESIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_DRIVE_RESIZE_CMD);
admin_cmd.cdw13 = new_size;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
return ret;
}
static int wdc_do_namespace_resize(int fd, __u32 nsid, __u32 op_option)
{
int ret;
struct nvme_admin_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = WDC_NVME_NAMESPACE_RESIZE_OPCODE;
admin_cmd.nsid = nsid;
admin_cmd.cdw10 = op_option;
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
return ret;
}
static int wdc_do_drive_info(int fd, __u32 *result)
{
int ret;
struct nvme_admin_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd));
admin_cmd.opcode = WDC_NVME_DRIVE_INFO_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_DRIVE_INFO_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_DRIVE_INFO_CMD);
ret = nvme_submit_admin_passthru(fd, &admin_cmd);
if (!ret && result)
*result = admin_cmd.result;
return ret;
}
static int wdc_drive_resize(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a Resize command.";
const char *size = "The new size (in GB) to resize the drive to.";
uint64_t capabilities = 0;
int fd, ret;
struct config {
uint64_t size;
};
struct config cfg = {
.size = 0,
};
OPT_ARGS(opts) = {
OPT_UINT("size", 's', &cfg.size, size),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
wdc_check_device(fd);
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_RESIZE) == WDC_DRIVE_CAP_RESIZE) {
ret = wdc_do_drive_resize(fd, cfg.size);
} else {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
}
if (!ret)
printf("New size: %" PRIu64 " GB\n", cfg.size);
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
return ret;
}
static int wdc_namespace_resize(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a Namespace Resize command.";
const char *namespace_id = "The namespace id to resize.";
const char *op_option = "The over provisioning option to set for namespace.";
uint64_t capabilities = 0;
int fd, ret;
struct config {
__u32 namespace_id;
__u32 op_option;
};
struct config cfg = {
.namespace_id = 0x1,
.op_option = 0xF,
};
OPT_ARGS(opts) = {
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_UINT("op-option", 'o', &cfg.op_option, op_option),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if ((cfg.op_option != 0x1) &&
(cfg.op_option != 0x2) &&
(cfg.op_option != 0x3) &&
(cfg.op_option != 0xF))
{
fprintf(stderr, "ERROR : WDC: unsupported OP option parameter\n");
return -1;
}
wdc_check_device(fd);
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_NS_RESIZE) == WDC_DRIVE_CAP_NS_RESIZE) {
ret = wdc_do_namespace_resize(fd, cfg.namespace_id, cfg.op_option);
if (ret != 0)
printf("ERROR : WDC: Namespace Resize of namespace id 0x%x, op option 0x%x failed\n", cfg.namespace_id, cfg.op_option);
} else {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
}
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
return ret;
}
static int wdc_reason_identifier(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Retrieve telemetry log reason identifier.";
const char *log_id = "Log ID to retrieve - host - 7 or controller - 8";
const char *fname = "File name to save raw binary identifier";
int fd;
int ret;
uint64_t capabilities = 0;
char f[PATH_MAX] = {0};
char fileSuffix[PATH_MAX] = {0};
UtilsTimeInfo timeInfo;
__u8 timeStamp[MAX_PATH_LEN];
struct config {
int log_id;
char *file;
};
struct config cfg = {
.log_id = 7,
.file = NULL,
};
OPT_ARGS(opts) = {
OPT_UINT("log-id", 'i', &cfg.log_id, log_id),
OPT_FILE("file", 'o', &cfg.file, fname),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (cfg.log_id != NVME_LOG_TELEMETRY_HOST && cfg.log_id != NVME_LOG_TELEMETRY_CTRL) {
fprintf(stderr, "ERROR : WDC: Invalid Log ID. It must be 7 (Host) or 8 (Controller)\n");
ret = -1;
goto close_fd;
}
if (cfg.file != NULL) {
int verify_file;
/* verify the passed in file name and path is valid before getting the dump data */
verify_file = open(cfg.file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (verify_file < 0) {
fprintf(stderr, "ERROR : WDC: open : %s\n", strerror(errno));
ret = -1;
goto close_fd;
}
close(verify_file);
strncpy(f, cfg.file, PATH_MAX - 1);
} else {
wdc_UtilsGetTime(&timeInfo);
memset(timeStamp, 0, sizeof(timeStamp));
wdc_UtilsSnprintf((char*)timeStamp, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
timeInfo.year, timeInfo.month, timeInfo.dayOfMonth,
timeInfo.hour, timeInfo.minute, timeInfo.second);
if (cfg.log_id == NVME_LOG_TELEMETRY_CTRL)
snprintf(fileSuffix, PATH_MAX, "_error_reason_identifier_ctlr_%s", (char*)timeStamp);
else
snprintf(fileSuffix, PATH_MAX, "_error_reason_identifier_host_%s", (char*)timeStamp);
if (wdc_get_serial_name(fd, f, PATH_MAX, fileSuffix) == -1) {
fprintf(stderr, "ERROR : WDC: failed to generate file name\n");
ret = -1;
goto close_fd;
}
snprintf(f + strlen(f), PATH_MAX, "%s", ".bin");
}
fprintf(stderr, "%s: filename = %s\n", __func__, f);
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_REASON_ID) == WDC_DRIVE_CAP_REASON_ID) {
ret = wdc_do_get_reason_id(fd, f, cfg.log_id);
} else {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
}
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
close_fd:
close(fd);
return ret;
}
static const char *nvme_log_id_to_string(__u8 log_id)
{
switch (log_id) {
case NVME_LOG_ERROR: return "Error Information Log ID";
case NVME_LOG_SMART: return "Smart/Health Information Log ID";
case NVME_LOG_FW_SLOT: return "Firmware Slot Information Log ID";
case NVME_LOG_CHANGED_NS: return "Namespace Changed Log ID";
case NVME_LOG_CMD_EFFECTS: return "Commamds Supported and Effects Log ID";
case NVME_LOG_DEVICE_SELF_TEST: return "Device Self Test Log ID";
case NVME_LOG_TELEMETRY_HOST: return "Telemetry Host Initiated Log ID";
case NVME_LOG_TELEMETRY_CTRL: return "Telemetry Controller Generated Log ID";
case NVME_LOG_ENDURANCE_GROUP: return "Endurance Group Log ID";
case NVME_LOG_ANA: return "ANA Log ID";
case NVME_LOG_PERSISTENT_EVENT: return "Persistent Event Log ID";
case NVME_LOG_DISC: return "Discovery Log ID";
case NVME_LOG_RESERVATION: return "Reservation Notification Log ID";
case NVME_LOG_SANITIZE: return "Sanitize Status Log ID";
case WDC_LOG_ID_C0: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_C2: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_C4: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_C5: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_C6: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_CA: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_CB: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_D0: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_D6: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_D7: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_D8: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_DE: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_F0: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_F1: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_F2: return "WDC Vendor Unique Log ID";
case WDC_LOG_ID_FA: return "WDC Vendor Unique Log ID";
default: return "Unknown Log ID";
}
}
static int wdc_log_page_directory(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve Log Page Directory.";
int fd;
int ret = 0;
__u64 capabilities = 0;
struct wdc_c2_cbs_data *cbs_data = NULL;
int i;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json|binary"),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
ret = validate_output_format(cfg.output_format);
if (ret < 0) {
fprintf(stderr, "%s: ERROR : WDC : invalid output format\n", __func__);
return ret;
}
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_LOG_PAGE_DIR) == 0) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
} else {
/* verify the 0xC2 Device Manageability log page is supported */
if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE) == false) {
fprintf(stderr, "%s: ERROR : WDC : 0xC2 Log Page not supported\n", __func__);
ret = -1;
goto out;
}
if (get_dev_mgment_cbs_data(fd, WDC_C2_LOG_PAGES_SUPPORTED_ID, (void *)&cbs_data)) {
if (cbs_data != NULL) {
printf("Log Page Directory\n");
/* print the supported pages */
if (!strcmp(cfg.output_format, "normal")) {
for (i = 0; i < le32_to_cpu(cbs_data->length); i++) {
printf("0x%x - %s\n", cbs_data->data[i],
nvme_log_id_to_string(cbs_data->data[i]));
}
} else if (!strcmp(cfg.output_format, "binary")) {
d((__u8 *)cbs_data->data, le32_to_cpu(cbs_data->length), 16, 1);
} else if (!strcmp(cfg.output_format, "json")) {
struct json_object *root;
root = json_create_object();
for (i = 0; i < le32_to_cpu(cbs_data->length); i++) {
json_object_add_value_int(root, nvme_log_id_to_string(cbs_data->data[i]),
cbs_data->data[i]);
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else
fprintf(stderr, "%s: ERROR : WDC : Invalid format, format = %s\n", __func__, cfg.output_format);
} else
fprintf(stderr, "%s: ERROR : WDC : NULL_data ptr\n", __func__);
} else
fprintf(stderr, "%s: ERROR : WDC : 0xC2 Log Page entry ID 0x%x not found\n", __func__, WDC_C2_LOG_PAGES_SUPPORTED_ID);
}
out:
return ret;
}
static int wdc_get_drive_reason_id(int fd, char *drive_reason_id, size_t len)
{
int i, j;
int ret;
int res_len = 0;
struct nvme_id_ctrl ctrl;
char *reason_id_str = "reason_id";
i = sizeof (ctrl.sn) - 1;
j = sizeof (ctrl.mn) - 1;
memset(drive_reason_id, 0, len);
memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
ret = nvme_identify_ctrl(fd, &ctrl);
if (ret) {
fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed "
"0x%x\n", ret);
return -1;
}
/* Remove trailing spaces from the sn and mn */
while (i && ctrl.sn[i] == ' ') {
ctrl.sn[i] = '\0';
i--;
}
while (j && ctrl.mn[j] == ' ') {
ctrl.mn[j] = '\0';
j--;
}
res_len = snprintf(drive_reason_id, len, "%s_%s_%s", ctrl.sn, ctrl.mn, reason_id_str);
if (len <= res_len) {
fprintf(stderr, "ERROR : WDC : cannot format serial number due to data "
"of unexpected length\n");
return -1;
}
return 0;
}
static int wdc_save_reason_id(int fd, __u8 *rsn_ident, int size)
{
int ret = 0;
char *reason_id_file;
char drive_reason_id[PATH_MAX] = {0};
char reason_id_path[PATH_MAX] = WDC_REASON_ID_PATH_NAME;
struct stat st = {0};
if (wdc_get_drive_reason_id(fd, drive_reason_id, PATH_MAX) == -1) {
fprintf(stderr, "%s: ERROR : failed to get drive reason id\n", __func__);
return -1;
}
/* make the nvmecli dir in /usr/local if it doesn't already exist */
if (stat(reason_id_path, &st) == -1) {
mkdir(reason_id_path, 0700);
}
if (asprintf(&reason_id_file, "%s/%s%s", reason_id_path,
drive_reason_id, ".bin") < 0)
return -ENOMEM;
fprintf(stderr, "%s: reason id file = %s\n", __func__, reason_id_file);
/* save off the error reason identifier to a file in /usr/local/nvmecli */
ret = wdc_create_log_file(reason_id_file, rsn_ident, WDC_REASON_ID_ENTRY_LEN);
free(reason_id_file);
return ret;
}
static int wdc_clear_reason_id(int fd)
{
int ret = -1;
int verify_file;
char *reason_id_file;
char drive_reason_id[PATH_MAX] = {0};
if (wdc_get_drive_reason_id(fd, drive_reason_id, PATH_MAX) == -1) {
fprintf(stderr, "%s: ERROR : failed to get drive reason id\n", __func__);
return -1;
}
if (asprintf(&reason_id_file, "%s/%s%s", WDC_REASON_ID_PATH_NAME,
drive_reason_id, ".bin") < 0)
return -ENOMEM;
/* verify the drive reason id file name and path is valid */
verify_file = open(reason_id_file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (verify_file < 0) {
ret = -1;
goto free;
}
close(verify_file);
/* remove the reason id file */
ret = remove(reason_id_file);
free:
free(reason_id_file);
return ret;
}
static int wdc_do_get_reason_id(int fd, char *file, int log_id)
{
int ret;
struct nvme_telemetry_log_page_hdr *log_hdr;
__u32 log_hdr_size = sizeof(struct nvme_telemetry_log_page_hdr);
__u32 reason_id_size = 0;
log_hdr = (struct nvme_telemetry_log_page_hdr *) malloc(log_hdr_size);
if (log_hdr == NULL) {
fprintf(stderr, "%s: ERROR : malloc failed, size : 0x%x, status : %s\n", __func__, log_hdr_size, strerror(errno));
ret = -1;
goto out;
}
memset(log_hdr, 0, log_hdr_size);
ret = wdc_dump_telemetry_hdr(fd, log_id, log_hdr);
if (ret != 0) {
fprintf(stderr, "%s: ERROR : get telemetry header failed, ret : %d\n", __func__, ret);
ret = -1;
goto out;
}
reason_id_size = sizeof(log_hdr->rsnident);
if (log_id == NVME_LOG_TELEMETRY_CTRL)
wdc_save_reason_id(fd, log_hdr->rsnident, reason_id_size);
ret = wdc_create_log_file(file, (__u8 *)log_hdr->rsnident, reason_id_size);
out:
free(log_hdr);
return ret;
}
static int wdc_dump_telemetry_hdr(int fd, int log_id, struct nvme_telemetry_log_page_hdr *log_hdr)
{
int ret = 0;
int host_gen = 0, ctrl_init = 0;
if (log_id == NVME_LOG_TELEMETRY_HOST)
host_gen = 1;
else
ctrl_init = 1;
ret = nvme_get_telemetry_log(fd, log_hdr, host_gen, ctrl_init, 512, 0);
if (ret < 0)
perror("get-telemetry-log");
else if (ret > 0) {
nvme_show_status(ret);
fprintf(stderr, "%s: ERROR : Failed to acquire telemetry header, ret = %d!\n", __func__, ret);
}
return ret;
}
static void wdc_print_nand_stats_normal(struct wdc_nand_stats *data)
{
printf(" NAND Statistics :- \n");
printf(" NAND Writes TLC (Bytes) %.0Lf\n",
int128_to_double(data->nand_write_tlc));
printf(" NAND Writes SLC (Bytes) %.0Lf\n",
int128_to_double(data->nand_write_slc));
printf(" NAND Program Failures %"PRIu32"\n",
(uint32_t)le32_to_cpu(data->nand_prog_failure));
printf(" NAND Erase Failures %"PRIu32"\n",
(uint32_t)le32_to_cpu(data->nand_erase_failure));
printf(" Bad Block Count %"PRIu32"\n",
(uint32_t)le32_to_cpu(data->bad_block_count));
printf(" NAND XOR/RAID Recovery Trigger Events %"PRIu64"\n",
le64_to_cpu(data->nand_rec_trigger_event));
printf(" E2E Error Counter %"PRIu64"\n",
le64_to_cpu(data->e2e_error_counter));
printf(" Number Successful NS Resizing Events %"PRIu64"\n",
le64_to_cpu(data->successful_ns_resize_event));
}
static void wdc_print_nand_stats_json(struct wdc_nand_stats *data)
{
struct json_object *root;
root = json_create_object();
json_object_add_value_float(root, "NAND Writes TLC (Bytes)",
int128_to_double(data->nand_write_tlc));
json_object_add_value_float(root, "NAND Writes SLC (Bytes)",
int128_to_double(data->nand_write_slc));
json_object_add_value_uint(root, "NAND Program Failures",
le32_to_cpu(data->nand_prog_failure));
json_object_add_value_uint(root, "NAND Erase Failures",
le32_to_cpu(data->nand_erase_failure));
json_object_add_value_uint(root, "Bad Block Count",
le32_to_cpu(data->bad_block_count));
json_object_add_value_uint(root, "NAND XOR/RAID Recovery Trigger Events",
le64_to_cpu(data->nand_rec_trigger_event));
json_object_add_value_uint(root, "E2E Error Counter",
le64_to_cpu(data->e2e_error_counter));
json_object_add_value_uint(root, "Number Successful NS Resizing Events",
le64_to_cpu(data->successful_ns_resize_event));
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static int wdc_do_vs_nand_stats(int fd, char *format)
{
int ret;
int fmt = -1;
uint8_t *output = NULL;
struct wdc_nand_stats *nand_stats;
if ((output = (uint8_t*)calloc(WDC_NVME_NAND_STATS_SIZE, sizeof(uint8_t))) == NULL) {
fprintf(stderr, "ERROR : WDC : calloc : %s\n", strerror(errno));
ret = -1;
goto out;
}
ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_NAND_STATS_LOG_ID,
false, WDC_NVME_NAND_STATS_SIZE, (void*)output);
if (ret) {
fprintf(stderr, "ERROR : WDC : %s : Failed to retreive NAND stats\n", __func__);
goto out;
} else {
fmt = validate_output_format(format);
if (fmt < 0) {
fprintf(stderr, "ERROR : WDC : invalid output format\n");
ret = fmt;
goto out;
}
/* parse the data */
nand_stats = (struct wdc_nand_stats *)(output);
switch (fmt) {
case NORMAL:
wdc_print_nand_stats_normal(nand_stats);
break;
case JSON:
wdc_print_nand_stats_json(nand_stats);
break;
}
}
out:
free(output);
return ret;
}
static int wdc_vs_nand_stats(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve NAND statistics.";
int fd;
int ret = 0;
__u64 capabilities = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_NAND_STATS) == 0) {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
} else {
ret = wdc_do_vs_nand_stats(fd, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : WDC : Failure reading NAND statistics, ret = %d\n", ret);
}
return ret;
}
static int wdc_vs_drive_info(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a vs-drive-info command.";
uint64_t capabilities = 0;
int fd, ret;
__le32 result;
__u16 size;
double rev;
OPT_ARGS(opts) = {
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
wdc_check_device(fd);
capabilities = wdc_get_drive_capabilities(fd);
if ((capabilities & WDC_DRIVE_CAP_INFO) == WDC_DRIVE_CAP_INFO) {
ret = wdc_do_drive_info(fd, &result);
} else {
fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
ret = -1;
}
if (!ret) {
size = (__u16)((cpu_to_le32(result) & 0xffff0000) >> 16);
rev = (double)(cpu_to_le32(result) & 0x0000ffff);
printf("Drive HW Revison: %4.1f\n", (.1 * rev));
printf("FTL Unit Size: 0x%x KB\n", size);
}
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret);
return ret;
}