1
0
Fork 0
nvme-cli/plugins/ocp/ocp-nvme.c

777 lines
36 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/* Copyright (c) 2022 Meta Platforms, Inc.
*
* Authors: Arthur Shau <arthurshau@fb.com>,
* Wei Zhang <wzhang@fb.com>,
* Venkat Ramesh <venkatraghavan@fb.com>
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include <errno.h>
#include <limits.h>
#include <fcntl.h>
#include <unistd.h>
#include "common.h"
#include "nvme.h"
#include "libnvme.h"
#include "plugin.h"
#include "linux/types.h"
#include "nvme-print.h"
#define CREATE_CMD
#include "ocp-nvme.h"
/* C0 SCAO Log Page */
#define C0_SMART_CLOUD_ATTR_LEN 0x200
#define C0_SMART_CLOUD_ATTR_OPCODE 0xC0
#define C0_GUID_LENGTH 16
#define C0_ACTIVE_BUCKET_TIMER_INCREMENT 5
#define C0_ACTIVE_THRESHOLD_INCREMENT 5
#define C0_MINIMUM_WINDOW_INCREMENT 100
static __u8 scao_guid[C0_GUID_LENGTH] = { 0xC5, 0xAF, 0x10, 0x28, 0xEA, 0xBF,
0xF2, 0xA4, 0x9C, 0x4F, 0x6F, 0x7C, 0xC9, 0x14, 0xD5, 0xAF };
/* C3 Latency Monitor Log Page */
#define C3_LATENCY_MON_LOG_BUF_LEN 0x200
#define C3_LATENCY_MON_OPCODE 0xC3
#define C3_LATENCY_MON_VERSION 0x0001
#define C3_GUID_LENGTH 16
static __u8 lat_mon_guid[C3_GUID_LENGTH] = { 0x92, 0x7a, 0xc0, 0x8c, 0xd0, 0x84,
0x6c, 0x9c, 0x70, 0x43, 0xe6, 0xd4, 0x58, 0x5e, 0xd4, 0x85 };
#define READ 0
#define WRITE 1
#define TRIM 2
#define RESERVED 3
typedef enum {
SCAO_PMUW = 0, /* Physical media units written */
SCAO_PMUR = 16, /* Physical media units read */
SCAO_BUNBR = 32, /* Bad user nand blocks raw */
SCAO_BUNBN = 38, /* Bad user nand blocks normalized */
SCAO_BSNBR = 40, /* Bad system nand blocks raw */
SCAO_BSNBN = 46, /* Bad system nand blocks normalized */
SCAO_XRC = 48, /* XOR recovery count */
SCAO_UREC = 56, /* Uncorrectable read error count */
SCAO_SEEC = 64, /* Soft ecc error count */
SCAO_EECE = 72, /* End to end corrected errors */
SCAO_EEDC = 76, /* End to end detected errors */
SCAO_SDPU = 80, /* System data percent used */
SCAO_RFSC = 81, /* Refresh counts */
SCAO_MXUDEC = 88, /* Max User data erase counts */
SCAO_MNUDEC = 92, /* Min User data erase counts */
SCAO_NTTE = 96, /* Number of Thermal throttling events */
SCAO_CTS = 97, /* Current throttling status */
SCAO_EVF = 98, /* Errata Version Field */
SCAO_PVF = 99, /* Point Version Field */
SCAO_MIVF = 101, /* Minor Version Field */
SCAO_MAVF = 103, /* Major Version Field */
SCAO_PCEC = 104, /* PCIe correctable error count */
SCAO_ICS = 112, /* Incomplete shutdowns */
SCAO_PFB = 120, /* Percent free blocks */
SCAO_CPH = 128, /* Capacitor health */
SCAO_NEV = 130, /* NVMe Errata Version */
SCAO_UIO = 136, /* Unaligned I/O */
SCAO_SVN = 144, /* Security Version Number */
SCAO_NUSE = 152, /* NUSE - Namespace utilization */
SCAO_PSC = 160, /* PLP start count */
SCAO_EEST = 176, /* Endurance estimate */
SCAO_PLRC = 192, /* PCIe Link Retraining Count */
SCAO_LPV = 494, /* Log page version */
SCAO_LPG = 496, /* Log page GUID */
} SMART_CLOUD_ATTRIBUTE_OFFSETS;
struct __attribute__((__packed__)) ssd_latency_monitor_log {
__u8 feature_status; /* 0x00 */
__u8 rsvd1; /* 0x01 */
__le16 active_bucket_timer; /* 0x02 */
__le16 active_bucket_timer_threshold; /* 0x04 */
__u8 active_threshold_a; /* 0x06 */
__u8 active_threshold_b; /* 0x07 */
__u8 active_threshold_c; /* 0x08 */
__u8 active_threshold_d; /* 0x09 */
__le16 active_latency_config; /* 0x0A */
__u8 active_latency_min_window; /* 0x0C */
__u8 rsvd2[0x13]; /* 0x0D */
__le32 active_bucket_counter[4][4] ; /* 0x20 - 0x5F */
__le64 active_latency_timestamp[4][3]; /* 0x60 - 0xBF */
__le16 active_measured_latency[4][3]; /* 0xC0 - 0xD7 */
__le16 active_latency_stamp_units; /* 0xD8 */
__u8 rsvd3[0x16]; /* 0xDA */
__le32 static_bucket_counter[4][4] ; /* 0xF0 - 0x12F */
__le64 static_latency_timestamp[4][3]; /* 0x130 - 0x18F */
__le16 static_measured_latency[4][3]; /* 0x190 - 0x1A7 */
__le16 static_latency_stamp_units; /* 0x1A8 */
__u8 rsvd4[0x16]; /* 0x1AA */
__le16 debug_log_trigger_enable; /* 0x1C0 */
__le16 debug_log_measured_latency; /* 0x1C2 */
__le64 debug_log_latency_stamp; /* 0x1C4 */
__le16 debug_log_ptr; /* 0x1CC */
__le16 debug_log_counter_trigger; /* 0x1CE */
__u8 debug_log_stamp_units; /* 0x1D0 */
__u8 rsvd5[0x1D]; /* 0x1D1 */
__le16 log_page_version; /* 0x1EE */
__u8 log_page_guid[0x10]; /* 0x1F0 */
};
static long double int128_to_double(__u8 *data)
{
int i;
long double result = 0;
for (i = 0; i < 16; i++) {
result *= 256;
result += data[15 - i];
}
return result;
}
static int convert_ts(time_t time, char *ts_buf)
{
struct tm gmTimeInfo;
time_t time_Human, time_ms;
char buf[80];
time_Human = time/1000;
time_ms = time % 1000;
gmtime_r((const time_t *)&time_Human, &gmTimeInfo);
strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &gmTimeInfo);
sprintf(ts_buf, "%s.%03ld GMT", buf, time_ms);
return 0;
}
static void ocp_print_C0_log_normal(void *data)
{
__u8 *log_data = (__u8*)data;
uint16_t smart_log_ver = 0;
printf("SMART Cloud Attributes :- \n");
printf(" Physical media units written - %"PRIu64" %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PMUW+8] & 0xFFFFFFFFFFFFFFFF),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PMUW] & 0xFFFFFFFFFFFFFFFF));
printf(" Physical media units read - %"PRIu64" %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PMUR+8] & 0xFFFFFFFFFFFFFFFF),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PMUR] & 0xFFFFFFFFFFFFFFFF));
printf(" Bad user nand blocks - Raw %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BUNBR] & 0x0000FFFFFFFFFFFF));
printf(" Bad user nand blocks - Normalized %d\n",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BUNBN]));
printf(" Bad system nand blocks - Raw %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BSNBR] & 0x0000FFFFFFFFFFFF));
printf(" Bad system nand blocks - Normalized %d\n",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BSNBN]));
printf(" XOR recovery count %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_XRC]));
printf(" Uncorrectable read error count %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UREC]));
printf(" Soft ecc error count %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SEEC]));
printf(" End to end corrected errors %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EECE]));
printf(" End to end detected errors %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EEDC]));
printf(" System data percent used %d\n",
(__u8)log_data[SCAO_SDPU]);
printf(" Refresh counts %"PRIu64"\n",
(uint64_t)(le64_to_cpu(*(uint64_t *)&log_data[SCAO_RFSC])& 0x00FFFFFFFFFFFFFF));
printf(" Max User data erase counts %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MXUDEC]));
printf(" Min User data erase counts %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MNUDEC]));
printf(" Number of Thermal throttling events %d\n",
(__u8)log_data[SCAO_NTTE]);
printf(" Current throttling status 0x%x\n",
(__u8)log_data[SCAO_CTS]);
printf(" PCIe correctable error count %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PCEC]));
printf(" Incomplete shutdowns %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_ICS]));
printf(" Percent free blocks %d\n",
(__u8)log_data[SCAO_PFB]);
printf(" Capacitor health %"PRIu16"\n",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_CPH]));
printf(" Unaligned I/O %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UIO]));
printf(" Security Version Number %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SVN]));
printf(" NUSE - Namespace utilization %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_NUSE]));
printf(" PLP start count %.0Lf\n",
int128_to_double(&log_data[SCAO_PSC]));
printf(" Endurance estimate %.0Lf\n",
int128_to_double(&log_data[SCAO_EEST]));
smart_log_ver = (uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_LPV]);
printf(" Log page version %"PRIu16"\n",smart_log_ver);
printf(" Log page GUID 0x");
printf("%"PRIx64"%"PRIx64"\n",(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG + 8]),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG]));
if(smart_log_ver > 2) {
printf(" Errata Version Field %d\n",
(__u8)log_data[SCAO_EVF]);
printf(" Point Version Field %"PRIu16"\n",
(uint16_t)log_data[SCAO_PVF]);
printf(" Minor Version Field %"PRIu16"\n",
(uint16_t)log_data[SCAO_MIVF]);
printf(" Major Version Field %d\n",
(__u8)log_data[SCAO_MAVF]);
printf(" NVMe Errata Version %d\n",
(__u8)log_data[SCAO_NEV]);
printf(" PCIe Link Retraining Count %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PLRC]));
}
printf("\n");
}
static void ocp_print_C0_log_json(void *data)
{
__u8 *log_data = (__u8*)data;
struct json_object *root;
struct json_object *pmuw;
struct json_object *pmur;
uint16_t smart_log_ver = 0;
root = json_create_object();
pmuw = json_create_object();
pmur = json_create_object();
json_object_add_value_uint64(pmuw, "hi",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PMUW+8] & 0xFFFFFFFFFFFFFFFF));
json_object_add_value_uint64(pmuw, "lo",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PMUW] & 0xFFFFFFFFFFFFFFFF));
json_object_add_value_object(root, "Physical media units written", pmuw);
json_object_add_value_uint64(pmur, "hi",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PMUR+8] & 0xFFFFFFFFFFFFFFFF));
json_object_add_value_uint64(pmur, "lo",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PMUR] & 0xFFFFFFFFFFFFFFFF));
json_object_add_value_object(root, "Physical media units read", pmur);
json_object_add_value_uint64(root, "Bad user nand blocks - Raw",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BUNBR] & 0x0000FFFFFFFFFFFF));
json_object_add_value_uint(root, "Bad user nand blocks - Normalized",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BUNBN]));
json_object_add_value_uint64(root, "Bad system nand blocks - Raw",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BSNBR] & 0x0000FFFFFFFFFFFF));
json_object_add_value_uint(root, "Bad system nand blocks - Normalized",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BSNBN]));
json_object_add_value_uint64(root, "XOR recovery count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_XRC]));
json_object_add_value_uint64(root, "Uncorrectable read error count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UREC]));
json_object_add_value_uint64(root, "Soft ecc error count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SEEC]));
json_object_add_value_uint(root, "End to end corrected errors",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EECE]));
json_object_add_value_uint(root, "End to end detected errors",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EEDC]));
json_object_add_value_uint(root, "System data percent used",
(__u8)log_data[SCAO_SDPU]);
json_object_add_value_uint64(root, "Refresh counts",
(uint64_t)(le64_to_cpu(*(uint64_t *)&log_data[SCAO_RFSC])& 0x00FFFFFFFFFFFFFF));
json_object_add_value_uint(root, "Max User data erase counts",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MXUDEC]));
json_object_add_value_uint(root, "Min User data erase counts",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MNUDEC]));
json_object_add_value_uint(root, "Number of Thermal throttling events",
(__u8)log_data[SCAO_NTTE]);
json_object_add_value_uint(root, "Current throttling status",
(__u8)log_data[SCAO_CTS]);
json_object_add_value_uint64(root, "PCIe correctable error count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PCEC]));
json_object_add_value_uint(root, "Incomplete shutdowns",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_ICS]));
json_object_add_value_uint(root, "Percent free blocks",
(__u8)log_data[SCAO_PFB]);
json_object_add_value_uint(root, "Capacitor health",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_CPH]));
json_object_add_value_uint64(root, "Unaligned I/O",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UIO]));
json_object_add_value_uint64(root, "Security Version Number",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SVN]));
json_object_add_value_uint64(root, "NUSE - Namespace utilization",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_NUSE]));
json_object_add_value_uint(root, "PLP start count",
int128_to_double(&log_data[SCAO_PSC]));
json_object_add_value_uint64(root, "Endurance estimate",
int128_to_double(&log_data[SCAO_EEST]));
smart_log_ver = (uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_LPV]);
json_object_add_value_uint(root, "Log page version", smart_log_ver);
char guid[40];
memset((void*)guid, 0, 40);
sprintf((char*)guid, "0x%"PRIx64"%"PRIx64"",(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG + 8]),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG]));
json_object_add_value_string(root, "Log page GUID", guid);
if(smart_log_ver > 2){
json_object_add_value_uint(root, "Errata Version Field",
(__u8)log_data[SCAO_EVF]);
json_object_add_value_uint(root, "Point Version Field",
(uint16_t)log_data[SCAO_PVF]);
json_object_add_value_uint(root, "Minor Version Field",
(uint16_t)log_data[SCAO_MIVF]);
json_object_add_value_uint(root, "Major Version Field",
(__u8)log_data[SCAO_MAVF]);
json_object_add_value_uint(root, "NVMe Errata Version",
(__u8)log_data[SCAO_NEV]);
json_object_add_value_uint(root, "PCIe Link Retraining Count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PLRC]));
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static int get_c0_log_page(int fd, char *format)
{
int ret = 0;
int fmt = -1;
__u8 *data;
int i;
fmt = validate_output_format(format);
if (fmt < 0) {
fprintf(stderr, "ERROR : OCP : invalid output format\n");
return fmt;
}
if ((data = (__u8 *) malloc(sizeof(__u8) * C0_SMART_CLOUD_ATTR_LEN)) == NULL) {
fprintf(stderr, "ERROR : OCP : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof (__u8) * C0_SMART_CLOUD_ATTR_LEN);
ret = nvme_get_log_simple(fd, C0_SMART_CLOUD_ATTR_OPCODE,
C0_SMART_CLOUD_ATTR_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(ret, false), ret);
if (ret == 0) {
/* check log page guid */
/* Verify GUID matches */
for (i=0; i<16; i++) {
if (scao_guid[i] != data[SCAO_LPG + i]) {
fprintf(stderr, "ERROR : OCP : Unknown GUID in C0 Log Page data\n");
int j;
fprintf(stderr, "ERROR : OCP : Expected GUID: 0x");
for (j = 0; j<16; j++) {
fprintf(stderr, "%x", scao_guid[j]);
}
fprintf(stderr, "\nERROR : OCP : Actual GUID: 0x");
for (j = 0; j<16; j++) {
fprintf(stderr, "%x", data[SCAO_LPG + j]);
}
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
/* print the data */
switch (fmt) {
case NORMAL:
ocp_print_C0_log_normal(data);
break;
case JSON:
ocp_print_C0_log_json(data);
break;
}
} else {
fprintf(stderr, "ERROR : OCP : Unable to read C0 data from buffer\n");
}
out:
free(data);
return ret;
}
static int ocp_smart_add_log(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Retrieve latency monitor log data.";
int fd;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "output Format: normal|json"),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
ret = get_c0_log_page(fd, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : OCP : Failure reading the C0 Log Page, ret = %d\n",
ret);
close(fd);
return ret;
}
static int ocp_print_C3_log_normal(struct ssd_latency_monitor_log *log_data)
{
printf("-Latency Monitor/C3 Log Page Data- \n");
printf(" Controller : %s\n", devicename);
int i, j;
int pos = 0;
char ts_buf[128];
printf(" Feature Status 0x%x \n",
log_data->feature_status);
printf(" Active Bucket Timer %d min \n",
C0_ACTIVE_BUCKET_TIMER_INCREMENT *
le16_to_cpu(log_data->active_bucket_timer));
printf(" Active Bucket Timer Threshold %d min \n",
C0_ACTIVE_BUCKET_TIMER_INCREMENT *
le16_to_cpu(log_data->active_bucket_timer_threshold));
printf(" Active Threshold A %d ms \n",
C0_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_a+1));
printf(" Active Threshold B %d ms \n",
C0_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_b+1));
printf(" Active Threshold C %d ms \n",
C0_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_c+1));
printf(" Active Threshold D %d ms \n",
C0_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_d+1));
printf(" Active Latency Minimum Window %d ms \n",
C0_MINIMUM_WINDOW_INCREMENT *
le16_to_cpu(log_data->active_latency_min_window));
printf(" Active Latency Stamp Units %d \n",
le16_to_cpu(log_data->active_latency_stamp_units));
printf(" Static Latency Stamp Units %d \n",
le16_to_cpu(log_data->static_latency_stamp_units));
printf(" Debug Log Trigger Enable %d \n",
le16_to_cpu(log_data->debug_log_trigger_enable));
printf(" Read Write Deallocate/Trim \n");
for (i = 0; i <= 3; i++) {
printf(" Active Latency Mode: Bucket %d %27d %27d %27d \n",
i,
log_data->active_latency_config & (1 << pos),
log_data->active_latency_config & (1 << pos),
log_data->active_latency_config & (1 << pos));
}
printf("\n");
for (i = 0; i <= 3; i++) {
printf(" Active Bucket Counter: Bucket %d %27d %27d %27d \n",
i,
le32_to_cpu(log_data->active_bucket_counter[i][READ]),
le32_to_cpu(log_data->active_bucket_counter[i][WRITE]),
le32_to_cpu(log_data->active_bucket_counter[i][TRIM]));
}
for (i = 0; i <= 3; i++) {
printf(" Active Measured Latency: Bucket %d %27d ms %27d ms %27d ms \n",
i,
le16_to_cpu(log_data->active_measured_latency[i][READ]),
le16_to_cpu(log_data->active_measured_latency[i][WRITE]),
le16_to_cpu(log_data->active_measured_latency[i][TRIM]));
}
for (i = 0; i <= 3; i++) {
printf(" Active Latency Time Stamp: Bucket %d ", i);
for (j = 0; j <= 2; j++) {
if (le64_to_cpu(log_data->active_latency_timestamp[i][j]) == -1)
printf(" N/A ");
else {
convert_ts(le64_to_cpu(log_data->active_latency_timestamp[i][j]), ts_buf);
printf("%s ", ts_buf);
}
}
printf("\n");
}
for (i = 0; i <= 3; i++) {
printf(" Static Bucket Counter: Bucket %d %27d %27d %27d \n",
i,
le32_to_cpu(log_data->static_bucket_counter[i][READ]),
le32_to_cpu(log_data->static_bucket_counter[i][WRITE]),
le32_to_cpu(log_data->static_bucket_counter[i][TRIM]));
}
for (i = 0; i <= 3; i++) {
printf(" Static Measured Latency: Bucket %d %27d ms %27d ms %27d ms \n",
i,
le16_to_cpu(log_data->static_measured_latency[i][READ]),
le16_to_cpu(log_data->static_measured_latency[i][WRITE]),
le16_to_cpu(log_data->static_measured_latency[i][TRIM]));
}
for (i = 0; i <= 3; i++) {
printf(" Static Latency Time Stamp: Bucket %d ", i);
for (j = 0; j <= 2; j++) {
if (le64_to_cpu(log_data->static_latency_timestamp[i][j]) == -1)
printf(" N/A ");
else {
convert_ts(le64_to_cpu(log_data->static_latency_timestamp[i][j]), ts_buf);
printf("%s ", ts_buf);
}
}
printf("\n");
}
return 0;
}
static void ocp_print_C3_log_json(struct ssd_latency_monitor_log *log_data)
{
int i, j;
int pos = 0;
char buf[128];
char ts_buf[128];
char *operation[3] = {"Read", "Write", "Trim"};
struct json_object *root;
root = json_create_object();
json_object_add_value_uint(root, "Feature Status",
log_data->feature_status);
json_object_add_value_uint(root, "Active Bucket Timer",
C0_ACTIVE_BUCKET_TIMER_INCREMENT *
le16_to_cpu(log_data->active_bucket_timer));
json_object_add_value_uint(root, "Active Bucket Timer Threshold",
C0_ACTIVE_BUCKET_TIMER_INCREMENT *
le16_to_cpu(log_data->active_bucket_timer_threshold));
json_object_add_value_uint(root, "Active Threshold A",
C0_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_a+1));
json_object_add_value_uint(root, "Active Threshold B",
C0_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_b+1));
json_object_add_value_uint(root, "Active Threshold C",
C0_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_c+1));
json_object_add_value_uint(root, "Active Threshold D",
C0_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_d+1));
json_object_add_value_uint(root, "Active Lantency Minimum Window",
C0_MINIMUM_WINDOW_INCREMENT *
le16_to_cpu(log_data->active_latency_min_window));
json_object_add_value_uint(root, "Active Latency Stamp Units",
le16_to_cpu(log_data->active_latency_stamp_units));
json_object_add_value_uint(root, "Static Latency Stamp Units",
le16_to_cpu(log_data->static_latency_stamp_units));
json_object_add_value_uint(root, "Debug Log Trigger Enable",
le16_to_cpu(log_data->debug_log_trigger_enable));
for (i = 0; i <= 3; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Active Latency Mode: Bucket %d", i);
for (j = 0; j <= 2; j++) {
json_object_add_value_uint(bucket, operation[j],
log_data->active_latency_config & (1 << pos));
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i <= 3; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Active Bucket Counter: Bucket %d", i);
for (j = 0; j <= 2; j++) {
json_object_add_value_uint(bucket, operation[j],
le32_to_cpu(log_data->active_bucket_counter[i][j]));
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i <= 3; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Active Measured Latency: Bucket %d", i);
for (j = 0; j <= 2; j++) {
json_object_add_value_uint(bucket, operation[j],
le16_to_cpu(log_data->active_measured_latency[i][j]));
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i <= 3; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Active Latency Time Stamp: Bucket %d", i);
for (j = 0; j <= 2; j++) {
if (le64_to_cpu(log_data->active_latency_timestamp[i][j]) == -1)
json_object_add_value_string(bucket, operation[j], "NA");
else {
convert_ts(le64_to_cpu(log_data->active_latency_timestamp[i][j]), ts_buf);
json_object_add_value_string(bucket, operation[j], ts_buf);
}
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i <= 3; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Static Bucket Counter: Bucket %d", i);
for (j = 0; j <= 2; j++) {
json_object_add_value_uint(bucket, operation[j],
le32_to_cpu(log_data->static_bucket_counter[i][j]));
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i <= 3; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Static Measured Latency: Bucket %d", i);
for (j = 0; j <= 2; j++) {
json_object_add_value_uint(bucket, operation[j],
le16_to_cpu(log_data->static_measured_latency[i][j]));
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i <= 3; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Static Latency Time Stamp: Bucket %d", i);
for (j = 0; j <= 2; j++) {
if (le64_to_cpu(log_data->static_latency_timestamp[i][j]) == -1)
json_object_add_value_string(bucket, operation[j], "NA");
else {
convert_ts(le64_to_cpu(log_data->static_latency_timestamp[i][j]), ts_buf);
json_object_add_value_string(bucket, operation[j], ts_buf);
}
}
json_object_add_value_object(root, buf, bucket);
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static int get_c3_log_page(int fd, char *format)
{
int ret = 0;
int fmt = -1;
__u8 *data;
int i;
struct ssd_latency_monitor_log *log_data;
fmt = validate_output_format(format);
if (fmt < 0) {
fprintf(stderr, "ERROR : OCP : invalid output format\n");
return fmt;
}
if ((data = (__u8 *) malloc(sizeof(__u8) * C3_LATENCY_MON_LOG_BUF_LEN)) == NULL) {
fprintf(stderr, "ERROR : OCP : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof (__u8) * C3_LATENCY_MON_LOG_BUF_LEN);
ret = nvme_get_log_simple(fd, C3_LATENCY_MON_OPCODE,
C3_LATENCY_MON_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr,
"NVMe Status:%s(%x)\n",
nvme_status_to_string(ret, false),
ret);
if (ret == 0) {
log_data = (struct ssd_latency_monitor_log*)data;
/* check log page version */
if (log_data->log_page_version != C3_LATENCY_MON_VERSION) {
fprintf(stderr,
"ERROR : OCP : invalid latency monitor version\n");
ret = -1;
goto out;
}
/* check log page guid */
/* Verify GUID matches */
for (i=0; i<16; i++) {
if (lat_mon_guid[i] != log_data->log_page_guid[i]) {
fprintf(stderr,"ERROR : OCP : Unknown GUID in C3 Log Page data\n");
int j;
fprintf(stderr, "ERROR : OCP : Expected GUID: 0x");
for (j = 0; j<16; j++) {
fprintf(stderr, "%x", lat_mon_guid[j]);
}
fprintf(stderr, "\nERROR : OCP : Actual GUID: 0x");
for (j = 0; j<16; j++) {
fprintf(stderr, "%x", log_data->log_page_guid[j]);
}
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
switch (fmt) {
case NORMAL:
ocp_print_C3_log_normal(log_data);
break;
case JSON:
ocp_print_C3_log_json(log_data);
break;
}
} else {
fprintf(stderr,
"ERROR : OCP : Unable to read C3 data from buffer\n");
}
out:
free(data);
return ret;
}
static int ocp_latency_monitor_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve latency monitor log data.";
int fd;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format,
"output Format: normal|json"),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
ret = get_c3_log_page(fd, cfg.output_format);
if (ret)
fprintf(stderr,
"ERROR : OCP : Failure reading the C3 Log Page, ret = %d\n",
ret);
close(fd);
return ret;
}