1
0
Fork 0
nvme-cli/plugins/wdc/wdc-nvme.c
Daniel Baumann 1e65f355a3
Adding upstream version 2.9.1.
Signed-off-by: Daniel Baumann <daniel@debian.org>
2025-02-16 12:26:41 +01:00

12403 lines
404 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2015-2018 Western Digital Corporation or its affiliates.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
* Author: Chaitanya Kulkarni <chaitanya.kulkarni@hgst.com>,
* Dong Ho <dong.ho@hgst.com>,
* Jeff Lien <jeff.lien@wdc.com>
* Brandon Paupore <brandon.paupore@wdc.com>
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include <errno.h>
#include <limits.h>
#include <fcntl.h>
#include <unistd.h>
#include "common.h"
#include "nvme.h"
#include "libnvme.h"
#include "plugin.h"
#include "linux/types.h"
#include "util/cleanup.h"
#include "util/types.h"
#include "nvme-print.h"
#define CREATE_CMD
#include "wdc-nvme.h"
#include "wdc-utils.h"
#define WRITE_SIZE (sizeof(__u8) * 4096)
#define WDC_NVME_SUBCMD_SHIFT 8
#define WDC_NVME_LOG_SIZE_DATA_LEN 0x08
#define WDC_NVME_LOG_SIZE_HDR_LEN 0x08
/* Enclosure */
#define WDC_OPENFLEX_MI_DEVICE_MODEL "OpenFlex"
#define WDC_RESULT_MORE_DATA 0x80000000
#define WDC_RESULT_NOT_AVAILABLE 0x7FFFFFFF
/* Device Config */
#define WDC_NVME_VID 0x1c58
#define WDC_NVME_VID_2 0x1b96
#define WDC_NVME_SNDK_VID 0x15b7
#define WDC_NVME_SN100_DEV_ID 0x0003
#define WDC_NVME_SN200_DEV_ID 0x0023
#define WDC_NVME_SN630_DEV_ID 0x2200
#define WDC_NVME_SN630_DEV_ID_1 0x2201
#define WDC_NVME_SN840_DEV_ID 0x2300
#define WDC_NVME_SN840_DEV_ID_1 0x2500
#define WDC_NVME_SN640_DEV_ID 0x2400
#define WDC_NVME_SN640_DEV_ID_1 0x2401
#define WDC_NVME_SN640_DEV_ID_2 0x2402
#define WDC_NVME_SN640_DEV_ID_3 0x2404
#define WDC_NVME_ZN540_DEV_ID 0x2600
#define WDC_NVME_SN540_DEV_ID 0x2610
#define WDC_NVME_SN650_DEV_ID 0x2700
#define WDC_NVME_SN650_DEV_ID_1 0x2701
#define WDC_NVME_SN650_DEV_ID_2 0x2702
#define WDC_NVME_SN650_DEV_ID_3 0x2720
#define WDC_NVME_SN650_DEV_ID_4 0x2721
#define WDC_NVME_SN655_DEV_ID 0x2722
#define WDC_NVME_SN860_DEV_ID 0x2730
#define WDC_NVME_SN660_DEV_ID 0x2704
#define WDC_NVME_SN560_DEV_ID_1 0x2712
#define WDC_NVME_SN560_DEV_ID_2 0x2713
#define WDC_NVME_SN560_DEV_ID_3 0x2714
#define WDC_NVME_SN861_DEV_ID 0x2750
#define WDC_NVME_SN861_DEV_ID_1 0x2751
/* This id's are no longer supported, delete ?? */
#define WDC_NVME_SN550_DEV_ID 0x2708
#define WDC_NVME_SXSLCL_DEV_ID 0x2001
#define WDC_NVME_SN520_DEV_ID 0x5003
#define WDC_NVME_SN520_DEV_ID_1 0x5004
#define WDC_NVME_SN520_DEV_ID_2 0x5005
#define WDC_NVME_SN530_DEV_ID_1 0x5007
#define WDC_NVME_SN530_DEV_ID_2 0x5008
#define WDC_NVME_SN530_DEV_ID_3 0x5009
#define WDC_NVME_SN530_DEV_ID_4 0x500b
#define WDC_NVME_SN530_DEV_ID_5 0x501d
#define WDC_NVME_SN350_DEV_ID 0x5019
#define WDC_NVME_SN570_DEV_ID 0x501A
#define WDC_NVME_SN850X_DEV_ID 0x5030
#define WDC_NVME_SN5000_DEV_ID_1 0x5034
#define WDC_NVME_SN5000_DEV_ID_2 0x5035
#define WDC_NVME_SN5000_DEV_ID_3 0x5036
#define WDC_NVME_SN5000_DEV_ID_4 0x504A
#define WDC_NVME_SN7000S_DEV_ID_1 0x5039
#define WDC_NVME_SN7150_DEV_ID_1 0x503b
#define WDC_NVME_SN7150_DEV_ID_2 0x503c
#define WDC_NVME_SN7150_DEV_ID_3 0x503d
#define WDC_NVME_SN7150_DEV_ID_4 0x503e
#define WDC_NVME_SN7150_DEV_ID_5 0x503f
#define WDC_NVME_SN7100_DEV_ID_1 0x5043
#define WDC_NVME_SN7100_DEV_ID_2 0x5044
#define WDC_NVME_SN7100_DEV_ID_3 0x5045
#define WDC_NVME_SN8000S_DEV_ID 0x5049
#define WDC_NVME_SN720_DEV_ID 0x5002
#define WDC_NVME_SN730_DEV_ID 0x5006
#define WDC_NVME_SN740_DEV_ID 0x5015
#define WDC_NVME_SN740_DEV_ID_1 0x5016
#define WDC_NVME_SN740_DEV_ID_2 0x5017
#define WDC_NVME_SN740_DEV_ID_3 0x5025
#define WDC_NVME_SN340_DEV_ID 0x500d
#define WDC_NVME_ZN350_DEV_ID 0x5010
#define WDC_NVME_ZN350_DEV_ID_1 0x5018
#define WDC_NVME_SN810_DEV_ID 0x5011
#define WDC_NVME_SN820CL_DEV_ID 0x5037
#define WDC_DRIVE_CAP_CAP_DIAG 0x0000000000000001
#define WDC_DRIVE_CAP_INTERNAL_LOG 0x0000000000000002
#define WDC_DRIVE_CAP_C1_LOG_PAGE 0x0000000000000004
#define WDC_DRIVE_CAP_CA_LOG_PAGE 0x0000000000000008
#define WDC_DRIVE_CAP_D0_LOG_PAGE 0x0000000000000010
#define WDC_DRIVE_CAP_DRIVE_STATUS 0x0000000000000020
#define WDC_DRIVE_CAP_CLEAR_ASSERT 0x0000000000000040
#define WDC_DRIVE_CAP_CLEAR_PCIE 0x0000000000000080
#define WDC_DRIVE_CAP_RESIZE 0x0000000000000100
#define WDC_DRIVE_CAP_NAND_STATS 0x0000000000000200
#define WDC_DRIVE_CAP_DRIVE_LOG 0x0000000000000400
#define WDC_DRIVE_CAP_CRASH_DUMP 0x0000000000000800
#define WDC_DRIVE_CAP_PFAIL_DUMP 0x0000000000001000
#define WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY 0x0000000000002000
#define WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY 0x0000000000004000
#define WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG 0x0000000000008000
#define WDC_DRIVE_CAP_REASON_ID 0x0000000000010000
#define WDC_DRIVE_CAP_LOG_PAGE_DIR 0x0000000000020000
#define WDC_DRIVE_CAP_NS_RESIZE 0x0000000000040000
#define WDC_DRIVE_CAP_INFO 0x0000000000080000
#define WDC_DRIVE_CAP_C0_LOG_PAGE 0x0000000000100000
#define WDC_DRIVE_CAP_TEMP_STATS 0x0000000000200000
#define WDC_DRIVE_CAP_VUC_CLEAR_PCIE 0x0000000000400000
#define WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE 0x0000000000800000
#define WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_C2 0x0000000001000000
#define WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY 0x0000000002000000
#define WDC_DRIVE_CAP_CLOUD_SSD_VERSION 0x0000000004000000
#define WDC_DRIVE_CAP_PCIE_STATS 0x0000000008000000
#define WDC_DRIVE_CAP_HW_REV_LOG_PAGE 0x0000000010000000
#define WDC_DRIVE_CAP_C3_LOG_PAGE 0x0000000020000000
#define WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION 0x0000000040000000
#define WDC_DRIVE_CAP_CLOUD_LOG_PAGE 0x0000000080000000
#define WDC_DRIVE_CAP_DRIVE_ESSENTIALS 0x0000000100000000
#define WDC_DRIVE_CAP_DUI_DATA 0x0000000200000000
#define WDC_SN730B_CAP_VUC_LOG 0x0000000400000000
#define WDC_DRIVE_CAP_DUI 0x0000000800000000
#define WDC_DRIVE_CAP_PURGE 0x0000001000000000
#define WDC_DRIVE_CAP_OCP_C1_LOG_PAGE 0x0000002000000000
#define WDC_DRIVE_CAP_OCP_C4_LOG_PAGE 0x0000004000000000
#define WDC_DRIVE_CAP_OCP_C5_LOG_PAGE 0x0000008000000000
#define WDC_DRIVE_CAP_DEVICE_WAF 0x0000010000000000
#define WDC_DRIVE_CAP_SET_LATENCY_MONITOR 0x0000020000000000
#define WDC_DRIVE_CAP_SMART_LOG_MASK (WDC_DRIVE_CAP_C0_LOG_PAGE | \
WDC_DRIVE_CAP_C1_LOG_PAGE | \
WDC_DRIVE_CAP_CA_LOG_PAGE | \
WDC_DRIVE_CAP_D0_LOG_PAGE)
#define WDC_DRIVE_CAP_CLEAR_PCIE_MASK (WDC_DRIVE_CAP_CLEAR_PCIE | \
WDC_DRIVE_CAP_VUC_CLEAR_PCIE | \
WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE)
#define WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_MASK (WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY | \
WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_C2)
#define WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY_MASK (WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY | \
WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY)
#define WDC_DRIVE_CAP_INTERNAL_LOG_MASK (WDC_DRIVE_CAP_INTERNAL_LOG | \
WDC_DRIVE_CAP_DUI | \
WDC_DRIVE_CAP_DUI_DATA | \
WDC_SN730B_CAP_VUC_LOG)
/* SN730 Get Log Capabilities */
#define SN730_NVME_GET_LOG_OPCODE 0xc2
#define SN730_GET_FULL_LOG_LENGTH 0x00080009
#define SN730_GET_KEY_LOG_LENGTH 0x00090009
#define SN730_GET_COREDUMP_LOG_LENGTH 0x00120009
#define SN730_GET_EXTENDED_LOG_LENGTH 0x00420009
#define SN730_GET_FULL_LOG_SUBOPCODE 0x00010009
#define SN730_GET_KEY_LOG_SUBOPCODE 0x00020009
#define SN730_GET_CORE_LOG_SUBOPCODE 0x00030009
#define SN730_GET_EXTEND_LOG_SUBOPCODE 0x00040009
#define SN730_LOG_CHUNK_SIZE 0x1000
/* Customer ID's */
#define WDC_CUSTOMER_ID_GN 0x0001
#define WDC_CUSTOMER_ID_GD 0x0101
#define WDC_CUSTOMER_ID_BD 0x1009
#define WDC_CUSTOMER_ID_0x1005 0x1005
#define WDC_CUSTOMER_ID_0x1004 0x1004
#define WDC_CUSTOMER_ID_0x1008 0x1008
#define WDC_CUSTOMER_ID_0x1304 0x1304
#define WDC_INVALID_CUSTOMER_ID -1
#define WDC_ALL_PAGE_MASK 0xFFFF
#define WDC_C0_PAGE_MASK 0x0001
#define WDC_C1_PAGE_MASK 0x0002
#define WDC_CA_PAGE_MASK 0x0004
#define WDC_D0_PAGE_MASK 0x0008
/* Drive Resize */
#define WDC_NVME_DRIVE_RESIZE_OPCODE 0xCC
#define WDC_NVME_DRIVE_RESIZE_CMD 0x03
#define WDC_NVME_DRIVE_RESIZE_SUBCMD 0x01
/* Namespace Resize */
#define WDC_NVME_NAMESPACE_RESIZE_OPCODE 0xFB
/* Drive Info */
#define WDC_NVME_DRIVE_INFO_OPCODE 0xC6
#define WDC_NVME_DRIVE_INFO_CMD 0x22
#define WDC_NVME_DRIVE_INFO_SUBCMD 0x06
/* VS PCIE Stats */
#define WDC_NVME_PCIE_STATS_OPCODE 0xD1
/* Capture Diagnostics */
#define WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE WDC_NVME_LOG_SIZE_DATA_LEN
#define WDC_NVME_CAP_DIAG_OPCODE 0xE6
#define WDC_NVME_CAP_DIAG_CMD_OPCODE 0xC6
#define WDC_NVME_CAP_DIAG_SUBCMD 0x00
#define WDC_NVME_CAP_DIAG_CMD 0x00
#define WDC_NVME_CRASH_DUMP_TYPE 1
#define WDC_NVME_PFAIL_DUMP_TYPE 2
/* Capture Device Unit Info */
#define WDC_NVME_CAP_DUI_HEADER_SIZE 0x400
#define WDC_NVME_CAP_DUI_OPCODE 0xFA
#define WDC_NVME_CAP_DUI_DISABLE_IO 0x01
#define WDC_NVME_DUI_MAX_SECTION 0x3A
#define WDC_NVME_DUI_MAX_SECTION_V2 0x26
#define WDC_NVME_DUI_MAX_SECTION_V3 0x23
#define WDC_NVME_DUI_MAX_DATA_AREA 0x05
#define WDC_NVME_SN730_SECTOR_SIZE 512
/* Telemtery types for vs-internal-log command */
#define WDC_TELEMETRY_TYPE_NONE 0x0
#define WDC_TELEMETRY_TYPE_HOST 0x1
#define WDC_TELEMETRY_TYPE_CONTROLLER 0x2
#define WDC_TELEMETRY_HEADER_LENGTH 512
#define WDC_TELEMETRY_BLOCK_SIZE 512
/* Crash dump */
#define WDC_NVME_CRASH_DUMP_SIZE_DATA_LEN WDC_NVME_LOG_SIZE_DATA_LEN
#define WDC_NVME_CRASH_DUMP_SIZE_NDT 0x02
#define WDC_NVME_CRASH_DUMP_SIZE_CMD 0x20
#define WDC_NVME_CRASH_DUMP_SIZE_SUBCMD 0x03
#define WDC_NVME_CRASH_DUMP_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_CRASH_DUMP_CMD 0x20
#define WDC_NVME_CRASH_DUMP_SUBCMD 0x04
/* PFail Crash dump */
#define WDC_NVME_PF_CRASH_DUMP_SIZE_DATA_LEN WDC_NVME_LOG_SIZE_HDR_LEN
#define WDC_NVME_PF_CRASH_DUMP_SIZE_NDT 0x02
#define WDC_NVME_PF_CRASH_DUMP_SIZE_CMD 0x20
#define WDC_NVME_PF_CRASH_DUMP_SIZE_SUBCMD 0x05
#define WDC_NVME_PF_CRASH_DUMP_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_PF_CRASH_DUMP_CMD 0x20
#define WDC_NVME_PF_CRASH_DUMP_SUBCMD 0x06
/* Drive Log */
#define WDC_NVME_DRIVE_LOG_SIZE_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_DRIVE_LOG_SIZE_DATA_LEN WDC_NVME_LOG_SIZE_DATA_LEN
#define WDC_NVME_DRIVE_LOG_SIZE_NDT 0x02
#define WDC_NVME_DRIVE_LOG_SIZE_CMD 0x20
#define WDC_NVME_DRIVE_LOG_SIZE_SUBCMD 0x01
#define WDC_NVME_DRIVE_LOG_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_DRIVE_LOG_CMD 0x20
#define WDC_NVME_DRIVE_LOG_SUBCMD 0x00
/* Purge and Purge Monitor */
#define WDC_NVME_PURGE_CMD_OPCODE 0xDD
#define WDC_NVME_PURGE_MONITOR_OPCODE 0xDE
#define WDC_NVME_PURGE_MONITOR_DATA_LEN 0x2F
#define WDC_NVME_PURGE_MONITOR_CMD_CDW10 0x0000000C
#define WDC_NVME_PURGE_MONITOR_TIMEOUT 0x7530
#define WDC_NVME_PURGE_CMD_SEQ_ERR 0x0C
#define WDC_NVME_PURGE_INT_DEV_ERR 0x06
#define WDC_NVME_PURGE_STATE_IDLE 0x00
#define WDC_NVME_PURGE_STATE_DONE 0x01
#define WDC_NVME_PURGE_STATE_BUSY 0x02
#define WDC_NVME_PURGE_STATE_REQ_PWR_CYC 0x03
#define WDC_NVME_PURGE_STATE_PWR_CYC_PURGE 0x04
/* Clear dumps */
#define WDC_NVME_CLEAR_DUMP_OPCODE 0xFF
#define WDC_NVME_CLEAR_CRASH_DUMP_CMD 0x03
#define WDC_NVME_CLEAR_CRASH_DUMP_SUBCMD 0x05
#define WDC_NVME_CLEAR_PF_CRASH_DUMP_SUBCMD 0x06
/* Clear FW Activate History */
#define WDC_NVME_CLEAR_FW_ACT_HIST_OPCODE 0xC6
#define WDC_NVME_CLEAR_FW_ACT_HIST_CMD 0x23
#define WDC_NVME_CLEAR_FW_ACT_HIST_SUBCMD 0x05
#define WDC_NVME_CLEAR_FW_ACT_HIST_VU_FID 0xC1
/* Additional Smart Log */
#define WDC_ADD_LOG_BUF_LEN 0x4000
#define WDC_NVME_ADD_LOG_OPCODE 0xC1
#define WDC_GET_LOG_PAGE_SSD_PERFORMANCE 0x37
#define WDC_NVME_GET_STAT_PERF_INTERVAL_LIFETIME 0x0F
/* C2 Log Page */
#define WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_ID 0xC2
#define WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_ID_C8 0xC8
#define WDC_C2_LOG_BUF_LEN 0x1000
#define WDC_C2_LOG_PAGES_SUPPORTED_ID 0x08
#define WDC_C2_CUSTOMER_ID_ID 0x15
#define WDC_C2_THERMAL_THROTTLE_STATUS_ID 0x18
#define WDC_C2_ASSERT_DUMP_PRESENT_ID 0x19
#define WDC_C2_USER_EOL_STATUS_ID 0x1A
#define WDC_C2_USER_EOL_STATE_ID 0x1C
#define WDC_C2_SYSTEM_EOL_STATE_ID 0x1D
#define WDC_C2_FORMAT_CORRUPT_REASON_ID 0x1E
#define WDC_EOL_STATUS_NORMAL cpu_to_le32(0x00000000)
#define WDC_EOL_STATUS_END_OF_LIFE cpu_to_le32(0x00000001)
#define WDC_EOL_STATUS_READ_ONLY cpu_to_le32(0x00000002)
#define WDC_ASSERT_DUMP_NOT_PRESENT cpu_to_le32(0x00000000)
#define WDC_ASSERT_DUMP_PRESENT cpu_to_le32(0x00000001)
#define WDC_THERMAL_THROTTLING_OFF cpu_to_le32(0x00000000)
#define WDC_THERMAL_THROTTLING_ON cpu_to_le32(0x00000001)
#define WDC_THERMAL_THROTTLING_UNAVAILABLE cpu_to_le32(0x00000002)
#define WDC_FORMAT_NOT_CORRUPT cpu_to_le32(0x00000000)
#define WDC_FORMAT_CORRUPT_FW_ASSERT cpu_to_le32(0x00000001)
#define WDC_FORMAT_CORRUPT_UNKNOWN cpu_to_le32(0x000000FF)
/* CA Log Page */
#define WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE 0xCA
#define WDC_FB_CA_LOG_BUF_LEN 0x80
/* Added 4 padding bytes to resolve build warning messages */
#define WDC_BD_CA_LOG_BUF_LEN 0xA0
/* C0 EOL Status Log Page */
#define WDC_NVME_GET_EOL_STATUS_LOG_OPCODE 0xC0
#define WDC_NVME_EOL_STATUS_LOG_LEN 0x200
#define WDC_NVME_SMART_CLOUD_ATTR_LEN 0x200
/* C0 SMART Cloud Attributes Log Page*/
#define WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_ID 0xC0
/* CB - FW Activate History Log Page */
#define WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID 0xCB
#define WDC_FW_ACT_HISTORY_LOG_BUF_LEN 0x3d0
/* C2 - FW Activation History Log Page */
#define WDC_NVME_GET_FW_ACT_HISTORY_C2_LOG_ID 0xC2
#define WDC_FW_ACT_HISTORY_C2_LOG_BUF_LEN 0x1000
#define WDC_MAX_NUM_ACT_HIST_ENTRIES 20
#define WDC_C2_GUID_LENGTH 16
/* C3 Latency Monitor Log Page */
#define WDC_LATENCY_MON_LOG_BUF_LEN 0x200
#define WDC_LATENCY_MON_LOG_ID 0xC3
#define WDC_LATENCY_MON_VERSION 0x0001
#define WDC_C3_GUID_LENGTH 16
static __u8 wdc_lat_mon_guid[WDC_C3_GUID_LENGTH] = {
0x92, 0x7a, 0xc0, 0x8c, 0xd0, 0x84, 0x6c, 0x9c,
0x70, 0x43, 0xe6, 0xd4, 0x58, 0x5e, 0xd4, 0x85
};
/* D0 Smart Log Page */
#define WDC_NVME_GET_VU_SMART_LOG_OPCODE 0xD0
#define WDC_NVME_VU_SMART_LOG_LEN 0x200
/* Log Page Directory defines */
#define NVME_LOG_PERSISTENT_EVENT 0x0D
#define WDC_LOG_ID_C0 0xC0
#define WDC_LOG_ID_C1 0xC1
#define WDC_LOG_ID_C2 WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_ID
#define WDC_LOG_ID_C3 0xC3
#define WDC_LOG_ID_C4 0xC4
#define WDC_LOG_ID_C5 0xC5
#define WDC_LOG_ID_C6 0xC6
#define WDC_LOG_ID_C8 WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_ID_C8
#define WDC_LOG_ID_CA WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE
#define WDC_LOG_ID_CB WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID
#define WDC_LOG_ID_D0 WDC_NVME_GET_VU_SMART_LOG_OPCODE
#define WDC_LOG_ID_D1 0xD1
#define WDC_LOG_ID_D6 0xD6
#define WDC_LOG_ID_D7 0xD7
#define WDC_LOG_ID_D8 0xD8
#define WDC_LOG_ID_DE 0xDE
#define WDC_LOG_ID_F0 0xF0
#define WDC_LOG_ID_F1 0xF1
#define WDC_LOG_ID_F2 0xF2
#define WDC_LOG_ID_FA 0xFA
/* Clear PCIe Correctable Errors */
#define WDC_NVME_CLEAR_PCIE_CORR_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_CLEAR_PCIE_CORR_CMD 0x22
#define WDC_NVME_CLEAR_PCIE_CORR_SUBCMD 0x04
#define WDC_NVME_CLEAR_PCIE_CORR_OPCODE_VUC 0xD2
#define WDC_NVME_CLEAR_PCIE_CORR_FEATURE_ID 0xC3
/* Clear Assert Dump Status */
#define WDC_NVME_CLEAR_ASSERT_DUMP_OPCODE 0xD8
#define WDC_NVME_CLEAR_ASSERT_DUMP_CMD 0x03
#define WDC_NVME_CLEAR_ASSERT_DUMP_SUBCMD 0x05
#define WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID 0xD2
/* Drive Essentials */
#define WDC_DE_DEFAULT_NUMBER_OF_ERROR_ENTRIES 64
#define WDC_DE_GENERIC_BUFFER_SIZE 80
#define WDC_DE_GLOBAL_NSID 0xFFFFFFFF
#define WDC_DE_DEFAULT_NAMESPACE_ID 0x01
#define WDC_DE_PATH_SEPARATOR "/"
#define WDC_DE_TAR_FILES "*.bin"
#define WDC_DE_TAR_FILE_EXTN ".tar.gz"
#define WDC_DE_TAR_CMD "tar -czf"
/* VS NAND Stats */
#define WDC_NVME_NAND_STATS_LOG_ID 0xFB
#define WDC_NVME_NAND_STATS_SIZE 0x200
/* VU Opcodes */
#define WDC_DE_VU_READ_SIZE_OPCODE 0xC0
#define WDC_DE_VU_READ_BUFFER_OPCODE 0xC2
#define WDC_NVME_ADMIN_ENC_MGMT_SND 0xC9
#define WDC_NVME_ADMIN_ENC_MGMT_RCV 0xCA
#define WDC_DE_FILE_HEADER_SIZE 4
#define WDC_DE_FILE_OFFSET_SIZE 2
#define WDC_DE_FILE_NAME_SIZE 32
#define WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET 0x8000
#define WDC_DE_READ_MAX_TRANSFER_SIZE 0x8000
#define WDC_DE_MANUFACTURING_INFO_PAGE_FILE_NAME "manufacturing_info" /* Unique log entry page name. */
#define WDC_DE_CORE_DUMP_FILE_NAME "core_dump"
#define WDC_DE_EVENT_LOG_FILE_NAME "event_log"
#define WDC_DE_DESTN_SPI 1
#define WDC_DE_DUMPTRACE_DESTINATION 6
#define NVME_ID_CTRL_MODEL_NUMBER_SIZE 40
#define NVME_ID_CTRL_SERIAL_NUMBER_SIZE 20
/* Enclosure log */
#define WDC_NVME_ENC_LOG_SIZE_CHUNK 0x1000
#define WDC_NVME_ENC_NIC_LOG_SIZE 0x400000
/* Enclosure nic crash dump get-log id */
#define WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_1 0xD1
#define WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_2 0xD2
#define WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_3 0xD3
#define WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_4 0xD4
#define WDC_ENC_CRASH_DUMP_ID 0xE4
#define WDC_ENC_LOG_DUMP_ID 0xE2
/* OCP Log Page Directory Data Structure */
#define BYTE_TO_BIT(byte) ((byte) * 8)
/* Set latency monitor feature */
#define NVME_FEAT_OCP_LATENCY_MONITOR 0xC5
enum _NVME_FEATURES_SELECT {
FS_CURRENT = 0,
FS_DEFAULT = 1,
FS_SAVED = 2,
FS_SUPPORTED_CAPBILITIES = 3
};
enum NVME_FEATURE_IDENTIFIERS {
FID_ARBITRATION = 0x01,
FID_POWER_MANAGEMENT = 0x02,
FID_LBA_RANGE_TYPE = 0x03,
FID_TEMPERATURE_THRESHOLD = 0x04,
FID_ERROR_RECOVERY = 0x05,
FID_VOLATILE_WRITE_CACHE = 0x06,
FID_NUMBER_OF_QUEUES = 0x07,
FID_INTERRUPT_COALESCING = 0x08,
FID_INTERRUPT_VECTOR_CONFIGURATION = 0x09,
FID_WRITE_ATOMICITY = 0x0A,
FID_ASYNCHRONOUS_EVENT_CONFIGURATION = 0x0B,
FID_AUTONOMOUS_POWER_STATE_TRANSITION = 0x0C,
/*Below FID's are NVM Command Set Specific*/
FID_SOFTWARE_PROGRESS_MARKER = 0x80,
FID_HOST_IDENTIFIER = 0x81,
FID_RESERVATION_NOTIFICATION_MASK = 0x82,
FID_RESERVATION_PERSISTENCE = 0x83
};
/* WDC UUID value */
const uint8_t WDC_UUID[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x2d, 0xb9, 0x8c, 0x52, 0x0c, 0x4c,
0x5a, 0x15, 0xab, 0xe6, 0x33, 0x29, 0x9a, 0x70, 0xdf, 0xd0
};
/* WDC_UUID value for SN640_3 devices */
const uint8_t WDC_UUID_SN640_3[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22
};
/* UUID field with value of 0 indicates end of UUID List*/
const uint8_t UUID_END[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
enum WDC_DRIVE_ESSENTIAL_TYPE {
WDC_DE_TYPE_IDENTIFY = 0x1,
WDC_DE_TYPE_SMARTATTRIBUTEDUMP = 0x2,
WDC_DE_TYPE_EVENTLOG = 0x4,
WDC_DE_TYPE_DUMPTRACE = 0x8,
WDC_DE_TYPE_DUMPSNAPSHOT = 0x10,
WDC_DE_TYPE_ATA_LOGS = 0x20,
WDC_DE_TYPE_SMART_LOGS = 0x40,
WDC_DE_TYPE_SCSI_LOGS = 0x80,
WDC_DE_TYPE_SCSI_MODE_PAGES = 0x100,
WDC_DE_TYPE_NVMe_FEATURES = 0x200,
WDC_DE_TYPE_DUMPSMARTERRORLOG3 = 0x400,
WDC_DE_TYPE_DUMPLOG3E = 0x800,
WDC_DE_TYPE_DUMPSCRAM = 0x1000,
WDC_DE_TYPE_PCU_LOG = 0x2000,
WDC_DE_TYPE_DUMP_ERROR_LOGS = 0x4000,
WDC_DE_TYPE_FW_SLOT_LOGS = 0x8000,
WDC_DE_TYPE_MEDIA_SETTINGS = 0x10000,
WDC_DE_TYPE_SMART_DATA = 0x20000,
WDC_DE_TYPE_NVME_SETTINGS = 0x40000,
WDC_DE_TYPE_NVME_ERROR_LOGS = 0x80000,
WDC_DE_TYPE_NVME_LOGS = 0x100000,
WDC_DE_TYPE_UART_LOGS = 0x200000,
WDC_DE_TYPE_DLOGS_SPI = 0x400000,
WDC_DE_TYPE_DLOGS_RAM = 0x800000,
WDC_DE_TYPE_NVME_MANF_INFO = 0x2000000,
WDC_DE_TYPE_NONE = 0x1000000,
WDC_DE_TYPE_ALL = 0xFFFFFFF,
};
#define WDC_C0_GUID_LENGTH 16
#define WDC_SCA_V1_NAND_STATS 0x1
#define WDC_SCA_V1_ALL 0xF
enum {
SCAO_V1_PMUWT = 0, /* Physical media units written TLC */
SCAO_V1_PMUWS = 16, /* Physical media units written SLC */
SCAO_V1_BUNBN = 32, /* Bad user nand blocks normalized */
SCAO_V1_BUNBR = 34, /* Bad user nand blocks raw */
SCAO_V1_XRC = 40, /* XOR recovery count */
SCAO_V1_UREC = 48, /* Uncorrectable read error count */
SCAO_V1_EECE = 56, /* End to end corrected errors */
SCAO_V1_EEDE = 64, /* End to end detected errors */
SCAO_V1_EEUE = 72, /* End to end uncorrected errors */
SCAO_V1_SDPU = 80, /* System data percent used */
SCAO_V1_MNUDEC = 84, /* Min User data erase counts (TLC) */
SCAO_V1_MXUDEC = 92, /* Max User data erase counts (TLC) */
SCAO_V1_AVUDEC = 100, /* Average User data erase counts (TLC) */
SCAO_V1_MNEC = 108, /* Min Erase counts (SLC) */
SCAO_V1_MXEC = 116, /* Max Erase counts (SLC) */
SCAO_V1_AVEC = 124, /* Average Erase counts (SLC) */
SCAO_V1_PFCN = 132, /* Program fail count normalized */
SCAO_V1_PFCR = 134, /* Program fail count raw */
SCAO_V1_EFCN = 140, /* Erase fail count normalized */
SCAO_V1_EFCR = 142, /* Erase fail count raw */
SCAO_V1_PCEC = 148, /* PCIe correctable error count */
SCAO_V1_PFBU = 156, /* Percent free blocks (User) */
SCAO_V1_SVN = 160, /* Security Version Number */
SCAO_V1_PFBS = 168, /* Percent free blocks (System) */
SCAO_V1_DCC = 172, /* Deallocate Commands Completed */
SCAO_V1_TNU = 188, /* Total Namespace Utilization */
SCAO_V1_FCC = 196, /* Format NVM Commands Completed */
SCAO_V1_BBPG = 198, /* Background Back-Pressure Gauge */
SCAO_V1_SEEC = 202, /* Soft ECC error count */
SCAO_V1_RFSC = 210, /* Refresh count */
SCAO_V1_BSNBN = 218, /* Bad system nand blocks normalized */
SCAO_V1_BSNBR = 220, /* Bad system nand blocks raw */
SCAO_V1_EEST = 226, /* Endurance estimate */
SCAO_V1_TTC = 242, /* Thermal throttling count */
SCAO_V1_UIO = 244, /* Unaligned I/O */
SCAO_V1_PMUR = 252, /* Physical media units read */
SCAO_V1_RTOC = 268, /* Read command timeout count */
SCAO_V1_WTOC = 272, /* Write command timeout count */
SCAO_V1_TTOC = 276, /* Trim command timeout count */
SCAO_V1_PLRC = 284, /* PCIe Link Retraining Count */
SCAO_V1_PSCC = 292, /* Power State Change Count */
SCAO_V1_MAVF = 300, /* Boot SSD major version field */
SCAO_V1_MIVF = 302, /* Boot SSD minor version field */
SCAO_V1_PVF = 304, /* Boot SSD point version field */
SCAO_V1_EVF = 306, /* Boot SSD errata version field */
SCAO_V1_FTLUS = 308, /* FTL Unit Size */
SCAO_V1_TCGOS = 312, /* TCG Ownership Status */
SCAO_V1_LPV = 494, /* Log page version - 0x0001 */
SCAO_V1_LPG = 496, /* Log page GUID */
};
static __u8 ext_smart_guid[WDC_C0_GUID_LENGTH] = {
0x65, 0x43, 0x88, 0x78, 0xAC, 0xD8, 0x78, 0xA1,
0x66, 0x42, 0x1E, 0x0F, 0x92, 0xD7, 0x6D, 0xC4
};
struct __packed wdc_nvme_ext_smart_log {
__u8 ext_smart_pmuwt[16]; /* 000 Physical media units written TLC */
__u8 ext_smart_pmuws[16]; /* 016 Physical media units written SLC */
__u8 ext_smart_bunbc[8]; /* 032 Bad user nand block count */
__u64 ext_smart_xrc; /* 040 XOR recovery count */
__u64 ext_smart_urec; /* 048 Uncorrectable read error count */
__u64 ext_smart_eece; /* 056 End to end corrected errors */
__u64 ext_smart_eede; /* 064 End to end detected errors */
__u64 ext_smart_eeue; /* 072 End to end uncorrected errors */
__u8 ext_smart_sdpu; /* 080 System data percent used */
__u8 ext_smart_rsvd1[3]; /* 081 reserved */
__u64 ext_smart_mnudec; /* 084 Min User data erase counts (TLC) */
__u64 ext_smart_mxudec; /* 092 Max User data erase counts (TLC) */
__u64 ext_smart_avudec; /* 100 Average User data erase counts (TLC) */
__u64 ext_smart_mnec; /* 108 Min Erase counts (SLC) */
__u64 ext_smart_mxec; /* 116 Max Erase counts (SLC) */
__u64 ext_smart_avec; /* 124 Average Erase counts (SLC) */
__u8 ext_smart_pfc[8]; /* 132 Program fail count */
__u8 ext_smart_efc[8]; /* 140 Erase fail count */
__u64 ext_smart_pcec; /* 148 PCIe correctable error count */
__u8 ext_smart_pfbu; /* 156 Percent free blocks (User) */
__u8 ext_smart_rsvd2[3]; /* 157 reserved */
__u64 ext_smart_svn; /* 160 Security Version Number */
__u8 ext_smart_pfbs; /* 168 Percent free blocks (System) */
__u8 ext_smart_rsvd3[3]; /* 169 reserved */
__u8 ext_smart_dcc[16]; /* 172 Deallocate Commands Completed */
__u64 ext_smart_tnu; /* 188 Total Namespace Utilization */
__u16 ext_smart_fcc; /* 196 Format NVM Commands Completed */
__u8 ext_smart_bbpg; /* 198 Background Back-Pressure Gauge */
__u8 ext_smart_rsvd4[3]; /* 199 reserved */
__u64 ext_smart_seec; /* 202 Soft ECC error count */
__u64 ext_smart_rfsc; /* 210 Refresh count */
__u8 ext_smart_bsnbc[8]; /* 218 Bad system nand block count */
__u8 ext_smart_eest[16]; /* 226 Endurance estimate */
__u16 ext_smart_ttc; /* 242 Thermal throttling count */
__u64 ext_smart_uio; /* 244 Unaligned I/O */
__u8 ext_smart_pmur[16]; /* 252 Physical media units read */
__u32 ext_smart_rtoc; /* 268 Read command timeout count */
__u32 ext_smart_wtoc; /* 272 Write command timeout count */
__u32 ext_smart_ttoc; /* 276 Trim command timeout count */
__u8 ext_smart_rsvd5[4]; /* 280 reserved */
__u64 ext_smart_plrc; /* 284 PCIe Link Retraining Count */
__u64 ext_smart_pscc; /* 292 Power State Change Count */
__u16 ext_smart_maj; /* 300 Boot SSD major version field */
__u16 ext_smart_min; /* 302 Boot SSD minor version field */
__u16 ext_smart_pt; /* 304 Boot SSD point version field */
__u16 ext_smart_err; /* 306 Boot SSD errata version field */
__u32 ext_smart_ftlus; /* 308 FTL Unit Size */
__u32 ext_smart_tcgos; /* 312 TCG Ownership Status */
__u8 ext_smart_rsvd6[178]; /* 316 reserved */
__u16 ext_smart_lpv; /* 494 Log page version - 0x0001 */
__u8 ext_smart_lpg[16]; /* 496 Log page GUID */
};
enum {
SCAO_PMUW = 0, /* Physical media units written */
SCAO_PMUR = 16, /* Physical media units read */
SCAO_BUNBR = 32, /* Bad user nand blocks raw */
SCAO_BUNBN = 38, /* Bad user nand blocks normalized */
SCAO_BSNBR = 40, /* Bad system nand blocks raw */
SCAO_BSNBN = 46, /* Bad system nand blocks normalized */
SCAO_XRC = 48, /* XOR recovery count */
SCAO_UREC = 56, /* Uncorrectable read error count */
SCAO_SEEC = 64, /* Soft ecc error count */
SCAO_EECE = 72, /* End to end corrected errors */
SCAO_EEDC = 76, /* End to end detected errors */
SCAO_SDPU = 80, /* System data percent used */
SCAO_RFSC = 81, /* Refresh counts */
SCAO_MXUDEC = 88, /* Max User data erase counts */
SCAO_MNUDEC = 92, /* Min User data erase counts */
SCAO_NTTE = 96, /* Number of Thermal throttling events */
SCAO_CTS = 97, /* Current throttling status */
SCAO_EVF = 98, /* Errata Version Field */
SCAO_PVF = 99, /* Point Version Field */
SCAO_MIVF = 101, /* Minor Version Field */
SCAO_MAVF = 103, /* Major Version Field */
SCAO_PCEC = 104, /* PCIe correctable error count */
SCAO_ICS = 112, /* Incomplete shutdowns */
SCAO_PFB = 120, /* Percent free blocks */
SCAO_CPH = 128, /* Capacitor health */
SCAO_NEV = 130, /* NVMe Errata Version */
SCAO_UIO = 136, /* Unaligned I/O */
SCAO_SVN = 144, /* Security Version Number */
SCAO_NUSE = 152, /* NUSE - Namespace utilization */
SCAO_PSC = 160, /* PLP start count */
SCAO_EEST = 176, /* Endurance estimate */
SCAO_PLRC = 192, /* PCIe Link Retraining Count */
SCAO_PSCC = 200, /* Power State Change Count */
SCAO_LPV = 494, /* Log page version */
SCAO_LPG = 496, /* Log page GUID */
};
struct ocp_bad_nand_block_count {
__u64 raw : 48;
__u16 normalized : 16;
};
struct ocp_e2e_correction_count {
__u32 detected;
__u32 corrected;
};
struct ocp_user_data_erase_count {
__u32 maximum;
__u32 minimum;
};
struct ocp_thermal_status {
__u8 num_events;
__u8 current_status;
};
struct __packed ocp_dssd_specific_ver {
__u8 errata_ver;
__u16 point_ver;
__u16 minor_ver;
__u8 major_ver;
};
struct ocp_cloud_smart_log {
__u8 physical_media_units_written[16];
__u8 physical_media_units_read[16];
struct ocp_bad_nand_block_count bad_user_nand_blocks;
struct ocp_bad_nand_block_count bad_system_nand_blocks;
__u64 xor_recovery_count;
__u64 uncorrectable_read_error_count;
__u64 soft_ecc_error_count;
struct ocp_e2e_correction_count e2e_correction_counts;
__u8 system_data_percent_used;
__u64 refresh_counts : 56;
struct ocp_user_data_erase_count user_data_erase_counts;
struct ocp_thermal_status thermal_status;
struct ocp_dssd_specific_ver dssd_specific_ver;
__u64 pcie_correctable_error_count;
__u32 incomplete_shutdowns;
__u8 rsvd116[4];
__u8 percent_free_blocks;
__u8 rsvd121[7];
__u16 capacitor_health;
__u8 nvme_errata_ver;
__u8 rsvd131[5];
__u64 unaligned_io;
__u64 security_version_number;
__u64 total_nuse;
__u8 plp_start_count[16];
__u8 endurance_estimate[16];
__u64 pcie_link_retraining_cnt;
__u64 power_state_change_cnt;
__u8 rsvd208[286];
__u16 log_page_version;
__u8 log_page_guid[16];
};
static __u8 scao_guid[WDC_C0_GUID_LENGTH] = {
0xC5, 0xAF, 0x10, 0x28, 0xEA, 0xBF, 0xF2, 0xA4,
0x9C, 0x4F, 0x6F, 0x7C, 0xC9, 0x14, 0xD5, 0xAF
};
enum {
EOL_RBC = 76, /* Realloc Block Count */
EOL_ECCR = 80, /* ECC Rate */
EOL_WRA = 84, /* Write Amp */
EOL_PLR = 88, /* Percent Life Remaining */
EOL_RSVBC = 92, /* Reserved Block Count */
EOL_PFC = 96, /* Program Fail Count */
EOL_EFC = 100, /* Erase Fail Count */
EOL_RRER = 108, /* Raw Read Error Rate */
};
#define WDC_NVME_C6_GUID_LENGTH 16
#define WDC_NVME_GET_HW_REV_LOG_OPCODE 0xc6
#define WDC_NVME_HW_REV_LOG_PAGE_LEN 512
struct __packed wdc_nvme_hw_rev_log {
__u8 hw_rev_gdr; /* 0 Global Device HW Revision */
__u8 hw_rev_ar; /* 1 ASIC HW Revision */
__u8 hw_rev_pbc_mc; /* 2 PCB Manufacturer Code */
__u8 hw_rev_dram_mc; /* 3 DRAM Manufacturer Code */
__u8 hw_rev_nand_mc; /* 4 NAND Manufacturer Code */
__u8 hw_rev_pmic1_mc; /* 5 PMIC 1 Manufacturer Code */
__u8 hw_rev_pmic2_mc; /* 6 PMIC 2 Manufacturer Code */
__u8 hw_rev_c1_mc; /* 7 Other Component 1 Manf Code */
__u8 hw_rev_c2_mc; /* 8 Other Component 2 Manf Code */
__u8 hw_rev_c3_mc; /* 9 Other Component 3 Manf Code */
__u8 hw_rev_c4_mc; /* 10 Other Component 4 Manf Code */
__u8 hw_rev_c5_mc; /* 11 Other Component 5 Manf Code */
__u8 hw_rev_c6_mc; /* 12 Other Component 6 Manf Code */
__u8 hw_rev_c7_mc; /* 13 Other Component 7 Manf Code */
__u8 hw_rev_c8_mc; /* 14 Other Component 8 Manf Code */
__u8 hw_rev_c9_mc; /* 15 Other Component 9 Manf Code */
__u8 hw_rev_rsrvd1[48]; /* 16 Reserved 48 bytes */
__u8 hw_rev_dev_mdi[16]; /* 64 Device Manf Detailed Info */
__u8 hw_rev_asic_di[16]; /* 80 ASIC Detailed Info */
__u8 hw_rev_pcb_di[16]; /* 96 PCB Detailed Info */
__u8 hw_rev_dram_di[16]; /* 112 DRAM Detailed Info */
__u8 hw_rev_nand_di[16]; /* 128 NAND Detailed Info */
__u8 hw_rev_pmic1_di[16]; /* 144 PMIC1 Detailed Info */
__u8 hw_rev_pmic2_di[16]; /* 160 PMIC2 Detailed Info */
__u8 hw_rev_c1_di[16]; /* 176 Component 1 Detailed Info */
__u8 hw_rev_c2_di[16]; /* 192 Component 2 Detailed Info */
__u8 hw_rev_c3_di[16]; /* 208 Component 3 Detailed Info */
__u8 hw_rev_c4_di[16]; /* 224 Component 4 Detailed Info */
__u8 hw_rev_c5_di[16]; /* 240 Component 5 Detailed Info */
__u8 hw_rev_c6_di[16]; /* 256 Component 6 Detailed Info */
__u8 hw_rev_c7_di[16]; /* 272 Component 7 Detailed Info */
__u8 hw_rev_c8_di[16]; /* 288 Component 8 Detailed Info */
__u8 hw_rev_c9_di[16]; /* 304 Component 9 Detailed Info */
__u8 hw_rev_sn[32]; /* 320 Serial Number */
__u8 hw_rev_rsrvd2[142]; /* 352 Reserved 143 bytes */
__u16 hw_rev_version; /* 494 Log Page Version */
__u8 hw_rev_guid[16]; /* 496 Log Page GUID */
};
static __u8 hw_rev_log_guid[WDC_NVME_C6_GUID_LENGTH] = {
0xAA, 0xB0, 0x05, 0xF5, 0x13, 0x5E, 0x48, 0x15,
0xAB, 0x89, 0x05, 0xBA, 0x8B, 0xE2, 0xBF, 0x3C
};
struct __packed WDC_DE_VU_FILE_META_DATA {
__u8 fileName[WDC_DE_FILE_NAME_SIZE];
__u16 fileID;
__u64 fileSize;
};
struct WDC_DRIVE_ESSENTIALS {
struct __packed WDC_DE_VU_FILE_META_DATA metaData;
enum WDC_DRIVE_ESSENTIAL_TYPE essentialType;
};
struct WDC_DE_VU_LOG_DIRECTORY {
struct WDC_DRIVE_ESSENTIALS *logEntry; /* Caller to allocate memory */
__u32 maxNumLogEntries; /* Caller to input memory allocated */
__u32 numOfValidLogEntries; /* API will output this value */
};
struct WDC_DE_CSA_FEATURE_ID_LIST {
enum NVME_FEATURE_IDENTIFIERS featureId;
__u8 featureName[WDC_DE_GENERIC_BUFFER_SIZE];
};
struct tarfile_metadata {
char fileName[MAX_PATH_LEN];
int8_t bufferFolderPath[MAX_PATH_LEN];
char bufferFolderName[MAX_PATH_LEN];
char tarFileName[MAX_PATH_LEN];
char tarFiles[MAX_PATH_LEN];
char tarCmd[MAX_PATH_LEN+MAX_PATH_LEN];
char currDir[MAX_PATH_LEN];
UtilsTimeInfo timeInfo;
uint8_t *timeString[MAX_PATH_LEN];
};
static struct WDC_DE_CSA_FEATURE_ID_LIST deFeatureIdList[] = {
{0x00, "Dummy Placeholder"},
{FID_ARBITRATION, "Arbitration"},
{FID_POWER_MANAGEMENT, "PowerMgmnt"},
{FID_LBA_RANGE_TYPE, "LbaRangeType"},
{FID_TEMPERATURE_THRESHOLD, "TempThreshold"},
{FID_ERROR_RECOVERY, "ErrorRecovery"},
{FID_VOLATILE_WRITE_CACHE, "VolatileWriteCache"},
{FID_NUMBER_OF_QUEUES, "NumOfQueues"},
{FID_INTERRUPT_COALESCING, "InterruptCoalesing"},
{FID_INTERRUPT_VECTOR_CONFIGURATION, "InterruptVectorConfig"},
{FID_WRITE_ATOMICITY, "WriteAtomicity"},
{FID_ASYNCHRONOUS_EVENT_CONFIGURATION, "AsynEventConfig"},
{FID_AUTONOMOUS_POWER_STATE_TRANSITION, "AutonomousPowerState"},
};
enum NVME_VU_DE_LOGPAGE_NAMES {
NVME_DE_LOGPAGE_E3 = 0x01,
NVME_DE_LOGPAGE_C0 = 0x02
};
struct NVME_VU_DE_LOGPAGE_LIST {
enum NVME_VU_DE_LOGPAGE_NAMES logPageName;
__u32 logPageId;
__u32 logPageLen;
char logPageIdStr[5];
};
struct WDC_NVME_DE_VU_LOGPAGES {
enum NVME_VU_DE_LOGPAGE_NAMES vuLogPageReqd;
__u32 numOfVULogPages;
};
static struct NVME_VU_DE_LOGPAGE_LIST deVULogPagesList[] = {
{ NVME_DE_LOGPAGE_E3, 0xE3, 1072, "0xe3"},
{ NVME_DE_LOGPAGE_C0, 0xC0, 512, "0xc0"}
};
enum {
WDC_NVME_ADMIN_VUC_OPCODE_D2 = 0xD2,
WDC_VUC_SUBOPCODE_VS_DRIVE_INFO_D2 = 0x0000010A,
WDC_VUC_SUBOPCODE_LOG_PAGE_DIR_D2 = 0x00000105,
};
enum {
NVME_LOG_NS_BASE = 0x80,
NVME_LOG_VS_BASE = 0xC0,
};
/*drive_info struct*/
struct ocp_drive_info {
__u32 hw_revision;
__u32 ftl_unit_size;
};
/*get log page directory struct*/
struct log_page_directory {
__u64 supported_lid_bitmap;
__u64 rsvd;
__u64 supported_ns_lid_bitmap;
__u64 supported_vs_lid_bitmap;
};
/*set latency monitor feature */
struct __packed feature_latency_monitor {
__u16 active_bucket_timer_threshold;
__u8 active_threshold_a;
__u8 active_threshold_b;
__u8 active_threshold_c;
__u8 active_threshold_d;
__u16 active_latency_config;
__u8 active_latency_minimum_window;
__u16 debug_log_trigger_enable;
__u8 discard_debug_log;
__u8 latency_monitor_feature_enable;
__u8 reserved[4083];
};
static int wdc_get_serial_name(struct nvme_dev *dev, char *file, size_t len, const char *suffix);
static int wdc_create_log_file(char *file, __u8 *drive_log_data, __u32 drive_log_length);
static int wdc_do_clear_dump(struct nvme_dev *dev, __u8 opcode, __u32 cdw12);
static int wdc_do_dump(struct nvme_dev *dev, __u32 opcode, __u32 data_len, __u32 cdw12, char *file,
__u32 xfer_size);
static int wdc_do_crash_dump(struct nvme_dev *dev, char *file, int type);
static int wdc_crash_dump(struct nvme_dev *dev, char *file, int type);
static int wdc_get_crash_dump(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_do_drive_log(struct nvme_dev *dev, char *file);
static int wdc_drive_log(int argc, char **argv, struct command *command, struct plugin *plugin);
static const char *wdc_purge_mon_status_to_string(__u32 status);
static int wdc_purge(int argc, char **argv, struct command *command, struct plugin *plugin);
static int wdc_purge_monitor(int argc, char **argv, struct command *command, struct plugin *plugin);
static bool wdc_nvme_check_supported_log_page(nvme_root_t r, struct nvme_dev *dev, __u8 log_id);
static int wdc_clear_pcie_correctable_errors(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_do_drive_essentials(nvme_root_t r, struct nvme_dev *dev, char *dir, char *key);
static int wdc_drive_essentials(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_drive_status(int argc, char **argv, struct command *command, struct plugin *plugin);
static int wdc_clear_assert_dump(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_drive_resize(int argc, char **argv, struct command *command, struct plugin *plugin);
static int wdc_do_drive_resize(struct nvme_dev *dev, uint64_t new_size);
static int wdc_namespace_resize(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_do_namespace_resize(struct nvme_dev *dev, __u32 nsid, __u32 op_option);
static int wdc_reason_identifier(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_do_get_reason_id(struct nvme_dev *dev, char *file, int log_id);
static int wdc_save_reason_id(struct nvme_dev *dev, __u8 *rsn_ident, int size);
static int wdc_clear_reason_id(struct nvme_dev *dev);
static int wdc_log_page_directory(int argc, char **argv, struct command *command,
struct plugin *plugin);
static int wdc_do_drive_info(struct nvme_dev *dev, __u32 *result);
static int wdc_vs_drive_info(int argc, char **argv, struct command *command, struct plugin *plugin);
static int wdc_vs_temperature_stats(int argc, char **argv, struct command *command,
struct plugin *plugin);
static __u64 wdc_get_enc_drive_capabilities(nvme_root_t r, struct nvme_dev *dev);
static int wdc_enc_get_nic_log(struct nvme_dev *dev, __u8 log_id, __u32 xfer_size, __u32 data_len,
FILE *out);
static int wdc_enc_submit_move_data(struct nvme_dev *dev, char *cmd, int len, int xfer_size,
FILE *out, int data_id, int cdw14, int cdw15);
static bool get_dev_mgment_cbs_data(nvme_root_t r, struct nvme_dev *dev, __u8 log_id,
void **cbs_data);
static __u32 wdc_get_fw_cust_id(nvme_root_t r, struct nvme_dev *dev);
/* Drive log data size */
struct wdc_log_size {
__le32 log_size;
};
/* E6 log header */
struct wdc_e6_log_hdr {
__le32 eye_catcher;
__u8 log_size[4];
};
/* DUI log header */
struct wdc_dui_log_section {
__le16 section_type;
__le16 reserved;
__le32 section_size;
};
/* DUI log header V2 */
struct __packed wdc_dui_log_section_v2 {
__le16 section_type;
__le16 data_area_id;
__le64 section_size;
};
/* DUI log header V4 */
struct wdc_dui_log_section_v4 {
__le16 section_type;
__u8 data_area_id;
__u8 reserved;
__le32 section_size_sectors;
};
struct wdc_dui_log_hdr {
__u8 telemetry_hdr[512];
__le16 hdr_version;
__le16 section_count;
__le32 log_size;
struct wdc_dui_log_section log_section[WDC_NVME_DUI_MAX_SECTION];
__u8 log_data[40];
};
struct __packed wdc_dui_log_hdr_v2 {
__u8 telemetry_hdr[512];
__u8 hdr_version;
__u8 product_id;
__le16 section_count;
__le64 log_size;
struct wdc_dui_log_section_v2 log_section[WDC_NVME_DUI_MAX_SECTION_V2];
__u8 log_data[40];
};
struct __packed wdc_dui_log_hdr_v3 {
__u8 telemetry_hdr[512];
__u8 hdr_version;
__u8 product_id;
__le16 section_count;
__le64 log_size;
struct wdc_dui_log_section_v2 log_section[WDC_NVME_DUI_MAX_SECTION_V3];
__u8 securityNonce[36];
__u8 log_data[40];
};
struct __packed wdc_dui_log_hdr_v4 {
__u8 telemetry_hdr[512];
__u8 hdr_version;
__u8 product_id;
__le16 section_count;
__le32 log_size_sectors;
struct wdc_dui_log_section_v4 log_section[WDC_NVME_DUI_MAX_SECTION];
__u8 log_data[40];
};
/* Purge monitor response */
struct wdc_nvme_purge_monitor_data {
__le16 rsvd1;
__le16 rsvd2;
__le16 first_erase_failure_cnt;
__le16 second_erase_failure_cnt;
__le16 rsvd3;
__le16 programm_failure_cnt;
__le32 rsvd4;
__le32 rsvd5;
__le32 entire_progress_total;
__le32 entire_progress_current;
__u8 rsvd6[14];
};
/* Additional Smart Log */
struct wdc_log_page_header {
uint8_t num_subpages;
uint8_t reserved;
__le16 total_log_size;
};
struct wdc_log_page_subpage_header {
uint8_t spcode;
uint8_t pcset;
__le16 subpage_length;
};
struct wdc_ssd_perf_stats {
__le64 hr_cmds; /* Host Read Commands */
__le64 hr_blks; /* Host Read Blocks */
__le64 hr_ch_cmds; /* Host Read Cache Hit Commands */
__le64 hr_ch_blks; /* Host Read Cache Hit Blocks */
__le64 hr_st_cmds; /* Host Read Stalled Commands */
__le64 hw_cmds; /* Host Write Commands */
__le64 hw_blks; /* Host Write Blocks */
__le64 hw_os_cmds; /* Host Write Odd Start Commands */
__le64 hw_oe_cmds; /* Host Write Odd End Commands */
__le64 hw_st_cmds; /* Host Write Commands Stalled */
__le64 nr_cmds; /* NAND Read Commands */
__le64 nr_blks; /* NAND Read Blocks */
__le64 nw_cmds; /* NAND Write Commands */
__le64 nw_blks; /* NAND Write Blocks */
__le64 nrbw; /* NAND Read Before Write */
};
/* Additional C2 Log Page */
struct wdc_c2_log_page_header {
__le32 length;
__le32 version;
};
struct wdc_c2_log_subpage_header {
__le32 length;
__le32 entry_id;
__le32 data;
};
struct wdc_c2_cbs_data {
__le32 length;
__u8 data[];
};
struct __packed wdc_bd_ca_log_format {
__u8 field_id;
__u8 reserved1[2];
__u8 normalized_value;
__u8 raw_value[8];
};
#define LATENCY_LOG_BUCKET_READ 3
#define LATENCY_LOG_BUCKET_WRITE 2
#define LATENCY_LOG_BUCKET_TRIM 1
#define LATENCY_LOG_BUCKET_RESERVED 0
#define LATENCY_LOG_MEASURED_LAT_READ 2
#define LATENCY_LOG_MEASURED_LAT_WRITE 1
#define LATENCY_LOG_MEASURED_LAT_TRIM 0
struct __packed wdc_ssd_latency_monitor_log {
__u8 feature_status; /* 0x00 */
__u8 rsvd1; /* 0x01 */
__le16 active_bucket_timer; /* 0x02 */
__le16 active_bucket_timer_threshold; /* 0x04 */
__u8 active_threshold_a; /* 0x06 */
__u8 active_threshold_b; /* 0x07 */
__u8 active_threshold_c; /* 0x08 */
__u8 active_threshold_d; /* 0x09 */
__le16 active_latency_config; /* 0x0A */
__u8 active_latency_min_window; /* 0x0C */
__u8 rsvd2[0x13]; /* 0x0D */
__le32 active_bucket_counter[4][4]; /* 0x20 - 0x5F */
__le64 active_latency_timestamp[4][3]; /* 0x60 - 0xBF */
__le16 active_measured_latency[4][3]; /* 0xC0 - 0xD7 */
__le16 active_latency_stamp_units; /* 0xD8 */
__u8 rsvd3[0x16]; /* 0xDA */
__le32 static_bucket_counter[4][4] ; /* 0xF0 - 0x12F */
__le64 static_latency_timestamp[4][3]; /* 0x130 - 0x18F */
__le16 static_measured_latency[4][3]; /* 0x190 - 0x1A7 */
__le16 static_latency_stamp_units; /* 0x1A8 */
__u8 rsvd4[0x16]; /* 0x1AA */
__le16 debug_log_trigger_enable; /* 0x1C0 */
__le16 debug_log_measured_latency; /* 0x1C2 */
__le64 debug_log_latency_stamp; /* 0x1C4 */
__le16 debug_log_ptr; /* 0x1CC */
__le16 debug_log_counter_trigger; /* 0x1CE */
__u8 debug_log_stamp_units; /* 0x1D0 */
__u8 rsvd5[0x1D]; /* 0x1D1 */
__le16 log_page_version; /* 0x1EE */
__u8 log_page_guid[0x10]; /* 0x1F0 */
};
struct __packed wdc_ssd_ca_perf_stats {
__le64 nand_bytes_wr_lo; /* 0x00 - NAND Bytes Written lo */
__le64 nand_bytes_wr_hi; /* 0x08 - NAND Bytes Written hi */
__le64 nand_bytes_rd_lo; /* 0x10 - NAND Bytes Read lo */
__le64 nand_bytes_rd_hi; /* 0x18 - NAND Bytes Read hi */
__le64 nand_bad_block; /* 0x20 - NAND Bad Block Count */
__le64 uncorr_read_count; /* 0x28 - Uncorrectable Read Count */
__le64 ecc_error_count; /* 0x30 - Soft ECC Error Count */
__le32 ssd_detect_count; /* 0x38 - SSD End to End Detection Count */
__le32 ssd_correct_count; /* 0x3C - SSD End to End Correction Count */
__u8 data_percent_used; /* 0x40 - System Data Percent Used */
__le32 data_erase_max; /* 0x41 - User Data Erase Counts */
__le32 data_erase_min; /* 0x45 - User Data Erase Counts */
__le64 refresh_count; /* 0x49 - Refresh Count */
__le64 program_fail; /* 0x51 - Program Fail Count */
__le64 user_erase_fail; /* 0x59 - User Data Erase Fail Count */
__le64 system_erase_fail; /* 0x61 - System Area Erase Fail Count */
__u8 thermal_throttle_status; /* 0x69 - Thermal Throttling Status */
__u8 thermal_throttle_count; /* 0x6A - Thermal Throttling Count */
__le64 pcie_corr_error; /* 0x6B - pcie Correctable Error Count */
__le32 incomplete_shutdown_count; /* 0x73 - Incomplete Shutdown Count */
__u8 percent_free_blocks; /* 0x77 - Percent Free Blocks */
__u8 rsvd[392]; /* 0x78 - Reserved bytes 120-511 */
};
struct __packed wdc_ssd_d0_smart_log {
__le32 smart_log_page_header; /* 0x00 - Smart Log Page Header */
__le32 lifetime_realloc_erase_block_count; /* 0x04 - Lifetime reallocated erase block count */
__le32 lifetime_power_on_hours; /* 0x08 - Lifetime power on hours */
__le32 lifetime_uecc_count; /* 0x0C - Lifetime UECC count */
__le32 lifetime_wrt_amp_factor; /* 0x10 - Lifetime write amplification factor */
__le32 trailing_hr_wrt_amp_factor; /* 0x14 - Trailing hour write amplification factor */
__le32 reserve_erase_block_count; /* 0x18 - Reserve erase block count */
__le32 lifetime_program_fail_count; /* 0x1C - Lifetime program fail count */
__le32 lifetime_block_erase_fail_count; /* 0x20 - Lifetime block erase fail count */
__le32 lifetime_die_failure_count; /* 0x24 - Lifetime die failure count */
__le32 lifetime_link_rate_downgrade_count; /* 0x28 - Lifetime link rate downgrade count */
__le32 lifetime_clean_shutdown_count; /* 0x2C - Lifetime clean shutdown count on power loss */
__le32 lifetime_unclean_shutdown_count; /* 0x30 - Lifetime unclean shutdowns on power loss */
__le32 current_temp; /* 0x34 - Current temperature */
__le32 max_recorded_temp; /* 0x38 - Max recorded temperature */
__le32 lifetime_retired_block_count; /* 0x3C - Lifetime retired block count */
__le32 lifetime_read_disturb_realloc_events; /* 0x40 - Lifetime read disturb reallocation events */
__le64 lifetime_nand_writes; /* 0x44 - Lifetime NAND write Lpages */
__le32 capacitor_health; /* 0x4C - Capacitor health */
__le64 lifetime_user_writes; /* 0x50 - Lifetime user writes */
__le64 lifetime_user_reads; /* 0x58 - Lifetime user reads */
__le32 lifetime_thermal_throttle_act; /* 0x60 - Lifetime thermal throttle activations */
__le32 percentage_pe_cycles_remaining; /* 0x64 - Percentage of P/E cycles remaining */
__u8 rsvd[408]; /* 0x68 - 408 Reserved bytes */
};
#define WDC_OCP_C1_GUID_LENGTH 16
#define WDC_ERROR_REC_LOG_BUF_LEN 512
#define WDC_ERROR_REC_LOG_ID 0xC1
#define WDC_ERROR_REC_LOG_VERSION1 0001
#define WDC_ERROR_REC_LOG_VERSION2 0002
struct __packed wdc_ocp_c1_error_recovery_log {
__le16 panic_reset_wait_time; /* 000 - Panic Reset Wait Time */
__u8 panic_reset_action; /* 002 - Panic Reset Action */
__u8 dev_recovery_action1; /* 003 - Device Recovery Action 1 */
__le64 panic_id; /* 004 - Panic ID */
__le32 dev_capabilities; /* 012 - Device Capabilities */
__u8 vs_recovery_opc; /* 016 - Vendor Specific Recovery Opcode */
__u8 rsvd1[3]; /* 017 - 3 Reserved Bytes */
__le32 vs_cmd_cdw12; /* 020 - Vendor Specific Command CDW12 */
__le32 vs_cmd_cdw13; /* 024 - Vendor Specific Command CDW13 */
__u8 vs_cmd_to; /* 028 - Vendor Specific Command Timeout V2 */
__u8 dev_recovery_action2; /* 029 - Device Recovery Action 2 V2 */
__u8 dev_recovery_action2_to; /* 030 - Device Recovery Action 2 Timeout V2 */
__u8 rsvd2[463]; /* 031 - 463 Reserved Bytes */
__le16 log_page_version; /* 494 - Log Page Version */
__u8 log_page_guid[WDC_OCP_C1_GUID_LENGTH]; /* 496 - Log Page GUID */
};
static __u8 wdc_ocp_c1_guid[WDC_OCP_C1_GUID_LENGTH] = { 0x44, 0xD9, 0x31, 0x21, 0xFE, 0x30, 0x34, 0xAE,
0xAB, 0x4D, 0xFD, 0x3D, 0xBA, 0x83, 0x19, 0x5A };
/* NAND Stats */
struct __packed wdc_nand_stats {
__u8 nand_write_tlc[16];
__u8 nand_write_slc[16];
__le32 nand_prog_failure;
__le32 nand_erase_failure;
__le32 bad_block_count;
__le64 nand_rec_trigger_event;
__le64 e2e_error_counter;
__le64 successful_ns_resize_event;
__u8 rsvd[442];
__u16 log_page_version;
};
struct __packed wdc_nand_stats_V3 {
__u8 nand_write_tlc[16];
__u8 nand_write_slc[16];
__u8 bad_nand_block_count[8];
__le64 xor_recovery_count;
__le64 uecc_read_error_count;
__u8 ssd_correction_counts[16];
__u8 percent_life_used;
__le64 user_data_erase_counts[4];
__u8 program_fail_count[8];
__u8 erase_fail_count[8];
__le64 correctable_error_count;
__u8 percent_free_blocks_user;
__le64 security_version_number;
__u8 percent_free_blocks_system;
__u8 trim_completions[25];
__u8 back_pressure_guage;
__le64 soft_ecc_error_count;
__le64 refresh_count;
__u8 bad_sys_nand_block_count[8];
__u8 endurance_estimate[16];
__u8 thermal_throttling_st_ct[2];
__le64 unaligned_IO;
__u8 physical_media_units[16];
__u8 reserved[279];
__u16 log_page_version;
};
struct wdc_vs_pcie_stats {
__le64 unsupportedRequestErrorCount;
__le64 ecrcErrorStatusCount;
__le64 malformedTlpStatusCount;
__le64 receiverOverflowStatusCount;
__le64 unexpectedCmpltnStatusCount;
__le64 completeAbortStatusCount;
__le64 cmpltnTimoutStatusCount;
__le64 flowControlErrorStatusCount;
__le64 poisonedTlpStatusCount;
__le64 dLinkPrtclErrorStatusCount;
__le64 advsryNFatalErrStatusCount;
__le64 replayTimerToStatusCount;
__le64 replayNumRolloverStCount;
__le64 badDllpStatusCount;
__le64 badTlpStatusCount;
__le64 receiverErrStatusCount;
__u8 reserved1[384];
};
struct wdc_fw_act_history_log_hdr {
__le32 eye_catcher;
__u8 version;
__u8 reserved1;
__u8 num_entries;
__u8 reserved2;
__le32 entry_size;
__le32 reserved3;
};
struct wdc_fw_act_history_log_entry {
__le32 entry_num;
__le32 power_cycle_count;
__le64 power_on_seconds;
__le64 previous_fw_version;
__le64 new_fw_version;
__u8 slot_number;
__u8 commit_action_type;
__le16 result;
__u8 reserved[12];
};
struct __packed wdc_fw_act_history_log_entry_c2 {
__u8 entry_version_num;
__u8 entry_len;
__le16 reserved;
__le16 fw_act_hist_entries;
__le64 timestamp;
__u8 reserved2[8];
__le64 power_cycle_count;
__le64 previous_fw_version;
__le64 current_fw_version;
__u8 slot_number;
__u8 commit_action_type;
__le16 result;
__u8 reserved3[14];
};
struct __packed wdc_fw_act_history_log_format_c2 {
__u8 log_identifier;
__u8 reserved[3];
__le32 num_entries;
struct wdc_fw_act_history_log_entry_c2 entry[WDC_MAX_NUM_ACT_HIST_ENTRIES];
__u8 reserved2[2790];
__le16 log_page_version;
__u8 log_page_guid[WDC_C2_GUID_LENGTH];
};
static __u8 ocp_C2_guid[WDC_C2_GUID_LENGTH] = {
0x6D, 0x79, 0x9A, 0x76, 0xB4, 0xDA, 0xF6, 0xA3,
0xE2, 0x4D, 0xB2, 0x8A, 0xAC, 0xF3, 0x1C, 0xD1
};
#define WDC_OCP_C4_GUID_LENGTH 16
#define WDC_DEV_CAP_LOG_BUF_LEN 4096
#define WDC_DEV_CAP_LOG_ID 0xC4
#define WDC_DEV_CAP_LOG_VERSION 0001
#define WDC_OCP_C4_NUM_PS_DESCR 127
struct __packed wdc_ocp_C4_dev_cap_log {
__le16 num_pcie_ports; /* 0000 - Number of PCI Express Ports */
__le16 oob_mgmt_support; /* 0002 - OOB Management Interfaces Supported */
__le16 wrt_zeros_support; /* 0004 - Write Zeros Command Support */
__le16 sanitize_support; /* 0006 - Sanitize Command Support */
__le16 dsm_support; /* 0008 - Dataset Management Command Support */
__le16 wrt_uncor_support; /* 0010 - Write Uncorrectable Command Support */
__le16 fused_support; /* 0012 - Fused Operation Support */
__le16 min_dssd_ps; /* 0014 - Minimum Valid DSSD Power State */
__u8 rsvd1; /* 0016 - Reserved must be cleared to zero */
__u8 dssd_ps_descr[WDC_OCP_C4_NUM_PS_DESCR];/* 0017 - DSSD Power State Descriptors */
__u8 rsvd2[3934]; /* 0144 - Reserved must be cleared to zero */
__le16 log_page_version; /* 4078 - Log Page Version */
__u8 log_page_guid[WDC_OCP_C4_GUID_LENGTH]; /* 4080 - Log Page GUID */
};
static __u8 wdc_ocp_c4_guid[WDC_OCP_C4_GUID_LENGTH] = {
0x97, 0x42, 0x05, 0x0D, 0xD1, 0xE1, 0xC9, 0x98,
0x5D, 0x49, 0x58, 0x4B, 0x91, 0x3C, 0x05, 0xB7
};
#define WDC_OCP_C5_GUID_LENGTH 16
#define WDC_UNSUPPORTED_REQS_LOG_BUF_LEN 4096
#define WDC_UNSUPPORTED_REQS_LOG_ID 0xC5
#define WDC_UNSUPPORTED_REQS_LOG_VERSION 0001
#define WDC_NUM_UNSUPPORTED_REQ_ENTRIES 253
struct __packed wdc_ocp_C5_unsupported_reqs {
__le16 unsupported_count; /* 0000 - Number of Unsupported Requirement IDs */
__u8 rsvd1[14]; /* 0002 - Reserved must be cleared to zero */
__u8 unsupported_req_list[WDC_NUM_UNSUPPORTED_REQ_ENTRIES][16]; /* 0016 - Unsupported Requirements List */
__u8 rsvd2[14]; /* 4064 - Reserved must be cleared to zero */
__le16 log_page_version; /* 4078 - Log Page Version */
__u8 log_page_guid[WDC_OCP_C5_GUID_LENGTH]; /* 4080 - Log Page GUID */
};
static __u8 wdc_ocp_c5_guid[WDC_OCP_C5_GUID_LENGTH] = { 0x2F, 0x72, 0x9C, 0x0E, 0x99, 0x23, 0x2C, 0xBB,
0x63, 0x48, 0x32, 0xD0, 0xB7, 0x98, 0xBB, 0xC7 };
#define WDC_REASON_INDEX_MAX 16
#define WDC_REASON_ID_ENTRY_LEN 128
#define WDC_REASON_ID_PATH_NAME "/usr/local/nvmecli"
const char *log_page_name[256] = {
[NVME_LOG_LID_ERROR] = "Error Information",
[NVME_LOG_LID_SMART] = "SMART / Health Information",
[NVME_LOG_LID_FW_SLOT] = "Firmware Slot Information",
[NVME_LOG_LID_CHANGED_NS] = "Changed Namespace List",
[NVME_LOG_LID_CMD_EFFECTS] = "Command Supported and Effects",
[NVME_LOG_LID_TELEMETRY_HOST] = "Telemetry Host-Initiated",
[NVME_LOG_LID_TELEMETRY_CTRL] = "Telemetry Controller-Initiated",
[NVME_LOG_LID_SANITIZE] = "Sanitize Status",
[WDC_LOG_ID_C0] = "Extended SMART Information",
[WDC_LOG_ID_C2] = "Firmware Activation History",
[WDC_LOG_ID_C3] = "Latency Monitor",
[WDC_LOG_ID_C4] = "Device Capabilities",
[WDC_LOG_ID_C5] = "Unsupported Requirements",
};
static double safe_div_fp(double numerator, double denominator)
{
return denominator ? numerator / denominator : 0;
}
static double calc_percent(uint64_t numerator, uint64_t denominator)
{
return denominator ?
(uint64_t)(((double)numerator / (double)denominator) * 100) : 0;
}
static int wdc_get_pci_ids(nvme_root_t r, struct nvme_dev *dev,
uint32_t *device_id, uint32_t *vendor_id)
{
char vid[256], did[256], id[32];
nvme_ctrl_t c = NULL;
nvme_ns_t n = NULL;
int fd, ret;
c = nvme_scan_ctrl(r, dev->name);
if (c) {
snprintf(vid, sizeof(vid), "%s/device/vendor",
nvme_ctrl_get_sysfs_dir(c));
snprintf(did, sizeof(did), "%s/device/device",
nvme_ctrl_get_sysfs_dir(c));
nvme_free_ctrl(c);
} else {
n = nvme_scan_namespace(dev->name);
if (!n) {
fprintf(stderr, "Unable to find %s\n", dev->name);
return -1;
}
snprintf(vid, sizeof(vid), "%s/device/device/vendor",
nvme_ns_get_sysfs_dir(n));
snprintf(did, sizeof(did), "%s/device/device/device",
nvme_ns_get_sysfs_dir(n));
nvme_free_ns(n);
}
fd = open(vid, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "ERROR: WDC: %s : Open vendor file failed\n", __func__);
return -1;
}
ret = read(fd, id, 32);
close(fd);
if (ret < 0) {
fprintf(stderr, "%s: Read of pci vendor id failed\n", __func__);
return -1;
}
id[ret < 32 ? ret : 31] = '\0';
if (id[strlen(id) - 1] == '\n')
id[strlen(id) - 1] = '\0';
*vendor_id = strtol(id, NULL, 0);
ret = 0;
fd = open(did, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "ERROR: WDC: %s : Open device file failed\n", __func__);
return -1;
}
ret = read(fd, id, 32);
close(fd);
if (ret < 0) {
fprintf(stderr, "%s: Read of pci device id failed\n", __func__);
return -1;
}
id[ret < 32 ? ret : 31] = '\0';
if (id[strlen(id) - 1] == '\n')
id[strlen(id) - 1] = '\0';
*device_id = strtol(id, NULL, 0);
return 0;
}
static int wdc_get_vendor_id(struct nvme_dev *dev, uint32_t *vendor_id)
{
int ret;
struct nvme_id_ctrl ctrl;
memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
ret = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_identify_ctrl() failed 0x%x\n", ret);
return -1;
}
*vendor_id = (uint32_t) ctrl.vid;
return ret;
}
static bool wdc_is_sn861(__u32 device_id)
{
if ((device_id == WDC_NVME_SN861_DEV_ID) ||
(device_id == WDC_NVME_SN861_DEV_ID_1))
return true;
else
return false;
}
static bool wdc_is_sn640(__u32 device_id)
{
if ((device_id == WDC_NVME_SN640_DEV_ID) ||
(device_id == WDC_NVME_SN640_DEV_ID_1) ||
(device_id == WDC_NVME_SN640_DEV_ID_2))
return true;
else
return false;
}
static bool wdc_is_sn640_3(__u32 device_id)
{
if (device_id == WDC_NVME_SN640_DEV_ID_3)
return true;
else
return false;
}
static bool wdc_is_sn650_u2(__u32 device_id)
{
if (device_id == WDC_NVME_SN650_DEV_ID_3)
return true;
else
return false;
}
static bool wdc_is_sn650_e1l(__u32 device_id)
{
if (device_id == WDC_NVME_SN650_DEV_ID_4)
return true;
else
return false;
}
static bool needs_c2_log_page_check(__u32 device_id)
{
if ((wdc_is_sn640(device_id)) ||
(wdc_is_sn650_u2(device_id)) ||
(wdc_is_sn650_e1l(device_id)))
return true;
else
return false;
}
static bool wdc_check_power_of_2(int num)
{
return num && (!(num & (num-1)));
}
static int wdc_get_model_number(struct nvme_dev *dev, char *model)
{
int ret, i;
struct nvme_id_ctrl ctrl;
memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
ret = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_identify_ctrl() failed 0x%x\n", ret);
return -1;
}
memcpy(model, ctrl.mn, NVME_ID_CTRL_MODEL_NUMBER_SIZE);
/* get rid of the padded spaces */
i = NVME_ID_CTRL_MODEL_NUMBER_SIZE-1;
while (model[i] == ' ')
i--;
model[i+1] = 0;
return ret;
}
static bool wdc_check_device(nvme_root_t r, struct nvme_dev *dev)
{
int ret;
bool supported;
uint32_t read_device_id = -1, read_vendor_id = -1;
ret = wdc_get_pci_ids(r, dev, &read_device_id, &read_vendor_id);
if (ret < 0) {
/* Use the identify nvme command to get vendor id due to NVMeOF device. */
if (wdc_get_vendor_id(dev, &read_vendor_id) < 0)
return false;
}
supported = false;
if (read_vendor_id == WDC_NVME_VID ||
read_vendor_id == WDC_NVME_VID_2 ||
read_vendor_id == WDC_NVME_SNDK_VID)
supported = true;
else
fprintf(stderr,
"ERROR: WDC: unsupported WDC device, Vendor ID = 0x%x, Device ID = 0x%x\n",
read_vendor_id, read_device_id);
return supported;
}
static bool wdc_enc_check_model(struct nvme_dev *dev)
{
int ret;
bool supported;
char model[NVME_ID_CTRL_MODEL_NUMBER_SIZE+1];
ret = wdc_get_model_number(dev, model);
if (ret < 0)
return false;
supported = false;
model[NVME_ID_CTRL_MODEL_NUMBER_SIZE] = 0; /* forced termination */
if (strstr(model, WDC_OPENFLEX_MI_DEVICE_MODEL))
supported = true;
else
fprintf(stderr, "ERROR: WDC: unsupported WDC enclosure, Model = %s\n", model);
return supported;
}
static __u64 wdc_get_drive_capabilities(nvme_root_t r, struct nvme_dev *dev)
{
int ret;
uint32_t read_device_id = -1, read_vendor_id = -1;
__u64 capabilities = 0;
__u32 cust_id;
ret = wdc_get_pci_ids(r, dev, &read_device_id, &read_vendor_id);
if (ret < 0) {
if (wdc_get_vendor_id(dev, &read_vendor_id) < 0)
return capabilities;
}
/* below check condition is added due in NVMeOF device we dont have device_id so we need to use only vendor_id*/
if (read_device_id == -1 && read_vendor_id != -1) {
capabilities = wdc_get_enc_drive_capabilities(r, dev);
return capabilities;
}
switch (read_vendor_id) {
case WDC_NVME_VID:
switch (read_device_id) {
case WDC_NVME_SN100_DEV_ID:
capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_C1_LOG_PAGE |
WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP |
WDC_DRIVE_CAP_PURGE);
break;
case WDC_NVME_SN200_DEV_ID:
capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_CLEAR_PCIE |
WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP |
WDC_DRIVE_CAP_PURGE);
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE))
capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;
/* verify the 0xC1 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_ADD_LOG_OPCODE))
capabilities |= WDC_DRIVE_CAP_C1_LOG_PAGE;
break;
default:
capabilities = 0;
}
break;
case WDC_NVME_VID_2:
switch (read_device_id) {
case WDC_NVME_SN630_DEV_ID:
case WDC_NVME_SN630_DEV_ID_1:
capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_CLEAR_PCIE);
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE))
capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;
/* verify the 0xD0 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_VU_SMART_LOG_OPCODE))
capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;
break;
case WDC_NVME_SN640_DEV_ID:
case WDC_NVME_SN640_DEV_ID_1:
case WDC_NVME_SN640_DEV_ID_2:
case WDC_NVME_SN640_DEV_ID_3:
case WDC_NVME_SN560_DEV_ID_1:
case WDC_NVME_SN560_DEV_ID_2:
case WDC_NVME_SN560_DEV_ID_3:
case WDC_NVME_SN660_DEV_ID:
/* verify the 0xC0 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_ID)
== true) {
capabilities |= WDC_DRIVE_CAP_C0_LOG_PAGE;
}
capabilities |= (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY |
WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG | WDC_DRIVE_CAP_REASON_ID |
WDC_DRIVE_CAP_LOG_PAGE_DIR);
/* verify the 0xC1 (OCP Error Recovery) log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_ERROR_REC_LOG_ID))
capabilities |= WDC_DRIVE_CAP_OCP_C1_LOG_PAGE;
/* verify the 0xC3 (OCP Latency Monitor) log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_LATENCY_MON_LOG_ID))
capabilities |= WDC_DRIVE_CAP_C3_LOG_PAGE;
/* verify the 0xC4 (OCP Device Capabilities) log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_DEV_CAP_LOG_ID))
capabilities |= WDC_DRIVE_CAP_OCP_C4_LOG_PAGE;
/* verify the 0xC5 (OCP Unsupported Requirements) log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_UNSUPPORTED_REQS_LOG_ID))
capabilities |= WDC_DRIVE_CAP_OCP_C5_LOG_PAGE;
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE))
capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;
/* verify the 0xD0 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_VU_SMART_LOG_OPCODE))
capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;
cust_id = wdc_get_fw_cust_id(r, dev);
if (cust_id == WDC_INVALID_CUSTOMER_ID) {
fprintf(stderr, "%s: ERROR: WDC: invalid customer id\n", __func__);
return -1;
}
if ((cust_id == WDC_CUSTOMER_ID_0x1004) || (cust_id == WDC_CUSTOMER_ID_0x1008) ||
(cust_id == WDC_CUSTOMER_ID_0x1005) || (cust_id == WDC_CUSTOMER_ID_0x1304))
capabilities |= (WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY | WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE |
WDC_DRIVE_CAP_INFO | WDC_DRIVE_CAP_CLOUD_SSD_VERSION);
else
capabilities |= (WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY | WDC_DRIVE_CAP_CLEAR_PCIE);
break;
case WDC_NVME_SN840_DEV_ID:
case WDC_NVME_SN840_DEV_ID_1:
case WDC_NVME_SN860_DEV_ID:
/* verify the 0xC0 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_EOL_STATUS_LOG_OPCODE))
capabilities |= WDC_DRIVE_CAP_C0_LOG_PAGE;
fallthrough;
case WDC_NVME_ZN540_DEV_ID:
case WDC_NVME_SN540_DEV_ID:
capabilities |= (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_CLEAR_PCIE |
WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY | WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY |
WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG | WDC_DRIVE_CAP_REASON_ID |
WDC_DRIVE_CAP_LOG_PAGE_DIR);
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE))
capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;
/* verify the 0xD0 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_VU_SMART_LOG_OPCODE))
capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;
break;
case WDC_NVME_SN650_DEV_ID:
case WDC_NVME_SN650_DEV_ID_1:
case WDC_NVME_SN650_DEV_ID_2:
case WDC_NVME_SN650_DEV_ID_3:
case WDC_NVME_SN650_DEV_ID_4:
case WDC_NVME_SN655_DEV_ID:
case WDC_NVME_SN550_DEV_ID:
/* verify the 0xC0 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_ID))
capabilities |= WDC_DRIVE_CAP_C0_LOG_PAGE;
/* verify the 0xC1 (OCP Error Recovery) log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_ERROR_REC_LOG_ID))
capabilities |= WDC_DRIVE_CAP_OCP_C1_LOG_PAGE;
/* verify the 0xC3 (OCP Latency Monitor) log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_LATENCY_MON_LOG_ID))
capabilities |= WDC_DRIVE_CAP_C3_LOG_PAGE;
/* verify the 0xC4 (OCP Device Capabilities) log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_DEV_CAP_LOG_ID))
capabilities |= WDC_DRIVE_CAP_OCP_C4_LOG_PAGE;
/* verify the 0xC5 (OCP Unsupported Requirements) log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_UNSUPPORTED_REQS_LOG_ID))
capabilities |= WDC_DRIVE_CAP_OCP_C5_LOG_PAGE;
capabilities |= (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY |
WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG |
WDC_DRIVE_CAP_REASON_ID | WDC_DRIVE_CAP_LOG_PAGE_DIR);
cust_id = wdc_get_fw_cust_id(r, dev);
if (cust_id == WDC_INVALID_CUSTOMER_ID) {
fprintf(stderr, "%s: ERROR: WDC: invalid customer id\n", __func__);
return -1;
}
if ((cust_id == WDC_CUSTOMER_ID_0x1004) ||
(cust_id == WDC_CUSTOMER_ID_0x1008) ||
(cust_id == WDC_CUSTOMER_ID_0x1005) ||
(cust_id == WDC_CUSTOMER_ID_0x1304))
capabilities |= (WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY |
WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE |
WDC_DRIVE_CAP_INFO |
WDC_DRIVE_CAP_CLOUD_SSD_VERSION);
else
capabilities |= (WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY |
WDC_DRIVE_CAP_CLEAR_PCIE);
break;
case WDC_NVME_SN861_DEV_ID:
case WDC_NVME_SN861_DEV_ID_1:
capabilities |= (WDC_DRIVE_CAP_C0_LOG_PAGE |
WDC_DRIVE_CAP_C3_LOG_PAGE |
WDC_DRIVE_CAP_CA_LOG_PAGE |
WDC_DRIVE_CAP_OCP_C4_LOG_PAGE |
WDC_DRIVE_CAP_OCP_C5_LOG_PAGE |
WDC_DRIVE_CAP_INTERNAL_LOG |
WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_C2 |
WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE |
WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY |
WDC_DRIVE_CAP_INFO |
WDC_DRIVE_CAP_CLOUD_SSD_VERSION |
WDC_DRIVE_CAP_LOG_PAGE_DIR |
WDC_DRIVE_CAP_DRIVE_STATUS |
WDC_DRIVE_CAP_SET_LATENCY_MONITOR);
break;
default:
capabilities = 0;
}
break;
case WDC_NVME_SNDK_VID:
switch (read_device_id) {
case WDC_NVME_SXSLCL_DEV_ID:
capabilities = WDC_DRIVE_CAP_DRIVE_ESSENTIALS;
break;
case WDC_NVME_SN520_DEV_ID:
case WDC_NVME_SN520_DEV_ID_1:
case WDC_NVME_SN520_DEV_ID_2:
case WDC_NVME_SN810_DEV_ID:
capabilities = WDC_DRIVE_CAP_DUI_DATA;
break;
case WDC_NVME_SN820CL_DEV_ID:
capabilities = WDC_DRIVE_CAP_DUI_DATA |
WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION |
WDC_DRIVE_CAP_CLOUD_LOG_PAGE | WDC_DRIVE_CAP_C0_LOG_PAGE |
WDC_DRIVE_CAP_HW_REV_LOG_PAGE | WDC_DRIVE_CAP_INFO |
WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE | WDC_DRIVE_CAP_NAND_STATS |
WDC_DRIVE_CAP_DEVICE_WAF | WDC_DRIVE_CAP_TEMP_STATS;
break;
case WDC_NVME_SN720_DEV_ID:
capabilities = WDC_DRIVE_CAP_DUI_DATA | WDC_DRIVE_CAP_NAND_STATS |
WDC_DRIVE_CAP_NS_RESIZE;
break;
case WDC_NVME_SN730_DEV_ID:
capabilities = WDC_DRIVE_CAP_DUI | WDC_DRIVE_CAP_NAND_STATS |
WDC_DRIVE_CAP_INFO | WDC_DRIVE_CAP_TEMP_STATS |
WDC_DRIVE_CAP_VUC_CLEAR_PCIE | WDC_DRIVE_CAP_PCIE_STATS;
break;
case WDC_NVME_SN530_DEV_ID_1:
fallthrough;
case WDC_NVME_SN530_DEV_ID_2:
fallthrough;
case WDC_NVME_SN530_DEV_ID_3:
fallthrough;
case WDC_NVME_SN530_DEV_ID_4:
fallthrough;
case WDC_NVME_SN530_DEV_ID_5:
fallthrough;
case WDC_NVME_SN350_DEV_ID:
fallthrough;
case WDC_NVME_SN570_DEV_ID:
fallthrough;
case WDC_NVME_SN850X_DEV_ID:
fallthrough;
case WDC_NVME_SN5000_DEV_ID_1:
fallthrough;
case WDC_NVME_SN5000_DEV_ID_2:
fallthrough;
case WDC_NVME_SN5000_DEV_ID_3:
fallthrough;
case WDC_NVME_SN5000_DEV_ID_4:
fallthrough;
case WDC_NVME_SN7000S_DEV_ID_1:
fallthrough;
case WDC_NVME_SN7150_DEV_ID_1:
fallthrough;
case WDC_NVME_SN7150_DEV_ID_2:
fallthrough;
case WDC_NVME_SN7150_DEV_ID_3:
fallthrough;
case WDC_NVME_SN7150_DEV_ID_4:
fallthrough;
case WDC_NVME_SN7150_DEV_ID_5:
fallthrough;
case WDC_NVME_SN7100_DEV_ID_1:
fallthrough;
case WDC_NVME_SN7100_DEV_ID_2:
fallthrough;
case WDC_NVME_SN7100_DEV_ID_3:
fallthrough;
case WDC_NVME_SN8000S_DEV_ID:
fallthrough;
case WDC_NVME_SN740_DEV_ID:
case WDC_NVME_SN740_DEV_ID_1:
case WDC_NVME_SN740_DEV_ID_2:
case WDC_NVME_SN740_DEV_ID_3:
case WDC_NVME_SN340_DEV_ID:
capabilities = WDC_DRIVE_CAP_DUI;
break;
case WDC_NVME_ZN350_DEV_ID:
case WDC_NVME_ZN350_DEV_ID_1:
capabilities = WDC_DRIVE_CAP_DUI_DATA | WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE |
WDC_DRIVE_CAP_C0_LOG_PAGE |
WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY |
WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_C2 | WDC_DRIVE_CAP_INFO |
WDC_DRIVE_CAP_CLOUD_SSD_VERSION | WDC_DRIVE_CAP_LOG_PAGE_DIR;
break;
default:
capabilities = 0;
}
break;
default:
capabilities = 0;
}
return capabilities;
}
static __u64 wdc_get_enc_drive_capabilities(nvme_root_t r,
struct nvme_dev *dev)
{
int ret;
uint32_t read_vendor_id;
__u64 capabilities = 0;
__u32 cust_id;
ret = wdc_get_vendor_id(dev, &read_vendor_id);
if (ret < 0)
return capabilities;
switch (read_vendor_id) {
case WDC_NVME_VID:
capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_CLEAR_PCIE |
WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP);
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;
/* verify the 0xC1 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_NVME_ADD_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_C1_LOG_PAGE;
break;
case WDC_NVME_VID_2:
capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
WDC_DRIVE_CAP_RESIZE);
/* verify the 0xC3 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_LATENCY_MON_LOG_ID) == true)
capabilities |= WDC_DRIVE_CAP_C3_LOG_PAGE;
/* verify the 0xCB log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID) == true)
capabilities |= WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY;
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;
/* verify the 0xD0 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == true)
capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;
cust_id = wdc_get_fw_cust_id(r, dev);
if (cust_id == WDC_INVALID_CUSTOMER_ID) {
fprintf(stderr, "%s: ERROR: WDC: invalid customer id\n", __func__);
return -1;
}
if ((cust_id == WDC_CUSTOMER_ID_0x1004) || (cust_id == WDC_CUSTOMER_ID_0x1008) ||
(cust_id == WDC_CUSTOMER_ID_0x1005) || (cust_id == WDC_CUSTOMER_ID_0x1304))
capabilities |= (WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY | WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE);
else
capabilities |= (WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY | WDC_DRIVE_CAP_CLEAR_PCIE);
break;
case WDC_NVME_SNDK_VID:
capabilities = WDC_DRIVE_CAP_DRIVE_ESSENTIALS;
break;
default:
capabilities = 0;
}
return capabilities;
}
static int wdc_get_serial_name(struct nvme_dev *dev, char *file, size_t len,
const char *suffix)
{
int i;
int ret;
int res_len = 0;
char orig[PATH_MAX] = {0};
struct nvme_id_ctrl ctrl;
int ctrl_sn_len = sizeof(ctrl.sn);
i = sizeof(ctrl.sn) - 1;
strncpy(orig, file, PATH_MAX - 1);
memset(file, 0, len);
memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
ret = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_identify_ctrl() failed 0x%x\n", ret);
return -1;
}
/* Remove trailing spaces from the name */
while (i && ctrl.sn[i] == ' ') {
ctrl.sn[i] = '\0';
i--;
}
if (ctrl.sn[sizeof(ctrl.sn) - 1] == '\0')
ctrl_sn_len = strlen(ctrl.sn);
res_len = snprintf(file, len, "%s%.*s%s", orig, ctrl_sn_len, ctrl.sn, suffix);
if (len <= res_len) {
fprintf(stderr,
"ERROR: WDC: cannot format serial number due to data of unexpected length\n");
return -1;
}
return 0;
}
static int wdc_create_log_file(char *file, __u8 *drive_log_data,
__u32 drive_log_length)
{
int fd;
int ret;
if (!drive_log_length) {
fprintf(stderr, "ERROR: WDC: invalid log file length\n");
return -1;
}
fd = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd < 0) {
fprintf(stderr, "ERROR: WDC: open: %s\n", strerror(errno));
return -1;
}
while (drive_log_length > WRITE_SIZE) {
ret = write(fd, drive_log_data, WRITE_SIZE);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: write: %s\n", strerror(errno));
close(fd);
return -1;
}
drive_log_data += WRITE_SIZE;
drive_log_length -= WRITE_SIZE;
}
ret = write(fd, drive_log_data, drive_log_length);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: write: %s\n", strerror(errno));
close(fd);
return -1;
}
if (fsync(fd) < 0) {
fprintf(stderr, "ERROR: WDC: fsync: %s\n", strerror(errno));
close(fd);
return -1;
}
close(fd);
return 0;
}
bool wdc_get_dev_mng_log_entry(__u32 log_length, __u32 entry_id,
struct wdc_c2_log_page_header *p_log_hdr,
struct wdc_c2_log_subpage_header **p_p_found_log_entry)
{
__u32 remaining_len = 0;
__u32 log_entry_hdr_size = sizeof(struct wdc_c2_log_subpage_header) - 1;
__u32 log_entry_size = 0;
__u32 size = 0;
bool valid_log;
__u32 current_data_offset = 0;
struct wdc_c2_log_subpage_header *p_next_log_entry = NULL;
if (!*p_p_found_log_entry) {
fprintf(stderr, "ERROR: WDC - %s: No ppLogEntry pointer.\n", __func__);
return false;
}
*p_p_found_log_entry = NULL;
/* Ensure log data is large enough for common header */
if (log_length < sizeof(struct wdc_c2_log_page_header)) {
fprintf(stderr,
"ERROR: WDC - %s: Buffer is not large enough for the common header. BufSize: 0x%x HdrSize: %"PRIxPTR"\n",
__func__, log_length, sizeof(struct wdc_c2_log_page_header));
return false;
}
/* Get pointer to first log Entry */
size = sizeof(struct wdc_c2_log_page_header);
current_data_offset = size;
p_next_log_entry = (struct wdc_c2_log_subpage_header *)((__u8 *)p_log_hdr + current_data_offset);
remaining_len = log_length - size;
valid_log = false;
/*
* Walk the entire structure. Perform a sanity check to make sure this is a
* standard version of the structure. This means making sure each entry looks
* valid. But allow for the data to overflow the allocated
* buffer (we don't want a false negative because of a FW formatting error)
*/
/* Proceed only if there is at least enough data to read an entry header */
while (remaining_len >= log_entry_hdr_size) {
/* Get size of the next entry */
log_entry_size = p_next_log_entry->length;
/*
* If log entry size is 0 or the log entry goes past the end
* of the data, we must be at the end of the data
*/
if (!log_entry_size || log_entry_size > remaining_len) {
fprintf(stderr, "ERROR: WDC: %s: Detected unaligned end of the data. ",
__func__);
fprintf(stderr, "Data Offset: 0x%x Entry Size: 0x%x, ",
current_data_offset, log_entry_size);
fprintf(stderr, "Remaining Log Length: 0x%x Entry Id: 0x%x\n",
remaining_len, p_next_log_entry->entry_id);
/* Force the loop to end */
remaining_len = 0;
} else if (!p_next_log_entry->entry_id || p_next_log_entry->entry_id > 200) {
/* Invalid entry - fail the search */
fprintf(stderr, "ERROR: WDC: %s: Invalid entry found at offset: 0x%x ",
__func__, current_data_offset);
fprintf(stderr, "Entry Size: 0x%x, Remaining Log Length: 0x%x ",
log_entry_size, remaining_len);
fprintf(stderr, "Entry Id: 0x%x\n", p_next_log_entry->entry_id);
/* Force the loop to end */
remaining_len = 0;
valid_log = false;
/* The structure is invalid, so any match that was found is invalid. */
*p_p_found_log_entry = NULL;
} else {
/* Structure must have at least one valid entry to be considered valid */
valid_log = true;
if (p_next_log_entry->entry_id == entry_id)
/* A potential match. */
*p_p_found_log_entry = p_next_log_entry;
remaining_len -= log_entry_size;
if (remaining_len > 0) {
/* Increment the offset counter */
current_data_offset += log_entry_size;
/* Get the next entry */
p_next_log_entry = (struct wdc_c2_log_subpage_header *)(((__u8 *)p_log_hdr) + current_data_offset);
}
}
}
return valid_log;
}
static bool get_dev_mgmt_log_page_lid_data(struct nvme_dev *dev,
void **cbs_data,
__u8 lid,
__u8 log_id,
__u8 uuid_ix)
{
void *data;
struct wdc_c2_log_page_header *hdr_ptr;
struct wdc_c2_log_subpage_header *sph;
__u32 length = 0;
int ret = 0;
bool found = false;
data = (__u8 *)malloc(sizeof(__u8) * WDC_C2_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return false;
}
memset(data, 0, sizeof(__u8) * WDC_C2_LOG_BUF_LEN);
/* get the log page length */
struct nvme_get_log_args args_len = {
.args_size = sizeof(args_len),
.fd = dev_fd(dev),
.lid = lid,
.nsid = 0xFFFFFFFF,
.lpo = 0,
.lsp = NVME_LOG_LSP_NONE,
.lsi = 0,
.rae = false,
.uuidx = uuid_ix,
.csi = NVME_CSI_NVM,
.ot = false,
.len = WDC_C2_LOG_BUF_LEN,
.log = data,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
ret = nvme_get_log(&args_len);
if (ret) {
fprintf(stderr,
"ERROR: WDC: Unable to get 0x%x Log Page length with uuid %d, ret = 0x%x\n",
lid, uuid_ix, ret);
goto end;
}
hdr_ptr = (struct wdc_c2_log_page_header *)data;
length = le32_to_cpu(hdr_ptr->length);
if (length > WDC_C2_LOG_BUF_LEN) {
/* Log Page buffer too small, free and reallocate the necessary size */
free(data);
data = calloc(length, sizeof(__u8));
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
goto end;
}
/* get the log page data with the increased length */
struct nvme_get_log_args args_data = {
.args_size = sizeof(args_data),
.fd = dev_fd(dev),
.lid = lid,
.nsid = 0xFFFFFFFF,
.lpo = 0,
.lsp = NVME_LOG_LSP_NONE,
.lsi = 0,
.rae = false,
.uuidx = uuid_ix,
.csi = NVME_CSI_NVM,
.ot = false,
.len = length,
.log = data,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
ret = nvme_get_log(&args_data);
if (ret) {
fprintf(stderr,
"ERROR: WDC: Unable to read 0x%x Log Page data with uuid %d, ret = 0x%x\n",
lid, uuid_ix, ret);
goto end;
}
}
/* Check the log data to see if the WD version of log page ID's is found */
length = sizeof(struct wdc_c2_log_page_header);
hdr_ptr = (struct wdc_c2_log_page_header *)data;
sph = (struct wdc_c2_log_subpage_header *)(data + length);
found = wdc_get_dev_mng_log_entry(le32_to_cpu(hdr_ptr->length), log_id, hdr_ptr, &sph);
if (found) {
*cbs_data = calloc(le32_to_cpu(sph->length), sizeof(__u8));
if (!*cbs_data) {
fprintf(stderr, "ERROR: WDC: calloc: %s\n", strerror(errno));
found = false;
goto end;
}
memcpy((void *)*cbs_data, (void *)&sph->data, le32_to_cpu(sph->length));
} else {
fprintf(stderr, "ERROR: WDC: C2 log id 0x%x not found with uuid index %d\n",
log_id, uuid_ix);
}
end:
free(data);
return found;
}
static bool get_dev_mgment_cbs_data(nvme_root_t r, struct nvme_dev *dev,
__u8 log_id, void **cbs_data)
{
int ret = -1;
bool found = false;
__u8 uuid_ix = 0;
__u8 lid = 0;
*cbs_data = NULL;
__u32 device_id, read_vendor_id;
bool uuid_present = false;
int index = 0, uuid_index = 0;
struct nvme_id_uuid_list uuid_list;
ret = wdc_get_pci_ids(r, dev, &device_id, &read_vendor_id);
if (ret == 0) {
if (device_id == WDC_NVME_ZN350_DEV_ID || device_id == WDC_NVME_ZN350_DEV_ID_1) {
lid = WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_ID_C8;
uuid_ix = 0;
} else {
lid = WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_ID;
}
} else {
fprintf(stderr, "ERROR: WDC: get pci ids: %d\n", ret);
return false;
}
typedef struct nvme_id_uuid_list_entry *uuid_list_entry;
memset(&uuid_list, 0, sizeof(struct nvme_id_uuid_list));
if (wdc_CheckUuidListSupport(dev, &uuid_list)) {
uuid_list_entry uuid_list_entry_ptr = (uuid_list_entry)&uuid_list.entry[0];
while (index <= NVME_ID_UUID_LIST_MAX &&
!wdc_UuidEqual(uuid_list_entry_ptr, (uuid_list_entry)UUID_END)) {
if (wdc_UuidEqual(uuid_list_entry_ptr,
(uuid_list_entry)WDC_UUID)) {
uuid_present = true;
break;
} else if (wdc_UuidEqual(uuid_list_entry_ptr,
(uuid_list_entry)WDC_UUID_SN640_3) &&
wdc_is_sn640_3(device_id)) {
uuid_present = true;
break;
}
index++;
uuid_list_entry_ptr = (uuid_list_entry)&uuid_list.entry[index];
}
if (uuid_present)
uuid_index = index + 1;
}
if (uuid_present) {
/* use the uuid index found above */
found = get_dev_mgmt_log_page_lid_data(dev, cbs_data, lid, log_id, uuid_index);
} else if (device_id == WDC_NVME_ZN350_DEV_ID || device_id == WDC_NVME_ZN350_DEV_ID_1) {
uuid_index = 0;
found = get_dev_mgmt_log_page_lid_data(dev, cbs_data, lid, log_id, uuid_index);
} else {
if (!uuid_index && needs_c2_log_page_check(device_id)) {
/* In certain devices that don't support UUID lists, there are multiple
* definitions of the C2 logpage. In those cases, the code
* needs to try two UUID indexes and use an identification algorithm
* to determine which is returning the correct log page data.
*/
uuid_ix = 1;
}
found = get_dev_mgmt_log_page_lid_data(dev, cbs_data, lid, log_id, uuid_ix);
if (!found) {
/* not found with uuid = 1 try with uuid = 0 */
uuid_ix = 0;
fprintf(stderr, "Not found, requesting log page with uuid_index %d\n",
uuid_index);
found = get_dev_mgmt_log_page_lid_data(dev, cbs_data, lid, log_id, uuid_ix);
}
}
return found;
}
static bool wdc_nvme_check_supported_log_page(nvme_root_t r, struct nvme_dev *dev, __u8 log_id)
{
int i;
bool found = false;
struct wdc_c2_cbs_data *cbs_data = NULL;
if (get_dev_mgment_cbs_data(r, dev, WDC_C2_LOG_PAGES_SUPPORTED_ID, (void *)&cbs_data)) {
if (cbs_data) {
for (i = 0; i < le32_to_cpu(cbs_data->length); i++) {
if (log_id == cbs_data->data[i]) {
found = true;
break;
}
}
#ifdef WDC_NVME_CLI_DEBUG
if (!found) {
fprintf(stderr, "ERROR: WDC: Log Page 0x%x not supported\n", log_id);
fprintf(stderr, "WDC: Supported Log Pages:\n");
/* print the supported pages */
d((__u8 *)cbs_data->data, le32_to_cpu(cbs_data->length), 16, 1);
}
#endif
free(cbs_data);
} else {
fprintf(stderr, "ERROR: WDC: cbs_data ptr = NULL\n");
}
} else {
fprintf(stderr, "ERROR: WDC: 0xC2 Log Page entry ID 0x%x not found\n",
WDC_C2_LOG_PAGES_SUPPORTED_ID);
}
return found;
}
static bool wdc_nvme_get_dev_status_log_data(nvme_root_t r, struct nvme_dev *dev, __le32 *ret_data,
__u8 log_id)
{
__u32 *cbs_data = NULL;
if (get_dev_mgment_cbs_data(r, dev, log_id, (void *)&cbs_data)) {
if (cbs_data) {
memcpy((void *)ret_data, (void *)cbs_data, 4);
free(cbs_data);
return true;
}
}
*ret_data = 0;
return false;
}
static int wdc_do_clear_dump(struct nvme_dev *dev, __u8 opcode, __u32 cdw12)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = opcode;
admin_cmd.cdw12 = cdw12;
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
if (ret)
fprintf(stdout, "ERROR: WDC: Crash dump erase failed\n");
nvme_show_status(ret);
return ret;
}
static __u32 wdc_dump_length(int fd, __u32 opcode, __u32 cdw10, __u32 cdw12, __u32 *dump_length)
{
int ret;
__u8 buf[WDC_NVME_LOG_SIZE_DATA_LEN] = {0};
struct wdc_log_size *l;
struct nvme_passthru_cmd admin_cmd;
l = (struct wdc_log_size *) buf;
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = opcode;
admin_cmd.addr = (__u64)(uintptr_t)buf;
admin_cmd.data_len = WDC_NVME_LOG_SIZE_DATA_LEN;
admin_cmd.cdw10 = cdw10;
admin_cmd.cdw12 = cdw12;
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
if (ret) {
l->log_size = 0;
ret = -1;
fprintf(stderr, "ERROR: WDC: reading dump length failed\n");
nvme_show_status(ret);
return ret;
}
if (opcode == WDC_NVME_CAP_DIAG_OPCODE)
*dump_length = buf[0x04] << 24 | buf[0x05] << 16 | buf[0x06] << 8 | buf[0x07];
else
*dump_length = le32_to_cpu(l->log_size);
return ret;
}
static __u32 wdc_dump_length_e6(int fd, __u32 opcode, __u32 cdw10, __u32 cdw12, struct wdc_e6_log_hdr *dump_hdr)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = opcode;
admin_cmd.addr = (__u64)(uintptr_t)dump_hdr;
admin_cmd.data_len = WDC_NVME_LOG_SIZE_HDR_LEN;
admin_cmd.cdw10 = cdw10;
admin_cmd.cdw12 = cdw12;
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
if (ret) {
fprintf(stderr, "ERROR: WDC: reading dump length failed\n");
nvme_show_status(ret);
}
return ret;
}
static __u32 wdc_dump_dui_data(int fd, __u32 dataLen, __u32 offset, __u8 *dump_data, bool last_xfer)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = WDC_NVME_CAP_DUI_OPCODE;
admin_cmd.nsid = 0xFFFFFFFF;
admin_cmd.addr = (__u64)(uintptr_t)dump_data;
admin_cmd.data_len = dataLen;
admin_cmd.cdw10 = ((dataLen >> 2) - 1);
admin_cmd.cdw12 = offset;
if (last_xfer)
admin_cmd.cdw14 = 0;
else
admin_cmd.cdw14 = WDC_NVME_CAP_DUI_DISABLE_IO;
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
if (ret) {
fprintf(stderr, "ERROR: WDC: reading DUI data failed\n");
nvme_show_status(ret);
}
return ret;
}
static __u32 wdc_dump_dui_data_v2(int fd, __u32 dataLen, __u64 offset, __u8 *dump_data, bool last_xfer)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
__u64 offset_lo, offset_hi;
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = WDC_NVME_CAP_DUI_OPCODE;
admin_cmd.nsid = 0xFFFFFFFF;
admin_cmd.addr = (__u64)(uintptr_t)dump_data;
admin_cmd.data_len = dataLen;
admin_cmd.cdw10 = ((dataLen >> 2) - 1);
offset_lo = offset & 0x00000000FFFFFFFF;
offset_hi = ((offset & 0xFFFFFFFF00000000) >> 32);
admin_cmd.cdw12 = (__u32)offset_lo;
admin_cmd.cdw13 = (__u32)offset_hi;
if (last_xfer)
admin_cmd.cdw14 = 0;
else
admin_cmd.cdw14 = WDC_NVME_CAP_DUI_DISABLE_IO;
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
if (ret) {
fprintf(stderr, "ERROR: WDC: reading DUI data V2 failed\n");
nvme_show_status(ret);
}
return ret;
}
static int wdc_do_dump(struct nvme_dev *dev, __u32 opcode, __u32 data_len,
__u32 cdw12, char *file, __u32 xfer_size)
{
int ret = 0;
__u8 *dump_data;
__u32 curr_data_offset, curr_data_len;
int i;
struct nvme_passthru_cmd admin_cmd;
__u32 dump_length = data_len;
dump_data = (__u8 *)malloc(sizeof(__u8) * dump_length);
if (!dump_data) {
fprintf(stderr, "%s: ERROR: malloc: %s\n", __func__, strerror(errno));
return -1;
}
memset(dump_data, 0, sizeof(__u8) * dump_length);
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
curr_data_offset = 0;
curr_data_len = xfer_size;
i = 0;
admin_cmd.opcode = opcode;
admin_cmd.addr = (__u64)(uintptr_t)dump_data;
admin_cmd.data_len = curr_data_len;
admin_cmd.cdw10 = curr_data_len >> 2;
admin_cmd.cdw12 = cdw12;
admin_cmd.cdw13 = curr_data_offset;
while (curr_data_offset < data_len) {
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd,
NULL);
if (ret) {
nvme_show_status(ret);
fprintf(stderr, "%s: ERROR: WDC: Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n",
__func__, i, admin_cmd.data_len, curr_data_offset, (unsigned long)admin_cmd.addr);
break;
}
if ((curr_data_offset + xfer_size) <= data_len)
curr_data_len = xfer_size;
else
curr_data_len = data_len - curr_data_offset; /* last transfer */
curr_data_offset += curr_data_len;
admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset;
admin_cmd.data_len = curr_data_len;
admin_cmd.cdw10 = curr_data_len >> 2;
admin_cmd.cdw13 = curr_data_offset >> 2;
i++;
}
if (!ret) {
nvme_show_status(ret);
ret = wdc_create_log_file(file, dump_data, dump_length);
}
free(dump_data);
return ret;
}
static int wdc_do_dump_e6(int fd, __u32 opcode, __u32 data_len,
__u32 cdw12, char *file, __u32 xfer_size, __u8 *log_hdr)
{
int ret = 0;
__u8 *dump_data;
__u32 curr_data_offset, log_size;
int i;
struct nvme_passthru_cmd admin_cmd;
/* if data_len is not 4 byte aligned */
if (data_len & 0x00000003) {
/* Round down to the next 4 byte aligned value */
fprintf(stderr, "%s: INFO: data_len 0x%x not 4 byte aligned.\n",
__func__, data_len);
fprintf(stderr, "%s: INFO: Round down to 0x%x.\n",
__func__, (data_len &= 0xFFFFFFFC));
data_len &= 0xFFFFFFFC;
}
dump_data = (__u8 *)malloc(sizeof(__u8) * data_len);
if (!dump_data) {
fprintf(stderr, "%s: ERROR: malloc: %s\n", __func__, strerror(errno));
return -1;
}
memset(dump_data, 0, sizeof(__u8) * data_len);
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
curr_data_offset = WDC_NVME_LOG_SIZE_HDR_LEN;
i = 0;
/* copy the 8 byte header into the dump_data buffer */
memcpy(dump_data, log_hdr, WDC_NVME_LOG_SIZE_HDR_LEN);
admin_cmd.opcode = opcode;
admin_cmd.cdw12 = cdw12;
/* subtract off the header size since that was already copied into the buffer */
log_size = (data_len - curr_data_offset);
while (log_size > 0) {
xfer_size = min(xfer_size, log_size);
admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset;
admin_cmd.data_len = xfer_size;
admin_cmd.cdw10 = xfer_size >> 2;
admin_cmd.cdw13 = curr_data_offset >> 2;
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
if (ret) {
nvme_show_status(ret);
fprintf(stderr, "%s: ERROR: WDC: Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n",
__func__, i, admin_cmd.data_len, curr_data_offset, (unsigned long)admin_cmd.addr);
break;
}
log_size -= xfer_size;
curr_data_offset += xfer_size;
i++;
}
if (!ret) {
fprintf(stderr, "%s: INFO: ", __func__);
nvme_show_status(ret);
} else {
fprintf(stderr, "%s: FAILURE: ", __func__);
nvme_show_status(ret);
fprintf(stderr, "%s: Partial data may have been captured\n", __func__);
snprintf(file + strlen(file), PATH_MAX, "%s", "-PARTIAL");
}
ret = wdc_create_log_file(file, dump_data, data_len);
free(dump_data);
return ret;
}
static int wdc_do_cap_telemetry_log(struct nvme_dev *dev, char *file,
__u32 bs, int type, int data_area)
{
struct nvme_telemetry_log *log;
size_t full_size = 0;
int err = 0, output;
__u32 host_gen = 1;
int ctrl_init = 0;
__u32 result;
void *buf = NULL;
__u8 *data_ptr = NULL;
int data_written = 0, data_remaining = 0;
struct nvme_id_ctrl ctrl;
__u64 capabilities = 0;
nvme_root_t r;
memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (err) {
fprintf(stderr, "ERROR: WDC: nvme_identify_ctrl() failed 0x%x\n", err);
return err;
}
if (!(ctrl.lpa & 0x8)) {
fprintf(stderr, "Telemetry Host-Initiated and Telemetry Controller-Initiated log pages not supported\n");
return -EINVAL;
}
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (type == WDC_TELEMETRY_TYPE_HOST) {
host_gen = 1;
ctrl_init = 0;
} else if (type == WDC_TELEMETRY_TYPE_CONTROLLER) {
if ((capabilities & WDC_DRIVE_CAP_INTERNAL_LOG) == WDC_DRIVE_CAP_INTERNAL_LOG) {
/* Verify the Controller Initiated Option is enabled */
err = nvme_get_features_data(dev_fd(dev),
WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID,
0, 4, buf, &result);
if (!err) {
if (!result) {
/* enabled */
host_gen = 0;
ctrl_init = 1;
} else {
fprintf(stderr, "%s: Controller initiated option telemetry log page disabled\n", __func__);
return -EINVAL;
}
} else {
fprintf(stderr, "ERROR: WDC: Get telemetry option feature failed.");
nvme_show_status(err);
return -EPERM;
}
} else {
host_gen = 0;
ctrl_init = 1;
}
} else {
fprintf(stderr, "%s: Invalid type parameter; type = %d\n", __func__, type);
return -EINVAL;
}
if (!file) {
fprintf(stderr, "%s: Please provide an output file!\n", __func__);
return -EINVAL;
}
output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (output < 0) {
fprintf(stderr, "%s: Failed to open output file %s: %s!\n",
__func__, file, strerror(errno));
return output;
}
if (ctrl_init)
err = nvme_get_ctrl_telemetry(dev_fd(dev), true, &log,
data_area, &full_size);
else if (host_gen)
err = nvme_get_new_host_telemetry(dev_fd(dev), &log,
data_area, &full_size);
else
err = nvme_get_host_telemetry(dev_fd(dev), &log, data_area,
&full_size);
if (err < 0) {
perror("get-telemetry-log");
goto close_output;
} else if (err > 0) {
nvme_show_status(err);
fprintf(stderr, "%s: Failed to acquire telemetry header!\n", __func__);
goto close_output;
}
/*
*Continuously pull data until the offset hits the end of the last
*block.
*/
data_written = 0;
data_remaining = full_size;
data_ptr = (__u8 *)log;
while (data_remaining) {
data_written = write(output, data_ptr, data_remaining);
if (data_written < 0) {
data_remaining = data_written;
break;
} else if (data_written <= data_remaining) {
data_remaining -= data_written;
data_ptr += data_written;
} else {
/* Unexpected overwrite */
fprintf(stderr, "Failure: Unexpected telemetry log overwrite - data_remaining = 0x%x, data_written = 0x%x\n",
data_remaining, data_written);
break;
}
}
if (fsync(output) < 0) {
fprintf(stderr, "ERROR: %s: fsync: %s\n", __func__, strerror(errno));
err = -1;
}
free(log);
close_output:
close(output);
return err;
}
static int wdc_do_cap_diag(nvme_root_t r, struct nvme_dev *dev, char *file,
__u32 xfer_size, int type, int data_area)
{
int ret = -1;
__u32 e6_log_hdr_size = WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE;
struct wdc_e6_log_hdr *log_hdr;
__u32 cap_diag_length;
log_hdr = (struct wdc_e6_log_hdr *)malloc(e6_log_hdr_size);
if (!log_hdr) {
fprintf(stderr, "%s: ERROR: malloc: %s\n", __func__, strerror(errno));
ret = -1;
goto out;
}
memset(log_hdr, 0, e6_log_hdr_size);
if (type == WDC_TELEMETRY_TYPE_NONE) {
ret = wdc_dump_length_e6(dev_fd(dev),
WDC_NVME_CAP_DIAG_OPCODE,
WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE>>2,
0x00,
log_hdr);
if (ret == -1) {
ret = -1;
goto out;
}
cap_diag_length = (log_hdr->log_size[0] << 24 | log_hdr->log_size[1] << 16 |
log_hdr->log_size[2] << 8 | log_hdr->log_size[3]);
if (!cap_diag_length) {
fprintf(stderr, "INFO: WDC: Capture Diagnostics log is empty\n");
} else {
ret = wdc_do_dump_e6(dev_fd(dev),
WDC_NVME_CAP_DIAG_OPCODE,
cap_diag_length,
(WDC_NVME_CAP_DIAG_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CAP_DIAG_CMD,
file, xfer_size, (__u8 *)log_hdr);
fprintf(stderr, "INFO: WDC: Capture Diagnostics log, length = 0x%x\n", cap_diag_length);
}
} else if ((type == WDC_TELEMETRY_TYPE_HOST) ||
(type == WDC_TELEMETRY_TYPE_CONTROLLER)) {
/* Get the desired telemetry log page */
ret = wdc_do_cap_telemetry_log(dev, file, xfer_size, type, data_area);
} else {
fprintf(stderr, "%s: ERROR: Invalid type : %d\n", __func__, type);
}
out:
free(log_hdr);
return ret;
}
static int wdc_do_cap_dui_v1(int fd, char *file, __u32 xfer_size, int data_area, int verbose,
struct wdc_dui_log_hdr *log_hdr, __s64 *total_size)
{
__s32 log_size = 0;
__u32 cap_dui_length = le32_to_cpu(log_hdr->log_size);
__u32 curr_data_offset = 0;
__u8 *buffer_addr;
__u8 *dump_data = NULL;
bool last_xfer = false;
int err;
int i;
int j;
int output;
int ret = 0;
if (verbose) {
fprintf(stderr, "INFO: WDC: Capture V1 Device Unit Info log, data area = %d\n",
data_area);
fprintf(stderr, "INFO: WDC: DUI Header Version = 0x%x\n", log_hdr->hdr_version);
fprintf(stderr, "INFO: WDC: DUI section count = 0x%x\n", log_hdr->section_count);
fprintf(stderr, "INFO: WDC: DUI log size = 0x%x\n", log_hdr->log_size);
}
if (!cap_dui_length) {
fprintf(stderr, "INFO: WDC: Capture V1 Device Unit Info log is empty\n");
return 0;
}
/* parse log header for all sections up to specified data area inclusively */
if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) {
for (j = 0; j < log_hdr->section_count; j++) {
log_size += log_hdr->log_section[j].section_size;
if (verbose)
fprintf(stderr,
"%s: section size 0x%x, total size = 0x%x\n",
__func__,
(unsigned int)log_hdr->log_section[j].section_size,
(unsigned int)log_size);
}
} else {
log_size = cap_dui_length;
}
*total_size = log_size;
dump_data = (__u8 *)malloc(sizeof(__u8) * xfer_size);
if (!dump_data) {
fprintf(stderr, "%s: ERROR: dump data V1 malloc failed : status %s, size = 0x%x\n",
__func__, strerror(errno), (unsigned int)xfer_size);
return -1;
}
memset(dump_data, 0, sizeof(__u8) * xfer_size);
output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (output < 0) {
fprintf(stderr, "%s: Failed to open output file %s: %s!\n", __func__, file,
strerror(errno));
free(dump_data);
return output;
}
/* write the telemetry and log headers into the dump_file */
err = write(output, (void *)log_hdr, WDC_NVME_CAP_DUI_HEADER_SIZE);
if (err != WDC_NVME_CAP_DUI_HEADER_SIZE) {
fprintf(stderr, "%s: Failed to flush header data to file!\n", __func__);
goto free_mem;
}
log_size -= WDC_NVME_CAP_DUI_HEADER_SIZE;
curr_data_offset = WDC_NVME_CAP_DUI_HEADER_SIZE;
i = 0;
buffer_addr = dump_data;
for (; log_size > 0; log_size -= xfer_size) {
xfer_size = min(xfer_size, log_size);
if (log_size <= xfer_size)
last_xfer = true;
ret = wdc_dump_dui_data(fd, xfer_size, curr_data_offset, buffer_addr, last_xfer);
if (ret) {
fprintf(stderr,
"%s: ERROR: WDC: Get chunk %d, size = 0x%"PRIx64", offset = 0x%x, addr = %p\n",
__func__, i, (uint64_t)log_size, curr_data_offset, buffer_addr);
fprintf(stderr, "%s: ERROR: WDC: ", __func__);
nvme_show_status(ret);
break;
}
/* write the dump data into the file */
err = write(output, (void *)buffer_addr, xfer_size);
if (err != xfer_size) {
fprintf(stderr,
"%s: ERROR: WDC: Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size = 0x%x\n",
__func__, i, err, xfer_size);
ret = -1;
goto free_mem;
}
curr_data_offset += xfer_size;
i++;
}
free_mem:
close(output);
free(dump_data);
return ret;
}
static int wdc_do_cap_dui_v2_v3(int fd, char *file, __u32 xfer_size, int data_area, int verbose,
struct wdc_dui_log_hdr *log_hdr, __s64 *total_size, __u64 file_size,
__u64 offset)
{
__u64 cap_dui_length_v3;
__u64 curr_data_offset = 0;
__s64 log_size = 0;
__u64 xfer_size_long = (__u64)xfer_size;
__u8 *buffer_addr;
__u8 *dump_data = NULL;
bool last_xfer = false;
int err;
int i;
int j;
int output;
int ret = 0;
struct wdc_dui_log_hdr_v3 *log_hdr_v3 = (struct wdc_dui_log_hdr_v3 *)log_hdr;
cap_dui_length_v3 = le64_to_cpu(log_hdr_v3->log_size);
if (verbose) {
fprintf(stderr,
"INFO: WDC: Capture V2 or V3 Device Unit Info log, data area = %d\n",
data_area);
fprintf(stderr, "INFO: WDC: DUI Header Version = 0x%x\n",
log_hdr_v3->hdr_version);
if ((log_hdr->hdr_version & 0xFF) == 0x03)
fprintf(stderr, "INFO: WDC: DUI Product ID = 0x%x/%c\n",
log_hdr_v3->product_id, log_hdr_v3->product_id);
}
if (!cap_dui_length_v3) {
fprintf(stderr, "INFO: WDC: Capture V2 or V3 Device Unit Info log is empty\n");
return 0;
}
/* parse log header for all sections up to specified data area inclusively */
if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) {
for (j = 0; j < WDC_NVME_DUI_MAX_SECTION_V3; j++) {
if (log_hdr_v3->log_section[j].data_area_id <= data_area &&
log_hdr_v3->log_section[j].data_area_id) {
log_size += log_hdr_v3->log_section[j].section_size;
if (verbose)
fprintf(stderr,
"%s: Data area ID %d : section size 0x%x, total size = 0x%"PRIx64"\n",
__func__, log_hdr_v3->log_section[j].data_area_id,
(unsigned int)log_hdr_v3->log_section[j].section_size,
(uint64_t)log_size);
} else {
if (verbose)
fprintf(stderr, "%s: break, total size = 0x%"PRIx64"\n",
__func__, (uint64_t)log_size);
break;
}
}
} else {
log_size = cap_dui_length_v3;
}
*total_size = log_size;
if (offset >= *total_size) {
fprintf(stderr,
"%s: INFO: WDC: Offset 0x%"PRIx64" exceeds total size 0x%"PRIx64", no data retrieved\n",
__func__, (uint64_t)offset, (uint64_t)*total_size);
return -1;
}
dump_data = (__u8 *)malloc(sizeof(__u8) * xfer_size_long);
if (!dump_data) {
fprintf(stderr,
"%s: ERROR: dump data v3 malloc failed : status %s, size = 0x%"PRIx64"\n",
__func__, strerror(errno), (uint64_t)xfer_size_long);
return -1;
}
memset(dump_data, 0, sizeof(__u8) * xfer_size_long);
output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (output < 0) {
fprintf(stderr, "%s: Failed to open output file %s: %s!\n",
__func__, file, strerror(errno));
free(dump_data);
return output;
}
curr_data_offset = 0;
if (file_size) {
/* Write the DUI data based on the passed in file size */
if ((offset + file_size) > *total_size)
log_size = min((*total_size - offset), file_size);
else
log_size = min(*total_size, file_size);
if (verbose)
fprintf(stderr,
"%s: INFO: WDC: Offset 0x%"PRIx64", file size 0x%"PRIx64", total size 0x%"PRIx64", log size 0x%"PRIx64"\n",
__func__, (uint64_t)offset,
(uint64_t)file_size, (uint64_t)*total_size, (uint64_t)log_size);
curr_data_offset = offset;
}
i = 0;
buffer_addr = dump_data;
for (; log_size > 0; log_size -= xfer_size_long) {
xfer_size_long = min(xfer_size_long, log_size);
if (log_size <= xfer_size_long)
last_xfer = true;
ret = wdc_dump_dui_data_v2(fd, (__u32)xfer_size_long, curr_data_offset, buffer_addr,
last_xfer);
if (ret) {
fprintf(stderr,
"%s: ERROR: WDC: Get chunk %d, size = 0x%"PRIx64", offset = 0x%"PRIx64", addr = %p\n",
__func__, i, (uint64_t)*total_size, (uint64_t)curr_data_offset,
buffer_addr);
fprintf(stderr, "%s: ERROR: WDC: ", __func__);
nvme_show_status(ret);
break;
}
/* write the dump data into the file */
err = write(output, (void *)buffer_addr, xfer_size_long);
if (err != xfer_size_long) {
fprintf(stderr,
"%s: ERROR: WDC: Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size = 0x%"PRIx64"\n",
__func__, i, err, (uint64_t)xfer_size_long);
ret = -1;
goto free_mem;
}
curr_data_offset += xfer_size_long;
i++;
}
free_mem:
close(output);
free(dump_data);
return ret;
}
static int wdc_do_cap_dui_v4(int fd, char *file, __u32 xfer_size, int data_area, int verbose,
struct wdc_dui_log_hdr *log_hdr, __s64 *total_size, __u64 file_size,
__u64 offset)
{
__s64 log_size = 0;
__s64 section_size_bytes = 0;
__s64 xfer_size_long = (__s64)xfer_size;
__u64 cap_dui_length_v4;
__u64 curr_data_offset = 0;
__u8 *buffer_addr;
__u8 *dump_data = NULL;
int err;
int i;
int j;
int output;
int ret = 0;
bool last_xfer = false;
struct wdc_dui_log_hdr_v4 *log_hdr_v4 = (struct wdc_dui_log_hdr_v4 *)log_hdr;
cap_dui_length_v4 = le64_to_cpu(log_hdr_v4->log_size_sectors) * WDC_NVME_SN730_SECTOR_SIZE;
if (verbose) {
fprintf(stderr, "INFO: WDC: Capture V4 Device Unit Info log, data area = %d\n", data_area);
fprintf(stderr, "INFO: WDC: DUI Header Version = 0x%x\n", log_hdr_v4->hdr_version);
fprintf(stderr, "INFO: WDC: DUI Product ID = 0x%x/%c\n", log_hdr_v4->product_id, log_hdr_v4->product_id);
fprintf(stderr, "INFO: WDC: DUI log size sectors = 0x%x\n", log_hdr_v4->log_size_sectors);
fprintf(stderr, "INFO: WDC: DUI cap_dui_length = 0x%"PRIx64"\n", (uint64_t)cap_dui_length_v4);
}
if (!cap_dui_length_v4) {
fprintf(stderr, "INFO: WDC: Capture V4 Device Unit Info log is empty\n");
return 0;
}
/* parse log header for all sections up to specified data area inclusively */
if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) {
for (j = 0; j < WDC_NVME_DUI_MAX_SECTION; j++) {
if (log_hdr_v4->log_section[j].data_area_id <= data_area &&
log_hdr_v4->log_section[j].data_area_id) {
section_size_bytes = ((__s64)log_hdr_v4->log_section[j].section_size_sectors * WDC_NVME_SN730_SECTOR_SIZE);
log_size += section_size_bytes;
if (verbose)
fprintf(stderr,
"%s: Data area ID %d : section size 0x%x sectors, section size 0x%"PRIx64" bytes, total size = 0x%"PRIx64"\n",
__func__, log_hdr_v4->log_section[j].data_area_id,
log_hdr_v4->log_section[j].section_size_sectors,
(uint64_t)section_size_bytes, (uint64_t)log_size);
} else {
if (verbose)
fprintf(stderr, "%s: break, total size = 0x%"PRIx64"\n", __func__, (uint64_t)log_size);
break;
}
}
} else {
log_size = cap_dui_length_v4;
}
*total_size = log_size;
if (offset >= *total_size) {
fprintf(stderr,
"%s: INFO: WDC: Offset 0x%"PRIx64" exceeds total size 0x%"PRIx64", no data retrieved\n",
__func__, (uint64_t)offset, (uint64_t)*total_size);
return -1;
}
dump_data = (__u8 *)malloc(sizeof(__u8) * xfer_size_long);
if (!dump_data) {
fprintf(stderr, "%s: ERROR: dump data V4 malloc failed : status %s, size = 0x%x\n",
__func__, strerror(errno), (unsigned int)xfer_size_long);
return -1;
}
memset(dump_data, 0, sizeof(__u8) * xfer_size_long);
output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (output < 0) {
fprintf(stderr, "%s: Failed to open output file %s: %s!\n", __func__, file,
strerror(errno));
free(dump_data);
return output;
}
curr_data_offset = 0;
if (file_size) {
/* Write the DUI data based on the passed in file size */
if ((offset + file_size) > *total_size)
log_size = min((*total_size - offset), file_size);
else
log_size = min(*total_size, file_size);
if (verbose)
fprintf(stderr,
"%s: INFO: WDC: Offset 0x%"PRIx64", file size 0x%"PRIx64", total size 0x%"PRIx64", log size 0x%"PRIx64"\n",
__func__, (uint64_t)offset, (uint64_t)file_size,
(uint64_t)*total_size, (uint64_t)log_size);
curr_data_offset = offset;
}
i = 0;
buffer_addr = dump_data;
for (; log_size > 0; log_size -= xfer_size_long) {
xfer_size_long = min(xfer_size_long, log_size);
if (log_size <= xfer_size_long)
last_xfer = true;
ret = wdc_dump_dui_data_v2(fd, (__u32)xfer_size_long, curr_data_offset, buffer_addr, last_xfer);
if (ret) {
fprintf(stderr,
"%s: ERROR: WDC: Get chunk %d, size = 0x%"PRIx64", offset = 0x%"PRIx64", addr = %p\n",
__func__, i, (uint64_t)log_size, (uint64_t)curr_data_offset,
buffer_addr);
fprintf(stderr, "%s: ERROR: WDC:", __func__);
nvme_show_status(ret);
break;
}
/* write the dump data into the file */
err = write(output, (void *)buffer_addr, xfer_size_long);
if (err != xfer_size_long) {
fprintf(stderr,
"%s: ERROR: WDC: Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size_long = 0x%"PRIx64"\n",
__func__, i, err, (uint64_t)xfer_size_long);
ret = -1;
goto free_mem;
}
curr_data_offset += xfer_size_long;
i++;
}
free_mem:
close(output);
free(dump_data);
return ret;
}
static int wdc_do_cap_dui(int fd, char *file, __u32 xfer_size, int data_area, int verbose,
__u64 file_size, __u64 offset)
{
int ret = 0;
__u32 dui_log_hdr_size = WDC_NVME_CAP_DUI_HEADER_SIZE;
struct wdc_dui_log_hdr *log_hdr;
__s64 total_size = 0;
bool last_xfer = false;
log_hdr = (struct wdc_dui_log_hdr *)malloc(dui_log_hdr_size);
if (!log_hdr) {
fprintf(stderr, "%s: ERROR: log header malloc failed : status %s, size 0x%x\n",
__func__, strerror(errno), dui_log_hdr_size);
return -1;
}
memset(log_hdr, 0, dui_log_hdr_size);
/* get the dui telemetry and log headers */
ret = wdc_dump_dui_data(fd, WDC_NVME_CAP_DUI_HEADER_SIZE, 0x00, (__u8 *)log_hdr, last_xfer);
if (ret) {
fprintf(stderr, "%s: ERROR: WDC: Get DUI headers failed\n", __func__);
fprintf(stderr, "%s: ERROR: WDC: ", __func__);
nvme_show_status(ret);
goto out;
}
/* Check the Log Header version */
if ((log_hdr->hdr_version & 0xFF) == 0x00 || (log_hdr->hdr_version & 0xFF) == 0x01) {
ret = wdc_do_cap_dui_v1(fd, file, xfer_size, data_area, verbose, log_hdr,
&total_size);
if (ret)
goto out;
} else if ((log_hdr->hdr_version & 0xFF) == 0x02 ||
(log_hdr->hdr_version & 0xFF) == 0x03) {
/* Process Version 2 or 3 header */
ret = wdc_do_cap_dui_v2_v3(fd, file, xfer_size, data_area, verbose, log_hdr,
&total_size, file_size, offset);
if (ret)
goto out;
} else if ((log_hdr->hdr_version & 0xFF) == 0x04) {
ret = wdc_do_cap_dui_v4(fd, file, xfer_size, data_area, verbose, log_hdr,
&total_size, file_size, offset);
if (ret)
goto out;
} else {
fprintf(stderr, "INFO: WDC: Unsupported header version = 0x%x\n",
log_hdr->hdr_version);
goto out;
}
nvme_show_status(ret);
if (verbose)
fprintf(stderr, "INFO: WDC: Capture Device Unit Info log, length = 0x%"PRIx64"\n",
(uint64_t)total_size);
out:
free(log_hdr);
return ret;
}
static int wdc_cap_diag(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
nvme_root_t r;
char *desc = "Capture Diagnostics Log.";
char *file = "Output file pathname.";
char *size = "Data retrieval transfer size.";
__u64 capabilities = 0;
char f[PATH_MAX] = {0};
struct nvme_dev *dev;
__u32 xfer_size = 0;
int ret = 0;
struct config {
char *file;
__u32 xfer_size;
};
struct config cfg = {
.file = NULL,
.xfer_size = 0x10000
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_UINT("transfer-size", 's', &cfg.xfer_size, size),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (cfg.file)
strncpy(f, cfg.file, PATH_MAX - 1);
if (cfg.xfer_size)
xfer_size = cfg.xfer_size;
ret = wdc_get_serial_name(dev, f, PATH_MAX, "cap_diag");
if (ret) {
fprintf(stderr, "ERROR: WDC: failed to generate file name\n");
goto out;
}
if (!cfg.file) {
if (strlen(f) > PATH_MAX - 5) {
fprintf(stderr, "ERROR: WDC: file name overflow\n");
ret = -1;
goto out;
}
strcat(f, ".bin");
}
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_CAP_DIAG) == WDC_DRIVE_CAP_CAP_DIAG)
ret = wdc_do_cap_diag(r, dev, f, xfer_size, 0, 0);
else
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_do_get_sn730_log_len(int fd, uint32_t *len_buf, uint32_t subopcode)
{
int ret;
uint32_t *output = NULL;
struct nvme_passthru_cmd admin_cmd;
output = (uint32_t *)malloc(sizeof(uint32_t));
if (!output) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(output, 0, sizeof(uint32_t));
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.data_len = 8;
admin_cmd.opcode = SN730_NVME_GET_LOG_OPCODE;
admin_cmd.addr = (uintptr_t)output;
admin_cmd.cdw12 = subopcode;
admin_cmd.cdw10 = SN730_LOG_CHUNK_SIZE / 4;
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
if (!ret)
*len_buf = *output;
free(output);
return ret;
}
static int wdc_do_get_sn730_log(int fd, void *log_buf, uint32_t offset, uint32_t subopcode)
{
int ret;
uint8_t *output = NULL;
struct nvme_passthru_cmd admin_cmd;
output = (uint8_t *)calloc(SN730_LOG_CHUNK_SIZE, sizeof(uint8_t));
if (!output) {
fprintf(stderr, "ERROR: WDC: calloc: %s\n", strerror(errno));
return -1;
}
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.data_len = SN730_LOG_CHUNK_SIZE;
admin_cmd.opcode = SN730_NVME_GET_LOG_OPCODE;
admin_cmd.addr = (uintptr_t)output;
admin_cmd.cdw12 = subopcode;
admin_cmd.cdw13 = offset;
admin_cmd.cdw10 = SN730_LOG_CHUNK_SIZE / 4;
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
if (!ret)
memcpy(log_buf, output, SN730_LOG_CHUNK_SIZE);
return ret;
}
static int get_sn730_log_chunks(int fd, uint8_t *log_buf, uint32_t log_len, uint32_t subopcode)
{
int ret = 0;
uint8_t *chunk_buf = NULL;
int remaining = log_len;
int curr_offset = 0;
chunk_buf = (uint8_t *)malloc(sizeof(uint8_t) * SN730_LOG_CHUNK_SIZE);
if (!chunk_buf) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
ret = -1;
goto out;
}
while (remaining > 0) {
memset(chunk_buf, 0, SN730_LOG_CHUNK_SIZE);
ret = wdc_do_get_sn730_log(fd, chunk_buf, curr_offset, subopcode);
if (!ret) {
if (remaining >= SN730_LOG_CHUNK_SIZE) {
memcpy(log_buf + (curr_offset * SN730_LOG_CHUNK_SIZE),
chunk_buf, SN730_LOG_CHUNK_SIZE);
} else {
memcpy(log_buf + (curr_offset * SN730_LOG_CHUNK_SIZE),
chunk_buf, remaining);
}
remaining -= SN730_LOG_CHUNK_SIZE;
curr_offset += 1;
} else {
goto out;
}
}
out:
free(chunk_buf);
return ret;
}
static int wdc_do_sn730_get_and_tar(int fd, char *outputName)
{
int ret = 0;
void *retPtr;
uint8_t *full_log_buf = NULL;
uint8_t *key_log_buf = NULL;
uint8_t *core_dump_log_buf = NULL;
uint8_t *extended_log_buf = NULL;
uint32_t full_log_len = 0;
uint32_t key_log_len = 0;
uint32_t core_dump_log_len = 0;
uint32_t extended_log_len = 0;
struct tarfile_metadata *tarInfo = NULL;
tarInfo = (struct tarfile_metadata *)malloc(sizeof(struct tarfile_metadata));
if (!tarInfo) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
ret = -1;
goto free_buf;
}
memset(tarInfo, 0, sizeof(struct tarfile_metadata));
/* Create Logs directory */
wdc_UtilsGetTime(&tarInfo->timeInfo);
memset(tarInfo->timeString, 0, sizeof(tarInfo->timeString));
wdc_UtilsSnprintf((char *)tarInfo->timeString, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
tarInfo->timeInfo.year, tarInfo->timeInfo.month, tarInfo->timeInfo.dayOfMonth,
tarInfo->timeInfo.hour, tarInfo->timeInfo.minute, tarInfo->timeInfo.second);
wdc_UtilsSnprintf((char *)tarInfo->bufferFolderName, MAX_PATH_LEN, "%s",
(char *)outputName);
retPtr = getcwd((char *)tarInfo->currDir, MAX_PATH_LEN);
if (retPtr) {
wdc_UtilsSnprintf((char *)tarInfo->bufferFolderPath, MAX_PATH_LEN, "%s%s%s",
(char *)tarInfo->currDir, WDC_DE_PATH_SEPARATOR, (char *)tarInfo->bufferFolderName);
} else {
fprintf(stderr, "ERROR: WDC: get current working directory failed\n");
goto free_buf;
}
ret = wdc_UtilsCreateDir((char *)tarInfo->bufferFolderPath);
if (ret) {
fprintf(stderr, "ERROR: WDC: create directory failed, ret = %d, dir = %s\n", ret, tarInfo->bufferFolderPath);
goto free_buf;
} else {
fprintf(stderr, "Stored log files in directory: %s\n", tarInfo->bufferFolderPath);
}
ret = wdc_do_get_sn730_log_len(fd, &full_log_len, SN730_GET_FULL_LOG_LENGTH);
if (ret) {
nvme_show_status(ret);
goto free_buf;
}
ret = wdc_do_get_sn730_log_len(fd, &key_log_len, SN730_GET_KEY_LOG_LENGTH);
if (ret) {
nvme_show_status(ret);
goto free_buf;
}
ret = wdc_do_get_sn730_log_len(fd, &core_dump_log_len, SN730_GET_COREDUMP_LOG_LENGTH);
if (ret) {
nvme_show_status(ret);
goto free_buf;
}
ret = wdc_do_get_sn730_log_len(fd, &extended_log_len, SN730_GET_EXTENDED_LOG_LENGTH);
if (ret) {
nvme_show_status(ret);
goto free_buf;
}
full_log_buf = (uint8_t *) calloc(full_log_len, sizeof(uint8_t));
key_log_buf = (uint8_t *) calloc(key_log_len, sizeof(uint8_t));
core_dump_log_buf = (uint8_t *) calloc(core_dump_log_len, sizeof(uint8_t));
extended_log_buf = (uint8_t *) calloc(extended_log_len, sizeof(uint8_t));
if (!full_log_buf || !key_log_buf || !core_dump_log_buf || !extended_log_buf) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
ret = -1;
goto free_buf;
}
/* Get the full log */
ret = get_sn730_log_chunks(fd, full_log_buf, full_log_len, SN730_GET_FULL_LOG_SUBOPCODE);
if (ret) {
nvme_show_status(ret);
goto free_buf;
}
/* Get the key log */
ret = get_sn730_log_chunks(fd, key_log_buf, key_log_len, SN730_GET_KEY_LOG_SUBOPCODE);
if (ret) {
nvme_show_status(ret);
goto free_buf;
}
/* Get the core dump log */
ret = get_sn730_log_chunks(fd, core_dump_log_buf, core_dump_log_len, SN730_GET_CORE_LOG_SUBOPCODE);
if (ret) {
nvme_show_status(ret);
goto free_buf;
}
/* Get the extended log */
ret = get_sn730_log_chunks(fd, extended_log_buf, extended_log_len, SN730_GET_EXTEND_LOG_SUBOPCODE);
if (ret) {
nvme_show_status(ret);
goto free_buf;
}
/* Write log files */
wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char *)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"full_log", (char *)tarInfo->timeString);
wdc_WriteToFile(tarInfo->fileName, (char *)full_log_buf, full_log_len);
wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char *)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"key_log", (char *)tarInfo->timeString);
wdc_WriteToFile(tarInfo->fileName, (char *)key_log_buf, key_log_len);
wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char *)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"core_dump_log", (char *)tarInfo->timeString);
wdc_WriteToFile(tarInfo->fileName, (char *)core_dump_log_buf, core_dump_log_len);
wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char *)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"extended_log", (char *)tarInfo->timeString);
wdc_WriteToFile(tarInfo->fileName, (char *)extended_log_buf, extended_log_len);
/* Tar the log directory */
wdc_UtilsSnprintf(tarInfo->tarFileName, sizeof(tarInfo->tarFileName), "%s%s", (char *)tarInfo->bufferFolderPath, WDC_DE_TAR_FILE_EXTN);
wdc_UtilsSnprintf(tarInfo->tarFiles, sizeof(tarInfo->tarFiles), "%s%s%s", (char *)tarInfo->bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES);
wdc_UtilsSnprintf(tarInfo->tarCmd, sizeof(tarInfo->tarCmd), "%s %s %s", WDC_DE_TAR_CMD, (char *)tarInfo->tarFileName, (char *)tarInfo->tarFiles);
ret = system(tarInfo->tarCmd);
if (ret)
fprintf(stderr, "ERROR: WDC: Tar of log data failed, ret = %d\n", ret);
free_buf:
free(tarInfo);
free(full_log_buf);
free(core_dump_log_buf);
free(key_log_buf);
free(extended_log_buf);
return ret;
}
static int dump_internal_logs(struct nvme_dev *dev, char *dir_name, int verbose)
{
char file_path[128];
void *telemetry_log;
const size_t bs = 512;
struct nvme_telemetry_log *hdr;
size_t full_size, offset = bs;
int err, output;
if (verbose)
printf("NVMe Telemetry log...\n");
hdr = malloc(bs);
telemetry_log = malloc(bs);
if (!hdr || !telemetry_log) {
fprintf(stderr, "Failed to allocate %zu bytes for log: %s\n", bs, strerror(errno));
err = -ENOMEM;
goto free_mem;
}
memset(hdr, 0, bs);
sprintf(file_path, "%s/telemetry.bin", dir_name);
output = open(file_path, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (output < 0) {
fprintf(stderr, "Failed to open output file %s: %s!\n", file_path, strerror(errno));
err = output;
goto free_mem;
}
struct nvme_get_log_args args = {
.lpo = 0,
.result = NULL,
.log = hdr,
.args_size = sizeof(args),
.fd = dev_fd(dev),
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.lid = NVME_LOG_LID_TELEMETRY_HOST,
.len = bs,
.nsid = NVME_NSID_ALL,
.csi = NVME_CSI_NVM,
.lsi = NVME_LOG_LSI_NONE,
.lsp = NVME_LOG_TELEM_HOST_LSP_CREATE,
.uuidx = NVME_UUID_NONE,
.rae = true,
.ot = false,
};
err = nvme_get_log(&args);
if (err < 0)
perror("get-telemetry-log");
else if (err > 0) {
nvme_show_status(err);
fprintf(stderr, "Failed to acquire telemetry header %d!\n", err);
goto close_output;
}
err = write(output, (void *)hdr, bs);
if (err != bs) {
fprintf(stderr, "Failed to flush all data to file!\n");
goto close_output;
}
full_size = (le16_to_cpu(hdr->dalb3) * bs) + offset;
while (offset != full_size) {
args.log = telemetry_log;
args.lpo = offset;
args.lsp = NVME_LOG_LSP_NONE;
err = nvme_get_log(&args);
if (err < 0) {
perror("get-telemetry-log");
break;
} else if (err > 0) {
fprintf(stderr, "Failed to acquire full telemetry log!\n");
nvme_show_status(err);
break;
}
err = write(output, (void *)telemetry_log, bs);
if (err != bs) {
fprintf(stderr, "Failed to flush all data to file!\n");
break;
}
err = 0;
offset += bs;
}
close_output:
close(output);
free_mem:
free(hdr);
free(telemetry_log);
return err;
}
static int wdc_vs_internal_fw_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Internal Firmware Log.";
char *file = "Output file pathname.";
char *size = "Data retrieval transfer size.";
char *data_area = "Data area to retrieve up to. Currently only supported on the SN340, SN640, SN730, and SN840 devices.";
char *file_size = "Output file size. Currently only supported on the SN340 device.";
char *offset = "Output file data offset. Currently only supported on the SN340 device.";
char *type = "Telemetry type - NONE, HOST, or CONTROLLER. Currently only supported on the SN530, SN640, SN730, SN740, SN810, SN840 and ZN350 devices.";
char *verbose = "Display more debug messages.";
char f[PATH_MAX] = {0};
char fb[PATH_MAX/2] = {0};
char fileSuffix[PATH_MAX] = {0};
struct nvme_dev *dev;
nvme_root_t r;
__u32 xfer_size = 0;
int telemetry_type = 0, telemetry_data_area = 0;
UtilsTimeInfo timeInfo;
__u8 timeStamp[MAX_PATH_LEN];
__u64 capabilities = 0;
__u32 device_id, read_vendor_id;
char file_path[PATH_MAX/2] = {0};
char cmd_buf[PATH_MAX] = {0};
int ret = -1;
struct config {
char *file;
__u32 xfer_size;
int data_area;
__u64 file_size;
__u64 offset;
char *type;
bool verbose;
};
struct config cfg = {
.file = NULL,
.xfer_size = 0x10000,
.data_area = 0,
.file_size = 0,
.offset = 0,
.type = NULL,
.verbose = false,
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_UINT("transfer-size", 's', &cfg.xfer_size, size),
OPT_UINT("data-area", 'd', &cfg.data_area, data_area),
OPT_LONG("file-size", 'f', &cfg.file_size, file_size),
OPT_LONG("offset", 'e', &cfg.offset, offset),
OPT_FILE("type", 't', &cfg.type, type),
OPT_FLAG("verbose", 'v', &cfg.verbose, verbose),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (!wdc_check_device(r, dev))
goto out;
if (cfg.xfer_size) {
xfer_size = cfg.xfer_size;
} else {
fprintf(stderr, "ERROR: WDC: Invalid length\n");
goto out;
}
ret = wdc_get_pci_ids(r, dev, &device_id, &read_vendor_id);
if (!wdc_is_sn861(device_id)) {
if (cfg.file) {
int verify_file;
/* verify file name and path is valid before getting dump data */
verify_file = open(cfg.file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (verify_file < 0) {
fprintf(stderr, "ERROR: WDC: open: %s\n", strerror(errno));
goto out;
}
close(verify_file);
strncpy(f, cfg.file, PATH_MAX - 1);
} else {
wdc_UtilsGetTime(&timeInfo);
memset(timeStamp, 0, sizeof(timeStamp));
wdc_UtilsSnprintf((char *)timeStamp, MAX_PATH_LEN,
"%02u%02u%02u_%02u%02u%02u", timeInfo.year,
timeInfo.month, timeInfo.dayOfMonth,
timeInfo.hour, timeInfo.minute,
timeInfo.second);
snprintf(fileSuffix, PATH_MAX, "_internal_fw_log_%s", (char *)timeStamp);
ret = wdc_get_serial_name(dev, f, PATH_MAX, fileSuffix);
if (ret) {
fprintf(stderr, "ERROR: WDC: failed to generate file name\n");
goto out;
}
}
if (!cfg.file) {
if (strlen(f) > PATH_MAX - 5) {
fprintf(stderr, "ERROR: WDC: file name overflow\n");
ret = -1;
goto out;
}
strcat(f, ".bin");
}
fprintf(stderr, "%s: filename = %s\n", __func__, f);
if (cfg.data_area) {
if (cfg.data_area > 5 || cfg.data_area < 1) {
fprintf(stderr, "ERROR: WDC: Data area must be 1-5\n");
ret = -1;
goto out;
}
}
if (!cfg.type || !strcmp(cfg.type, "NONE") || !strcmp(cfg.type, "none")) {
telemetry_type = WDC_TELEMETRY_TYPE_NONE;
data_area = 0;
} else if (!strcmp(cfg.type, "HOST") || !strcmp(cfg.type, "host")) {
telemetry_type = WDC_TELEMETRY_TYPE_HOST;
telemetry_data_area = cfg.data_area;
} else if (!strcmp(cfg.type, "CONTROLLER") || !strcmp(cfg.type, "controller")) {
telemetry_type = WDC_TELEMETRY_TYPE_CONTROLLER;
telemetry_data_area = cfg.data_area;
} else {
fprintf(stderr,
"ERROR: WDC: Invalid type - Must be NONE, HOST or CONTROLLER\n");
ret = -1;
goto out;
}
} else {
if (cfg.file) {
strncpy(fb, cfg.file, PATH_MAX/2 - 8);
} else {
wdc_UtilsGetTime(&timeInfo);
memset(timeStamp, 0, sizeof(timeStamp));
wdc_UtilsSnprintf((char *)timeStamp, MAX_PATH_LEN,
"%02u%02u%02u_%02u%02u%02u", timeInfo.year,
timeInfo.month, timeInfo.dayOfMonth,
timeInfo.hour, timeInfo.minute,
timeInfo.second);
snprintf(fileSuffix, PATH_MAX, "_internal_fw_log_%s", (char *)timeStamp);
ret = wdc_get_serial_name(dev, fb, PATH_MAX/2 - 7, fileSuffix);
if (ret) {
fprintf(stderr, "ERROR: WDC: failed to generate file name\n");
goto out;
}
if (strlen(fb) > PATH_MAX/2 - 7) {
fprintf(stderr, "ERROR: WDC: file name overflow\n");
ret = -1;
goto out;
}
}
fprintf(stderr, "%s: filename = %s.tar.gz\n", __func__, fb);
memset(file_path, 0, sizeof(file_path));
if (snprintf(file_path, PATH_MAX/2 - 8, "%s.tar.gz", fb) >= PATH_MAX/2 - 8) {
fprintf(stderr, "File path is too long!\n");
ret = -1;
goto out;
}
if (access(file_path, F_OK) != -1) {
fprintf(stderr, "Output file already exists!\n");
ret = -EEXIST;
goto out;
}
}
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_INTERNAL_LOG) == WDC_DRIVE_CAP_INTERNAL_LOG) {
if (!wdc_is_sn861(device_id)) {
/* Set the default DA to 3 if not specified */
if (!telemetry_data_area)
telemetry_data_area = 3;
ret = wdc_do_cap_diag(r, dev, f, xfer_size,
telemetry_type, telemetry_data_area);
} else {
if (cfg.verbose)
printf("Creating temp directory...\n");
ret = mkdir(fb, 0666);
if (ret) {
fprintf(stderr, "Failed to create directory!\n");
goto out;
}
ret = dump_internal_logs(dev, fb, cfg.verbose);
if (ret < 0)
perror("vs-internal-log");
if (cfg.verbose)
printf("Archiving...\n");
if (snprintf(cmd_buf, PATH_MAX,
"tar --remove-files -czf %s %s",
file_path, fb) >= PATH_MAX) {
fprintf(stderr, "Command buffer is too long!\n");
ret = -1;
goto out;
}
ret = system(cmd_buf);
if (ret)
fprintf(stderr, "Failed to create an archive file!\n");
}
goto out;
}
if ((capabilities & WDC_DRIVE_CAP_DUI) == WDC_DRIVE_CAP_DUI) {
if ((telemetry_type == WDC_TELEMETRY_TYPE_HOST) ||
(telemetry_type == WDC_TELEMETRY_TYPE_CONTROLLER)) {
if (!telemetry_data_area)
telemetry_data_area = 3; /* Set the default DA to 3 if not specified */
/* Get the desired telemetry log page */
ret = wdc_do_cap_telemetry_log(dev, f, xfer_size,
telemetry_type, telemetry_data_area);
goto out;
} else {
if (!cfg.data_area)
cfg.data_area = 1;
/* FW requirement - xfer size must be 256k for data area 4 */
if (cfg.data_area >= 4)
xfer_size = 0x40000;
ret = wdc_do_cap_dui(dev_fd(dev), f, xfer_size,
cfg.data_area,
cfg.verbose, cfg.file_size,
cfg.offset);
goto out;
}
}
if ((capabilities & WDC_DRIVE_CAP_DUI_DATA) == WDC_DRIVE_CAP_DUI_DATA) {
if ((telemetry_type == WDC_TELEMETRY_TYPE_HOST) ||
(telemetry_type == WDC_TELEMETRY_TYPE_CONTROLLER)) {
if (!telemetry_data_area)
telemetry_data_area = 3; /* Set the default DA to 3 if not specified */
/* Get the desired telemetry log page */
ret = wdc_do_cap_telemetry_log(dev, f, xfer_size,
telemetry_type, telemetry_data_area);
goto out;
} else {
ret = wdc_do_cap_dui(dev_fd(dev), f, xfer_size,
WDC_NVME_DUI_MAX_DATA_AREA,
cfg.verbose, 0, 0);
goto out;
}
}
if ((capabilities & WDC_SN730B_CAP_VUC_LOG) == WDC_SN730B_CAP_VUC_LOG) {
ret = wdc_do_sn730_get_and_tar(dev_fd(dev), f);
} else {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
}
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_do_crash_dump(struct nvme_dev *dev, char *file, int type)
{
int ret;
__u32 crash_dump_length;
__u32 opcode;
__u32 cdw12;
__u32 cdw10_size;
__u32 cdw12_size;
__u32 cdw12_clear;
if (type == WDC_NVME_PFAIL_DUMP_TYPE) {
/* set parms to get the PFAIL Crash Dump */
opcode = WDC_NVME_PF_CRASH_DUMP_OPCODE;
cdw10_size = WDC_NVME_PF_CRASH_DUMP_SIZE_NDT;
cdw12_size = ((WDC_NVME_PF_CRASH_DUMP_SIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_PF_CRASH_DUMP_SIZE_CMD);
cdw12 = (WDC_NVME_PF_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_PF_CRASH_DUMP_CMD;
cdw12_clear = ((WDC_NVME_CLEAR_PF_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_CRASH_DUMP_CMD);
} else {
/* set parms to get the Crash Dump */
opcode = WDC_NVME_CRASH_DUMP_OPCODE;
cdw10_size = WDC_NVME_CRASH_DUMP_SIZE_NDT;
cdw12_size = ((WDC_NVME_CRASH_DUMP_SIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CRASH_DUMP_SIZE_CMD);
cdw12 = (WDC_NVME_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CRASH_DUMP_CMD;
cdw12_clear = ((WDC_NVME_CLEAR_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_CRASH_DUMP_CMD);
}
ret = wdc_dump_length(dev_fd(dev),
opcode,
cdw10_size,
cdw12_size,
&crash_dump_length);
if (ret == -1) {
if (type == WDC_NVME_PFAIL_DUMP_TYPE)
fprintf(stderr, "INFO: WDC: Pfail dump get size failed\n");
else
fprintf(stderr, "INFO: WDC: Crash dump get size failed\n");
return -1;
}
if (!crash_dump_length) {
if (type == WDC_NVME_PFAIL_DUMP_TYPE)
fprintf(stderr, "INFO: WDC: Pfail dump is empty\n");
else
fprintf(stderr, "INFO: WDC: Crash dump is empty\n");
} else {
ret = wdc_do_dump(dev,
opcode,
crash_dump_length,
cdw12,
file,
crash_dump_length);
if (!ret)
ret = wdc_do_clear_dump(dev, WDC_NVME_CLEAR_DUMP_OPCODE,
cdw12_clear);
}
return ret;
}
static int wdc_crash_dump(struct nvme_dev *dev, char *file, int type)
{
char f[PATH_MAX] = {0};
const char *dump_type;
int ret;
if (file)
strncpy(f, file, PATH_MAX - 1);
if (type == WDC_NVME_PFAIL_DUMP_TYPE)
dump_type = "_pfail_dump";
else
dump_type = "_crash_dump";
ret = wdc_get_serial_name(dev, f, PATH_MAX, dump_type);
if (ret)
fprintf(stderr, "ERROR: WDC: failed to generate file name\n");
else
ret = wdc_do_crash_dump(dev, f, type);
return ret;
}
static int wdc_do_drive_log(struct nvme_dev *dev, char *file)
{
int ret;
__u8 *drive_log_data;
__u32 drive_log_length;
struct nvme_passthru_cmd admin_cmd;
ret = wdc_dump_length(dev_fd(dev), WDC_NVME_DRIVE_LOG_SIZE_OPCODE,
WDC_NVME_DRIVE_LOG_SIZE_NDT,
(WDC_NVME_DRIVE_LOG_SIZE_SUBCMD <<
WDC_NVME_SUBCMD_SHIFT | WDC_NVME_DRIVE_LOG_SIZE_CMD),
&drive_log_length);
if (ret == -1)
return -1;
drive_log_data = (__u8 *)malloc(sizeof(__u8) * drive_log_length);
if (!drive_log_data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(drive_log_data, 0, sizeof(__u8) * drive_log_length);
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = WDC_NVME_DRIVE_LOG_OPCODE;
admin_cmd.addr = (__u64)(uintptr_t)drive_log_data;
admin_cmd.data_len = drive_log_length;
admin_cmd.cdw10 = drive_log_length;
admin_cmd.cdw12 = ((WDC_NVME_DRIVE_LOG_SUBCMD <<
WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_DRIVE_LOG_SIZE_CMD);
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
nvme_show_status(ret);
if (!ret)
ret = wdc_create_log_file(file, drive_log_data, drive_log_length);
free(drive_log_data);
return ret;
}
static int wdc_drive_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Capture Drive Log.";
const char *file = "Output file pathname.";
char f[PATH_MAX] = {0};
struct nvme_dev *dev;
int ret;
nvme_root_t r;
__u64 capabilities = 0;
struct config {
char *file;
};
struct config cfg = {
.file = NULL
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (!wdc_check_device(r, dev)) {
nvme_free_tree(r);
dev_close(dev);
return -1;
}
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_DRIVE_LOG)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
} else {
if (cfg.file)
strncpy(f, cfg.file, PATH_MAX - 1);
ret = wdc_get_serial_name(dev, f, PATH_MAX, "drive_log");
if (ret)
fprintf(stderr, "ERROR: WDC: failed to generate file name\n");
else
ret = wdc_do_drive_log(dev, f);
}
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_get_crash_dump(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Get Crash Dump.";
const char *file = "Output file pathname.";
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
struct config {
char *file;
};
struct config cfg = {
.file = NULL,
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (!wdc_check_device(r, dev)) {
nvme_free_tree(r);
dev_close(dev);
return -1;
}
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_CRASH_DUMP)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
} else {
ret = wdc_crash_dump(dev, cfg.file, WDC_NVME_CRASH_DUMP_TYPE);
if (ret)
fprintf(stderr, "ERROR: WDC: failed to read crash dump\n");
}
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_get_pfail_dump(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Get Pfail Crash Dump.";
char *file = "Output file pathname.";
__u64 capabilities = 0;
struct nvme_dev *dev;
struct config {
char *file;
};
nvme_root_t r;
int ret;
struct config cfg = {
.file = NULL,
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (!wdc_check_device(r, dev)) {
nvme_free_tree(r);
dev_close(dev);
return -1;
}
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_PFAIL_DUMP)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
} else {
ret = wdc_crash_dump(dev, cfg.file, WDC_NVME_PFAIL_DUMP_TYPE);
if (ret)
fprintf(stderr, "ERROR: WDC: failed to read pfail crash dump\n");
}
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static void wdc_do_id_ctrl(__u8 *vs, struct json_object *root)
{
char vsn[24] = {0};
int base = 3072;
int vsn_start = 3081;
memcpy(vsn, &vs[vsn_start - base], sizeof(vsn));
if (root)
json_object_add_value_string(root, "wdc vsn", strlen(vsn) > 1 ? vsn : "NULL");
else
printf("wdc vsn: %s\n", strlen(vsn) > 1 ? vsn : "NULL");
}
static int wdc_id_ctrl(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
return __id_ctrl(argc, argv, cmd, plugin, wdc_do_id_ctrl);
}
static const char *wdc_purge_mon_status_to_string(__u32 status)
{
const char *str;
switch (status) {
case WDC_NVME_PURGE_STATE_IDLE:
str = "Purge State Idle.";
break;
case WDC_NVME_PURGE_STATE_DONE:
str = "Purge State Done.";
break;
case WDC_NVME_PURGE_STATE_BUSY:
str = "Purge State Busy.";
break;
case WDC_NVME_PURGE_STATE_REQ_PWR_CYC:
str = "Purge Operation resulted in an error that requires power cycle.";
break;
case WDC_NVME_PURGE_STATE_PWR_CYC_PURGE:
str = "The previous purge operation was interrupted by a power cycle\n"
"or reset interruption. Other commands may be rejected until\n"
"Purge Execute is issued and completed.";
break;
default:
str = "Unknown.";
}
return str;
}
static int wdc_purge(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a Purge command.";
struct nvme_passthru_cmd admin_cmd;
__u64 capabilities = 0;
struct nvme_dev *dev;
char *err_str;
nvme_root_t r;
int ret;
OPT_ARGS(opts) = {
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (!wdc_check_device(r, dev)) {
nvme_free_tree(r);
dev_close(dev);
return -1;
}
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_PURGE)) {
ret = -1;
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
} else {
err_str = "";
memset(&admin_cmd, 0, sizeof(admin_cmd));
admin_cmd.opcode = WDC_NVME_PURGE_CMD_OPCODE;
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd,
NULL);
if (ret > 0) {
switch (ret) {
case WDC_NVME_PURGE_CMD_SEQ_ERR:
err_str = "ERROR: WDC: Cannot execute purge, Purge operation is in progress.\n";
break;
case WDC_NVME_PURGE_INT_DEV_ERR:
err_str = "ERROR: WDC: Internal Device Error.\n";
break;
default:
err_str = "ERROR: WDC\n";
}
}
fprintf(stderr, "%s", err_str);
nvme_show_status(ret);
}
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_purge_monitor(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a Purge Monitor command.";
__u8 output[WDC_NVME_PURGE_MONITOR_DATA_LEN];
double progress_percent;
struct nvme_passthru_cmd admin_cmd;
struct wdc_nvme_purge_monitor_data *mon;
struct nvme_dev *dev;
__u64 capabilities;
nvme_root_t r;
int ret;
OPT_ARGS(opts) = {
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (!wdc_check_device(r, dev)) {
nvme_free_tree(r);
dev_close(dev);
return -1;
}
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_PURGE)) {
ret = -1;
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
} else {
memset(output, 0, sizeof(output));
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = WDC_NVME_PURGE_MONITOR_OPCODE;
admin_cmd.addr = (__u64)(uintptr_t)output;
admin_cmd.data_len = WDC_NVME_PURGE_MONITOR_DATA_LEN;
admin_cmd.cdw10 = WDC_NVME_PURGE_MONITOR_CMD_CDW10;
admin_cmd.timeout_ms = WDC_NVME_PURGE_MONITOR_TIMEOUT;
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd,
NULL);
if (!ret) {
mon = (struct wdc_nvme_purge_monitor_data *) output;
printf("Purge state = 0x%0x\n", admin_cmd.result);
printf("%s\n", wdc_purge_mon_status_to_string(admin_cmd.result));
if (admin_cmd.result == WDC_NVME_PURGE_STATE_BUSY) {
progress_percent =
((double)le32_to_cpu(mon->entire_progress_current) * 100) /
le32_to_cpu(mon->entire_progress_total);
printf("Purge Progress = %f%%\n", progress_percent);
}
}
nvme_show_status(ret);
}
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static void wdc_print_log_normal(struct wdc_ssd_perf_stats *perf)
{
printf(" C1 Log Page Performance Statistics :-\n");
printf(" Host Read Commands %20"PRIu64"\n",
le64_to_cpu(perf->hr_cmds));
printf(" Host Read Blocks %20"PRIu64"\n",
le64_to_cpu(perf->hr_blks));
printf(" Average Read Size %20lf\n",
safe_div_fp((le64_to_cpu(perf->hr_blks)), (le64_to_cpu(perf->hr_cmds))));
printf(" Host Read Cache Hit Commands %20"PRIu64"\n",
le64_to_cpu(perf->hr_ch_cmds));
printf(" Host Read Cache Hit_Percentage %20"PRIu64"%%\n",
(uint64_t) calc_percent(le64_to_cpu(perf->hr_ch_cmds), le64_to_cpu(perf->hr_cmds)));
printf(" Host Read Cache Hit Blocks %20"PRIu64"\n",
le64_to_cpu(perf->hr_ch_blks));
printf(" Average Read Cache Hit Size %20f\n",
safe_div_fp((le64_to_cpu(perf->hr_ch_blks)), (le64_to_cpu(perf->hr_ch_cmds))));
printf(" Host Read Commands Stalled %20"PRIu64"\n",
le64_to_cpu(perf->hr_st_cmds));
printf(" Host Read Commands Stalled Percentage %20"PRIu64"%%\n",
(uint64_t)calc_percent((le64_to_cpu(perf->hr_st_cmds)), le64_to_cpu(perf->hr_cmds)));
printf(" Host Write Commands %20"PRIu64"\n",
le64_to_cpu(perf->hw_cmds));
printf(" Host Write Blocks %20"PRIu64"\n",
le64_to_cpu(perf->hw_blks));
printf(" Average Write Size %20f\n",
safe_div_fp((le64_to_cpu(perf->hw_blks)), (le64_to_cpu(perf->hw_cmds))));
printf(" Host Write Odd Start Commands %20"PRIu64"\n",
le64_to_cpu(perf->hw_os_cmds));
printf(" Host Write Odd Start Commands Percentage %20"PRIu64"%%\n",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_os_cmds)), (le64_to_cpu(perf->hw_cmds))));
printf(" Host Write Odd End Commands %20"PRIu64"\n",
le64_to_cpu(perf->hw_oe_cmds));
printf(" Host Write Odd End Commands Percentage %20"PRIu64"%%\n",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_oe_cmds)), (le64_to_cpu((perf->hw_cmds)))));
printf(" Host Write Commands Stalled %20"PRIu64"\n",
le64_to_cpu(perf->hw_st_cmds));
printf(" Host Write Commands Stalled Percentage %20"PRIu64"%%\n",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_st_cmds)), (le64_to_cpu(perf->hw_cmds))));
printf(" NAND Read Commands %20"PRIu64"\n",
le64_to_cpu(perf->nr_cmds));
printf(" NAND Read Blocks Commands %20"PRIu64"\n",
le64_to_cpu(perf->nr_blks));
printf(" Average NAND Read Size %20f\n",
safe_div_fp((le64_to_cpu(perf->nr_blks)), (le64_to_cpu((perf->nr_cmds)))));
printf(" Nand Write Commands %20"PRIu64"\n",
le64_to_cpu(perf->nw_cmds));
printf(" NAND Write Blocks %20"PRIu64"\n",
le64_to_cpu(perf->nw_blks));
printf(" Average NAND Write Size %20f\n",
safe_div_fp((le64_to_cpu(perf->nw_blks)), (le64_to_cpu(perf->nw_cmds))));
printf(" NAND Read Before Write %20"PRIu64"\n",
le64_to_cpu(perf->nrbw));
}
static void wdc_print_log_json(struct wdc_ssd_perf_stats *perf)
{
struct json_object *root = json_create_object();
json_object_add_value_int(root, "Host Read Commands", le64_to_cpu(perf->hr_cmds));
json_object_add_value_int(root, "Host Read Blocks", le64_to_cpu(perf->hr_blks));
json_object_add_value_int(root, "Average Read Size",
safe_div_fp((le64_to_cpu(perf->hr_blks)), (le64_to_cpu(perf->hr_cmds))));
json_object_add_value_int(root, "Host Read Cache Hit Commands",
le64_to_cpu(perf->hr_ch_cmds));
json_object_add_value_int(root, "Host Read Cache Hit Percentage",
(uint64_t) calc_percent(le64_to_cpu(perf->hr_ch_cmds), le64_to_cpu(perf->hr_cmds)));
json_object_add_value_int(root, "Host Read Cache Hit Blocks",
le64_to_cpu(perf->hr_ch_blks));
json_object_add_value_int(root, "Average Read Cache Hit Size",
safe_div_fp((le64_to_cpu(perf->hr_ch_blks)), (le64_to_cpu(perf->hr_ch_cmds))));
json_object_add_value_int(root, "Host Read Commands Stalled",
le64_to_cpu(perf->hr_st_cmds));
json_object_add_value_int(root, "Host Read Commands Stalled Percentage",
(uint64_t)calc_percent((le64_to_cpu(perf->hr_st_cmds)), le64_to_cpu(perf->hr_cmds)));
json_object_add_value_int(root, "Host Write Commands",
le64_to_cpu(perf->hw_cmds));
json_object_add_value_int(root, "Host Write Blocks",
le64_to_cpu(perf->hw_blks));
json_object_add_value_int(root, "Average Write Size",
safe_div_fp((le64_to_cpu(perf->hw_blks)), (le64_to_cpu(perf->hw_cmds))));
json_object_add_value_int(root, "Host Write Odd Start Commands",
le64_to_cpu(perf->hw_os_cmds));
json_object_add_value_int(root, "Host Write Odd Start Commands Percentage",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_os_cmds)), (le64_to_cpu(perf->hw_cmds))));
json_object_add_value_int(root, "Host Write Odd End Commands",
le64_to_cpu(perf->hw_oe_cmds));
json_object_add_value_int(root, "Host Write Odd End Commands Percentage",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_oe_cmds)), (le64_to_cpu((perf->hw_cmds)))));
json_object_add_value_int(root, "Host Write Commands Stalled",
le64_to_cpu(perf->hw_st_cmds));
json_object_add_value_int(root, "Host Write Commands Stalled Percentage",
(uint64_t)calc_percent((le64_to_cpu(perf->hw_st_cmds)), (le64_to_cpu(perf->hw_cmds))));
json_object_add_value_int(root, "NAND Read Commands",
le64_to_cpu(perf->nr_cmds));
json_object_add_value_int(root, "NAND Read Blocks Commands",
le64_to_cpu(perf->nr_blks));
json_object_add_value_int(root, "Average NAND Read Size",
safe_div_fp((le64_to_cpu(perf->nr_blks)), (le64_to_cpu((perf->nr_cmds)))));
json_object_add_value_int(root, "Nand Write Commands",
le64_to_cpu(perf->nw_cmds));
json_object_add_value_int(root, "NAND Write Blocks",
le64_to_cpu(perf->nw_blks));
json_object_add_value_int(root, "Average NAND Write Size",
safe_div_fp((le64_to_cpu(perf->nw_blks)), (le64_to_cpu(perf->nw_cmds))));
json_object_add_value_int(root, "NAND Read Before Written",
le64_to_cpu(perf->nrbw));
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static int wdc_print_log(struct wdc_ssd_perf_stats *perf, int fmt)
{
if (!perf) {
fprintf(stderr, "ERROR: WDC: Invalid buffer to read perf stats\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_log_normal(perf);
break;
case JSON:
wdc_print_log_json(perf);
break;
}
return 0;
}
static int wdc_print_latency_monitor_log_normal(struct nvme_dev *dev,
struct wdc_ssd_latency_monitor_log *log_data)
{
printf("Latency Monitor/C3 Log Page Data\n");
printf(" Controller : %s\n", dev->name);
int err = -1, i, j;
struct nvme_id_ctrl ctrl;
char ts_buf[128];
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (!err) {
printf(" Serial Number: %-.*s\n", (int)sizeof(ctrl.sn), ctrl.sn);
} else {
fprintf(stderr, "ERROR: WDC: latency monitor read id ctrl failure, err = %d\n", err);
return err;
}
printf(" Feature Status 0x%x\n", log_data->feature_status);
printf(" Active Bucket Timer %d min\n", 5*le16_to_cpu(log_data->active_bucket_timer));
printf(" Active Bucket Timer Threshold %d min\n", 5*le16_to_cpu(log_data->active_bucket_timer_threshold));
printf(" Active Threshold A %d ms\n", 5*(le16_to_cpu(log_data->active_threshold_a+1)));
printf(" Active Threshold B %d ms\n", 5*(le16_to_cpu(log_data->active_threshold_b+1)));
printf(" Active Threshold C %d ms\n", 5*(le16_to_cpu(log_data->active_threshold_c+1)));
printf(" Active Threshold D %d ms\n", 5*(le16_to_cpu(log_data->active_threshold_d+1)));
printf(" Active Latency Config 0x%x\n", le16_to_cpu(log_data->active_latency_config));
printf(" Active Latency Minimum Window %d ms\n", 100*log_data->active_latency_min_window);
printf(" Active Latency Stamp Units %d\n", le16_to_cpu(log_data->active_latency_stamp_units));
printf(" Static Latency Stamp Units %d\n", le16_to_cpu(log_data->static_latency_stamp_units));
printf(" Debug Log Trigger Enable %d\n", le16_to_cpu(log_data->debug_log_trigger_enable));
printf(" Read Write Deallocate/Trim\n");
for (i = 0; i <= 3; i++)
printf(" Active Bucket Counter: Bucket %d %27d %27d %27d\n",
i, le32_to_cpu(log_data->active_bucket_counter[i][LATENCY_LOG_BUCKET_READ]),
le32_to_cpu(log_data->active_bucket_counter[i][LATENCY_LOG_BUCKET_WRITE]),
le32_to_cpu(log_data->active_bucket_counter[i][LATENCY_LOG_BUCKET_TRIM]));
for (i = 3; i >= 0; i--)
printf(" Active Measured Latency: Bucket %d %27d ms %27d ms %27d ms\n",
3-i, le16_to_cpu(log_data->active_measured_latency[i][LATENCY_LOG_MEASURED_LAT_READ]),
le16_to_cpu(log_data->active_measured_latency[i][LATENCY_LOG_MEASURED_LAT_WRITE]),
le16_to_cpu(log_data->active_measured_latency[i][LATENCY_LOG_MEASURED_LAT_TRIM]));
for (i = 3; i >= 0; i--) {
printf(" Active Latency Time Stamp: Bucket %d ", 3-i);
for (j = 2; j >= 0; j--) {
if (le64_to_cpu(log_data->active_latency_timestamp[i][j]) == -1) {
printf(" N/A ");
} else {
convert_ts(le64_to_cpu(log_data->active_latency_timestamp[i][j]), ts_buf);
printf("%s ", ts_buf);
}
}
printf("\n");
}
for (i = 0; i <= 3; i++)
printf(" Static Bucket Counter: Bucket %d %27d %27d %27d\n",
i, le32_to_cpu(log_data->static_bucket_counter[i][LATENCY_LOG_BUCKET_READ]),
le32_to_cpu(log_data->static_bucket_counter[i][LATENCY_LOG_BUCKET_WRITE]),
le32_to_cpu(log_data->static_bucket_counter[i][LATENCY_LOG_BUCKET_TRIM]));
for (i = 3; i >= 0; i--)
printf(" Static Measured Latency: Bucket %d %27d ms %27d ms %27d ms\n",
3-i, le16_to_cpu(log_data->static_measured_latency[i][LATENCY_LOG_MEASURED_LAT_READ]),
le16_to_cpu(log_data->static_measured_latency[i][LATENCY_LOG_MEASURED_LAT_WRITE]),
le16_to_cpu(log_data->static_measured_latency[i][LATENCY_LOG_MEASURED_LAT_TRIM]));
for (i = 3; i >= 0; i--) {
printf(" Static Latency Time Stamp: Bucket %d ", 3-i);
for (j = 2; j >= 0; j--) {
if (le64_to_cpu(log_data->static_latency_timestamp[i][j]) == -1) {
printf(" N/A ");
} else {
convert_ts(le64_to_cpu(log_data->static_latency_timestamp[i][j]), ts_buf);
printf("%s ", ts_buf);
}
}
printf("\n");
}
return 0;
}
static void wdc_print_latency_monitor_log_json(struct wdc_ssd_latency_monitor_log *log_data)
{
int i, j;
char buf[128];
char *operation[3] = {"Read", "Write", "Trim"};
struct json_object *root = json_create_object();
json_object_add_value_int(root, "Feature Status", log_data->feature_status);
json_object_add_value_int(root, "Active Bucket Timer", 5*le16_to_cpu(log_data->active_bucket_timer));
json_object_add_value_int(root, "Active Bucket Timer Threshold", 5*le16_to_cpu(log_data->active_bucket_timer_threshold));
json_object_add_value_int(root, "Active Threshold A", 5*le16_to_cpu(log_data->active_threshold_a+1));
json_object_add_value_int(root, "Active Threshold B", 5*le16_to_cpu(log_data->active_threshold_b+1));
json_object_add_value_int(root, "Active Threshold C", 5*le16_to_cpu(log_data->active_threshold_c+1));
json_object_add_value_int(root, "Active Threshold D", 5*le16_to_cpu(log_data->active_threshold_d+1));
json_object_add_value_int(root, "Active Latency Config", le16_to_cpu(log_data->active_latency_config));
json_object_add_value_int(root, "Active Lantency Minimum Window", 100*log_data->active_latency_min_window);
json_object_add_value_int(root, "Active Latency Stamp Units", le16_to_cpu(log_data->active_latency_stamp_units));
json_object_add_value_int(root, "Static Latency Stamp Units", le16_to_cpu(log_data->static_latency_stamp_units));
json_object_add_value_int(root, "Debug Log Trigger Enable", le16_to_cpu(log_data->debug_log_trigger_enable));
for (i = 0; i <= 3; i++) {
for (j = 2; j >= 0; j--) {
sprintf(buf, "Active Bucket Counter: Bucket %d %s", i, operation[2-j]);
json_object_add_value_int(root, buf, le32_to_cpu(log_data->active_bucket_counter[i][j+1]));
}
}
for (i = 3; i >= 0; i--) {
for (j = 2; j >= 0; j--) {
sprintf(buf, "Active Measured Latency: Bucket %d %s", 3-i, operation[2-j]);
json_object_add_value_int(root, buf, le16_to_cpu(log_data->active_measured_latency[i][j]));
}
}
for (i = 3; i >= 0; i--) {
for (j = 2; j >= 0; j--) {
sprintf(buf, "Active Latency Time Stamp: Bucket %d %s", 3-i, operation[2-j]);
json_object_add_value_int(root, buf, le64_to_cpu(log_data->active_latency_timestamp[i][j]));
}
}
for (i = 0; i <= 3; i++) {
for (j = 2; j >= 0; j--) {
sprintf(buf, "Static Bucket Counter: Bucket %d %s", i, operation[2-j]);
json_object_add_value_int(root, buf, le32_to_cpu(log_data->static_bucket_counter[i][j+1]));
}
}
for (i = 3; i >= 0; i--) {
for (j = 2; j >= 0; j--) {
sprintf(buf, "Static Measured Latency: Bucket %d %s", 3-i, operation[2-j]);
json_object_add_value_int(root, buf, le16_to_cpu(log_data->static_measured_latency[i][j]));
}
}
for (i = 3; i >= 0; i--) {
for (j = 2; j >= 0; j--) {
sprintf(buf, "Static Latency Time Stamp: Bucket %d %s", 3-i, operation[2-j]);
json_object_add_value_int(root, buf, le64_to_cpu(log_data->static_latency_timestamp[i][j]));
}
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_print_error_rec_log_normal(struct wdc_ocp_c1_error_recovery_log *log_data)
{
int j;
printf("Error Recovery/C1 Log Page Data\n");
printf(" Panic Reset Wait Time : 0x%x\n", le16_to_cpu(log_data->panic_reset_wait_time));
printf(" Panic Reset Action : 0x%x\n", log_data->panic_reset_action);
printf(" Device Recovery Action 1 : 0x%x\n", log_data->dev_recovery_action1);
printf(" Panic ID : 0x%" PRIu64 "\n", le64_to_cpu(log_data->panic_id));
printf(" Device Capabilities : 0x%x\n", le32_to_cpu(log_data->dev_capabilities));
printf(" Vendor Specific Recovery Opcode : 0x%x\n", log_data->vs_recovery_opc);
printf(" Vendor Specific Command CDW12 : 0x%x\n", le32_to_cpu(log_data->vs_cmd_cdw12));
printf(" Vendor Specific Command CDW13 : 0x%x\n", le32_to_cpu(log_data->vs_cmd_cdw13));
if (le16_to_cpu(log_data->log_page_version) == WDC_ERROR_REC_LOG_VERSION2) {
printf(" Vendor Specific Command Timeout : 0x%x\n", log_data->vs_cmd_to);
printf(" Device Recovery Action 2 : 0x%x\n", log_data->dev_recovery_action2);
printf(" Device Recovery Action 2 Timeout : 0x%x\n", log_data->dev_recovery_action2_to);
}
printf(" Log Page Version : 0x%x\n", le16_to_cpu(log_data->log_page_version));
printf(" Log page GUID : 0x");
for (j = 0; j < WDC_OCP_C1_GUID_LENGTH; j++)
printf("%x", log_data->log_page_guid[j]);
printf("\n");
}
static void wdc_print_error_rec_log_json(struct wdc_ocp_c1_error_recovery_log *log_data)
{
struct json_object *root = json_create_object();
json_object_add_value_int(root, "Panic Reset Wait Time", le16_to_cpu(log_data->panic_reset_wait_time));
json_object_add_value_int(root, "Panic Reset Action", log_data->panic_reset_wait_time);
json_object_add_value_int(root, "Device Recovery Action 1", log_data->dev_recovery_action1);
json_object_add_value_int(root, "Panic ID", le64_to_cpu(log_data->panic_id));
json_object_add_value_int(root, "Device Capabilities", le32_to_cpu(log_data->dev_capabilities));
json_object_add_value_int(root, "Vendor Specific Recovery Opcode", log_data->vs_recovery_opc);
json_object_add_value_int(root, "Vendor Specific Command CDW12", le32_to_cpu(log_data->vs_cmd_cdw12));
json_object_add_value_int(root, "Vendor Specific Command CDW13", le32_to_cpu(log_data->vs_cmd_cdw13));
if (le16_to_cpu(log_data->log_page_version) == WDC_ERROR_REC_LOG_VERSION2) {
json_object_add_value_int(root, "Vendor Specific Command Timeout", log_data->vs_cmd_to);
json_object_add_value_int(root, "Device Recovery Action 2", log_data->dev_recovery_action2);
json_object_add_value_int(root, "Device Recovery Action 2 Timeout", log_data->dev_recovery_action2_to);
}
json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));
char guid[40];
memset((void *)guid, 0, 40);
sprintf((char *)guid, "0x%"PRIx64"%"PRIx64"",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[8]),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[0]));
json_object_add_value_string(root, "Log page GUID", guid);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_print_dev_cap_log_normal(struct wdc_ocp_C4_dev_cap_log *log_data)
{
int j;
printf("Device Capabilities/C4 Log Page Data\n");
printf(" Number PCIE Ports : 0x%x\n", le16_to_cpu(log_data->num_pcie_ports));
printf(" Number OOB Management Interfaces : 0x%x\n", le16_to_cpu(log_data->oob_mgmt_support));
printf(" Write Zeros Command Support : 0x%x\n", le16_to_cpu(log_data->wrt_zeros_support));
printf(" Sanitize Command Support : 0x%x\n", le16_to_cpu(log_data->sanitize_support));
printf(" DSM Command Support : 0x%x\n", le16_to_cpu(log_data->dsm_support));
printf(" Write Uncorr Command Support : 0x%x\n", le16_to_cpu(log_data->wrt_uncor_support));
printf(" Fused Command Support : 0x%x\n", le16_to_cpu(log_data->fused_support));
printf(" Minimum DSSD Power State : 0x%x\n", le16_to_cpu(log_data->min_dssd_ps));
for (j = 0; j < WDC_OCP_C4_NUM_PS_DESCR; j++)
printf(" DSSD Power State %d Descriptor : 0x%x\n", j, log_data->dssd_ps_descr[j]);
printf(" Log Page Version : 0x%x\n", le16_to_cpu(log_data->log_page_version));
printf(" Log page GUID : 0x");
for (j = 0; j < WDC_OCP_C4_GUID_LENGTH; j++)
printf("%x", log_data->log_page_guid[j]);
printf("\n");
}
static void wdc_print_dev_cap_log_json(struct wdc_ocp_C4_dev_cap_log *log_data)
{
int j;
struct json_object *root = json_create_object();
json_object_add_value_int(root, "Number PCIE Ports", le16_to_cpu(log_data->num_pcie_ports));
json_object_add_value_int(root, "Number OOB Management Interfaces", le16_to_cpu(log_data->num_pcie_ports));
json_object_add_value_int(root, "Write Zeros Command Support", le16_to_cpu(log_data->num_pcie_ports));
json_object_add_value_int(root, "Sanitize Command Support", le16_to_cpu(log_data->num_pcie_ports));
json_object_add_value_int(root, "DSM Command Support", le16_to_cpu(log_data->num_pcie_ports));
json_object_add_value_int(root, "Write Uncorr Command Support", le16_to_cpu(log_data->num_pcie_ports));
json_object_add_value_int(root, "Fused Command Support", le16_to_cpu(log_data->num_pcie_ports));
json_object_add_value_int(root, "Minimum DSSD Power State", le16_to_cpu(log_data->num_pcie_ports));
char dssd_descr_str[40];
memset((void *)dssd_descr_str, 0, 40);
for (j = 0; j < WDC_OCP_C4_NUM_PS_DESCR; j++) {
sprintf((char *)dssd_descr_str, "DSSD Power State %d Descriptor", j);
json_object_add_value_int(root, dssd_descr_str, log_data->dssd_ps_descr[j]);
}
json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));
char guid[40];
memset((void *)guid, 0, 40);
sprintf((char *)guid, "0x%"PRIx64"%"PRIx64"",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[8]),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[0]));
json_object_add_value_string(root, "Log page GUID", guid);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_print_unsupported_reqs_log_normal(struct wdc_ocp_C5_unsupported_reqs *log_data)
{
int j;
printf("Unsupported Requirements/C5 Log Page Data\n");
printf(" Number Unsupported Req IDs : 0x%x\n",
le16_to_cpu(log_data->unsupported_count));
for (j = 0; j < le16_to_cpu(log_data->unsupported_count); j++)
printf(" Unsupported Requirement List %d : %s\n", j,
log_data->unsupported_req_list[j]);
printf(" Log Page Version : 0x%x\n", le16_to_cpu(log_data->log_page_version));
printf(" Log page GUID : 0x");
for (j = 0; j < WDC_OCP_C5_GUID_LENGTH; j++)
printf("%x", log_data->log_page_guid[j]);
printf("\n");
}
static void wdc_print_unsupported_reqs_log_json(struct wdc_ocp_C5_unsupported_reqs *log_data)
{
int j;
struct json_object *root = json_create_object();
json_object_add_value_int(root, "Number Unsupported Req IDs", le16_to_cpu(log_data->unsupported_count));
char unsup_req_list_str[40];
memset((void *)unsup_req_list_str, 0, 40);
for (j = 0; j < le16_to_cpu(log_data->unsupported_count); j++) {
sprintf((char *)unsup_req_list_str, "Unsupported Requirement List %d", j);
json_object_add_value_string(root, unsup_req_list_str, (char *)log_data->unsupported_req_list[j]);
}
json_object_add_value_int(root, "Log Page Version",
le16_to_cpu(log_data->log_page_version));
char guid[40];
memset((void *)guid, 0, 40);
sprintf((char *)guid, "0x%"PRIx64"%"PRIx64"",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[8]),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[0]));
json_object_add_value_string(root, "Log page GUID", guid);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_print_fb_ca_log_normal(struct wdc_ssd_ca_perf_stats *perf)
{
uint64_t converted = 0;
printf(" CA Log Page Performance Statistics :-\n");
printf(" NAND Bytes Written %20"PRIu64 "%20"PRIu64"\n",
le64_to_cpu(perf->nand_bytes_wr_hi), le64_to_cpu(perf->nand_bytes_wr_lo));
printf(" NAND Bytes Read %20"PRIu64 "%20"PRIu64"\n",
le64_to_cpu(perf->nand_bytes_rd_hi), le64_to_cpu(perf->nand_bytes_rd_lo));
converted = le64_to_cpu(perf->nand_bad_block);
printf(" NAND Bad Block Count (Normalized) %20"PRIu64"\n",
converted & 0xFFFF);
printf(" NAND Bad Block Count (Raw) %20"PRIu64"\n",
converted >> 16);
printf(" Uncorrectable Read Count %20"PRIu64"\n",
le64_to_cpu(perf->uncorr_read_count));
printf(" Soft ECC Error Count %20"PRIu64"\n",
le64_to_cpu(perf->ecc_error_count));
printf(" SSD End to End Detected Correction Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->ssd_detect_count));
printf(" SSD End to End Corrected Correction Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->ssd_correct_count));
printf(" System Data Percent Used %20"PRIu32"%%\n",
perf->data_percent_used);
printf(" User Data Erase Counts Max %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->data_erase_max));
printf(" User Data Erase Counts Min %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->data_erase_min));
printf(" Refresh Count %20"PRIu64"\n",
le64_to_cpu(perf->refresh_count));
converted = le64_to_cpu(perf->program_fail);
printf(" Program Fail Count (Normalized) %20"PRIu64"\n",
converted & 0xFFFF);
printf(" Program Fail Count (Raw) %20"PRIu64"\n",
converted >> 16);
converted = le64_to_cpu(perf->user_erase_fail);
printf(" User Data Erase Fail Count (Normalized) %20"PRIu64"\n",
converted & 0xFFFF);
printf(" User Data Erase Fail Count (Raw) %20"PRIu64"\n",
converted >> 16);
converted = le64_to_cpu(perf->system_erase_fail);
printf(" System Area Erase Fail Count (Normalized) %20"PRIu64"\n",
converted & 0xFFFF);
printf(" System Area Erase Fail Count (Raw) %20"PRIu64"\n",
converted >> 16);
printf(" Thermal Throttling Status %20"PRIu8"\n",
perf->thermal_throttle_status);
printf(" Thermal Throttling Count %20"PRIu8"\n",
perf->thermal_throttle_count);
printf(" PCIe Correctable Error Count %20"PRIu64"\n",
le64_to_cpu(perf->pcie_corr_error));
printf(" Incomplete Shutdown Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->incomplete_shutdown_count));
printf(" Percent Free Blocks %20"PRIu32"%%\n",
perf->percent_free_blocks);
}
static void wdc_print_fb_ca_log_json(struct wdc_ssd_ca_perf_stats *perf)
{
struct json_object *root = json_create_object();
uint64_t converted = 0;
json_object_add_value_int(root, "NAND Bytes Written Hi", le64_to_cpu(perf->nand_bytes_wr_hi));
json_object_add_value_int(root, "NAND Bytes Written Lo", le64_to_cpu(perf->nand_bytes_wr_lo));
json_object_add_value_int(root, "NAND Bytes Read Hi", le64_to_cpu(perf->nand_bytes_rd_hi));
json_object_add_value_int(root, "NAND Bytes Read Lo", le64_to_cpu(perf->nand_bytes_rd_lo));
converted = le64_to_cpu(perf->nand_bad_block);
json_object_add_value_int(root, "NAND Bad Block Count (Normalized)",
converted & 0xFFFF);
json_object_add_value_int(root, "NAND Bad Block Count (Raw)",
converted >> 16);
json_object_add_value_int(root, "Uncorrectable Read Count", le64_to_cpu(perf->uncorr_read_count));
json_object_add_value_int(root, "Soft ECC Error Count", le64_to_cpu(perf->ecc_error_count));
json_object_add_value_int(root, "SSD End to End Detected Correction Count",
le32_to_cpu(perf->ssd_detect_count));
json_object_add_value_int(root, "SSD End to End Corrected Correction Count",
le32_to_cpu(perf->ssd_correct_count));
json_object_add_value_int(root, "System Data Percent Used",
perf->data_percent_used);
json_object_add_value_int(root, "User Data Erase Counts Max",
le32_to_cpu(perf->data_erase_max));
json_object_add_value_int(root, "User Data Erase Counts Min",
le32_to_cpu(perf->data_erase_min));
json_object_add_value_int(root, "Refresh Count", le64_to_cpu(perf->refresh_count));
converted = le64_to_cpu(perf->program_fail);
json_object_add_value_int(root, "Program Fail Count (Normalized)",
converted & 0xFFFF);
json_object_add_value_int(root, "Program Fail Count (Raw)",
converted >> 16);
converted = le64_to_cpu(perf->user_erase_fail);
json_object_add_value_int(root, "User Data Erase Fail Count (Normalized)",
converted & 0xFFFF);
json_object_add_value_int(root, "User Data Erase Fail Count (Raw)",
converted >> 16);
converted = le64_to_cpu(perf->system_erase_fail);
json_object_add_value_int(root, "System Area Erase Fail Count (Normalized)",
converted & 0xFFFF);
json_object_add_value_int(root, "System Area Erase Fail Count (Raw)",
converted >> 16);
json_object_add_value_int(root, "Thermal Throttling Status",
perf->thermal_throttle_status);
json_object_add_value_int(root, "Thermal Throttling Count",
perf->thermal_throttle_count);
json_object_add_value_int(root, "PCIe Correctable Error", le64_to_cpu(perf->pcie_corr_error));
json_object_add_value_int(root, "Incomplete Shutdown Counte", le32_to_cpu(perf->incomplete_shutdown_count));
json_object_add_value_int(root, "Percent Free Blocks", perf->percent_free_blocks);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_print_bd_ca_log_normal(struct nvme_dev *dev, void *data)
{
struct wdc_bd_ca_log_format *bd_data = (struct wdc_bd_ca_log_format *)data;
__u64 *raw;
__u16 *word_raw1, *word_raw2, *word_raw3;
__u32 *dword_raw;
__u8 *byte_raw;
if (bd_data->field_id == 0x00) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("Additional Smart Log for NVME device:%s namespace-id:%x\n", dev->name,
WDC_DE_GLOBAL_NSID);
printf("key normalized raw\n");
printf("program_fail_count : %3"PRIu8"%% %"PRIu64"\n",
bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x01) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("erase_fail_count : %3"PRIu8"%% %"PRIu64"\n",
bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x02) {
word_raw1 = (__u16 *)&bd_data->raw_value[1];
word_raw2 = (__u16 *)&bd_data->raw_value[3];
word_raw3 = (__u16 *)&bd_data->raw_value[5];
printf("wear_leveling : %3"PRIu8"%% min: %"PRIu16", max: %"PRIu16", avg: %"PRIu16"\n",
bd_data->normalized_value,
le16_to_cpu(*word_raw1),
le16_to_cpu(*word_raw2),
le16_to_cpu(*word_raw3));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x03) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("end_to_end_error_detection_count: %3"PRIu8"%% %"PRIu64"\n",
bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x04) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("crc_error_count : %3"PRIu8"%% %"PRIu64"\n",
bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x05) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("timed_workload_media_wear : %3"PRIu8"%% %-.3f%%\n",
bd_data->normalized_value, safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 1024.0));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x06) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("timed_workload_host_reads : %3"PRIu8"%% %"PRIu64"%%\n",
bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x07) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("timed_workload_timer : %3"PRIu8"%% %"PRIu64"\n",
bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x08) {
byte_raw = (__u8 *)&bd_data->raw_value[1];
dword_raw = (__u32 *)&bd_data->raw_value[2];
printf("thermal_throttle_status : %3"PRIu8"%% %"PRIu16"%%, cnt: %"PRIu16"\n",
bd_data->normalized_value, *byte_raw, le32_to_cpu(*dword_raw));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x09) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("retry_buffer_overflow_count : %3"PRIu8"%% %"PRIu64"\n",
bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0A) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("pll_lock_loss_count : %3"PRIu8"%% %"PRIu64"\n",
bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0B) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("nand_bytes_written : %3"PRIu8"%% sectors: %.f\n",
bd_data->normalized_value, safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0C) {
raw = (__u64 *)&bd_data->raw_value[0];
printf("host_bytes_written : %3"PRIu8"%% sectors: %.f\n",
bd_data->normalized_value, safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
} else {
goto invalid_id;
}
goto done;
invalid_id:
printf(" Invalid Field ID = %d\n", bd_data->field_id);
done:
return;
}
static void wdc_print_bd_ca_log_json(void *data)
{
struct wdc_bd_ca_log_format *bd_data = (struct wdc_bd_ca_log_format *)data;
__u64 *raw;
__u16 *word_raw;
__u32 *dword_raw;
__u8 *byte_raw;
struct json_object *root = json_create_object();
if (bd_data->field_id == 0x00) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "program_fail_count normalized",
bd_data->normalized_value);
json_object_add_value_int(root, "program_fail_count raw",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x01) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "erase_fail_count normalized",
bd_data->normalized_value);
json_object_add_value_int(root, "erase_fail_count raw",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x02) {
word_raw = (__u16 *)&bd_data->raw_value[1];
json_object_add_value_int(root, "wear_leveling normalized", bd_data->normalized_value);
json_object_add_value_int(root, "wear_leveling min", le16_to_cpu(*word_raw));
word_raw = (__u16 *)&bd_data->raw_value[3];
json_object_add_value_int(root, "wear_leveling max", le16_to_cpu(*word_raw));
word_raw = (__u16 *)&bd_data->raw_value[5];
json_object_add_value_int(root, "wear_leveling avg", le16_to_cpu(*word_raw));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x03) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "end_to_end_error_detection_count normalized",
bd_data->normalized_value);
json_object_add_value_int(root, "end_to_end_error_detection_count raw",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x04) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "crc_error_count normalized",
bd_data->normalized_value);
json_object_add_value_int(root, "crc_error_count raw",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x05) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "timed_workload_media_wear normalized",
bd_data->normalized_value);
json_object_add_value_double(root, "timed_workload_media_wear raw",
safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 1024.0));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x06) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "timed_workload_host_reads normalized",
bd_data->normalized_value);
json_object_add_value_int(root, "timed_workload_host_reads raw",
le64_to_cpu(*raw & 0x00000000000000FF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x07) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "timed_workload_timer normalized",
bd_data->normalized_value);
json_object_add_value_int(root, "timed_workload_timer",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x08) {
byte_raw = (__u8 *)&bd_data->raw_value[1];
json_object_add_value_int(root, "thermal_throttle_status normalized",
bd_data->normalized_value);
json_object_add_value_int(root, "thermal_throttle_status", *byte_raw);
dword_raw = (__u32 *)&bd_data->raw_value[2];
json_object_add_value_int(root, "thermal_throttle_cnt", le32_to_cpu(*dword_raw));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x09) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "retry_buffer_overflow_count normalized",
bd_data->normalized_value);
json_object_add_value_int(root, "retry_buffer_overflow_count raw",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0A) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "pll_lock_loss_count normalized",
bd_data->normalized_value);
json_object_add_value_int(root, "pll_lock_loss_count raw",
le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0B) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "nand_bytes_written normalized",
bd_data->normalized_value);
json_object_add_value_double(root, "nand_bytes_written raw",
safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
} else {
goto invalid_id;
}
bd_data++;
if (bd_data->field_id == 0x0C) {
raw = (__u64 *)&bd_data->raw_value[0];
json_object_add_value_int(root, "host_bytes_written normalized",
bd_data->normalized_value);
json_object_add_value_double(root, "host_bytes_written raw",
safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
} else {
goto invalid_id;
}
goto done;
invalid_id:
printf(" Invalid Field ID = %d\n", bd_data->field_id);
done:
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
return;
}
static void wdc_print_d0_log_normal(struct wdc_ssd_d0_smart_log *perf)
{
printf(" D0 Smart Log Page Statistics :-\n");
printf(" Lifetime Reallocated Erase Block Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_realloc_erase_block_count));
printf(" Lifetime Power on Hours %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_power_on_hours));
printf(" Lifetime UECC Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_uecc_count));
printf(" Lifetime Write Amplification Factor %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_wrt_amp_factor));
printf(" Trailing Hour Write Amplification Factor %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->trailing_hr_wrt_amp_factor));
printf(" Reserve Erase Block Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->reserve_erase_block_count));
printf(" Lifetime Program Fail Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_program_fail_count));
printf(" Lifetime Block Erase Fail Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_block_erase_fail_count));
printf(" Lifetime Die Failure Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_die_failure_count));
printf(" Lifetime Link Rate Downgrade Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_link_rate_downgrade_count));
printf(" Lifetime Clean Shutdown Count on Power Loss %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_clean_shutdown_count));
printf(" Lifetime Unclean Shutdowns on Power Loss %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_unclean_shutdown_count));
printf(" Current Temperature %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->current_temp));
printf(" Max Recorded Temperature %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->max_recorded_temp));
printf(" Lifetime Retired Block Count %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_retired_block_count));
printf(" Lifetime Read Disturb Reallocation Events %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_read_disturb_realloc_events));
printf(" Lifetime NAND Writes %20"PRIu64"\n",
le64_to_cpu(perf->lifetime_nand_writes));
printf(" Capacitor Health %20"PRIu32"%%\n",
(uint32_t)le32_to_cpu(perf->capacitor_health));
printf(" Lifetime User Writes %20"PRIu64"\n",
le64_to_cpu(perf->lifetime_user_writes));
printf(" Lifetime User Reads %20"PRIu64"\n",
le64_to_cpu(perf->lifetime_user_reads));
printf(" Lifetime Thermal Throttle Activations %20"PRIu32"\n",
(uint32_t)le32_to_cpu(perf->lifetime_thermal_throttle_act));
printf(" Percentage of P/E Cycles Remaining %20"PRIu32"%%\n",
(uint32_t)le32_to_cpu(perf->percentage_pe_cycles_remaining));
}
static void wdc_print_d0_log_json(struct wdc_ssd_d0_smart_log *perf)
{
struct json_object *root = json_create_object();
json_object_add_value_int(root, "Lifetime Reallocated Erase Block Count",
le32_to_cpu(perf->lifetime_realloc_erase_block_count));
json_object_add_value_int(root, "Lifetime Power on Hours",
le32_to_cpu(perf->lifetime_power_on_hours));
json_object_add_value_int(root, "Lifetime UECC Count",
le32_to_cpu(perf->lifetime_uecc_count));
json_object_add_value_int(root, "Lifetime Write Amplification Factor",
le32_to_cpu(perf->lifetime_wrt_amp_factor));
json_object_add_value_int(root, "Trailing Hour Write Amplification Factor",
le32_to_cpu(perf->trailing_hr_wrt_amp_factor));
json_object_add_value_int(root, "Reserve Erase Block Count",
le32_to_cpu(perf->reserve_erase_block_count));
json_object_add_value_int(root, "Lifetime Program Fail Count",
le32_to_cpu(perf->lifetime_program_fail_count));
json_object_add_value_int(root, "Lifetime Block Erase Fail Count",
le32_to_cpu(perf->lifetime_block_erase_fail_count));
json_object_add_value_int(root, "Lifetime Die Failure Count",
le32_to_cpu(perf->lifetime_die_failure_count));
json_object_add_value_int(root, "Lifetime Link Rate Downgrade Count",
le32_to_cpu(perf->lifetime_link_rate_downgrade_count));
json_object_add_value_int(root, "Lifetime Clean Shutdown Count on Power Loss",
le32_to_cpu(perf->lifetime_clean_shutdown_count));
json_object_add_value_int(root, "Lifetime Unclean Shutdowns on Power Loss",
le32_to_cpu(perf->lifetime_unclean_shutdown_count));
json_object_add_value_int(root, "Current Temperature",
le32_to_cpu(perf->current_temp));
json_object_add_value_int(root, "Max Recorded Temperature",
le32_to_cpu(perf->max_recorded_temp));
json_object_add_value_int(root, "Lifetime Retired Block Count",
le32_to_cpu(perf->lifetime_retired_block_count));
json_object_add_value_int(root, "Lifetime Read Disturb Reallocation Events",
le32_to_cpu(perf->lifetime_read_disturb_realloc_events));
json_object_add_value_int(root, "Lifetime NAND Writes",
le64_to_cpu(perf->lifetime_nand_writes));
json_object_add_value_int(root, "Capacitor Health",
le32_to_cpu(perf->capacitor_health));
json_object_add_value_int(root, "Lifetime User Writes",
le64_to_cpu(perf->lifetime_user_writes));
json_object_add_value_int(root, "Lifetime User Reads",
le64_to_cpu(perf->lifetime_user_reads));
json_object_add_value_int(root, "Lifetime Thermal Throttle Activations",
le32_to_cpu(perf->lifetime_thermal_throttle_act));
json_object_add_value_int(root, "Percentage of P/E Cycles Remaining",
le32_to_cpu(perf->percentage_pe_cycles_remaining));
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_get_commit_action_bin(__u8 commit_action_type, char *action_bin)
{
switch (commit_action_type) {
case 0:
strcpy(action_bin, "000b");
break;
case 1:
strcpy(action_bin, "001b");
break;
case 2:
strcpy(action_bin, "010b");
break;
case 3:
strcpy(action_bin, "011b");
break;
case 4:
strcpy(action_bin, "100b");
break;
case 5:
strcpy(action_bin, "101b");
break;
case 6:
strcpy(action_bin, "110b");
break;
case 7:
strcpy(action_bin, "111b");
break;
default:
strcpy(action_bin, "INVALID");
}
}
static void wdc_print_fw_act_history_log_normal(__u8 *data, int num_entries,
__u32 cust_id, __u32 vendor_id,
__u32 device_id)
{
int i, j;
char previous_fw[9];
char new_fw[9];
char commit_action_bin[8];
char time_str[100];
__u16 oldestEntryIdx = 0, entryIdx = 0;
uint64_t timestamp;
__u64 timestamp_sec;
char *null_fw = "--------";
memset((void *)time_str, '\0', 100);
if (data[0] == WDC_NVME_GET_FW_ACT_HISTORY_C2_LOG_ID) {
printf(" Firmware Activate History Log\n");
if (cust_id == WDC_CUSTOMER_ID_0x1005 ||
vendor_id == WDC_NVME_SNDK_VID) {
printf(" Power on Hour Power Cycle Previous New\n");
printf(" Entry hh:mm:ss Count Firmware Firmware Slot Action Result\n");
printf(" ----- ----------------- ----------------- --------- --------- ----- ------ -------\n");
} else {
printf(" Power Cycle Previous New\n");
printf(" Entry Timestamp Count Firmware Firmware Slot Action Result\n");
printf(" ----- ----------------- ----------------- --------- --------- ----- ------ -------\n");
}
struct wdc_fw_act_history_log_format_c2 *fw_act_history_entry = (struct wdc_fw_act_history_log_format_c2 *)(data);
oldestEntryIdx = WDC_MAX_NUM_ACT_HIST_ENTRIES;
if (num_entries == WDC_MAX_NUM_ACT_HIST_ENTRIES) {
/* find lowest/oldest entry */
for (i = 0; i < num_entries; i++) {
j = (i+1 == WDC_MAX_NUM_ACT_HIST_ENTRIES) ? 0 : i+1;
if (le16_to_cpu(fw_act_history_entry->entry[i].fw_act_hist_entries) >
le16_to_cpu(fw_act_history_entry->entry[j].fw_act_hist_entries)) {
oldestEntryIdx = j;
break;
}
}
}
if (oldestEntryIdx == WDC_MAX_NUM_ACT_HIST_ENTRIES)
entryIdx = 0;
else
entryIdx = oldestEntryIdx;
for (i = 0; i < num_entries; i++) {
memset((void *)previous_fw, 0, 9);
memset((void *)new_fw, 0, 9);
memset((void *)commit_action_bin, 0, 8);
memcpy(previous_fw, (char *)&(fw_act_history_entry->entry[entryIdx].previous_fw_version), 8);
if (strlen((char *)&(fw_act_history_entry->entry[entryIdx].current_fw_version)) > 1)
memcpy(new_fw, (char *)&(fw_act_history_entry->entry[entryIdx].current_fw_version), 8);
else
memcpy(new_fw, null_fw, 8);
printf("%5"PRIu16"", (uint16_t)le16_to_cpu(fw_act_history_entry->entry[entryIdx].fw_act_hist_entries));
timestamp = (0x0000FFFFFFFFFFFF &
le64_to_cpu(
fw_act_history_entry->entry[entryIdx].timestamp));
timestamp_sec = timestamp / 1000;
if (cust_id == WDC_CUSTOMER_ID_0x1005) {
printf(" ");
memset((void *)time_str, 0, 9);
sprintf((char *)time_str, "%"PRIu32":%u:%u",
(__u32)(timestamp_sec/3600),
(__u8)(timestamp_sec%3600/60),
(__u8)(timestamp_sec%60));
printf("%s", time_str);
printf(" ");
} else if (vendor_id == WDC_NVME_SNDK_VID) {
printf(" ");
memset((void *)time_str, 0, 9);
sprintf((char *)time_str, "%"PRIu32":%u:%u",
(__u32)((timestamp_sec/3600)%24),
(__u8)((timestamp_sec/60)%60),
(__u8)(timestamp_sec%60));
printf("%s", time_str);
printf(" ");
} else {
printf(" ");
printf("%16"PRIu64"", timestamp);
printf(" ");
}
printf("%16"PRIu64"", (uint64_t)le64_to_cpu(fw_act_history_entry->entry[entryIdx].power_cycle_count));
printf(" ");
printf("%s", (char *)previous_fw);
printf(" ");
printf("%s", (char *)new_fw);
printf(" ");
printf("%2"PRIu8"", (uint8_t)fw_act_history_entry->entry[entryIdx].slot_number);
printf(" ");
wdc_get_commit_action_bin(
fw_act_history_entry->entry[entryIdx].commit_action_type,
(char *)&commit_action_bin);
printf(" %s", (char *)commit_action_bin);
printf(" ");
if (!le16_to_cpu(fw_act_history_entry->entry[entryIdx].result))
printf("pass");
else
printf("fail #%d", (uint16_t)le16_to_cpu(fw_act_history_entry->entry[entryIdx].result));
printf("\n");
entryIdx++;
if (entryIdx >= WDC_MAX_NUM_ACT_HIST_ENTRIES)
entryIdx = 0;
}
} else {
printf(" Firmware Activate History Log\n");
printf(" Power on Hour Power Cycle Previous New\n");
printf(" Entry hh:mm:ss Count Firmware Firmware Slot Action Result\n");
printf(" ----- -------------- -------------------- ---------- ---------- ----- ------ -------\n");
struct wdc_fw_act_history_log_entry *fw_act_history_entry = (struct wdc_fw_act_history_log_entry *)(data + sizeof(struct wdc_fw_act_history_log_hdr));
oldestEntryIdx = WDC_MAX_NUM_ACT_HIST_ENTRIES;
if (num_entries == WDC_MAX_NUM_ACT_HIST_ENTRIES) {
/* find lowest/oldest entry */
for (i = 0; i < num_entries; i++) {
if (le32_to_cpu(fw_act_history_entry[i].entry_num) > le32_to_cpu(fw_act_history_entry[i+1].entry_num)) {
oldestEntryIdx = i+1;
break;
}
}
}
if (oldestEntryIdx == WDC_MAX_NUM_ACT_HIST_ENTRIES)
entryIdx = 0;
else
entryIdx = oldestEntryIdx;
for (i = 0; i < num_entries; i++) {
memset((void *)previous_fw, 0, 9);
memset((void *)new_fw, 0, 9);
memset((void *)commit_action_bin, 0, 8);
memcpy(previous_fw, (char *)&(fw_act_history_entry[entryIdx].previous_fw_version), 8);
if (strlen((char *)&(fw_act_history_entry[entryIdx].new_fw_version)) > 1)
memcpy(new_fw, (char *)&(fw_act_history_entry[entryIdx].new_fw_version), 8);
else
memcpy(new_fw, null_fw, 8);
printf("%5"PRIu32"", (uint32_t)le32_to_cpu(fw_act_history_entry[entryIdx].entry_num));
printf(" ");
printf("%04d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)/3600),
(int)((le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)%3600)/60),
(int)(le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)%60));
printf(" ");
printf("%16"PRIu32"", (uint32_t)le32_to_cpu(fw_act_history_entry[entryIdx].power_cycle_count));
printf(" ");
printf("%s", (char *)previous_fw);
printf(" ");
printf("%s", (char *)new_fw);
printf(" ");
printf("%2"PRIu8"", (uint8_t)fw_act_history_entry[entryIdx].slot_number);
printf(" ");
wdc_get_commit_action_bin(fw_act_history_entry[entryIdx].commit_action_type,
(char *)&commit_action_bin);
printf(" %s", (char *)commit_action_bin);
printf(" ");
if (!le16_to_cpu(fw_act_history_entry[entryIdx].result))
printf("pass");
else
printf("fail #%d", (uint16_t)le16_to_cpu(fw_act_history_entry[entryIdx].result));
printf("\n");
entryIdx++;
if (entryIdx >= WDC_MAX_NUM_ACT_HIST_ENTRIES)
entryIdx = 0;
}
}
}
static void wdc_print_fw_act_history_log_json(__u8 *data, int num_entries,
__u32 cust_id, __u32 vendor_id,
__u32 device_id)
{
struct json_object *root = json_create_object();
int i, j;
char previous_fw[9];
char new_fw[9];
char commit_action_bin[8];
char fail_str[32];
char time_str[100];
char ext_time_str[20];
uint64_t timestamp;
__u64 timestamp_sec;
memset((void *)previous_fw, 0, 9);
memset((void *)new_fw, 0, 9);
memset((void *)commit_action_bin, 0, 8);
memset((void *)time_str, '\0', 100);
memset((void *)ext_time_str, 0, 20);
memset((void *)fail_str, 0, 11);
char *null_fw = "--------";
__u16 oldestEntryIdx = 0, entryIdx = 0;
if (data[0] == WDC_NVME_GET_FW_ACT_HISTORY_C2_LOG_ID) {
struct wdc_fw_act_history_log_format_c2 *fw_act_history_entry = (struct wdc_fw_act_history_log_format_c2 *)(data);
oldestEntryIdx = WDC_MAX_NUM_ACT_HIST_ENTRIES;
if (num_entries == WDC_MAX_NUM_ACT_HIST_ENTRIES) {
/* find lowest/oldest entry */
for (i = 0; i < num_entries; i++) {
j = (i+1 == WDC_MAX_NUM_ACT_HIST_ENTRIES) ? 0 : i+1;
if (le16_to_cpu(fw_act_history_entry->entry[i].fw_act_hist_entries) >
le16_to_cpu(fw_act_history_entry->entry[j].fw_act_hist_entries)) {
oldestEntryIdx = j;
break;
}
}
}
if (oldestEntryIdx == WDC_MAX_NUM_ACT_HIST_ENTRIES)
entryIdx = 0;
else
entryIdx = oldestEntryIdx;
for (i = 0; i < num_entries; i++) {
memcpy(previous_fw,
(char *)&(fw_act_history_entry->entry[entryIdx].previous_fw_version),
8);
if (strlen((char *)&(fw_act_history_entry->entry[entryIdx].current_fw_version)) > 1)
memcpy(new_fw,
(char *)&(fw_act_history_entry->entry[entryIdx].current_fw_version),
8);
else
memcpy(new_fw, null_fw, 8);
json_object_add_value_int(root, "Entry",
le16_to_cpu(fw_act_history_entry->entry[entryIdx].fw_act_hist_entries));
timestamp = (0x0000FFFFFFFFFFFF &
le64_to_cpu(
fw_act_history_entry->entry[entryIdx].timestamp));
timestamp_sec = timestamp / 1000;
if (cust_id == WDC_CUSTOMER_ID_0x1005) {
sprintf((char *)time_str, "%"PRIu32":%u:%u",
(__u32)(timestamp_sec/3600),
(__u8)(timestamp_sec%3600/60),
(__u8)(timestamp_sec%60));
json_object_add_value_string(root, "Power on Hour", time_str);
} else if (vendor_id == WDC_NVME_SNDK_VID) {
sprintf((char *)time_str, "%"PRIu32":%u:%u",
(__u32)((timestamp_sec/3600)%24),
(__u8)((timestamp_sec/60)%60),
(__u8)(timestamp_sec%60));
json_object_add_value_string(root, "Power on Hour", time_str);
} else {
json_object_add_value_uint64(root, "Timestamp", timestamp);
}
json_object_add_value_int(root, "Power Cycle Count",
le64_to_cpu(fw_act_history_entry->entry[entryIdx].power_cycle_count));
json_object_add_value_string(root, "Previous Firmware",
previous_fw);
json_object_add_value_string(root, "New Firmware",
new_fw);
json_object_add_value_int(root, "Slot",
fw_act_history_entry->entry[entryIdx].slot_number);
wdc_get_commit_action_bin(
fw_act_history_entry->entry[entryIdx].commit_action_type,
(char *)&commit_action_bin);
json_object_add_value_string(root, "Action", commit_action_bin);
if (!le16_to_cpu(fw_act_history_entry->entry[entryIdx].result)) {
json_object_add_value_string(root, "Result", "pass");
} else {
sprintf((char *)fail_str, "fail #%d", (int)(le16_to_cpu(fw_act_history_entry->entry[entryIdx].result)));
json_object_add_value_string(root, "Result", fail_str);
}
json_print_object(root, NULL);
printf("\n");
entryIdx++;
if (entryIdx >= WDC_MAX_NUM_ACT_HIST_ENTRIES)
entryIdx = 0;
}
} else {
struct wdc_fw_act_history_log_entry *fw_act_history_entry = (struct wdc_fw_act_history_log_entry *)(data + sizeof(struct wdc_fw_act_history_log_hdr));
oldestEntryIdx = WDC_MAX_NUM_ACT_HIST_ENTRIES;
if (num_entries == WDC_MAX_NUM_ACT_HIST_ENTRIES) {
/* find lowest/oldest entry */
for (i = 0; i < num_entries; i++) {
if (le32_to_cpu(fw_act_history_entry[i].entry_num) > le32_to_cpu(fw_act_history_entry[i+1].entry_num)) {
oldestEntryIdx = i+1;
break;
}
}
}
if (oldestEntryIdx == WDC_MAX_NUM_ACT_HIST_ENTRIES)
entryIdx = 0;
else
entryIdx = oldestEntryIdx;
for (i = 0; i < num_entries; i++) {
memcpy(previous_fw,
(char *)&(fw_act_history_entry[entryIdx].previous_fw_version), 8);
if (strlen((char *)&(fw_act_history_entry[entryIdx].new_fw_version)) > 1)
memcpy(new_fw,
(char *)&(fw_act_history_entry[entryIdx].new_fw_version), 8);
else
memcpy(new_fw, null_fw, 8);
json_object_add_value_int(root, "Entry",
le32_to_cpu(fw_act_history_entry[entryIdx].entry_num));
sprintf((char *)time_str, "%04d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)/3600),
(int)((le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)%3600)/60),
(int)(le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)%60));
json_object_add_value_string(root, "Power on Hour", time_str);
json_object_add_value_int(root, "Power Cycle Count",
le32_to_cpu(fw_act_history_entry[entryIdx].power_cycle_count));
json_object_add_value_string(root, "Previous Firmware",
previous_fw);
json_object_add_value_string(root, "New Firmware",
new_fw);
json_object_add_value_int(root, "Slot",
fw_act_history_entry[entryIdx].slot_number);
wdc_get_commit_action_bin(fw_act_history_entry[entryIdx].commit_action_type,
(char *)&commit_action_bin);
json_object_add_value_string(root, "Action", commit_action_bin);
if (!le16_to_cpu(fw_act_history_entry[entryIdx].result)) {
json_object_add_value_string(root, "Result", "pass");
} else {
sprintf((char *)fail_str, "fail #%d", (int)(le16_to_cpu(fw_act_history_entry[entryIdx].result)));
json_object_add_value_string(root, "Result", fail_str);
}
json_print_object(root, NULL);
printf("\n");
entryIdx++;
if (entryIdx >= WDC_MAX_NUM_ACT_HIST_ENTRIES)
entryIdx = 0;
}
}
json_free_object(root);
}
static int nvme_get_ext_smart_cloud_log(int fd, __u8 **data, int uuid_index, __u32 namespace_id)
{
int ret, i;
__u8 *log_ptr = NULL;
log_ptr = (__u8 *)malloc(sizeof(__u8) * WDC_NVME_SMART_CLOUD_ATTR_LEN);
if (!log_ptr) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
/* Get the 0xC0 log data */
struct nvme_get_log_args args = {
.args_size = sizeof(args),
.fd = fd,
.lid = WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_ID,
.nsid = namespace_id,
.lpo = 0,
.lsp = NVME_LOG_LSP_NONE,
.lsi = 0,
.rae = false,
.uuidx = uuid_index,
.csi = NVME_CSI_NVM,
.ot = false,
.len = WDC_NVME_SMART_CLOUD_ATTR_LEN,
.log = log_ptr,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
ret = nvme_get_log(&args);
if (!ret) {
/* Verify GUID matches */
for (i = 0; i < WDC_C0_GUID_LENGTH; i++) {
if (ext_smart_guid[i] != *&log_ptr[SCAO_V1_LPG + i]) {
fprintf(stderr, "ERROR: WDC: Unknown GUID in C0 Log Page V1 data\n");
int j;
fprintf(stderr, "ERROR: WDC: Expected GUID: 0x");
for (j = 0; j < WDC_C0_GUID_LENGTH; j++)
fprintf(stderr, "%x", ext_smart_guid[j]);
fprintf(stderr, "\nERROR: WDC: Actual GUID: 0x");
for (j = 0; j < WDC_C0_GUID_LENGTH; j++)
fprintf(stderr, "%x", *&log_ptr[SCAO_V1_LPG + j]);
fprintf(stderr, "\n");
ret = -1;
break;
}
}
}
*data = log_ptr;
return ret;
}
static int nvme_get_hw_rev_log(int fd, __u8 **data, int uuid_index, __u32 namespace_id)
{
int ret, i;
struct wdc_nvme_hw_rev_log *log_ptr = NULL;
log_ptr = (struct wdc_nvme_hw_rev_log *)malloc(sizeof(__u8) * WDC_NVME_HW_REV_LOG_PAGE_LEN);
if (!log_ptr) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
/* Get the 0xC0 log data */
struct nvme_get_log_args args = {
.args_size = sizeof(args),
.fd = fd,
.lid = WDC_NVME_GET_HW_REV_LOG_OPCODE,
.nsid = namespace_id,
.lpo = 0,
.lsp = NVME_LOG_LSP_NONE,
.lsi = 0,
.rae = false,
.uuidx = uuid_index,
.csi = NVME_CSI_NVM,
.ot = false,
.len = WDC_NVME_HW_REV_LOG_PAGE_LEN,
.log = log_ptr,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
ret = nvme_get_log(&args);
if (!ret) {
/* Verify GUID matches */
for (i = 0; i < WDC_NVME_C6_GUID_LENGTH; i++) {
if (hw_rev_log_guid[i] != log_ptr->hw_rev_guid[i]) {
fprintf(stderr, "ERROR: WDC: Unknown GUID in HW Revision Log Page data\n");
int j;
fprintf(stderr, "ERROR: WDC: Expected GUID: 0x");
for (j = 0; j < WDC_NVME_C6_GUID_LENGTH; j++)
fprintf(stderr, "%x", hw_rev_log_guid[j]);
fprintf(stderr, "\nERROR: WDC: Actual GUID: 0x");
for (j = 0; j < WDC_NVME_C6_GUID_LENGTH; j++)
fprintf(stderr, "%x", log_ptr->hw_rev_guid[j]);
fprintf(stderr, "\n");
ret = -1;
break;
}
}
}
*data = (__u8 *)log_ptr;
return ret;
}
static void wdc_print_hw_rev_log_normal(void *data)
{
int i;
struct wdc_nvme_hw_rev_log *log_data = (struct wdc_nvme_hw_rev_log *)data;
printf(" Hardware Revision Log:-\n");
printf(" Global Device HW Revision : %d\n",
log_data->hw_rev_gdr);
printf(" ASIC HW Revision : %d\n",
log_data->hw_rev_ar);
printf(" PCB Manufacturer Code : %d\n",
log_data->hw_rev_pbc_mc);
printf(" DRAM Manufacturer Code : %d\n",
log_data->hw_rev_dram_mc);
printf(" NAND Manufacturer Code : %d\n",
log_data->hw_rev_nand_mc);
printf(" PMIC 1 Manufacturer Code : %d\n",
log_data->hw_rev_pmic1_mc);
printf(" PMIC 2 Manufacturer Code : %d\n",
log_data->hw_rev_pmic2_mc);
printf(" Other Component 1 Manf Code : %d\n",
log_data->hw_rev_c1_mc);
printf(" Other Component 2 Manf Code : %d\n",
log_data->hw_rev_c2_mc);
printf(" Other Component 3 Manf Code : %d\n",
log_data->hw_rev_c3_mc);
printf(" Other Component 4 Manf Code : %d\n",
log_data->hw_rev_c4_mc);
printf(" Other Component 5 Manf Code : %d\n",
log_data->hw_rev_c5_mc);
printf(" Other Component 6 Manf Code : %d\n",
log_data->hw_rev_c6_mc);
printf(" Other Component 7 Manf Code : %d\n",
log_data->hw_rev_c7_mc);
printf(" Other Component 8 Manf Code : %d\n",
log_data->hw_rev_c8_mc);
printf(" Other Component 9 Manf Code : %d\n",
log_data->hw_rev_c9_mc);
printf(" Device Manf Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_dev_mdi[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" ASIC Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_asic_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" PCB Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_pcb_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" DRAM Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_dram_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" NAND Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_nand_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" PMIC 1 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_pmic1_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" PMIC 2 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_pmic2_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Component 1 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_c1_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Component 2 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_c2_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Component 3 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_c3_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Component 4 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_c4_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Component 5 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_c5_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Component 6 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_c6_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Component 7 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_c7_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Component 8 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_c8_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Component 9 Detailed Info : 0x");
for (i = 0; i < 16; i++) {
printf("%02x", log_data->hw_rev_c9_di[i]);
if (i == 7)
printf(" 0x");
}
printf("\n");
printf(" Serial Number : 0x");
for (i = 0; i < 32; i++) {
if ((i > 1) & !(i % 8))
printf(" 0x");
printf("%02x", log_data->hw_rev_sn[i]);
}
printf("\n");
printf(" Log Page Version : %d\n", log_data->hw_rev_version);
printf(" Log page GUID : 0x");
printf("%"PRIx64"%"PRIx64"\n", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_guid[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_guid[0]));
printf("\n");
}
static void wdc_print_hw_rev_log_json(void *data)
{
struct wdc_nvme_hw_rev_log *log_data = (struct wdc_nvme_hw_rev_log *)data;
struct json_object *root = json_create_object();
char json_data[80];
json_object_add_value_uint(root, "Global Device HW Revision",
log_data->hw_rev_gdr);
json_object_add_value_uint(root, "ASIC HW Revision",
log_data->hw_rev_ar);
json_object_add_value_uint(root, "PCB Manufacturer Code",
log_data->hw_rev_pbc_mc);
json_object_add_value_uint(root, "DRAM Manufacturer Code",
log_data->hw_rev_dram_mc);
json_object_add_value_uint(root, "NAND Manufacturer Code",
log_data->hw_rev_nand_mc);
json_object_add_value_uint(root, "PMIC 1 Manufacturer Code",
log_data->hw_rev_pmic1_mc);
json_object_add_value_uint(root, "PMIC 2 Manufacturer Code",
log_data->hw_rev_pmic2_mc);
json_object_add_value_uint(root, "Other Component 1 Manf Code",
log_data->hw_rev_c1_mc);
json_object_add_value_uint(root, "Other Component 2 Manf Code",
log_data->hw_rev_c2_mc);
json_object_add_value_uint(root, "Other Component 3 Manf Code",
log_data->hw_rev_c3_mc);
json_object_add_value_uint(root, "Other Component 4 Manf Code",
log_data->hw_rev_c4_mc);
json_object_add_value_uint(root, "Other Component 5 Manf Code",
log_data->hw_rev_c5_mc);
json_object_add_value_uint(root, "Other Component 6 Manf Code",
log_data->hw_rev_c6_mc);
json_object_add_value_uint(root, "Other Component 7 Manf Code",
log_data->hw_rev_c7_mc);
json_object_add_value_uint(root, "Other Component 8 Manf Code",
log_data->hw_rev_c8_mc);
json_object_add_value_uint(root, "Other Component 9 Manf Code",
log_data->hw_rev_c9_mc);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_dev_mdi[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_dev_mdi[0]));
json_object_add_value_string(root, "Device Manf Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_asic_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_asic_di[0]));
json_object_add_value_string(root, "ASIC Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pcb_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pcb_di[0]));
json_object_add_value_string(root, "PCB Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_dram_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_dram_di[0]));
json_object_add_value_string(root, "DRAM Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_nand_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_nand_di[0]));
json_object_add_value_string(root, "NAND Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pmic1_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pmic1_di[0]));
json_object_add_value_string(root, "PMIC 1 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pmic2_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pmic2_di[0]));
json_object_add_value_string(root, "PMIC 2 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c1_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c1_di[0]));
json_object_add_value_string(root, "Component 1 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c2_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c2_di[0]));
json_object_add_value_string(root, "Component 2 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c3_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c3_di[0]));
json_object_add_value_string(root, "Component 3 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c4_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c4_di[0]));
json_object_add_value_string(root, "Component 4 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c5_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c5_di[0]));
json_object_add_value_string(root, "Component 5 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c6_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c6_di[0]));
json_object_add_value_string(root, "Component 6 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c7_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c7_di[0]));
json_object_add_value_string(root, "Component 7 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c8_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c8_di[0]));
json_object_add_value_string(root, "Component 8 Detailed Info", json_data);
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c9_di[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c9_di[0]));
json_object_add_value_string(root, "Component 9 Detailed Info", json_data);
memset((void *)json_data, 0, 80);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"%"PRIx64"%"PRIx64"",
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_sn[0]), le64_to_cpu(*(uint64_t *)&log_data->hw_rev_sn[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_sn[16]), le64_to_cpu(*(uint64_t *)&log_data->hw_rev_sn[24]));
json_object_add_value_string(root, "Serial Number", json_data);
json_object_add_value_uint(root, "Log Page Version",
le16_to_cpu(log_data->hw_rev_version));
memset((void *)json_data, 0, 40);
sprintf((char *)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_guid[8]),
le64_to_cpu(*(uint64_t *)&log_data->hw_rev_guid[0]));
json_object_add_value_string(root, "Log Page GUID", json_data);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_print_ext_smart_cloud_log_normal(void *data, int mask)
{
int i;
struct __packed wdc_nvme_ext_smart_log * ext_smart_log_ptr = (struct __packed wdc_nvme_ext_smart_log *)data;
if (mask == WDC_SCA_V1_NAND_STATS)
printf(" NAND Statistics :-\n");
else
printf(" SMART Cloud Attributes :-\n");
printf(" Physical Media Units Written TLC (Bytes): %s\n",
uint128_t_to_string(le128_to_cpu(
ext_smart_log_ptr->ext_smart_pmuwt)));
printf(" Physical Media Units Written SLC (Bytes): %s\n",
uint128_t_to_string(le128_to_cpu(
ext_smart_log_ptr->ext_smart_pmuws)));
printf(" Bad User NAND Block Count (Normalized) (Int) : %d\n",
le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_bunbc));
printf(" Bad User NAND Block Count (Raw) (Int) : %"PRIu64"\n",
le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_bunbc & 0xFFFFFFFFFFFF0000));
printf(" XOR Recovery Count (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_xrc));
printf(" Uncorrectable Read Error Count (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_urec));
if (mask == WDC_SCA_V1_ALL) {
printf(" SSD End to End correction counts (Corrected Errors) (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_eece));
printf(" SSD End to End correction counts (Detected Errors) (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_eede));
printf(" SSD End to End correction counts (Uncorrected E2E Errors) (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_eeue));
printf(" System Data %% life-used : %d %%\n",
ext_smart_log_ptr->ext_smart_sdpu);
}
printf(" User data erase counts (Minimum TLC) (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_mnudec));
printf(" User data erase counts (Maximum TLC) (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_mxudec));
printf(" User data erase counts (Minimum SLC) (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_mnec));
printf(" User data erase counts (Maximum SLC) (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_mxec));
printf(" User data erase counts (Average SLC) (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_avec));
printf(" User data erase counts (Average TLC) (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_avudec));
printf(" Program Fail Count (Normalized) (Int) : %d\n",
le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_pfc));
printf(" Program Fail Count (Raw) (Int) : %"PRIu64"\n",
le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_pfc & 0xFFFFFFFFFFFF0000));
printf(" Erase Fail Count (Normalized) (Int) : %d\n",
le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_efc));
printf(" Erase Fail Count (Raw) (Int) : %"PRIu64"\n",
le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_efc & 0xFFFFFFFFFFFF0000));
if (mask == WDC_SCA_V1_ALL) {
printf(" PCIe Correctable Error Count (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_pcec));
printf(" %% Free Blocks (User) (Int) : %d %%\n",
ext_smart_log_ptr->ext_smart_pfbu);
printf(" Security Version Number (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_svn));
printf(" %% Free Blocks (System) (Int) : %d %%\n",
ext_smart_log_ptr->ext_smart_pfbs);
printf(" NVMe Stats (# Data Set Management/TRIM Commands Completed) (Int): %s\n",
uint128_t_to_string(le128_to_cpu(
ext_smart_log_ptr->ext_smart_dcc)));
printf(" Total Namespace Utilization (nvme0n1 NUSE) (Bytes) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_tnu));
printf(" NVMe Stats (# NVMe Format Commands Completed) (Int) : %d\n",
le16_to_cpu(ext_smart_log_ptr->ext_smart_fcc));
printf(" Background Back-Pressure Gauge(%%) (Int) : %d\n",
ext_smart_log_ptr->ext_smart_bbpg);
}
printf(" Total # of Soft ECC Error Count (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_seec));
if (mask == WDC_SCA_V1_ALL) {
printf(" Total # of Read Refresh Count (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_rfsc));
}
printf(" Bad System NAND Block Count (Normalized) (Int) : %d\n",
le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_bsnbc));
printf(" Bad System NAND Block Count (Raw) (Int) : %"PRIu64"\n",
le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_bsnbc & 0xFFFFFFFFFFFF0000));
printf(" Endurance Estimate (Total Writable Lifetime Bytes) (Bytes) : %s\n",
uint128_t_to_string(
le128_to_cpu(ext_smart_log_ptr->ext_smart_eest)));
if (mask == WDC_SCA_V1_ALL) {
printf(" Thermal Throttling Status & Count (Number of thermal throttling events) (Int) : %d\n",
le16_to_cpu(ext_smart_log_ptr->ext_smart_ttc));
printf(" Total # Unaligned I/O (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_uio));
}
printf(" Total Physical Media Units Read (Bytes) (Int) : %s\n",
uint128_t_to_string(
le128_to_cpu(ext_smart_log_ptr->ext_smart_pmur)));
if (mask == WDC_SCA_V1_ALL) {
printf(" Command Timeout (# of READ Commands > 5 Seconds) (Int) : %"PRIu32"\n",
le32_to_cpu(ext_smart_log_ptr->ext_smart_rtoc));
printf(" Command Timeout (# of WRITE Commands > 5 Seconds) (Int) : %"PRIu32"\n",
le32_to_cpu(ext_smart_log_ptr->ext_smart_wtoc));
printf(" Command Timeout (# of TRIM Commands > 5 Seconds) (Int) : %"PRIu32"\n",
le32_to_cpu(ext_smart_log_ptr->ext_smart_ttoc));
printf(" Total PCIe Link Retraining Count (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_plrc));
printf(" Active Power State Change Count (Int) : %"PRIu64"\n",
le64_to_cpu(ext_smart_log_ptr->ext_smart_pscc));
}
printf(" Cloud Boot SSD Spec Version (Int) : %d.%d.%d.%d\n",
le16_to_cpu(ext_smart_log_ptr->ext_smart_maj),
le16_to_cpu(ext_smart_log_ptr->ext_smart_min),
le16_to_cpu(ext_smart_log_ptr->ext_smart_pt),
le16_to_cpu(ext_smart_log_ptr->ext_smart_err));
printf(" Cloud Boot SSD HW Revision (Int) : %d.%d.%d.%d\n",
0, 0, 0, 0);
if (mask == WDC_SCA_V1_ALL) {
printf(" FTL Unit Size : %"PRIu32"\n",
le32_to_cpu(ext_smart_log_ptr->ext_smart_ftlus));
printf(" TCG Ownership Status : %"PRIu32"\n",
le32_to_cpu(ext_smart_log_ptr->ext_smart_tcgos));
printf(" Log Page Version (Int) : %d\n",
le16_to_cpu(ext_smart_log_ptr->ext_smart_lpv));
printf(" Log page GUID (Hex) : 0x");
for (i = WDC_C0_GUID_LENGTH; i > 0; i--)
printf("%02x", ext_smart_log_ptr->ext_smart_lpg[i-1]);
printf("\n");
}
printf("\n");
}
static void wdc_print_ext_smart_cloud_log_json(void *data, int mask)
{
struct __packed wdc_nvme_ext_smart_log * ext_smart_log_ptr =
(struct __packed wdc_nvme_ext_smart_log *)data;
struct json_object *root = json_create_object();
json_object_add_value_uint128(root, "physical_media_units_bytes_tlc",
le128_to_cpu(ext_smart_log_ptr->ext_smart_pmuwt));
json_object_add_value_uint128(root, "physical_media_units_bytes_slc",
le128_to_cpu(ext_smart_log_ptr->ext_smart_pmuws));
json_object_add_value_uint(root, "bad_user_blocks_normalized",
le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_bunbc));
json_object_add_value_uint64(root, "bad_user_blocks_raw",
le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_bunbc & 0xFFFFFFFFFFFF0000));
json_object_add_value_uint64(root, "xor_recovery_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_xrc));
json_object_add_value_uint64(root, "uncorrectable_read_errors",
le64_to_cpu(ext_smart_log_ptr->ext_smart_urec));
if (mask == WDC_SCA_V1_ALL) {
json_object_add_value_uint64(root, "corrected_e2e_errors",
le64_to_cpu(ext_smart_log_ptr->ext_smart_eece));
json_object_add_value_uint64(root, "detected_e2e_errors",
le64_to_cpu(ext_smart_log_ptr->ext_smart_eede));
json_object_add_value_uint64(root, "uncorrected_e2e_errors",
le64_to_cpu(ext_smart_log_ptr->ext_smart_eeue));
json_object_add_value_uint(root, "system_data_life_used_pct",
(__u8)ext_smart_log_ptr->ext_smart_sdpu);
}
json_object_add_value_uint64(root, "min_slc_user_data_erase_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_mnec));
json_object_add_value_uint64(root, "min_tlc_user_data_erase_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_mnudec));
json_object_add_value_uint64(root, "max_slc_user_data_erase_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_mxec));
json_object_add_value_uint64(root, "max_tlc_user_data_erase_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_mxudec));
json_object_add_value_uint64(root, "avg_slc_user_data_erase_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_avec));
json_object_add_value_uint64(root, "avg_tlc_user_data_erase_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_avudec));
json_object_add_value_uint(root, "program_fail_count_normalized",
le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_pfc));
json_object_add_value_uint64(root, "program_fail_count_raw",
le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_pfc & 0xFFFFFFFFFFFF0000));
json_object_add_value_uint(root, "erase_fail_count_normalized",
le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_efc));
json_object_add_value_uint64(root, "erase_fail_count_raw",
le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_efc & 0xFFFFFFFFFFFF0000));
if (mask == WDC_SCA_V1_ALL) {
json_object_add_value_uint64(root, "pcie_correctable_errors",
le64_to_cpu(ext_smart_log_ptr->ext_smart_pcec));
json_object_add_value_uint(root, "pct_free_blocks_user",
(__u8)ext_smart_log_ptr->ext_smart_pfbu);
json_object_add_value_uint64(root, "security_version",
le64_to_cpu(ext_smart_log_ptr->ext_smart_svn));
json_object_add_value_uint(root, "pct_free_blocks_system",
(__u8)ext_smart_log_ptr->ext_smart_pfbs);
json_object_add_value_uint128(root, "num_of_trim_commands",
le128_to_cpu(ext_smart_log_ptr->ext_smart_dcc));
json_object_add_value_uint64(root, "total_nuse_bytes",
le64_to_cpu(ext_smart_log_ptr->ext_smart_tnu));
json_object_add_value_uint(root, "num_of_format_commands",
le16_to_cpu(ext_smart_log_ptr->ext_smart_fcc));
json_object_add_value_uint(root, "background_pressure_gauge",
(__u8)ext_smart_log_ptr->ext_smart_bbpg);
}
json_object_add_value_uint64(root, "soft_ecc_error_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_seec));
if (mask == WDC_SCA_V1_ALL)
json_object_add_value_uint64(root, "read_refresh_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_rfsc));
json_object_add_value_uint(root, "bad_system_block_normalized",
le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_bsnbc));
json_object_add_value_uint64(root, "bad_system_block_raw",
le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_bsnbc & 0xFFFFFFFFFFFF0000));
json_object_add_value_uint128(root, "endurance_est_bytes",
le128_to_cpu(ext_smart_log_ptr->ext_smart_eest));
if (mask == WDC_SCA_V1_ALL) {
json_object_add_value_uint(root, "num_throttling_events",
le16_to_cpu(ext_smart_log_ptr->ext_smart_ttc));
json_object_add_value_uint64(root, "total_unaligned_io",
le64_to_cpu(ext_smart_log_ptr->ext_smart_uio));
}
json_object_add_value_uint128(root, "physical_media_units_read_bytes",
le128_to_cpu(ext_smart_log_ptr->ext_smart_pmur));
if (mask == WDC_SCA_V1_ALL) {
json_object_add_value_uint(root, "num_read_timeouts",
le32_to_cpu(ext_smart_log_ptr->ext_smart_rtoc));
json_object_add_value_uint(root, "num_write_timeouts",
le32_to_cpu(ext_smart_log_ptr->ext_smart_wtoc));
json_object_add_value_uint(root, "num_trim_timeouts",
le32_to_cpu(ext_smart_log_ptr->ext_smart_ttoc));
json_object_add_value_uint64(root, "pcie_link_retrain_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_plrc));
json_object_add_value_uint64(root, "active_power_state_change_count",
le64_to_cpu(ext_smart_log_ptr->ext_smart_pscc));
}
char vers_str[40];
memset((void *)vers_str, 0, 40);
sprintf((char *)vers_str, "%d.%d.%d.%d",
le16_to_cpu(ext_smart_log_ptr->ext_smart_maj),
le16_to_cpu(ext_smart_log_ptr->ext_smart_min),
le16_to_cpu(ext_smart_log_ptr->ext_smart_pt),
le16_to_cpu(ext_smart_log_ptr->ext_smart_err));
json_object_add_value_string(root, "cloud_boot_ssd_spec_ver", vers_str);
memset((void *)vers_str, 0, 40);
sprintf((char *)vers_str, "%d.%d.%d.%d", 0, 0, 0, 0);
json_object_add_value_string(root, "cloud_boot_ssd_hw_ver", vers_str);
if (mask == WDC_SCA_V1_ALL) {
json_object_add_value_uint(root, "ftl_unit_size",
le32_to_cpu(ext_smart_log_ptr->ext_smart_ftlus));
json_object_add_value_uint(root, "tcg_ownership_status",
le32_to_cpu(ext_smart_log_ptr->ext_smart_tcgos));
json_object_add_value_uint(root, "log_page_ver",
le16_to_cpu(ext_smart_log_ptr->ext_smart_lpv));
char guid[40];
memset((void *)guid, 0, 40);
sprintf((char *)guid, "0x%"PRIx64"%"PRIx64"",
le64_to_cpu(*(uint64_t *)&ext_smart_log_ptr->ext_smart_lpg[8]),
le64_to_cpu(*(uint64_t *)&ext_smart_log_ptr->ext_smart_lpg[0]));
json_object_add_value_string(root, "log_page_guid", guid);
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_print_smart_cloud_attr_C0_normal(void *data)
{
__u8 *log_data = (__u8 *)data;
uint16_t smart_log_ver = 0;
printf(" SMART Cloud Attributes :-\n");
printf(" Physical media units written : %s\n",
uint128_t_to_string(le128_to_cpu(&log_data[SCAO_PMUW])));
printf(" Physical media units read : %s\n",
uint128_t_to_string(le128_to_cpu(&log_data[SCAO_PMUR])));
printf(" Bad user nand blocks Raw : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BUNBR] & 0x0000FFFFFFFFFFFF));
printf(" Bad user nand blocks Normalized : %d\n",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BUNBN]));
printf(" Bad system nand blocks Raw : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BSNBR] & 0x0000FFFFFFFFFFFF));
printf(" Bad system nand blocks Normalized : %d\n",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BSNBN]));
printf(" XOR recovery count : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_XRC]));
printf(" Uncorrectable read error count : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UREC]));
printf(" Soft ecc error count : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SEEC]));
printf(" End to end corrected errors : %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EECE]));
printf(" End to end detected errors : %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EEDC]));
printf(" System data percent used : %d\n", (__u8)log_data[SCAO_SDPU]);
printf(" Refresh counts : %"PRIu64"\n",
(uint64_t)(le64_to_cpu(*(uint64_t *)&log_data[SCAO_RFSC]) & 0x00FFFFFFFFFFFFFF));
printf(" Max User data erase counts : %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MXUDEC]));
printf(" Min User data erase counts : %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MNUDEC]));
printf(" Number of Thermal throttling events : %d\n", (__u8)log_data[SCAO_NTTE]);
printf(" Current throttling status : 0x%x\n", (__u8)log_data[SCAO_CTS]);
printf(" PCIe correctable error count : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PCEC]));
printf(" Incomplete shutdowns : %"PRIu32"\n",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_ICS]));
printf(" Percent free blocks : %d\n", (__u8)log_data[SCAO_PFB]);
printf(" Capacitor health : %"PRIu16"\n",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_CPH]));
printf(" Unaligned I/O : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UIO]));
printf(" Security Version Number : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SVN]));
printf(" NUSE Namespace utilization : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_NUSE]));
printf(" PLP start count : %s\n",
uint128_t_to_string(le128_to_cpu(&log_data[SCAO_PSC])));
printf(" Endurance estimate : %s\n",
uint128_t_to_string(le128_to_cpu(&log_data[SCAO_EEST])));
smart_log_ver = (uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_LPV]);
printf(" Log page version : %"PRIu16"\n", smart_log_ver);
printf(" Log page GUID : 0x");
printf("%"PRIx64"%"PRIx64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG + 8]),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG]));
if (smart_log_ver > 2) {
printf(" Errata Version Field : %d\n",
(__u8)log_data[SCAO_EVF]);
printf(" Point Version Field : %"PRIu16"\n",
(uint16_t)log_data[SCAO_PVF]);
printf(" Minor Version Field : %"PRIu16"\n",
(uint16_t)log_data[SCAO_MIVF]);
printf(" Major Version Field : %d\n",
(__u8)log_data[SCAO_MAVF]);
printf(" NVMe Errata Version : %d\n",
(__u8)log_data[SCAO_NEV]);
printf(" PCIe Link Retraining Count : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PLRC]));
}
if (smart_log_ver > 3) {
printf(" Power State Change Count : %"PRIu64"\n",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PSCC]));
}
printf("\n");
}
static void wdc_print_smart_cloud_attr_C0_json(void *data)
{
__u8 *log_data = (__u8 *)data;
struct json_object *root = json_create_object();
uint16_t smart_log_ver = 0;
json_object_add_value_uint128(root, "Physical media units written",
le128_to_cpu(&log_data[SCAO_PMUW]));
json_object_add_value_uint128(root, "Physical media units read",
le128_to_cpu(&log_data[SCAO_PMUR]));
json_object_add_value_uint64(root, "Bad user nand blocks - Raw",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BUNBR] & 0x0000FFFFFFFFFFFF));
json_object_add_value_uint(root, "Bad user nand blocks - Normalized",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BUNBN]));
json_object_add_value_uint64(root, "Bad system nand blocks - Raw",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BSNBR] & 0x0000FFFFFFFFFFFF));
json_object_add_value_uint(root, "Bad system nand blocks - Normalized",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BSNBN]));
json_object_add_value_uint64(root, "XOR recovery count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_XRC]));
json_object_add_value_uint64(root, "Uncorrectable read error count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UREC]));
json_object_add_value_uint64(root, "Soft ecc error count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SEEC]));
json_object_add_value_uint(root, "End to end corrected errors",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EECE]));
json_object_add_value_uint(root, "End to end detected errors",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EEDC]));
json_object_add_value_uint(root, "System data percent used",
(__u8)log_data[SCAO_SDPU]);
json_object_add_value_uint64(root, "Refresh counts",
(uint64_t)(le64_to_cpu(*(uint64_t *)&log_data[SCAO_RFSC]) & 0x00FFFFFFFFFFFFFF));
json_object_add_value_uint(root, "Max User data erase counts",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MXUDEC]));
json_object_add_value_uint(root, "Min User data erase counts",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MNUDEC]));
json_object_add_value_uint(root, "Number of Thermal throttling events",
(__u8)log_data[SCAO_NTTE]);
json_object_add_value_uint(root, "Current throttling status",
(__u8)log_data[SCAO_CTS]);
json_object_add_value_uint64(root, "PCIe correctable error count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PCEC]));
json_object_add_value_uint(root, "Incomplete shutdowns",
(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_ICS]));
json_object_add_value_uint(root, "Percent free blocks",
(__u8)log_data[SCAO_PFB]);
json_object_add_value_uint(root, "Capacitor health",
(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_CPH]));
json_object_add_value_uint64(root, "Unaligned I/O",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UIO]));
json_object_add_value_uint64(root, "Security Version Number",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SVN]));
json_object_add_value_uint64(root, "NUSE - Namespace utilization",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_NUSE]));
json_object_add_value_uint128(root, "PLP start count",
le128_to_cpu(&log_data[SCAO_PSC]));
json_object_add_value_uint128(root, "Endurance estimate",
le128_to_cpu(&log_data[SCAO_EEST]));
smart_log_ver = (uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_LPV]);
json_object_add_value_uint(root, "Log page version", smart_log_ver);
char guid[40];
memset((void *)guid, 0, 40);
sprintf((char *)guid, "0x%"PRIx64"%"PRIx64"",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG + 8]),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG]));
json_object_add_value_string(root, "Log page GUID", guid);
if (smart_log_ver > 2) {
json_object_add_value_uint(root, "Errata Version Field",
(__u8)log_data[SCAO_EVF]);
json_object_add_value_uint(root, "Point Version Field",
(uint16_t)log_data[SCAO_PVF]);
json_object_add_value_uint(root, "Minor Version Field",
(uint16_t)log_data[SCAO_MIVF]);
json_object_add_value_uint(root, "Major Version Field",
(__u8)log_data[SCAO_MAVF]);
json_object_add_value_uint(root, "NVMe Errata Version",
(__u8)log_data[SCAO_NEV]);
json_object_add_value_uint64(root, "PCIe Link Retraining Count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PLRC]));
}
if (smart_log_ver > 3) {
json_object_add_value_uint64(root, "Power State Change Count",
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PSCC]));
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void wdc_print_eol_c0_normal(void *data)
{
__u8 *log_data = (__u8 *)data;
printf(" End of Life Log Page 0xC0 :-\n");
printf(" Realloc Block Count %"PRIu32"\n",
(uint32_t)le32_to_cpu(log_data[EOL_RBC]));
printf(" ECC Rate %"PRIu32"\n",
(uint32_t)le32_to_cpu(log_data[EOL_ECCR]));
printf(" Write Amp %"PRIu32"\n",
(uint32_t)le32_to_cpu(log_data[EOL_WRA]));
printf(" Percent Life Remaining %"PRIu32"\n",
(uint32_t)le32_to_cpu(log_data[EOL_PLR]));
printf(" Program Fail Count %"PRIu32"\n",
(uint32_t)le32_to_cpu(log_data[EOL_PFC]));
printf(" Erase Fail Count %"PRIu32"\n",
(uint32_t)le32_to_cpu(log_data[EOL_EFC]));
printf(" Raw Read Error Rate %"PRIu32"\n",
(uint32_t)le32_to_cpu(log_data[EOL_RRER]));
}
static void wdc_print_eol_c0_json(void *data)
{
__u8 *log_data = (__u8 *)data;
struct json_object *root = json_create_object();
json_object_add_value_uint(root, "Realloc Block Count",
(uint32_t)le32_to_cpu(log_data[EOL_RBC]));
json_object_add_value_uint(root, "ECC Rate",
(uint32_t)le32_to_cpu(log_data[EOL_ECCR]));
json_object_add_value_uint(root, "Write Amp",
(uint32_t)le32_to_cpu(log_data[EOL_WRA]));
json_object_add_value_uint(root, "Percent Life Remaining",
(uint32_t)le32_to_cpu(log_data[EOL_PLR]));
json_object_add_value_uint(root, "Program Fail Count",
(uint32_t)le32_to_cpu(log_data[EOL_PFC]));
json_object_add_value_uint(root, "Erase Fail Count",
(uint32_t)le32_to_cpu(log_data[EOL_EFC]));
json_object_add_value_uint(root, "Raw Read Error Rate",
(uint32_t)le32_to_cpu(log_data[EOL_RRER]));
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static int wdc_print_ext_smart_cloud_log(void *data, int fmt)
{
if (!data) {
fprintf(stderr, "ERROR: WDC: Invalid buffer to read 0xC0 V1 log\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_ext_smart_cloud_log_normal(data, WDC_SCA_V1_ALL);
break;
case JSON:
wdc_print_ext_smart_cloud_log_json(data, WDC_SCA_V1_ALL);
break;
}
return 0;
}
static int wdc_print_c0_cloud_attr_log(void *data, int fmt)
{
if (!data) {
fprintf(stderr, "ERROR: WDC: Invalid buffer to read 0xC0 log\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_smart_cloud_attr_C0_normal(data);
break;
case JSON:
wdc_print_smart_cloud_attr_C0_json(data);
break;
}
return 0;
}
static int wdc_print_c0_eol_log(void *data, int fmt)
{
if (!data) {
fprintf(stderr, "ERROR: WDC: Invalid buffer to read 0xC0 log\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_eol_c0_normal(data);
break;
case JSON:
wdc_print_eol_c0_json(data);
break;
}
return 0;
}
static int wdc_get_c0_log_page_sn_customer_id_0x100X(struct nvme_dev *dev, int uuid_index,
char *format, __u32 namespace_id, int fmt)
{
int ret;
__u8 *data;
int i;
if (!uuid_index) {
data = (__u8 *)malloc(sizeof(__u8) * WDC_NVME_SMART_CLOUD_ATTR_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
if (namespace_id == NVME_NSID_ALL) {
ret = nvme_get_nsid(dev_fd(dev), &namespace_id);
if (ret < 0)
namespace_id = NVME_NSID_ALL;
}
/* Get the 0xC0 log data */
struct nvme_get_log_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.lid = WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_ID,
.nsid = namespace_id,
.lpo = 0,
.lsp = NVME_LOG_LSP_NONE,
.lsi = 0,
.rae = false,
.uuidx = uuid_index,
.csi = NVME_CSI_NVM,
.ot = false,
.len = WDC_NVME_SMART_CLOUD_ATTR_LEN,
.log = data,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
ret = nvme_get_log(&args);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* Verify GUID matches */
for (i = 0; i < 16; i++) {
if (scao_guid[i] != data[SCAO_LPG + i]) {
fprintf(stderr, "ERROR: WDC: Unknown GUID in C0 Log Page data\n");
int j;
fprintf(stderr, "ERROR: WDC: Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", scao_guid[j]);
fprintf(stderr, "\nERROR: WDC: Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", data[SCAO_LPG + j]);
fprintf(stderr, "\n");
ret = -1;
break;
}
}
if (!ret)
/* parse the data */
wdc_print_c0_cloud_attr_log(data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read C0 Log Page data\n");
ret = -1;
}
free(data);
} else if (uuid_index == 1) {
data = (__u8 *)malloc(sizeof(__u8) * WDC_NVME_EOL_STATUS_LOG_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
/* Get the 0xC0 log data */
struct nvme_get_log_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.lid = WDC_NVME_GET_EOL_STATUS_LOG_OPCODE,
.nsid = NVME_NSID_ALL,
.lpo = 0,
.lsp = NVME_LOG_LSP_NONE,
.lsi = 0,
.rae = false,
.uuidx = uuid_index,
.csi = NVME_CSI_NVM,
.ot = false,
.len = WDC_NVME_EOL_STATUS_LOG_LEN,
.log = data,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
ret = nvme_get_log(&args);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
wdc_print_c0_eol_log(data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read C0 Log Page data\n");
ret = -1;
}
free(data);
} else {
fprintf(stderr, "ERROR: WDC: Unknown uuid index\n");
ret = -1;
}
return ret;
}
static int wdc_get_c0_log_page_sn(nvme_root_t r, struct nvme_dev *dev, int uuid_index, char *format,
__u32 namespace_id, int fmt)
{
int ret = 0;
__u32 cust_id;
__u8 *data;
cust_id = wdc_get_fw_cust_id(r, dev);
if (cust_id == WDC_INVALID_CUSTOMER_ID) {
fprintf(stderr, "%s: ERROR: WDC: invalid customer id\n", __func__);
return -1;
}
if ((cust_id == WDC_CUSTOMER_ID_0x1004) || (cust_id == WDC_CUSTOMER_ID_0x1008) ||
(cust_id == WDC_CUSTOMER_ID_0x1005)) {
ret = wdc_get_c0_log_page_sn_customer_id_0x100X(dev, uuid_index, format,
namespace_id, fmt);
} else {
data = (__u8 *)malloc(sizeof(__u8) * WDC_NVME_EOL_STATUS_LOG_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
/* Get the 0xC0 log data */
ret = nvme_get_log_simple(dev_fd(dev),
WDC_NVME_GET_EOL_STATUS_LOG_OPCODE,
WDC_NVME_EOL_STATUS_LOG_LEN,
data);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
wdc_print_c0_eol_log(data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read C0 Log Page data\n");
ret = -1;
}
free(data);
}
return ret;
}
static int wdc_get_c0_log_page(nvme_root_t r, struct nvme_dev *dev, char *format, int uuid_index,
__u32 namespace_id)
{
uint32_t device_id, read_vendor_id;
enum nvme_print_flags fmt;
int ret;
__u8 *data;
__u8 log_id;
__u32 length;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
ret = wdc_get_pci_ids(r, dev, &device_id, &read_vendor_id);
switch (device_id) {
case WDC_NVME_SN640_DEV_ID:
case WDC_NVME_SN640_DEV_ID_1:
case WDC_NVME_SN640_DEV_ID_2:
case WDC_NVME_SN640_DEV_ID_3:
case WDC_NVME_SN840_DEV_ID:
case WDC_NVME_SN840_DEV_ID_1:
case WDC_NVME_SN860_DEV_ID:
case WDC_NVME_SN560_DEV_ID_1:
case WDC_NVME_SN560_DEV_ID_2:
case WDC_NVME_SN560_DEV_ID_3:
case WDC_NVME_SN550_DEV_ID:
ret = wdc_get_c0_log_page_sn(r, dev, uuid_index, format, namespace_id, fmt);
break;
case WDC_NVME_SN650_DEV_ID:
case WDC_NVME_SN650_DEV_ID_1:
case WDC_NVME_SN650_DEV_ID_2:
case WDC_NVME_SN650_DEV_ID_3:
case WDC_NVME_SN650_DEV_ID_4:
case WDC_NVME_SN655_DEV_ID:
if (uuid_index == 0) {
log_id = WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_ID;
length = WDC_NVME_SMART_CLOUD_ATTR_LEN;
} else {
log_id = WDC_NVME_GET_EOL_STATUS_LOG_OPCODE;
length = WDC_NVME_EOL_STATUS_LOG_LEN;
}
data = (__u8 *)malloc(sizeof(__u8) * length);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
if (namespace_id == NVME_NSID_ALL) {
ret = nvme_get_nsid(dev_fd(dev), &namespace_id);
if (ret < 0)
namespace_id = NVME_NSID_ALL;
}
/* Get the 0xC0 log data */
struct nvme_get_log_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.lid = log_id,
.nsid = namespace_id,
.lpo = 0,
.lsp = NVME_LOG_LSP_NONE,
.lsi = 0,
.rae = false,
.uuidx = uuid_index,
.csi = NVME_CSI_NVM,
.ot = false,
.len = length,
.log = data,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
ret = nvme_get_log(&args);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
if (uuid_index == 0)
wdc_print_c0_cloud_attr_log(data, fmt);
else
wdc_print_c0_eol_log(data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read C0 Log Page data ");
fprintf(stderr, "with uuid index %d\n", uuid_index);
ret = -1;
}
free(data);
break;
case WDC_NVME_ZN350_DEV_ID:
case WDC_NVME_ZN350_DEV_ID_1:
data = (__u8 *)malloc(sizeof(__u8) * WDC_NVME_SMART_CLOUD_ATTR_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
/* Get the 0xC0 log data */
ret = nvme_get_log_simple(dev_fd(dev),
WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_ID,
WDC_NVME_SMART_CLOUD_ATTR_LEN, data);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
wdc_print_c0_cloud_attr_log(data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read C0 Log Page data\n");
ret = -1;
}
free(data);
break;
case WDC_NVME_SN820CL_DEV_ID:
/* Get the 0xC0 Extended Smart Cloud Attribute log data */
data = NULL;
ret = nvme_get_ext_smart_cloud_log(dev_fd(dev), &data,
uuid_index, namespace_id);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
wdc_print_ext_smart_cloud_log(data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read C0 Log Page V1 data\n");
ret = -1;
}
if (data)
free(data);
break;
default:
fprintf(stderr, "ERROR: WDC: Unknown device id - 0x%x\n", device_id);
ret = -1;
break;
}
return ret;
}
static int wdc_print_latency_monitor_log(struct nvme_dev *dev,
struct wdc_ssd_latency_monitor_log *log_data,
int fmt)
{
if (!log_data) {
fprintf(stderr, "ERROR: WDC: Invalid C3 log data buffer\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_latency_monitor_log_normal(dev, log_data);
break;
case JSON:
wdc_print_latency_monitor_log_json(log_data);
break;
}
return 0;
}
static int wdc_print_error_rec_log(struct wdc_ocp_c1_error_recovery_log *log_data, int fmt)
{
if (!log_data) {
fprintf(stderr, "ERROR: WDC: Invalid C1 log data buffer\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_error_rec_log_normal(log_data);
break;
case JSON:
wdc_print_error_rec_log_json(log_data);
break;
}
return 0;
}
static int wdc_print_dev_cap_log(struct wdc_ocp_C4_dev_cap_log *log_data, int fmt)
{
if (!log_data) {
fprintf(stderr, "ERROR: WDC: Invalid C4 log data buffer\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_dev_cap_log_normal(log_data);
break;
case JSON:
wdc_print_dev_cap_log_json(log_data);
break;
}
return 0;
}
static int wdc_print_unsupported_reqs_log(struct wdc_ocp_C5_unsupported_reqs *log_data, int fmt)
{
if (!log_data) {
fprintf(stderr, "ERROR: WDC: Invalid C5 log data buffer\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_unsupported_reqs_log_normal(log_data);
break;
case JSON:
wdc_print_unsupported_reqs_log_json(log_data);
break;
}
return 0;
}
static int wdc_print_fb_ca_log(struct wdc_ssd_ca_perf_stats *perf, int fmt)
{
if (!perf) {
fprintf(stderr, "ERROR: WDC: Invalid buffer to read perf stats\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_fb_ca_log_normal(perf);
break;
case JSON:
wdc_print_fb_ca_log_json(perf);
break;
}
return 0;
}
static int wdc_print_bd_ca_log(struct nvme_dev *dev, void *bd_data, int fmt)
{
if (!bd_data) {
fprintf(stderr, "ERROR: WDC: Invalid buffer to read data\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_bd_ca_log_normal(dev, bd_data);
break;
case JSON:
wdc_print_bd_ca_log_json(bd_data);
break;
default:
fprintf(stderr, "ERROR: WDC: Unknown format - %d\n", fmt);
return -1;
}
return 0;
}
static int wdc_print_d0_log(struct wdc_ssd_d0_smart_log *perf, int fmt)
{
if (!perf) {
fprintf(stderr, "ERROR: WDC: Invalid buffer to read perf stats\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_d0_log_normal(perf);
break;
case JSON:
wdc_print_d0_log_json(perf);
break;
}
return 0;
}
static int wdc_print_fw_act_history_log(__u8 *data, int num_entries, int fmt,
__u32 cust_id, __u32 vendor_id,
__u32 device_id)
{
if (!data) {
fprintf(stderr, "ERROR: WDC: Invalid buffer to read fw activate history entries\n");
return -1;
}
switch (fmt) {
case NORMAL:
wdc_print_fw_act_history_log_normal(data, num_entries, cust_id,
vendor_id, device_id);
break;
case JSON:
wdc_print_fw_act_history_log_json(data, num_entries, cust_id,
vendor_id, device_id);
break;
}
return 0;
}
static int wdc_get_ca_log_page(nvme_root_t r, struct nvme_dev *dev, char *format)
{
uint32_t read_device_id, read_vendor_id;
struct wdc_ssd_ca_perf_stats *perf;
enum nvme_print_flags fmt;
__u32 cust_id;
__u8 *data;
int ret;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
/* verify the 0xCA log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == false) {
fprintf(stderr, "ERROR: WDC: 0xCA Log Page not supported\n");
return -1;
}
/* get the FW customer id */
cust_id = wdc_get_fw_cust_id(r, dev);
if (cust_id == WDC_INVALID_CUSTOMER_ID) {
fprintf(stderr, "%s: ERROR: WDC: invalid customer id\n", __func__);
return -1;
}
ret = wdc_get_pci_ids(r, dev, &read_device_id, &read_vendor_id);
switch (read_device_id) {
case WDC_NVME_SN200_DEV_ID:
if (cust_id == WDC_CUSTOMER_ID_0x1005) {
data = (__u8 *)malloc(sizeof(__u8) * WDC_FB_CA_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_FB_CA_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev),
WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE,
WDC_FB_CA_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
perf = (struct wdc_ssd_ca_perf_stats *)(data);
ret = wdc_print_fb_ca_log(perf, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read CA Log Page data\n");
ret = -1;
}
} else {
fprintf(stderr, "ERROR: WDC: Unsupported Customer id, id = 0x%x\n", cust_id);
return -1;
}
break;
case WDC_NVME_SN640_DEV_ID:
case WDC_NVME_SN640_DEV_ID_1:
case WDC_NVME_SN640_DEV_ID_2:
case WDC_NVME_SN640_DEV_ID_3:
case WDC_NVME_SN840_DEV_ID:
case WDC_NVME_SN840_DEV_ID_1:
case WDC_NVME_SN860_DEV_ID:
if (cust_id == WDC_CUSTOMER_ID_0x1005) {
data = (__u8 *)malloc(sizeof(__u8) * WDC_FB_CA_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_FB_CA_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev),
WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE,
WDC_FB_CA_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
perf = (struct wdc_ssd_ca_perf_stats *)(data);
ret = wdc_print_fb_ca_log(perf, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read CA Log Page data\n");
ret = -1;
}
} else if ((cust_id == WDC_CUSTOMER_ID_GN) || (cust_id == WDC_CUSTOMER_ID_GD) ||
(cust_id == WDC_CUSTOMER_ID_BD)) {
data = (__u8 *)malloc(sizeof(__u8) * WDC_BD_CA_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_BD_CA_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev),
WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE,
WDC_BD_CA_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
ret = wdc_print_bd_ca_log(dev, data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read CA Log Page data\n");
ret = -1;
}
} else {
fprintf(stderr, "ERROR: WDC: Unsupported Customer id, id = 0x%x\n", cust_id);
return -1;
}
break;
default:
fprintf(stderr, "ERROR: WDC: Log page 0xCA not supported for this device\n");
return -1;
}
free(data);
return ret;
}
static int wdc_get_c1_log_page(nvme_root_t r, struct nvme_dev *dev,
char *format, uint8_t interval)
{
struct wdc_log_page_subpage_header *sph;
struct wdc_ssd_perf_stats *perf;
struct wdc_log_page_header *l;
enum nvme_print_flags fmt;
int total_subpages;
int skip_cnt = 4;
__u8 *data;
__u8 *p;
int i;
int ret;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
if (interval < 1 || interval > 15) {
fprintf(stderr, "ERROR: WDC: interval out of range [1-15]\n");
return -1;
}
data = (__u8 *)malloc(sizeof(__u8) * WDC_ADD_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_ADD_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev), WDC_NVME_ADD_LOG_OPCODE,
WDC_ADD_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
l = (struct wdc_log_page_header *)data;
total_subpages = l->num_subpages + WDC_NVME_GET_STAT_PERF_INTERVAL_LIFETIME - 1;
for (i = 0, p = data + skip_cnt; i < total_subpages; i++, p += skip_cnt) {
sph = (struct wdc_log_page_subpage_header *)p;
if (sph->spcode == WDC_GET_LOG_PAGE_SSD_PERFORMANCE) {
if (sph->pcset == interval) {
perf = (struct wdc_ssd_perf_stats *)(p + 4);
ret = wdc_print_log(perf, fmt);
break;
}
}
skip_cnt = le16_to_cpu(sph->subpage_length) + 4;
}
if (ret)
fprintf(stderr, "ERROR: WDC: Unable to read data from buffer\n");
}
free(data);
return ret;
}
static int wdc_get_c3_log_page(nvme_root_t r, struct nvme_dev *dev, char *format)
{
struct wdc_ssd_latency_monitor_log *log_data;
enum nvme_print_flags fmt;
__u8 *data;
int ret;
int i;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
data = (__u8 *)malloc(sizeof(__u8) * WDC_LATENCY_MON_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_LATENCY_MON_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev), WDC_LATENCY_MON_LOG_ID,
WDC_LATENCY_MON_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret, false), ret);
if (!ret) {
log_data = (struct wdc_ssd_latency_monitor_log *)data;
/* check log page version */
if (log_data->log_page_version != WDC_LATENCY_MON_VERSION) {
fprintf(stderr, "ERROR: WDC: invalid latency monitor version\n");
ret = -1;
goto out;
}
/* check log page guid */
/* Verify GUID matches */
for (i = 0; i < 16; i++) {
if (wdc_lat_mon_guid[i] != log_data->log_page_guid[i]) {
fprintf(stderr, "ERROR: WDC: Unknown GUID in C3 Log Page data\n");
int j;
fprintf(stderr, "ERROR: WDC: Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", wdc_lat_mon_guid[j]);
fprintf(stderr, "\nERROR: WDC: Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", log_data->log_page_guid[j]);
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
/* parse the data */
wdc_print_latency_monitor_log(dev, log_data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read C3 data from buffer\n");
}
out:
free(data);
return ret;
}
static int wdc_get_ocp_c1_log_page(nvme_root_t r, struct nvme_dev *dev, char *format)
{
struct wdc_ocp_c1_error_recovery_log *log_data;
enum nvme_print_flags fmt;
__u8 *data;
int ret;
int i;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
data = (__u8 *)malloc(sizeof(__u8) * WDC_ERROR_REC_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_ERROR_REC_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev), WDC_ERROR_REC_LOG_ID,
WDC_ERROR_REC_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret, false), ret);
if (!ret) {
log_data = (struct wdc_ocp_c1_error_recovery_log *)data;
/* check log page version */
if ((log_data->log_page_version != WDC_ERROR_REC_LOG_VERSION1) &&
(log_data->log_page_version != WDC_ERROR_REC_LOG_VERSION2)) {
fprintf(stderr, "ERROR: WDC: invalid error recovery log version - %d\n", log_data->log_page_version);
ret = -1;
goto out;
}
/* Verify GUID matches */
for (i = 0; i < WDC_OCP_C1_GUID_LENGTH; i++) {
if (wdc_ocp_c1_guid[i] != log_data->log_page_guid[i]) {
fprintf(stderr, "ERROR: WDC: Unknown GUID in C1 Log Page data\n");
int j;
fprintf(stderr, "ERROR: WDC: Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", wdc_ocp_c1_guid[j]);
fprintf(stderr, "\nERROR: WDC: Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", log_data->log_page_guid[j]);
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
/* parse the data */
wdc_print_error_rec_log(log_data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read error recovery (C1) data from buffer\n");
}
out:
free(data);
return ret;
}
static int wdc_get_ocp_c4_log_page(nvme_root_t r, struct nvme_dev *dev, char *format)
{
struct wdc_ocp_C4_dev_cap_log *log_data;
enum nvme_print_flags fmt;
__u8 *data;
int ret;
int i;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
data = (__u8 *)malloc(sizeof(__u8) * WDC_DEV_CAP_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_DEV_CAP_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev), WDC_DEV_CAP_LOG_ID,
WDC_DEV_CAP_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret, false), ret);
if (!ret) {
log_data = (struct wdc_ocp_C4_dev_cap_log *)data;
/* check log page version */
if (log_data->log_page_version != WDC_DEV_CAP_LOG_VERSION) {
fprintf(stderr, "ERROR: WDC: invalid device capabilities log version - %d\n", log_data->log_page_version);
ret = -1;
goto out;
}
/* Verify GUID matches */
for (i = 0; i < WDC_OCP_C4_GUID_LENGTH; i++) {
if (wdc_ocp_c4_guid[i] != log_data->log_page_guid[i]) {
fprintf(stderr, "ERROR: WDC: Unknown GUID in C4 Log Page data\n");
int j;
fprintf(stderr, "ERROR: WDC: Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", wdc_ocp_c4_guid[j]);
fprintf(stderr, "\nERROR: WDC: Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", log_data->log_page_guid[j]);
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
/* parse the data */
wdc_print_dev_cap_log(log_data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read device capabilities (C4) data from buffer\n");
}
out:
free(data);
return ret;
}
static int wdc_get_ocp_c5_log_page(nvme_root_t r, struct nvme_dev *dev, char *format)
{
struct wdc_ocp_C5_unsupported_reqs *log_data;
enum nvme_print_flags fmt;
int ret;
__u8 *data;
int i;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
data = (__u8 *)malloc(sizeof(__u8) * WDC_UNSUPPORTED_REQS_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_UNSUPPORTED_REQS_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev), WDC_UNSUPPORTED_REQS_LOG_ID,
WDC_UNSUPPORTED_REQS_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret, false), ret);
if (!ret) {
log_data = (struct wdc_ocp_C5_unsupported_reqs *)data;
/* check log page version */
if (log_data->log_page_version != WDC_UNSUPPORTED_REQS_LOG_VERSION) {
fprintf(stderr, "ERROR: WDC: invalid unsupported requirements log version - %d\n", log_data->log_page_version);
ret = -1;
goto out;
}
/* Verify GUID matches */
for (i = 0; i < WDC_OCP_C5_GUID_LENGTH; i++) {
if (wdc_ocp_c5_guid[i] != log_data->log_page_guid[i]) {
fprintf(stderr, "ERROR: WDC: Unknown GUID in C5 Log Page data\n");
int j;
fprintf(stderr, "ERROR: WDC: Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", wdc_ocp_c5_guid[j]);
fprintf(stderr, "\nERROR: WDC: Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", log_data->log_page_guid[j]);
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
/* parse the data */
wdc_print_unsupported_reqs_log(log_data, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read unsupported requirements (C5) data from buffer\n");
}
out:
free(data);
return ret;
}
static int wdc_get_d0_log_page(nvme_root_t r, struct nvme_dev *dev, char *format)
{
struct wdc_ssd_d0_smart_log *perf;
enum nvme_print_flags fmt;
int ret = 0;
__u8 *data;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
/* verify the 0xD0 log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == false) {
fprintf(stderr, "ERROR: WDC: 0xD0 Log Page not supported\n");
return -1;
}
data = (__u8 *)malloc(sizeof(__u8) * WDC_NVME_VU_SMART_LOG_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_NVME_VU_SMART_LOG_LEN);
ret = nvme_get_log_simple(dev_fd(dev),
WDC_NVME_GET_VU_SMART_LOG_OPCODE,
WDC_NVME_VU_SMART_LOG_LEN, data);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
perf = (struct wdc_ssd_d0_smart_log *)(data);
ret = wdc_print_d0_log(perf, fmt);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read D0 Log Page data\n");
ret = -1;
}
free(data);
return ret;
}
static long double le_to_float(__u8 *data, int byte_len)
{
long double result = 0;
int i;
for (i = 0; i < byte_len; i++) {
result *= 256;
result += data[15 - i];
}
return result;
}
static void stringify_log_page_guid(__u8 *guid, char *buf)
{
char *ptr = buf;
int i;
memset(buf, 0, sizeof(char) * 19);
ptr += sprintf(ptr, "0x");
for (i = 0; i < 16; i++)
ptr += sprintf(ptr, "%x", guid[15 - i]);
}
static const char *const cloud_smart_log_thermal_status[] = {
[0x00] = "unthrottled",
[0x01] = "first_level",
[0x02] = "second_level",
[0x03] = "third_level",
};
static const char *stringify_cloud_smart_log_thermal_status(__u8 status)
{
if (status < ARRAY_SIZE(cloud_smart_log_thermal_status) &&
cloud_smart_log_thermal_status[status])
return cloud_smart_log_thermal_status[status];
return "unrecognized";
}
static void show_cloud_smart_log_json(struct ocp_cloud_smart_log *log)
{
struct json_object *root;
struct json_object *bad_user_nand_blocks;
struct json_object *bad_system_nand_blocks;
struct json_object *e2e_correction_counts;
struct json_object *user_data_erase_counts;
struct json_object *thermal_status;
struct json_object *dssd_specific_ver;
char buf[2 * sizeof(log->log_page_guid) + 3];
bad_user_nand_blocks = json_create_object();
json_object_add_value_uint(bad_user_nand_blocks, "normalized",
le16_to_cpu(log->bad_user_nand_blocks.normalized));
json_object_add_value_uint(bad_user_nand_blocks, "raw",
le64_to_cpu(log->bad_user_nand_blocks.raw));
bad_system_nand_blocks = json_create_object();
json_object_add_value_uint(bad_system_nand_blocks, "normalized",
le16_to_cpu(log->bad_system_nand_blocks.normalized));
json_object_add_value_uint(bad_system_nand_blocks, "raw",
le64_to_cpu(log->bad_system_nand_blocks.raw));
e2e_correction_counts = json_create_object();
json_object_add_value_uint(e2e_correction_counts, "corrected",
le32_to_cpu(log->e2e_correction_counts.corrected));
json_object_add_value_uint(e2e_correction_counts, "detected",
le32_to_cpu(log->e2e_correction_counts.detected));
user_data_erase_counts = json_create_object();
json_object_add_value_uint(user_data_erase_counts, "minimum",
le32_to_cpu(log->user_data_erase_counts.minimum));
json_object_add_value_uint(user_data_erase_counts, "maximum",
le32_to_cpu(log->user_data_erase_counts.maximum));
thermal_status = json_create_object();
json_object_add_value_string(thermal_status, "current_status",
stringify_cloud_smart_log_thermal_status(log->thermal_status.current_status));
json_object_add_value_uint(thermal_status, "num_events",
log->thermal_status.num_events);
dssd_specific_ver = json_create_object();
json_object_add_value_uint(dssd_specific_ver, "major_ver",
log->dssd_specific_ver.major_ver);
json_object_add_value_uint(dssd_specific_ver, "minor_ver",
le16_to_cpu(log->dssd_specific_ver.minor_ver));
json_object_add_value_uint(dssd_specific_ver, "point_ver",
le16_to_cpu(log->dssd_specific_ver.point_ver));
json_object_add_value_uint(dssd_specific_ver, "errata_ver",
log->dssd_specific_ver.errata_ver);
root = json_create_object();
json_object_add_value_uint64(root, "physical_media_units_written",
le_to_float(log->physical_media_units_written, 16));
json_object_add_value_uint64(root, "physical_media_units_read",
le_to_float(log->physical_media_units_read, 16));
json_object_add_value_object(root, "bad_user_nand_blocks",
bad_user_nand_blocks);
json_object_add_value_object(root, "bad_system_nand_blocks",
bad_system_nand_blocks);
json_object_add_value_uint(root, "xor_recovery_count",
le64_to_cpu(log->xor_recovery_count));
json_object_add_value_uint(root, "uncorrectable_read_error_count",
le64_to_cpu(log->uncorrectable_read_error_count));
json_object_add_value_uint(root, "soft_ecc_error_count",
le64_to_cpu(log->soft_ecc_error_count));
json_object_add_value_object(root, "e2e_correction_counts",
e2e_correction_counts);
json_object_add_value_uint(root, "system_data_percent_used",
log->system_data_percent_used);
json_object_add_value_uint(root, "refresh_counts",
le64_to_cpu(log->refresh_counts));
json_object_add_value_object(root, "user_data_erase_counts",
user_data_erase_counts);
json_object_add_value_object(root, "thermal_status", thermal_status);
json_object_add_value_object(root, "dssd_specific_ver",
dssd_specific_ver);
json_object_add_value_uint(root, "pcie_correctable_error_count",
le64_to_cpu(log->pcie_correctable_error_count));
json_object_add_value_uint(root, "incomplete_shutdowns",
le32_to_cpu(log->incomplete_shutdowns));
json_object_add_value_uint(root, "percent_free_blocks",
log->percent_free_blocks);
json_object_add_value_uint(root, "capacitor_health",
le16_to_cpu(log->capacitor_health));
sprintf(buf, "%c", log->nvme_errata_ver);
json_object_add_value_string(root, "nvme_errata_version", buf);
json_object_add_value_uint(root, "unaligned_io",
le64_to_cpu(log->unaligned_io));
json_object_add_value_uint(root, "security_version_number",
le64_to_cpu(log->security_version_number));
json_object_add_value_uint(root, "total_nuse",
le64_to_cpu(log->total_nuse));
json_object_add_value_uint64(root, "plp_start_count",
le_to_float(log->plp_start_count, 16));
json_object_add_value_uint64(root, "endurance_estimate",
le_to_float(log->endurance_estimate, 16));
json_object_add_value_uint(root, "pcie_link_retraining_count",
le64_to_cpu(log->pcie_link_retraining_cnt));
json_object_add_value_uint(root, "power_state_change_count",
le64_to_cpu(log->power_state_change_cnt));
json_object_add_value_uint(root, "log_page_version",
le16_to_cpu(log->log_page_version));
stringify_log_page_guid(log->log_page_guid, buf);
json_object_add_value_string(root, "log_page_guid", buf);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void show_cloud_smart_log_normal(struct ocp_cloud_smart_log *log, struct nvme_dev *dev)
{
char buf[2 * sizeof(log->log_page_guid) + 3];
printf("Smart Extended Log for NVME device:%s\n", dev->name);
printf("Physical Media Units Written : %'.0Lf\n",
le_to_float(log->physical_media_units_written, 16));
printf("Physical Media Units Read : %'.0Lf\n",
le_to_float(log->physical_media_units_read, 16));
printf("Bad User NAND Blocks (Normalized) : %" PRIu16 "%%\n",
le16_to_cpu(log->bad_user_nand_blocks.normalized));
printf("Bad User NAND Blocks (Raw) : %" PRIu64 "\n",
le64_to_cpu(log->bad_user_nand_blocks.raw));
printf("Bad System NAND Blocks (Normalized) : %" PRIu16 "%%\n",
le16_to_cpu(log->bad_system_nand_blocks.normalized));
printf("Bad System NAND Blocks (Raw) : %" PRIu64 "\n",
le64_to_cpu(log->bad_system_nand_blocks.raw));
printf("XOR Recovery Count : %" PRIu64 "\n",
le64_to_cpu(log->xor_recovery_count));
printf("Uncorrectable Read Error Count : %" PRIu64 "\n",
le64_to_cpu(log->uncorrectable_read_error_count));
printf("Soft ECC Error Count : %" PRIu64 "\n",
le64_to_cpu(log->soft_ecc_error_count));
printf("End to End Correction Counts (Corrected) : %" PRIu32 "\n",
le32_to_cpu(log->e2e_correction_counts.corrected));
printf("End to End Correction Counts (Detected) : %" PRIu32 "\n",
le32_to_cpu(log->e2e_correction_counts.detected));
printf("System Data %% Used : %" PRIu8 "%%\n",
log->system_data_percent_used);
printf("Refresh Counts : %" PRIu64 "\n",
le64_to_cpu(log->refresh_counts));
printf("User Data Erase Counts (Minimum) : %" PRIu32 "\n",
le32_to_cpu(log->user_data_erase_counts.minimum));
printf("User Data Erase Counts (Maximum) : %" PRIu32 "\n",
le32_to_cpu(log->user_data_erase_counts.maximum));
printf("Thermal Throttling Status (Current Status) : %s\n",
stringify_cloud_smart_log_thermal_status(log->thermal_status.current_status));
printf("Thermal Throttling Status (Number of Events) : %" PRIu8 "\n",
log->thermal_status.num_events);
printf("NVMe Major Version : %" PRIu8 "\n",
log->dssd_specific_ver.major_ver);
printf(" Minor Version : %" PRIu16 "\n",
le16_to_cpu(log->dssd_specific_ver.minor_ver));
printf(" Point Version : %" PRIu16 "\n",
le16_to_cpu(log->dssd_specific_ver.point_ver));
printf(" Errata Version : %" PRIu8 "\n",
log->dssd_specific_ver.errata_ver);
printf("PCIe Correctable Error Count : %" PRIu64 "\n",
le64_to_cpu(log->pcie_correctable_error_count));
printf("Incomplete Shutdowns : %" PRIu32 "\n",
le32_to_cpu(log->incomplete_shutdowns));
printf("%% Free Blocks : %" PRIu8 "%%\n",
log->percent_free_blocks);
printf("Capacitor Health : %" PRIu16 "%%\n",
le16_to_cpu(log->capacitor_health));
printf("NVMe Errata Version : %c\n",
log->nvme_errata_ver);
printf("Unaligned IO : %" PRIu64 "\n",
le64_to_cpu(log->unaligned_io));
printf("Security Version Number : %" PRIu64 "\n",
le64_to_cpu(log->security_version_number));
printf("Total NUSE : %" PRIu64 "\n",
le64_to_cpu(log->total_nuse));
printf("PLP Start Count : %'.0Lf\n",
le_to_float(log->plp_start_count, 16));
printf("Endurance Estimate : %'.0Lf\n",
le_to_float(log->endurance_estimate, 16));
printf("PCIe Link Retraining Count : %" PRIu64 "\n",
le64_to_cpu(log->pcie_link_retraining_cnt));
printf("Power State Change Count : %" PRIu64 "\n",
le64_to_cpu(log->power_state_change_cnt));
printf("Log Page Version : %" PRIu16 "\n",
le16_to_cpu(log->log_page_version));
stringify_log_page_guid(log->log_page_guid, buf);
printf("Log Page GUID : %s\n", buf);
printf("\n\n");
}
static int wdc_vs_smart_add_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve additional performance statistics.";
const char *interval = "Interval to read the statistics from [1, 15].";
const char *log_page_version = "Log Page Version: 0 = vendor, 1 = WDC";
const char *log_page_mask = "Log Page Mask, comma separated list: 0xC0, 0xC1, 0xCA, 0xD0";
const char *namespace_id = "desired namespace id";
enum nvme_print_flags fmt;
struct nvme_dev *dev;
nvme_root_t r;
int ret = 0;
int uuid_index = 0;
int page_mask = 0, num, i;
int log_page_list[16];
__u64 capabilities = 0;
__u32 device_id, read_vendor_id;
struct config {
uint8_t interval;
char *output_format;
__u8 log_page_version;
char *log_page_mask;
__u32 namespace_id;
};
struct config cfg = {
.interval = 14,
.output_format = "normal",
.log_page_version = 0,
.log_page_mask = "",
.namespace_id = NVME_NSID_ALL,
};
OPT_ARGS(opts) = {
OPT_UINT("interval", 'i', &cfg.interval, interval),
OPT_FMT("output-format", 'o', &cfg.output_format, output_format),
OPT_BYTE("log-page-version", 'l', &cfg.log_page_version, log_page_version),
OPT_LIST("log-page-mask", 'p', &cfg.log_page_mask, log_page_mask),
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (!cfg.log_page_version) {
uuid_index = 0;
} else if (cfg.log_page_version == 1) {
uuid_index = 1;
} else {
fprintf(stderr, "ERROR: WDC: unsupported log page version for this command\n");
ret = -1;
goto out;
}
num = argconfig_parse_comma_sep_array(cfg.log_page_mask, log_page_list, 16);
if (num == -1) {
fprintf(stderr, "ERROR: WDC: log page list is malformed\n");
ret = -1;
goto out;
}
if (!num) {
page_mask |= WDC_ALL_PAGE_MASK;
} else {
for (i = 0; i < num; i++) {
if (log_page_list[i] == 0xc0)
page_mask |= WDC_C0_PAGE_MASK;
if (log_page_list[i] == 0xc1)
page_mask |= WDC_C1_PAGE_MASK;
if (log_page_list[i] == 0xca)
page_mask |= WDC_CA_PAGE_MASK;
if (log_page_list[i] == 0xd0)
page_mask |= WDC_D0_PAGE_MASK;
}
}
if (!page_mask)
fprintf(stderr, "ERROR: WDC: Unknown log page mask - %s\n", cfg.log_page_mask);
ret = wdc_get_pci_ids(r, dev, &device_id, &read_vendor_id);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_SMART_LOG_MASK)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
if (((capabilities & WDC_DRIVE_CAP_C0_LOG_PAGE) == WDC_DRIVE_CAP_C0_LOG_PAGE) &&
(page_mask & WDC_C0_PAGE_MASK)) {
/* Get 0xC0 log page if possible. */
if (!wdc_is_sn861(device_id)) {
ret = wdc_get_c0_log_page(r, dev, cfg.output_format,
uuid_index, cfg.namespace_id);
if (ret)
fprintf(stderr,
"ERROR: WDC: Failure reading the C0 Log Page, ret = %d\n",
ret);
} else {
struct ocp_cloud_smart_log log;
char buf[2 * sizeof(log.log_page_guid) + 3];
ret = validate_output_format(cfg.output_format, &fmt);
if (ret < 0) {
fprintf(stderr, "Invalid output format: %s\n", cfg.output_format);
goto out;
}
ret = nvme_get_log_simple(dev_fd(dev),
WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_ID,
sizeof(log), &log);
if (!ret) {
char *ptr = buf;
int i;
__u8 *guid = log.log_page_guid;
memset(buf, 0, sizeof(char) * 19);
ptr += sprintf(ptr, "0x");
for (i = 0; i < 16; i++)
ptr += sprintf(ptr, "%x", guid[15 - i]);
if (strcmp(buf, "0xafd514c97c6f4f9ca4f2bfea2810afc5"))
fprintf(stderr, "Invalid GUID: %s\n", buf);
else {
if (fmt == BINARY)
d_raw((unsigned char *)&log, sizeof(log));
else if (fmt == JSON)
show_cloud_smart_log_json(&log);
else
show_cloud_smart_log_normal(&log, dev);
}
} else if (ret > 0) {
nvme_show_status(ret);
} else {
perror("vs-smart-add-log");
}
}
}
if (((capabilities & (WDC_DRIVE_CAP_CA_LOG_PAGE)) == (WDC_DRIVE_CAP_CA_LOG_PAGE)) &&
(page_mask & WDC_CA_PAGE_MASK) &&
(!wdc_is_sn861(device_id))) {
/* Get the CA Log Page */
ret = wdc_get_ca_log_page(r, dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR: WDC: Failure reading the CA Log Page, ret = %d\n", ret);
}
if (((capabilities & WDC_DRIVE_CAP_C1_LOG_PAGE) == WDC_DRIVE_CAP_C1_LOG_PAGE) &&
(page_mask & WDC_C1_PAGE_MASK)) {
/* Get the C1 Log Page */
ret = wdc_get_c1_log_page(r, dev, cfg.output_format,
cfg.interval);
if (ret)
fprintf(stderr, "ERROR: WDC: Failure reading the C1 Log Page, ret = %d\n", ret);
}
if (((capabilities & WDC_DRIVE_CAP_D0_LOG_PAGE) == WDC_DRIVE_CAP_D0_LOG_PAGE) &&
(page_mask & WDC_D0_PAGE_MASK)) {
/* Get the D0 Log Page */
ret = wdc_get_d0_log_page(r, dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR: WDC: Failure reading the D0 Log Page, ret = %d\n", ret);
}
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_vs_cloud_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve Cloud Log Smart/Health Information";
const char *namespace_id = "desired namespace id";
enum nvme_print_flags fmt;
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
__u8 *data;
struct config {
char *output_format;
__u32 namespace_id;
};
struct config cfg = {
.output_format = "normal",
.namespace_id = NVME_NSID_ALL,
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_CLOUD_LOG_PAGE)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
data = NULL;
ret = nvme_get_ext_smart_cloud_log(dev_fd(dev), &data, 0,
cfg.namespace_id);
if (strcmp(cfg.output_format, "json"))
nvme_show_status(ret);
if (!ret) {
ret = validate_output_format(cfg.output_format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC %s: invalid output format\n", __func__);
} else {
/* parse the data */
wdc_print_ext_smart_cloud_log(data, fmt);
}
} else {
fprintf(stderr, "ERROR: WDC: Unable to read C0 Log Page V1 data\n");
ret = -1;
}
if (data)
free(data);
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_vs_hw_rev_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve Hardware Revision Log Information";
const char *namespace_id = "desired namespace id";
enum nvme_print_flags fmt;
__u64 capabilities = 0;
struct nvme_dev *dev;
int ret;
__u8 *data = NULL;
nvme_root_t r;
struct config {
char *output_format;
__u32 namespace_id;
};
struct config cfg = {
.output_format = "normal",
.namespace_id = NVME_NSID_ALL,
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_HW_REV_LOG_PAGE)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
ret = nvme_get_hw_rev_log(dev_fd(dev), &data, 0, cfg.namespace_id);
if (strcmp(cfg.output_format, "json"))
nvme_show_status(ret);
if (!ret) {
ret = validate_output_format(cfg.output_format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC %s: invalid output format\n", __func__);
goto free_buf;
}
if (!data) {
fprintf(stderr, "ERROR: WDC: Invalid buffer to read Hardware Revision log\n");
ret = -1;
goto out;
}
switch (fmt) {
case NORMAL:
wdc_print_hw_rev_log_normal(data);
break;
case JSON:
wdc_print_hw_rev_log_json(data);
break;
default:
break;
}
} else {
fprintf(stderr, "ERROR: WDC: Unable to read Hardware Revision Log Page data\n");
ret = -1;
}
free_buf:
if (data)
free(data);
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_vs_device_waf(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve Device Write Amplication Factor";
const char *namespace_id = "desired namespace id";
struct nvme_smart_log smart_log;
enum nvme_print_flags fmt;
struct nvme_dev *dev;
__u8 *data;
nvme_root_t r;
int ret = 0;
__u64 capabilities = 0;
struct __packed wdc_nvme_ext_smart_log * ext_smart_log_ptr;
long double data_units_written = 0,
phys_media_units_written_tlc = 0,
phys_media_units_written_slc = 0;
struct json_object *root = NULL;
char tlc_waf_str[32] = { 0 },
slc_waf_str[32] = { 0 };
struct config {
char *output_format;
__u32 namespace_id;
};
struct config cfg = {
.output_format = "normal",
.namespace_id = NVME_NSID_ALL,
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_DEVICE_WAF)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
/* get data units written from the smart log page */
ret = nvme_get_log_smart(dev_fd(dev), cfg.namespace_id, false,
&smart_log);
if (!ret) {
data_units_written = int128_to_double(smart_log.data_units_written);
} else if (ret > 0) {
nvme_show_status(ret);
ret = -1;
goto out;
} else {
fprintf(stderr, "smart log: %s\n", nvme_strerror(errno));
ret = -1;
goto out;
}
/* get Physical Media Units Written from extended smart/C0 log page */
data = NULL;
ret = nvme_get_ext_smart_cloud_log(dev_fd(dev), &data, 0,
cfg.namespace_id);
if (!ret) {
ext_smart_log_ptr = (struct __packed wdc_nvme_ext_smart_log *)data;
phys_media_units_written_tlc = int128_to_double(ext_smart_log_ptr->ext_smart_pmuwt);
phys_media_units_written_slc = int128_to_double(ext_smart_log_ptr->ext_smart_pmuws);
if (data)
free(data);
} else {
fprintf(stderr, "ERROR: WDC %s: get smart cloud log failure\n", __func__);
ret = -1;
goto out;
}
if (strcmp(cfg.output_format, "json"))
nvme_show_status(ret);
ret = validate_output_format(cfg.output_format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC %s: invalid output format\n", __func__);
goto out;
}
if (!data_units_written) {
fprintf(stderr, "ERROR: WDC %s: 0 data units written\n", __func__);
ret = -1;
goto out;
}
if (fmt == NORMAL) {
printf("Device Write Amplification Factor TLC : %4.2Lf\n",
(phys_media_units_written_tlc/data_units_written));
printf("Device Write Amplification Factor SLC : %4.2Lf\n",
(phys_media_units_written_slc/data_units_written));
} else if (fmt == JSON) {
root = json_create_object();
sprintf(tlc_waf_str, "%4.2Lf", (phys_media_units_written_tlc/data_units_written));
sprintf(slc_waf_str, "%4.2Lf", (phys_media_units_written_slc/data_units_written));
json_object_add_value_string(root, "Device Write Amplification Factor TLC", tlc_waf_str);
json_object_add_value_string(root, "Device Write Amplification Factor SLC", slc_waf_str);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_get_latency_monitor_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve latency monitor log data.";
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_C3_LOG_PAGE)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
ret = wdc_get_c3_log_page(r, dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR: WDC: Failure reading the Latency Monitor (C3) Log Page, ret = %d\n", ret);
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_get_error_recovery_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve error recovery log data.";
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_OCP_C1_LOG_PAGE)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
ret = wdc_get_ocp_c1_log_page(r, dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR: WDC: Failure reading the Error Recovery (C1) Log Page, ret = 0x%x\n", ret);
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_get_dev_capabilities_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve device capabilities log data.";
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_OCP_C4_LOG_PAGE)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
ret = wdc_get_ocp_c4_log_page(r, dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR: WDC: Failure reading the Device Capabilities (C4) Log Page, ret = 0x%x\n", ret);
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_get_unsupported_reqs_log(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve unsupported requirements log data.";
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_OCP_C5_LOG_PAGE)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
ret = wdc_get_ocp_c5_log_page(r, dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR: WDC: Failure reading the Unsupported Requirements (C5) Log Page, ret = 0x%x\n", ret);
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_do_clear_pcie_correctable_errors(int fd)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof(admin_cmd));
admin_cmd.opcode = WDC_NVME_CLEAR_PCIE_CORR_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_CLEAR_PCIE_CORR_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_PCIE_CORR_CMD);
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
nvme_show_status(ret);
return ret;
}
static int wdc_do_clear_pcie_correctable_errors_vuc(int fd)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof(admin_cmd));
admin_cmd.opcode = WDC_NVME_CLEAR_PCIE_CORR_OPCODE_VUC;
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
nvme_show_status(ret);
return ret;
}
static int wdc_do_clear_pcie_correctable_errors_fid(int fd)
{
int ret;
__u32 result;
__u32 value = 1 << 31; /* Bit 31 - clear PCIe correctable count */
ret = nvme_set_features_simple(fd, WDC_NVME_CLEAR_PCIE_CORR_FEATURE_ID, 0, value,
false, &result);
nvme_show_status(ret);
return ret;
}
static int wdc_clear_pcie_correctable_errors(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Clear PCIE Correctable Errors.";
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
OPT_ARGS(opts) = {
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (!wdc_check_device(r, dev)) {
ret = -1;
goto out;
}
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_CLEAR_PCIE_MASK)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
if (capabilities & WDC_DRIVE_CAP_CLEAR_PCIE)
ret = wdc_do_clear_pcie_correctable_errors(dev_fd(dev));
else if (capabilities & WDC_DRIVE_CAP_VUC_CLEAR_PCIE)
ret = wdc_do_clear_pcie_correctable_errors_vuc(dev_fd(dev));
else
ret = wdc_do_clear_pcie_correctable_errors_fid(dev_fd(dev));
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_drive_status(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Get Drive Status.";
struct nvme_dev *dev;
int ret = 0;
nvme_root_t r;
__le32 system_eol_state;
__le32 user_eol_state;
__le32 format_corrupt_reason = cpu_to_le32(0xFFFFFFFF);
__le32 eol_status;
__le32 assert_status = cpu_to_le32(0xFFFFFFFF);
__le32 thermal_status = cpu_to_le32(0xFFFFFFFF);
__u64 capabilities = 0;
OPT_ARGS(opts) = {
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_DRIVE_STATUS) != WDC_DRIVE_CAP_DRIVE_STATUS) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
/* verify the 0xC2 Device Manageability log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev,
WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_ID) == false) {
fprintf(stderr, "ERROR: WDC: 0xC2 Log Page not supported\n");
ret = -1;
goto out;
}
/* Get the assert dump present status */
if (!wdc_nvme_get_dev_status_log_data(r, dev, &assert_status,
WDC_C2_ASSERT_DUMP_PRESENT_ID))
fprintf(stderr, "ERROR: WDC: Get Assert Status Failed\n");
/* Get the thermal throttling status */
if (!wdc_nvme_get_dev_status_log_data(r, dev, &thermal_status,
WDC_C2_THERMAL_THROTTLE_STATUS_ID))
fprintf(stderr, "ERROR: WDC: Get Thermal Throttling Status Failed\n");
/* Get EOL status */
if (!wdc_nvme_get_dev_status_log_data(r, dev, &eol_status,
WDC_C2_USER_EOL_STATUS_ID)) {
fprintf(stderr, "ERROR: WDC: Get User EOL Status Failed\n");
eol_status = cpu_to_le32(-1);
}
/* Get Customer EOL state */
if (!wdc_nvme_get_dev_status_log_data(r, dev, &user_eol_state,
WDC_C2_USER_EOL_STATE_ID))
fprintf(stderr, "ERROR: WDC: Get User EOL State Failed\n");
/* Get System EOL state*/
if (!wdc_nvme_get_dev_status_log_data(r, dev, &system_eol_state,
WDC_C2_SYSTEM_EOL_STATE_ID))
fprintf(stderr, "ERROR: WDC: Get System EOL State Failed\n");
/* Get format corrupt reason*/
if (!wdc_nvme_get_dev_status_log_data(r, dev, &format_corrupt_reason,
WDC_C2_FORMAT_CORRUPT_REASON_ID))
fprintf(stderr, "ERROR: WDC: Get Format Corrupt Reason Failed\n");
printf(" Drive Status :-\n");
if ((int)le32_to_cpu(eol_status) >= 0)
printf(" Percent Used: %"PRIu32"%%\n",
le32_to_cpu(eol_status));
else
printf(" Percent Used: Unknown\n");
if (system_eol_state == WDC_EOL_STATUS_NORMAL && user_eol_state == WDC_EOL_STATUS_NORMAL)
printf(" Drive Life Status: Normal\n");
else if (system_eol_state == WDC_EOL_STATUS_END_OF_LIFE ||
user_eol_state == WDC_EOL_STATUS_END_OF_LIFE)
printf(" Drive Life Status: End Of Life\n");
else if (system_eol_state == WDC_EOL_STATUS_READ_ONLY ||
user_eol_state == WDC_EOL_STATUS_READ_ONLY)
printf(" Drive Life Status: Read Only\n");
else
printf(" Drive Life Status: Unknown : 0x%08x/0x%08x\n",
le32_to_cpu(user_eol_state), le32_to_cpu(system_eol_state));
if (assert_status == WDC_ASSERT_DUMP_PRESENT)
printf(" Assert Dump Status: Present\n");
else if (assert_status == WDC_ASSERT_DUMP_NOT_PRESENT)
printf(" Assert Dump Status: Not Present\n");
else
printf(" Assert Dump Status: Unknown : 0x%08x\n", le32_to_cpu(assert_status));
if (thermal_status == WDC_THERMAL_THROTTLING_OFF)
printf(" Thermal Throttling Status: Off\n");
else if (thermal_status == WDC_THERMAL_THROTTLING_ON)
printf(" Thermal Throttling Status: On\n");
else if (thermal_status == WDC_THERMAL_THROTTLING_UNAVAILABLE)
printf(" Thermal Throttling Status: Unavailable\n");
else
printf(" Thermal Throttling Status: Unknown : 0x%08x\n", le32_to_cpu(thermal_status));
if (format_corrupt_reason == WDC_FORMAT_NOT_CORRUPT)
printf(" Format Corrupt Reason: Format Not Corrupted\n");
else if (format_corrupt_reason == WDC_FORMAT_CORRUPT_FW_ASSERT)
printf(" Format Corrupt Reason: Format Corrupt due to FW Assert\n");
else if (format_corrupt_reason == WDC_FORMAT_CORRUPT_UNKNOWN)
printf(" Format Corrupt Reason: Format Corrupt for Unknown Reason\n");
else
printf(" Format Corrupt Reason: Unknown : 0x%08x\n", le32_to_cpu(format_corrupt_reason));
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_clear_assert_dump(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Clear Assert Dump Present Status.";
struct nvme_dev *dev;
int ret = -1;
nvme_root_t r;
__le32 assert_status = cpu_to_le32(0xFFFFFFFF);
__u64 capabilities = 0;
struct nvme_passthru_cmd admin_cmd;
OPT_ARGS(opts) = {
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_CLEAR_ASSERT) != WDC_DRIVE_CAP_CLEAR_ASSERT) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
if (!wdc_nvme_get_dev_status_log_data(r, dev, &assert_status,
WDC_C2_ASSERT_DUMP_PRESENT_ID)) {
fprintf(stderr, "ERROR: WDC: Get Assert Status Failed\n");
ret = -1;
goto out;
}
/* Get the assert dump present status */
if (assert_status == WDC_ASSERT_DUMP_PRESENT) {
memset(&admin_cmd, 0, sizeof(admin_cmd));
admin_cmd.opcode = WDC_NVME_CLEAR_ASSERT_DUMP_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_CLEAR_ASSERT_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_ASSERT_DUMP_CMD);
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd,
NULL);
nvme_show_status(ret);
} else
fprintf(stderr, "INFO: WDC: No Assert Dump Present\n");
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_get_fw_act_history(nvme_root_t r, struct nvme_dev *dev,
char *format)
{
struct wdc_fw_act_history_log_hdr *fw_act_history_hdr;
enum nvme_print_flags fmt;
int ret;
__u8 *data;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
/* verify the FW Activate History log page is supported */
if (!wdc_nvme_check_supported_log_page(r, dev, WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID)) {
fprintf(stderr, "ERROR: WDC: %d Log Page not supported\n",
WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID);
return -1;
}
data = (__u8 *)malloc(sizeof(__u8) * WDC_FW_ACT_HISTORY_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_FW_ACT_HISTORY_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev),
WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID,
WDC_FW_ACT_HISTORY_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* parse the data */
fw_act_history_hdr = (struct wdc_fw_act_history_log_hdr *)(data);
if ((fw_act_history_hdr->num_entries > 0) &&
(fw_act_history_hdr->num_entries <= WDC_MAX_NUM_ACT_HIST_ENTRIES)) {
ret = wdc_print_fw_act_history_log(data, fw_act_history_hdr->num_entries,
fmt, 0, 0, 0);
} else if (!fw_act_history_hdr->num_entries) {
fprintf(stderr, "INFO: WDC: No FW Activate History entries found.\n");
ret = 0;
} else {
fprintf(stderr,
"ERROR: WDC: Invalid number entries found in FW Activate History Log Page - %d\n",
fw_act_history_hdr->num_entries);
ret = -1;
}
} else {
fprintf(stderr, "ERROR: WDC: Unable to read FW Activate History Log Page data\n");
ret = -1;
}
free(data);
return ret;
}
static __u32 wdc_get_fw_cust_id(nvme_root_t r, struct nvme_dev *dev)
{
__u32 cust_id = WDC_INVALID_CUSTOMER_ID;
__u32 *cust_id_ptr = NULL;
if (!get_dev_mgment_cbs_data(r, dev, WDC_C2_CUSTOMER_ID_ID, (void *)&cust_id_ptr))
fprintf(stderr, "%s: ERROR: WDC: 0xC2 Log Page entry ID 0x%x not found\n",
__func__, WDC_C2_CUSTOMER_ID_ID);
else
cust_id = *cust_id_ptr;
free(cust_id_ptr);
return cust_id;
}
static int wdc_get_fw_act_history_C2(nvme_root_t r, struct nvme_dev *dev,
char *format)
{
struct wdc_fw_act_history_log_format_c2 *fw_act_history_log;
__u32 tot_entries = 0, num_entries = 0;
__u32 vendor_id = 0, device_id = 0;
__u32 cust_id = 0;
enum nvme_print_flags fmt;
__u8 *data;
int ret;
bool c2GuidMatch = false;
if (!wdc_check_device(r, dev))
return -1;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
return ret;
}
ret = wdc_get_pci_ids(r, dev, &device_id, &vendor_id);
data = (__u8 *)malloc(sizeof(__u8) * WDC_FW_ACT_HISTORY_C2_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR: WDC: malloc: %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * WDC_FW_ACT_HISTORY_C2_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev),
WDC_NVME_GET_FW_ACT_HISTORY_C2_LOG_ID,
WDC_FW_ACT_HISTORY_C2_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
nvme_show_status(ret);
if (!ret) {
/* Get the log page data and verify the GUID */
fw_act_history_log = (struct wdc_fw_act_history_log_format_c2 *)(data);
c2GuidMatch = !memcmp(ocp_C2_guid,
fw_act_history_log->log_page_guid,
WDC_C2_GUID_LENGTH);
if (c2GuidMatch) {
/* parse the data */
tot_entries = le32_to_cpu(fw_act_history_log->num_entries);
if (tot_entries > 0) {
/* get the FW customer id */
if (!wdc_is_sn861(device_id)) {
cust_id = wdc_get_fw_cust_id(r, dev);
if (cust_id == WDC_INVALID_CUSTOMER_ID) {
fprintf(stderr,
"%s: ERROR: WDC: invalid customer id\n",
__func__);
ret = -1;
goto freeData;
}
}
num_entries = (tot_entries < WDC_MAX_NUM_ACT_HIST_ENTRIES) ?
tot_entries : WDC_MAX_NUM_ACT_HIST_ENTRIES;
ret = wdc_print_fw_act_history_log(data, num_entries,
fmt, cust_id, vendor_id, device_id);
} else {
fprintf(stderr, "INFO: WDC: No entries found.\n");
ret = 0;
}
} else {
fprintf(stderr, "ERROR: WDC: Invalid C2 log page GUID\n");
ret = -1;
}
} else {
fprintf(stderr, "ERROR: WDC: Unable to read FW Activate History Log Page data\n");
ret = -1;
}
freeData:
free(data);
return ret;
}
static int wdc_vs_fw_activate_history(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve FW activate history table.";
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret = -1;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_MASK)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
if (capabilities & WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY) {
__u32 cust_fw_id = 0;
/* get the FW customer id */
cust_fw_id = wdc_get_fw_cust_id(r, dev);
if (cust_fw_id == WDC_INVALID_CUSTOMER_ID) {
fprintf(stderr, "%s: ERROR: WDC: invalid customer id\n", __func__);
ret = -1;
goto out;
}
if ((cust_fw_id == WDC_CUSTOMER_ID_0x1004) ||
(cust_fw_id == WDC_CUSTOMER_ID_0x1008) ||
(cust_fw_id == WDC_CUSTOMER_ID_0x1005) ||
(cust_fw_id == WDC_CUSTOMER_ID_0x1304))
ret = wdc_get_fw_act_history_C2(r, dev, cfg.output_format);
else
ret = wdc_get_fw_act_history(r, dev, cfg.output_format);
} else if (capabilities & WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_C2) {
ret = wdc_get_fw_act_history_C2(r, dev, cfg.output_format);
}
if (ret)
fprintf(stderr, "ERROR: WDC: Failure reading the FW Activate History, ret = %d\n", ret);
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_do_clear_fw_activate_history_vuc(int fd)
{
int ret = -1;
struct nvme_passthru_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof(admin_cmd));
admin_cmd.opcode = WDC_NVME_CLEAR_FW_ACT_HIST_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_CLEAR_FW_ACT_HIST_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_CLEAR_FW_ACT_HIST_CMD);
ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
nvme_show_status(ret);
return ret;
}
static int wdc_do_clear_fw_activate_history_fid(int fd)
{
int ret = -1;
__u32 result;
__u32 value = 1 << 31; /* Bit 31 - Clear Firmware Update History Log */
ret = nvme_set_features_simple(fd, WDC_NVME_CLEAR_FW_ACT_HIST_VU_FID, 0, value,
false, &result);
nvme_show_status(ret);
return ret;
}
static int wdc_clear_fw_activate_history(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Clear FW activate history table.";
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
OPT_ARGS(opts) = {
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY_MASK)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
if (capabilities & WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY)
ret = wdc_do_clear_fw_activate_history_vuc(dev_fd(dev));
else
ret = wdc_do_clear_fw_activate_history_fid(dev_fd(dev));
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_vs_telemetry_controller_option(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Disable/Enable Controller Option of the Telemetry Log Page.";
char *disable = "Disable controller option of the telemetry log page.";
char *enable = "Enable controller option of the telemetry log page.";
char *status = "Displays the current state of the controller initiated log page.";
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
__u32 result;
int ret = -1;
struct config {
bool disable;
bool enable;
bool status;
};
struct config cfg = {
.disable = false,
.enable = false,
.status = false,
};
OPT_ARGS(opts) = {
OPT_FLAG("disable", 'd', &cfg.disable, disable),
OPT_FLAG("enable", 'e', &cfg.enable, enable),
OPT_FLAG("status", 's', &cfg.status, status),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG) != WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
/* allow only one option at a time */
if ((cfg.disable + cfg.enable + cfg.status) > 1) {
fprintf(stderr, "ERROR: WDC: Invalid option\n");
ret = -1;
goto out;
}
if (cfg.disable) {
ret = nvme_set_features_simple(dev_fd(dev),
WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID,
0, 1, false, &result);
wdc_clear_reason_id(dev);
} else {
if (cfg.enable) {
ret = nvme_set_features_simple(dev_fd(dev),
WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID,
0, 0, false, &result);
} else if (cfg.status) {
ret = nvme_get_features_simple(dev_fd(dev),
WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID,
0, &result);
if (!ret) {
if (result)
fprintf(stderr, "Controller Option Telemetry Log Page State: Disabled\n");
else
fprintf(stderr, "Controller Option Telemetry Log Page State: Enabled\n");
} else {
nvme_show_status(ret);
}
} else {
fprintf(stderr, "ERROR: WDC: unsupported option for this command\n");
fprintf(stderr, "Please provide an option, -d, -e or -s\n");
ret = -1;
goto out;
}
}
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_get_serial_and_fw_rev(struct nvme_dev *dev, char *sn, char *fw_rev)
{
int i;
int ret;
struct nvme_id_ctrl ctrl;
i = sizeof(ctrl.sn) - 1;
memset(sn, 0, WDC_SERIAL_NO_LEN);
memset(fw_rev, 0, WDC_NVME_FIRMWARE_REV_LEN);
memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
ret = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_identify_ctrl() failed 0x%x\n", ret);
return -1;
}
/* Remove trailing spaces from the name */
while (i && ctrl.sn[i] == ' ') {
ctrl.sn[i] = '\0';
i--;
}
snprintf(sn, WDC_SERIAL_NO_LEN, "%s", ctrl.sn);
snprintf(fw_rev, WDC_NVME_FIRMWARE_REV_LEN, "%s", ctrl.fr);
return 0;
}
static int wdc_get_max_transfer_len(struct nvme_dev *dev, __u32 *maxTransferLen)
{
int ret = 0;
struct nvme_id_ctrl ctrl;
__u32 maxTransferLenDevice = 0;
memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
ret = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_identify_ctrl() failed 0x%x\n", ret);
return -1;
}
maxTransferLenDevice = (1 << ctrl.mdts) * getpagesize();
*maxTransferLen = maxTransferLenDevice;
return ret;
}
static int wdc_de_VU_read_size(struct nvme_dev *dev, __u32 fileId, __u16 spiDestn, __u32 *logSize)
{
int ret = WDC_STATUS_FAILURE;
struct nvme_passthru_cmd cmd;
if (!dev || !logSize) {
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
memset(&cmd, 0, sizeof(struct nvme_passthru_cmd));
cmd.opcode = WDC_DE_VU_READ_SIZE_OPCODE;
cmd.nsid = WDC_DE_DEFAULT_NAMESPACE_ID;
cmd.cdw13 = fileId << 16;
cmd.cdw14 = spiDestn;
ret = nvme_submit_admin_passthru(dev_fd(dev), &cmd, NULL);
if (!ret && logSize)
*logSize = cmd.result;
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr, "ERROR: WDC: VUReadSize() failed, ");
nvme_show_status(ret);
}
end:
return ret;
}
static int wdc_de_VU_read_buffer(struct nvme_dev *dev, __u32 fileId, __u16 spiDestn,
__u32 offsetInDwords, __u8 *dataBuffer, __u32 *bufferSize)
{
int ret = WDC_STATUS_FAILURE;
struct nvme_passthru_cmd cmd;
__u32 noOfDwordExpected = 0;
if (!dev || !dataBuffer || !bufferSize) {
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
memset(&cmd, 0, sizeof(struct nvme_passthru_cmd));
noOfDwordExpected = *bufferSize / sizeof(__u32);
cmd.opcode = WDC_DE_VU_READ_BUFFER_OPCODE;
cmd.nsid = WDC_DE_DEFAULT_NAMESPACE_ID;
cmd.cdw10 = noOfDwordExpected;
cmd.cdw13 = fileId << 16;
cmd.cdw14 = spiDestn;
cmd.cdw15 = offsetInDwords;
cmd.addr = (__u64)(__u64)(uintptr_t)dataBuffer;
cmd.data_len = *bufferSize;
ret = nvme_submit_admin_passthru(dev_fd(dev), &cmd, NULL);
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr, "ERROR: WDC: VUReadBuffer() failed, ");
nvme_show_status(ret);
}
end:
return ret;
}
static int wdc_get_log_dir_max_entries(struct nvme_dev *dev, __u32 *maxNumOfEntries)
{
int ret = WDC_STATUS_FAILURE;
__u32 headerPayloadSize = 0;
__u8 *fileIdOffsetsBuffer = NULL;
__u32 fileIdOffsetsBufferSize = 0;
__u32 fileNum = 0;
__u16 fileOffset = 0;
if (!dev || !maxNumOfEntries) {
ret = WDC_STATUS_INVALID_PARAMETER;
return ret;
}
/* 1.Get log directory first four bytes */
ret = wdc_de_VU_read_size(dev, 0, 5, (__u32 *)&headerPayloadSize);
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr,
"ERROR: WDC: %s: Failed to get headerPayloadSize from file directory 0x%x\n",
__func__, ret);
return ret;
}
fileIdOffsetsBufferSize =
WDC_DE_FILE_HEADER_SIZE + (headerPayloadSize * WDC_DE_FILE_OFFSET_SIZE);
fileIdOffsetsBuffer = (__u8 *)calloc(1, fileIdOffsetsBufferSize);
/* 2.Read to get file offsets */
ret = wdc_de_VU_read_buffer(dev, 0, 5, 0, fileIdOffsetsBuffer, &fileIdOffsetsBufferSize);
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr,
"ERROR: WDC: %s: Failed to get fileIdOffsets from file directory 0x%x\n",
__func__, ret);
goto end;
}
/* 3.Determine valid entries */
for (fileNum = 0;
fileNum < (headerPayloadSize - WDC_DE_FILE_HEADER_SIZE) / WDC_DE_FILE_OFFSET_SIZE;
fileNum++) {
fileOffset = (fileIdOffsetsBuffer[WDC_DE_FILE_HEADER_SIZE +
(fileNum * WDC_DE_FILE_OFFSET_SIZE)] << 8) +
fileIdOffsetsBuffer[WDC_DE_FILE_HEADER_SIZE +
(fileNum * WDC_DE_FILE_OFFSET_SIZE) + 1];
if (!fileOffset)
continue;
(*maxNumOfEntries)++;
}
end:
free(fileIdOffsetsBuffer);
return ret;
}
static enum WDC_DRIVE_ESSENTIAL_TYPE wdc_get_essential_type(__u8 fileName[])
{
enum WDC_DRIVE_ESSENTIAL_TYPE essentialType = WDC_DE_TYPE_NONE;
if (!wdc_UtilsStrCompare((char *)fileName, WDC_DE_CORE_DUMP_FILE_NAME))
essentialType = WDC_DE_TYPE_DUMPSNAPSHOT;
else if (!wdc_UtilsStrCompare((char *)fileName, WDC_DE_EVENT_LOG_FILE_NAME))
essentialType = WDC_DE_TYPE_EVENTLOG;
else if (!wdc_UtilsStrCompare((char *)fileName, WDC_DE_MANUFACTURING_INFO_PAGE_FILE_NAME))
essentialType = WDC_DE_TYPE_NVME_MANF_INFO;
return essentialType;
}
static int wdc_fetch_log_directory(struct nvme_dev *dev, struct WDC_DE_VU_LOG_DIRECTORY *directory)
{
int ret = WDC_STATUS_FAILURE;
__u8 *fileOffset = NULL;
__u8 *fileDirectory = NULL;
__u32 headerSize = 0;
__u32 fileNum = 0, startIdx = 0;
__u16 fileOffsetTemp = 0;
__u32 entryId = 0;
__u32 fileDirectorySize = 0;
if (!dev || !directory) {
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
ret = wdc_de_VU_read_size(dev, 0, 5, &fileDirectorySize);
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr,
"ERROR: WDC: %s: Failed to get filesystem directory size, ret = %d\n",
__func__, ret);
goto end;
}
fileDirectory = (__u8 *)calloc(1, fileDirectorySize);
ret = wdc_de_VU_read_buffer(dev, 0, 5, 0, fileDirectory, &fileDirectorySize);
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr, "ERROR: WDC: %s: Failed to get filesystem directory, ret = %d\n",
__func__, ret);
goto end;
}
/* First four bytes of header directory is headerSize */
memcpy(&headerSize, fileDirectory, WDC_DE_FILE_HEADER_SIZE);
/* minimum buffer for 1 entry is required */
if (!directory->maxNumLogEntries) {
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
for (fileNum = 0;
fileNum < (headerSize - WDC_DE_FILE_HEADER_SIZE) / WDC_DE_FILE_OFFSET_SIZE;
fileNum++) {
if (entryId >= directory->maxNumLogEntries)
break;
startIdx = WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE);
memcpy(&fileOffsetTemp, fileDirectory + startIdx, sizeof(fileOffsetTemp));
fileOffset = fileDirectory + fileOffsetTemp;
if (!fileOffsetTemp)
continue;
memset(&directory->logEntry[entryId], 0, sizeof(struct WDC_DRIVE_ESSENTIALS));
memcpy(&directory->logEntry[entryId].metaData, fileOffset, sizeof(struct __packed WDC_DE_VU_FILE_META_DATA));
directory->logEntry[entryId].metaData.fileName[WDC_DE_FILE_NAME_SIZE - 1] = '\0';
wdc_UtilsDeleteCharFromString((char *)directory->logEntry[entryId].metaData.fileName,
WDC_DE_FILE_NAME_SIZE, ' ');
if (!directory->logEntry[entryId].metaData.fileID)
continue;
directory->logEntry[entryId].essentialType = wdc_get_essential_type(directory->logEntry[entryId].metaData.fileName);
entryId++;
}
directory->numOfValidLogEntries = entryId;
end:
if (fileDirectory)
free(fileDirectory);
return ret;
}
static int wdc_fetch_log_file_from_device(struct nvme_dev *dev, __u32 fileId,
__u16 spiDestn, __u64 fileSize, __u8 *dataBuffer)
{
int ret = WDC_STATUS_FAILURE;
__u32 chunckSize = WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET;
__u32 maximumTransferLength = 0;
__u32 buffSize = 0;
__u64 offsetIdx = 0;
if (!dev || !dataBuffer || !fileSize) {
ret = WDC_STATUS_INVALID_PARAMETER;
goto end;
}
if (wdc_get_max_transfer_len(dev, &maximumTransferLength) < 0) {
ret = WDC_STATUS_FAILURE;
goto end;
}
/* Fetch Log File Data */
if ((fileSize >= maximumTransferLength) || (fileSize > 0xFFFFFFFF)) {
chunckSize = WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET;
if (maximumTransferLength < WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET)
chunckSize = maximumTransferLength;
buffSize = chunckSize;
for (offsetIdx = 0; (offsetIdx * chunckSize) < fileSize; offsetIdx++) {
if (((offsetIdx * chunckSize) + buffSize) > fileSize)
buffSize = (__u32)(fileSize - (offsetIdx * chunckSize));
/* Limitation in VU read buffer - offsetIdx and bufferSize are not greater than u32 */
ret = wdc_de_VU_read_buffer(dev, fileId, spiDestn,
(__u32)((offsetIdx * chunckSize) / sizeof(__u32)), dataBuffer + (offsetIdx * chunckSize), &buffSize);
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr, "ERROR: WDC: %s: wdc_de_VU_read_buffer failed with ret = %d, fileId = 0x%x, fileSize = 0x%lx\n",
__func__, ret, fileId, (unsigned long)fileSize);
break;
}
}
} else {
buffSize = (__u32)fileSize;
ret = wdc_de_VU_read_buffer(dev, fileId, spiDestn,
(__u32)((offsetIdx * chunckSize) / sizeof(__u32)),
dataBuffer, &buffSize);
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr, "ERROR: WDC: %s: wdc_de_VU_read_buffer failed with ret = %d, fileId = 0x%x, fileSize = 0x%lx\n",
__func__, ret, fileId, (unsigned long)fileSize);
}
}
end:
return ret;
}
static int wdc_de_get_dump_trace(struct nvme_dev *dev, char *filePath, __u16 binFileNameLen, char *binFileName)
{
int ret = WDC_STATUS_FAILURE;
__u8 *readBuffer = NULL;
__u32 readBufferLen = 0;
__u32 lastPktReadBufferLen = 0;
__u32 maxTransferLen = 0;
__u32 dumptraceSize = 0;
__u32 chunkSize;
__u32 chunks;
__u32 offset;
__u32 i;
__u32 maximumTransferLength = 0;
if (!dev || !binFileName || !filePath) {
ret = WDC_STATUS_INVALID_PARAMETER;
return ret;
}
if (wdc_get_max_transfer_len(dev, &maximumTransferLength) < 0)
return WDC_STATUS_FAILURE;
do {
/* Get dumptrace size */
ret = wdc_de_VU_read_size(dev, 0, WDC_DE_DUMPTRACE_DESTINATION, &dumptraceSize);
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr, "ERROR: WDC: %s: wdc_de_VU_read_size failed with ret = %d\n",
__func__, ret);
break;
}
/* Make sure the size requested is greater than dword */
if (dumptraceSize < 4) {
ret = WDC_STATUS_FAILURE;
fprintf(stderr, "ERROR: WDC: %s: wdc_de_VU_read_size failed, read size is less than 4 bytes, dumptraceSize = 0x%x\n",
__func__, dumptraceSize);
break;
}
/* Choose the least max transfer length */
maxTransferLen = maximumTransferLength < WDC_DE_READ_MAX_TRANSFER_SIZE ? maximumTransferLength : WDC_DE_READ_MAX_TRANSFER_SIZE;
/* Comment from FW Team:
* The max non - block transfer size is 0xFFFF (16 bits allowed as the block size).Use 0x8000
* to keep it on a word - boundary.
* max_xfer = int(pow(2, id_data['MDTS'])) * 4096 # 4k page size as reported in pcie capabiltiies
*/
chunkSize = dumptraceSize < maxTransferLen ? dumptraceSize : maxTransferLen;
chunks = (dumptraceSize / maxTransferLen) + ((dumptraceSize % maxTransferLen) ? 1 : 0);
readBuffer = (unsigned char *)calloc(dumptraceSize, sizeof(unsigned char));
readBufferLen = chunkSize;
lastPktReadBufferLen = (dumptraceSize % maxTransferLen) ? (dumptraceSize % maxTransferLen) : chunkSize;
if (!readBuffer) {
fprintf(stderr, "ERROR: WDC: %s: readBuffer calloc failed\n", __func__);
ret = WDC_STATUS_INSUFFICIENT_MEMORY;
break;
}
for (i = 0; i < chunks; i++) {
offset = (i * chunkSize) / 4;
/* Last loop call, Assign readBufferLen to read only left over bytes */
if (i == (chunks - 1))
readBufferLen = lastPktReadBufferLen;
ret = wdc_de_VU_read_buffer(dev, 0, WDC_DE_DUMPTRACE_DESTINATION, 0,
readBuffer + offset, &readBufferLen);
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr,
"ERROR: WDC: %s: wdc_de_VU_read_buffer failed, ret = %d on offset 0x%x\n",
__func__, ret, offset);
break;
}
}
} while (0);
if (ret == WDC_STATUS_SUCCESS) {
ret = wdc_WriteToFile(binFileName, (char *)readBuffer, dumptraceSize);
if (ret != WDC_STATUS_SUCCESS)
fprintf(stderr, "ERROR: WDC: %s: wdc_WriteToFile failed, ret = %d\n",
__func__, ret);
} else {
fprintf(stderr, "ERROR: WDC: %s: Read Buffer Loop failed, ret = %d\n", __func__,
ret);
}
if (readBuffer)
free(readBuffer);
return ret;
}
int wdc_fetch_vu_file_directory(struct nvme_dev *dev,
struct WDC_DE_VU_LOG_DIRECTORY deEssentialsList,
__s8 *bufferFolderPath, __u8 *serialNo, __u8 *timeString)
{
int ret = wdc_fetch_log_directory(dev, &deEssentialsList);
__u32 listIdx;
char *dataBuffer;
char fileName[MAX_PATH_LEN];
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr, "WDC: wdc_fetch_log_directory failed, ret = %d\n", ret);
return ret;
}
/* Get Debug Data Files */
for (listIdx = 0; listIdx < deEssentialsList.numOfValidLogEntries; listIdx++) {
if (!deEssentialsList.logEntry[listIdx].metaData.fileSize) {
fprintf(stderr, "ERROR: WDC: File Size for %s is 0\n",
deEssentialsList.logEntry[listIdx].metaData.fileName);
ret = WDC_STATUS_FILE_SIZE_ZERO;
} else {
/* Fetch Log File Data */
dataBuffer = (char *)calloc(1, (size_t)deEssentialsList.logEntry[listIdx].metaData.fileSize);
ret = wdc_fetch_log_file_from_device(dev,
deEssentialsList.logEntry[listIdx].metaData.fileID,
WDC_DE_DESTN_SPI,
deEssentialsList.logEntry[listIdx].metaData.fileSize,
(__u8 *)dataBuffer);
/* Write databuffer to file */
if (ret == WDC_STATUS_SUCCESS) {
memset(fileName, 0, sizeof(fileName));
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", bufferFolderPath, WDC_DE_PATH_SEPARATOR,
deEssentialsList.logEntry[listIdx].metaData.fileName, serialNo, timeString);
if (deEssentialsList.logEntry[listIdx].metaData.fileSize > 0xFFFFFFFF) {
wdc_WriteToFile(fileName, dataBuffer, 0xFFFFFFFF);
wdc_WriteToFile(fileName, dataBuffer + 0xFFFFFFFF, (__u32)(deEssentialsList.logEntry[listIdx].metaData.fileSize - 0xFFFFFFFF));
} else {
wdc_WriteToFile(fileName, dataBuffer, (__u32)deEssentialsList.logEntry[listIdx].metaData.fileSize);
}
} else {
fprintf(stderr, "ERROR: WDC: wdc_fetch_log_file_from_device: %s failed, ret = %d\n",
deEssentialsList.logEntry[listIdx].metaData.fileName, ret);
}
free(dataBuffer);
}
}
return ret;
}
int wdc_read_debug_directory(struct nvme_dev *dev, __s8 *bufferFolderPath, __u8 *serialNo,
__u8 *timeString)
{
__u32 maxNumOfVUFiles = 0;
int ret = wdc_get_log_dir_max_entries(dev, &maxNumOfVUFiles);
struct WDC_DE_VU_LOG_DIRECTORY deEssentialsList;
if (ret != WDC_STATUS_SUCCESS) {
fprintf(stderr, "WDC: wdc_get_log_dir_max_entries failed, ret = %d\n", ret);
return ret;
}
memset(&deEssentialsList, 0, sizeof(deEssentialsList));
deEssentialsList.logEntry =
(struct WDC_DRIVE_ESSENTIALS *)calloc(1, sizeof(struct WDC_DRIVE_ESSENTIALS) * maxNumOfVUFiles);
deEssentialsList.maxNumLogEntries = maxNumOfVUFiles;
ret = wdc_fetch_vu_file_directory(dev, deEssentialsList, bufferFolderPath, serialNo,
timeString);
free(deEssentialsList.logEntry);
deEssentialsList.logEntry = NULL;
return ret;
}
static int wdc_do_drive_essentials(nvme_root_t r, struct nvme_dev *dev,
char *dir, char *key)
{
int ret = 0;
void *retPtr;
char fileName[MAX_PATH_LEN];
__s8 bufferFolderPath[MAX_PATH_LEN];
char bufferFolderName[MAX_PATH_LEN];
char tarFileName[MAX_PATH_LEN];
char tarFiles[MAX_PATH_LEN];
char tarCmd[MAX_PATH_LEN+MAX_PATH_LEN];
UtilsTimeInfo timeInfo;
__u8 timeString[MAX_PATH_LEN];
__u8 serialNo[WDC_SERIAL_NO_LEN];
__u8 firmwareRevision[WDC_NVME_FIRMWARE_REV_LEN];
__u8 idSerialNo[WDC_SERIAL_NO_LEN];
__u8 idFwRev[WDC_NVME_FIRMWARE_REV_LEN];
__u8 featureIdBuff[4];
char currDir[MAX_PATH_LEN];
char *dataBuffer = NULL;
__u32 elogNumEntries, elogBufferSize;
__u32 dataBufferSize;
__u32 listIdx = 0;
__u32 vuLogIdx = 0;
__u32 result;
struct nvme_id_ctrl ctrl;
struct nvme_id_ns ns;
struct nvme_error_log_page *elogBuffer;
struct nvme_smart_log smart_log;
struct nvme_firmware_slot fw_log;
struct WDC_NVME_DE_VU_LOGPAGES *vuLogInput = NULL;
memset(bufferFolderPath, 0, sizeof(bufferFolderPath));
memset(bufferFolderName, 0, sizeof(bufferFolderName));
memset(tarFileName, 0, sizeof(tarFileName));
memset(tarFiles, 0, sizeof(tarFiles));
memset(tarCmd, 0, sizeof(tarCmd));
memset(&timeInfo, 0, sizeof(timeInfo));
if (wdc_get_serial_and_fw_rev(dev, (char *)idSerialNo, (char *)idFwRev)) {
fprintf(stderr, "ERROR: WDC: get serial # and fw revision failed\n");
return -1;
}
fprintf(stderr, "Get Drive Essentials Data for device serial #: %s and fw revision: %s\n",
idSerialNo, idFwRev);
/* Create Drive Essentials directory */
wdc_UtilsGetTime(&timeInfo);
memset(timeString, 0, sizeof(timeString));
wdc_UtilsSnprintf((char *)timeString, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
timeInfo.year, timeInfo.month, timeInfo.dayOfMonth,
timeInfo.hour, timeInfo.minute, timeInfo.second);
wdc_UtilsSnprintf((char *)serialNo, WDC_SERIAL_NO_LEN, (char *)idSerialNo);
/* Remove any space form serialNo */
wdc_UtilsDeleteCharFromString((char *)serialNo, WDC_SERIAL_NO_LEN, ' ');
memset(firmwareRevision, 0, sizeof(firmwareRevision));
wdc_UtilsSnprintf((char *)firmwareRevision, WDC_NVME_FIRMWARE_REV_LEN, (char *)idFwRev);
/* Remove any space form FirmwareRevision */
wdc_UtilsDeleteCharFromString((char *)firmwareRevision, WDC_NVME_FIRMWARE_REV_LEN, ' ');
wdc_UtilsSnprintf((char *)bufferFolderName, MAX_PATH_LEN, "%s_%s_%s_%s",
"DRIVE_ESSENTIALS", (char *)serialNo, (char *)firmwareRevision, (char *)timeString);
if (dir) {
wdc_UtilsSnprintf((char *)bufferFolderPath, MAX_PATH_LEN, "%s%s%s",
(char *)dir, WDC_DE_PATH_SEPARATOR, (char *)bufferFolderName);
} else {
retPtr = getcwd((char *)currDir, MAX_PATH_LEN);
if (retPtr) {
wdc_UtilsSnprintf((char *)bufferFolderPath, MAX_PATH_LEN, "%s%s%s",
(char *)currDir, WDC_DE_PATH_SEPARATOR, (char *)bufferFolderName);
} else {
fprintf(stderr, "ERROR: WDC: get current working directory failed\n");
return -1;
}
}
ret = wdc_UtilsCreateDir((char *)bufferFolderPath);
if (ret) {
fprintf(stderr, "ERROR: WDC: create directory failed, ret = %d, dir = %s\n", ret, bufferFolderPath);
return -1;
}
fprintf(stderr, "Store Drive Essentials bin files in directory: %s\n", bufferFolderPath);
/* Get Identify Controller Data */
memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
ret = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_identify_ctrl() failed, ret = %d\n", ret);
return -1;
}
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char *)bufferFolderPath,
WDC_DE_PATH_SEPARATOR, "IdentifyController", (char *)serialNo,
(char *)timeString);
wdc_WriteToFile(fileName, (char *)&ctrl, sizeof(struct nvme_id_ctrl));
memset(&ns, 0, sizeof(struct nvme_id_ns));
ret = nvme_identify_ns(dev_fd(dev), 1, &ns);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_identify_ns() failed, ret = %d\n", ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char *)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"IdentifyNamespace", (char *)serialNo, (char *)timeString);
wdc_WriteToFile(fileName, (char *)&ns, sizeof(struct nvme_id_ns));
}
/* Get Log Pages (0x01, 0x02, 0x03, 0xC0 and 0xE3) */
elogNumEntries = WDC_DE_DEFAULT_NUMBER_OF_ERROR_ENTRIES;
elogBufferSize = elogNumEntries*sizeof(struct nvme_error_log_page);
dataBuffer = calloc(1, elogBufferSize);
elogBuffer = (struct nvme_error_log_page *)dataBuffer;
ret = nvme_get_log_error(dev_fd(dev), elogNumEntries, false,
elogBuffer);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_error_log() failed, ret = %d\n", ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char *)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"ErrorLog", (char *)serialNo, (char *)timeString);
wdc_WriteToFile(fileName, (char *)elogBuffer, elogBufferSize);
}
free(dataBuffer);
dataBuffer = NULL;
/* Get Smart log page */
memset(&smart_log, 0, sizeof(struct nvme_smart_log));
ret = nvme_get_log_smart(dev_fd(dev), NVME_NSID_ALL, false,
&smart_log);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_smart_log() failed, ret = %d\n", ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char *)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"SmartLog", (char *)serialNo, (char *)timeString);
wdc_WriteToFile(fileName, (char *)&smart_log, sizeof(struct nvme_smart_log));
}
/* Get FW Slot log page */
memset(&fw_log, 0, sizeof(struct nvme_firmware_slot));
ret = nvme_get_log_fw_slot(dev_fd(dev), false, &fw_log);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_fw_log() failed, ret = %d\n", ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char *)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"FwSLotLog", (char *)serialNo, (char *)timeString);
wdc_WriteToFile(fileName, (char *)&fw_log, sizeof(struct nvme_firmware_slot));
}
/* Get VU log pages */
/* define inputs for vendor unique log pages */
vuLogInput = (struct WDC_NVME_DE_VU_LOGPAGES *)calloc(1, sizeof(struct WDC_NVME_DE_VU_LOGPAGES));
vuLogInput->numOfVULogPages = ARRAY_SIZE(deVULogPagesList);
for (vuLogIdx = 0; vuLogIdx < vuLogInput->numOfVULogPages; vuLogIdx++) {
dataBufferSize = deVULogPagesList[vuLogIdx].logPageLen;
dataBuffer = calloc(1, dataBufferSize);
memset(dataBuffer, 0, dataBufferSize);
ret = nvme_get_log_simple(dev_fd(dev),
deVULogPagesList[vuLogIdx].logPageId,
dataBufferSize, dataBuffer);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_get_log() for log page 0x%x failed, ret = %d\n",
deVULogPagesList[vuLogIdx].logPageId, ret);
} else {
wdc_UtilsDeleteCharFromString((char *)deVULogPagesList[vuLogIdx].logPageIdStr, 4, ' ');
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s_%s.bin", (char *)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"LogPage", (char *)&deVULogPagesList[vuLogIdx].logPageIdStr, (char *)serialNo, (char *)timeString);
wdc_WriteToFile(fileName, (char *)dataBuffer, dataBufferSize);
}
free(dataBuffer);
dataBuffer = NULL;
}
free(vuLogInput);
/* Get NVMe Features (0x01, 0x02, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C) */
for (listIdx = 1; listIdx < ARRAY_SIZE(deFeatureIdList); listIdx++) {
memset(featureIdBuff, 0, sizeof(featureIdBuff));
/* skipping LbaRangeType as it is an optional nvme command and not supported */
if (deFeatureIdList[listIdx].featureId == FID_LBA_RANGE_TYPE)
continue;
ret = nvme_get_features_data(dev_fd(dev),
(enum nvme_features_id)deFeatureIdList[listIdx].featureId,
WDC_DE_GLOBAL_NSID,
sizeof(featureIdBuff),
&featureIdBuff, &result);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_get_feature id 0x%x failed, ret = %d\n",
deFeatureIdList[listIdx].featureId, ret);
} else {
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s0x%x_%s_%s_%s.bin", (char *)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
"FEATURE_ID_", deFeatureIdList[listIdx].featureId,
deFeatureIdList[listIdx].featureName, serialNo, timeString);
wdc_WriteToFile(fileName, (char *)featureIdBuff, sizeof(featureIdBuff));
}
}
ret = wdc_read_debug_directory(dev, bufferFolderPath, serialNo, timeString);
/* Get Dump Trace Data */
wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char *)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "dumptrace", serialNo, timeString);
ret = wdc_de_get_dump_trace(dev, (char *)bufferFolderPath, 0, fileName);
if (ret != WDC_STATUS_SUCCESS)
fprintf(stderr, "ERROR: WDC: wdc_de_get_dump_trace failed, ret = %d\n", ret);
/* Tar the Drive Essentials directory */
wdc_UtilsSnprintf(tarFileName, sizeof(tarFileName), "%s%s", (char *)bufferFolderPath, WDC_DE_TAR_FILE_EXTN);
if (dir)
wdc_UtilsSnprintf(tarFiles, sizeof(tarFiles), "%s%s%s%s%s", (char *)dir,
WDC_DE_PATH_SEPARATOR, (char *)bufferFolderName,
WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES);
else
wdc_UtilsSnprintf(tarFiles, sizeof(tarFiles), "%s%s%s", (char *)bufferFolderName,
WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES);
wdc_UtilsSnprintf(tarCmd, sizeof(tarCmd), "%s %s %s", WDC_DE_TAR_CMD, (char *)tarFileName, (char *)tarFiles);
ret = system(tarCmd);
if (ret)
fprintf(stderr, "ERROR: WDC: Tar of Drive Essentials data failed, ret = %d\n",
ret);
fprintf(stderr, "Get of Drive Essentials data successful\n");
nvme_free_tree(r);
return 0;
}
static int wdc_drive_essentials(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
char *desc = "Capture Drive Essentials.";
char *dirName = "Output directory pathname.";
char d[PATH_MAX] = {0};
char k[PATH_MAX] = {0};
__u64 capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
char *d_ptr;
int ret;
struct config {
char *dirName;
};
struct config cfg = {
.dirName = NULL,
};
OPT_ARGS(opts) = {
OPT_STRING("dir-name", 'd', "DIRECTORY", &cfg.dirName, dirName),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_DRIVE_ESSENTIALS) != WDC_DRIVE_CAP_DRIVE_ESSENTIALS) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
if (cfg.dirName) {
strncpy(d, cfg.dirName, PATH_MAX - 1);
d_ptr = d;
} else {
d_ptr = NULL;
}
ret = wdc_do_drive_essentials(r, dev, d_ptr, k);
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_do_drive_resize(struct nvme_dev *dev, uint64_t new_size)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = WDC_NVME_DRIVE_RESIZE_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_DRIVE_RESIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_DRIVE_RESIZE_CMD);
admin_cmd.cdw13 = new_size;
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
return ret;
}
static int wdc_do_namespace_resize(struct nvme_dev *dev, __u32 nsid, __u32 op_option)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = WDC_NVME_NAMESPACE_RESIZE_OPCODE;
admin_cmd.nsid = nsid;
admin_cmd.cdw10 = op_option;
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
return ret;
}
static int wdc_do_drive_info(struct nvme_dev *dev, __u32 *result)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = WDC_NVME_DRIVE_INFO_OPCODE;
admin_cmd.cdw12 = ((WDC_NVME_DRIVE_INFO_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
WDC_NVME_DRIVE_INFO_CMD);
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
if (!ret && result)
*result = admin_cmd.result;
return ret;
}
static int wdc_drive_resize(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a Resize command.";
const char *size = "The new size (in GB) to resize the drive to.";
uint64_t capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
struct config {
uint64_t size;
};
struct config cfg = {
.size = 0,
};
OPT_ARGS(opts) = {
OPT_UINT("size", 's', &cfg.size, size),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
wdc_check_device(r, dev);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_RESIZE) == WDC_DRIVE_CAP_RESIZE) {
ret = wdc_do_drive_resize(dev, cfg.size);
} else {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
}
if (!ret)
printf("New size: %" PRIu64 " GB\n", cfg.size);
nvme_show_status(ret);
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_namespace_resize(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a Namespace Resize command.";
const char *namespace_id = "The namespace id to resize.";
const char *op_option = "The over provisioning option to set for namespace.";
uint64_t capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
struct config {
__u32 namespace_id;
__u32 op_option;
};
struct config cfg = {
.namespace_id = 0x1,
.op_option = 0xF,
};
OPT_ARGS(opts) = {
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_UINT("op-option", 'o', &cfg.op_option, op_option),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
if ((cfg.op_option != 0x1) && (cfg.op_option != 0x2) && (cfg.op_option != 0x3) &&
(cfg.op_option != 0xF)) {
fprintf(stderr, "ERROR: WDC: unsupported OP option parameter\n");
dev_close(dev);
return -1;
}
r = nvme_scan(NULL);
wdc_check_device(r, dev);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_NS_RESIZE) == WDC_DRIVE_CAP_NS_RESIZE) {
ret = wdc_do_namespace_resize(dev, cfg.namespace_id,
cfg.op_option);
if (ret)
printf("ERROR: WDC: Namespace Resize of namespace id 0x%x, op option 0x%x failed\n", cfg.namespace_id, cfg.op_option);
} else {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
}
nvme_show_status(ret);
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_reason_identifier(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Retrieve telemetry log reason identifier.";
const char *log_id = "Log ID to retrieve - host - 7 or controller - 8";
const char *fname = "File name to save raw binary identifier";
struct nvme_dev *dev;
nvme_root_t r;
int ret;
uint64_t capabilities = 0;
char f[PATH_MAX] = {0};
char fileSuffix[PATH_MAX] = {0};
UtilsTimeInfo timeInfo;
__u8 timeStamp[MAX_PATH_LEN];
struct config {
int log_id;
char *file;
};
struct config cfg = {
.log_id = 7,
.file = NULL,
};
OPT_ARGS(opts) = {
OPT_UINT("log-id", 'i', &cfg.log_id, log_id),
OPT_FILE("file", 'o', &cfg.file, fname),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
if (cfg.log_id != NVME_LOG_LID_TELEMETRY_HOST &&
cfg.log_id != NVME_LOG_LID_TELEMETRY_CTRL) {
fprintf(stderr, "ERROR: WDC: Invalid Log ID. It must be 7 (Host) or 8 (Controller)\n");
ret = -1;
goto close_dev;
}
if (cfg.file) {
int verify_file;
/* verify the passed in file name and path is valid before getting the dump data */
verify_file = open(cfg.file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (verify_file < 0) {
fprintf(stderr, "ERROR: WDC: open: %s\n", strerror(errno));
ret = -1;
goto close_dev;
}
close(verify_file);
strncpy(f, cfg.file, PATH_MAX - 1);
} else {
wdc_UtilsGetTime(&timeInfo);
memset(timeStamp, 0, sizeof(timeStamp));
wdc_UtilsSnprintf((char *)timeStamp, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
timeInfo.year, timeInfo.month, timeInfo.dayOfMonth,
timeInfo.hour, timeInfo.minute, timeInfo.second);
if (cfg.log_id == NVME_LOG_LID_TELEMETRY_CTRL)
snprintf(fileSuffix, PATH_MAX, "_error_reason_identifier_ctlr_%s", (char *)timeStamp);
else
snprintf(fileSuffix, PATH_MAX, "_error_reason_identifier_host_%s", (char *)timeStamp);
if (wdc_get_serial_name(dev, f, PATH_MAX, fileSuffix) == -1) {
fprintf(stderr, "ERROR: WDC: failed to generate file name\n");
ret = -1;
goto close_dev;
}
if (strlen(f) > PATH_MAX - 5) {
fprintf(stderr, "ERROR: WDC: file name overflow\n");
ret = -1;
goto close_dev;
}
strcat(f, ".bin");
}
fprintf(stderr, "%s: filename = %s\n", __func__, f);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_REASON_ID) == WDC_DRIVE_CAP_REASON_ID) {
ret = wdc_do_get_reason_id(dev, f, cfg.log_id);
} else {
fprintf(stderr, "ERROR: WDC:unsupported device for this command\n");
ret = -1;
}
nvme_show_status(ret);
close_dev:
dev_close(dev);
nvme_free_tree(r);
return ret;
}
static const char *nvme_log_id_to_string(__u8 log_id)
{
switch (log_id) {
case NVME_LOG_LID_ERROR:
return "Error Information Log ID";
case NVME_LOG_LID_SMART:
return "Smart/Health Information Log ID";
case NVME_LOG_LID_FW_SLOT:
return "Firmware Slot Information Log ID";
case NVME_LOG_LID_CHANGED_NS:
return "Namespace Changed Log ID";
case NVME_LOG_LID_CMD_EFFECTS:
return "Commamds Supported and Effects Log ID";
case NVME_LOG_LID_DEVICE_SELF_TEST:
return "Device Self Test Log ID";
case NVME_LOG_LID_TELEMETRY_HOST:
return "Telemetry Host Initiated Log ID";
case NVME_LOG_LID_TELEMETRY_CTRL:
return "Telemetry Controller Generated Log ID";
case NVME_LOG_LID_ENDURANCE_GROUP:
return "Endurance Group Log ID";
case NVME_LOG_LID_ANA:
return "ANA Log ID";
case NVME_LOG_LID_PERSISTENT_EVENT:
return "Persistent Event Log ID";
case NVME_LOG_LID_DISCOVER:
return "Discovery Log ID";
case NVME_LOG_LID_RESERVATION:
return "Reservation Notification Log ID";
case NVME_LOG_LID_SANITIZE:
return "Sanitize Status Log ID";
case WDC_LOG_ID_C0:
return "WDC Vendor Unique Log ID C0";
case WDC_LOG_ID_C1:
return "WDC Vendor Unique Log ID C1";
case WDC_LOG_ID_C2:
return "WDC Vendor Unique Log ID C2";
case WDC_LOG_ID_C3:
return "WDC Vendor Unique Log ID C3";
case WDC_LOG_ID_C4:
return "WDC Vendor Unique Log ID C4";
case WDC_LOG_ID_C5:
return "WDC Vendor Unique Log ID C5";
case WDC_LOG_ID_C6:
return "WDC Vendor Unique Log ID C6";
case WDC_LOG_ID_C8:
return "WDC Vendor Unique Log ID C8";
case WDC_LOG_ID_CA:
return "WDC Vendor Unique Log ID CA";
case WDC_LOG_ID_CB:
return "WDC Vendor Unique Log ID CB";
case WDC_LOG_ID_D0:
return "WDC Vendor Unique Log ID D0";
case WDC_LOG_ID_D1:
return "WDC Vendor Unique Log ID D1";
case WDC_LOG_ID_D6:
return "WDC Vendor Unique Log ID D6";
case WDC_LOG_ID_D7:
return "WDC Vendor Unique Log ID D7";
case WDC_LOG_ID_D8:
return "WDC Vendor Unique Log ID D8";
case WDC_LOG_ID_DE:
return "WDC Vendor Unique Log ID DE";
case WDC_LOG_ID_F0:
return "WDC Vendor Unique Log ID F0";
case WDC_LOG_ID_F1:
return "WDC Vendor Unique Log ID F1";
case WDC_LOG_ID_F2:
return "WDC Vendor Unique Log ID F2";
case WDC_LOG_ID_FA:
return "WDC Vendor Unique Log ID FA";
default:
return "Unknown Log ID";
}
}
static void __json_log_page_directory(struct log_page_directory *directory)
{
__u32 bitmap_idx;
__u8 log_id;
struct json_object *root;
struct json_object *entries;
root = json_create_object();
entries = json_create_array();
json_object_add_value_array(root, "Entries", entries);
for (bitmap_idx = 0; bitmap_idx < BYTE_TO_BIT(sizeof(__u64)); bitmap_idx++) {
log_id = bitmap_idx;
if (!log_page_name[log_id])
continue;
if (directory->supported_lid_bitmap & (1ULL << bitmap_idx)) {
struct json_object *json_entry = json_create_object();
json_object_add_value_uint(json_entry, "Log ID", log_id);
json_object_add_value_string(json_entry, "Log Page Name",
log_page_name[log_id]);
json_array_add_value_object(entries, json_entry);
}
}
for (bitmap_idx = 0; bitmap_idx < BYTE_TO_BIT(sizeof(__u64)); bitmap_idx++) {
log_id = NVME_LOG_NS_BASE + bitmap_idx;
if (!log_page_name[log_id])
continue;
if (directory->supported_ns_lid_bitmap & (1ULL << bitmap_idx)) {
struct json_object *json_entry = json_create_object();
json_object_add_value_uint(json_entry, "Log ID", log_id);
json_object_add_value_string(json_entry, "Log Page Name",
log_page_name[log_id]);
json_array_add_value_object(entries, json_entry);
}
}
for (bitmap_idx = 0; bitmap_idx < BYTE_TO_BIT(sizeof(__u64)); bitmap_idx++) {
log_id = NVME_LOG_VS_BASE + bitmap_idx;
if (!log_page_name[log_id])
continue;
if (directory->supported_vs_lid_bitmap & (1ULL << bitmap_idx)) {
struct json_object *json_entry = json_create_object();
json_object_add_value_uint(json_entry, "Log ID", log_id);
json_object_add_value_string(json_entry, "Log Page Name",
log_page_name[log_id]);
json_array_add_value_object(entries, json_entry);
}
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void __show_log_page_directory(struct log_page_directory *directory)
{
__u32 bitmap_idx;
__u8 log_id;
for (bitmap_idx = 0; bitmap_idx < BYTE_TO_BIT(sizeof(__u64)); bitmap_idx++) {
if (directory->supported_lid_bitmap & (1ULL << bitmap_idx)) {
log_id = bitmap_idx;
if (log_page_name[log_id])
printf("0x%02X: %s\n", log_id, log_page_name[log_id]);
}
}
for (bitmap_idx = 0; bitmap_idx < BYTE_TO_BIT(sizeof(__u64)); bitmap_idx++) {
if (directory->supported_ns_lid_bitmap & (1ULL << bitmap_idx)) {
log_id = NVME_LOG_NS_BASE + bitmap_idx;
if (log_page_name[log_id])
printf("0x%02X: %s\n", log_id, log_page_name[log_id]);
}
}
for (bitmap_idx = 0; bitmap_idx < BYTE_TO_BIT(sizeof(__u64)); bitmap_idx++) {
if (directory->supported_vs_lid_bitmap & (1ULL << bitmap_idx)) {
log_id = NVME_LOG_VS_BASE + bitmap_idx;
if (log_page_name[log_id])
printf("0x%02X: %s\n", log_id, log_page_name[log_id]);
}
}
}
static int wdc_log_page_directory(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve Log Page Directory.";
enum nvme_print_flags fmt;
struct nvme_dev *dev;
int ret = 0;
nvme_root_t r;
__u64 capabilities = 0;
struct wdc_c2_cbs_data *cbs_data = NULL;
int i;
__u8 log_id = 0;
__u32 device_id, read_vendor_id;
bool uuid_supported = false;
struct nvme_id_uuid_list uuid_list;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json|binary"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
ret = validate_output_format(cfg.output_format, &fmt);
if (ret < 0) {
fprintf(stderr, "%s: ERROR: WDC: invalid output format\n", __func__);
dev_close(dev);
return ret;
}
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_LOG_PAGE_DIR)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
} else {
memset(&uuid_list, 0, sizeof(struct nvme_id_uuid_list));
if (wdc_CheckUuidListSupport(dev, &uuid_list))
uuid_supported = true;
if (uuid_supported)
fprintf(stderr, "WDC: UUID lists supported\n");
else
fprintf(stderr, "WDC: UUID lists NOT supported\n");
ret = wdc_get_pci_ids(r, dev, &device_id, &read_vendor_id);
log_id = (device_id == WDC_NVME_ZN350_DEV_ID ||
device_id == WDC_NVME_ZN350_DEV_ID_1) ?
WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_ID_C8 :
WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_ID;
if (!wdc_is_sn861(device_id)) {
/* verify the 0xC2 Device Manageability log page is supported */
if (wdc_nvme_check_supported_log_page(r, dev, log_id) == false) {
fprintf(stderr,
"%s: ERROR: WDC: 0x%x Log Page not supported\n",
__func__, log_id);
ret = -1;
goto out;
}
if (!get_dev_mgment_cbs_data(r, dev,
WDC_C2_LOG_PAGES_SUPPORTED_ID,
(void *)&cbs_data)) {
fprintf(stderr,
"%s: ERROR: WDC: 0xC2 Log Page entry ID 0x%x not found\n",
__func__, WDC_C2_LOG_PAGES_SUPPORTED_ID);
ret = -1;
goto out;
}
if (!cbs_data) {
fprintf(stderr, "%s: ERROR: WDC: NULL_data ptr\n", __func__);
ret = -1;
goto out;
}
printf("Log Page Directory\n");
/* print the supported pages */
if (!strcmp(cfg.output_format, "normal")) {
for (i = 0; i < le32_to_cpu(cbs_data->length); i++)
printf("0x%x - %s\n", cbs_data->data[i],
nvme_log_id_to_string(cbs_data->data[i]));
} else if (!strcmp(cfg.output_format, "binary")) {
d((__u8 *)cbs_data->data,
le32_to_cpu(cbs_data->length), 16, 1);
} else if (!strcmp(cfg.output_format, "json")) {
struct json_object *root = json_create_object();
for (i = 0; i < le32_to_cpu(cbs_data->length); i++) {
json_object_add_value_int(root,
nvme_log_id_to_string(cbs_data->data[i]),
cbs_data->data[i]);
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else {
fprintf(stderr,
"%s: ERROR: WDC: Invalid format, format = %s\n",
__func__, cfg.output_format);
}
free(cbs_data);
} else {
struct log_page_directory *dir;
void *data = NULL;
__u32 result;
if (posix_memalign(&data, getpagesize(), 512)) {
fprintf(stderr,
"can not allocate log page directory payload\n");
ret = ENOMEM;
goto out;
}
dir = (struct log_page_directory *)data;
ret = nvme_admin_passthru(dev_fd(dev), WDC_NVME_ADMIN_VUC_OPCODE_D2, 0, 0,
0, 0, 0, 8,
0, WDC_VUC_SUBOPCODE_LOG_PAGE_DIR_D2, 0, 0, 0,
32, data, 0, NULL,
0, &result);
if (!ret) {
switch (fmt) {
case BINARY:
d_raw((unsigned char *)data, 32);
break;
case JSON:
__json_log_page_directory(dir);
break;
default:
__show_log_page_directory(dir);
}
} else {
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(ret, false), ret);
}
}
}
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_get_drive_reason_id(struct nvme_dev *dev, char *drive_reason_id, size_t len)
{
int i, j;
int ret;
int res_len = 0;
struct nvme_id_ctrl ctrl;
char *reason_id_str = "reason_id";
i = sizeof(ctrl.sn) - 1;
j = sizeof(ctrl.mn) - 1;
memset(drive_reason_id, 0, len);
memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
ret = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (ret) {
fprintf(stderr, "ERROR: WDC: nvme_identify_ctrl() failed 0x%x\n", ret);
return -1;
}
/* Remove trailing spaces from the sn and mn */
while (i && ctrl.sn[i] == ' ') {
ctrl.sn[i] = '\0';
i--;
}
while (j && ctrl.mn[j] == ' ') {
ctrl.mn[j] = '\0';
j--;
}
res_len = snprintf(drive_reason_id, len, "%s_%s_%s", ctrl.sn, ctrl.mn, reason_id_str);
if (len <= res_len) {
fprintf(stderr,
"ERROR: WDC: cannot format serial number due to data of unexpected length\n");
return -1;
}
return 0;
}
static int wdc_save_reason_id(struct nvme_dev *dev, __u8 *rsn_ident, int size)
{
int ret = 0;
char *reason_id_file;
char drive_reason_id[PATH_MAX] = {0};
char reason_id_path[PATH_MAX] = WDC_REASON_ID_PATH_NAME;
struct stat st = {0};
if (wdc_get_drive_reason_id(dev, drive_reason_id, PATH_MAX) == -1) {
fprintf(stderr, "%s: ERROR: failed to get drive reason id\n", __func__);
return -1;
}
/* make the nvmecli dir in /usr/local if it doesn't already exist */
if (stat(reason_id_path, &st) == -1) {
if (mkdir(reason_id_path, 0700) < 0) {
fprintf(stderr, "%s: ERROR: failed to mkdir %s: %s\n",
__func__, reason_id_path, strerror(errno));
return -1;
}
}
if (asprintf(&reason_id_file, "%s/%s%s", reason_id_path,
drive_reason_id, ".bin") < 0)
return -ENOMEM;
fprintf(stderr, "%s: reason id file = %s\n", __func__, reason_id_file);
/* save off the error reason identifier to a file in /usr/local/nvmecli */
ret = wdc_create_log_file(reason_id_file, rsn_ident, WDC_REASON_ID_ENTRY_LEN);
free(reason_id_file);
return ret;
}
static int wdc_clear_reason_id(struct nvme_dev *dev)
{
int ret = -1;
int verify_file;
char *reason_id_file;
char drive_reason_id[PATH_MAX] = {0};
if (wdc_get_drive_reason_id(dev, drive_reason_id, PATH_MAX) == -1) {
fprintf(stderr, "%s: ERROR: failed to get drive reason id\n", __func__);
return -1;
}
if (asprintf(&reason_id_file, "%s/%s%s", WDC_REASON_ID_PATH_NAME,
drive_reason_id, ".bin") < 0)
return -ENOMEM;
/* verify the drive reason id file name and path is valid */
verify_file = open(reason_id_file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (verify_file < 0) {
ret = -1;
goto free;
}
close(verify_file);
/* remove the reason id file */
ret = remove(reason_id_file);
free:
free(reason_id_file);
return ret;
}
static int wdc_dump_telemetry_hdr(struct nvme_dev *dev, int log_id, struct nvme_telemetry_log *log_hdr)
{
int ret = 0;
if (log_id == NVME_LOG_LID_TELEMETRY_HOST)
ret = nvme_get_log_create_telemetry_host(dev_fd(dev), log_hdr);
else
ret = nvme_get_log_telemetry_ctrl(dev_fd(dev), false, 0, 512,
(void *)log_hdr);
if (ret < 0) {
perror("get-telemetry-log");
} else if (ret > 0) {
nvme_show_status(ret);
fprintf(stderr, "%s: ERROR: Failed to acquire telemetry header, ret = %d!\n", __func__, ret);
}
return ret;
}
static int wdc_do_get_reason_id(struct nvme_dev *dev, char *file, int log_id)
{
int ret;
struct nvme_telemetry_log *log_hdr;
__u32 log_hdr_size = sizeof(struct nvme_telemetry_log);
__u32 reason_id_size = 0;
log_hdr = (struct nvme_telemetry_log *)malloc(log_hdr_size);
if (!log_hdr) {
fprintf(stderr, "%s: ERROR: malloc failed, size : 0x%x, status: %s\n", __func__, log_hdr_size, strerror(errno));
ret = -1;
goto out;
}
memset(log_hdr, 0, log_hdr_size);
ret = wdc_dump_telemetry_hdr(dev, log_id, log_hdr);
if (ret) {
fprintf(stderr, "%s: ERROR: get telemetry header failed, ret : %d\n", __func__, ret);
ret = -1;
goto out;
}
reason_id_size = sizeof(log_hdr->rsnident);
if (log_id == NVME_LOG_LID_TELEMETRY_CTRL)
wdc_save_reason_id(dev, log_hdr->rsnident, reason_id_size);
ret = wdc_create_log_file(file, (__u8 *)log_hdr->rsnident, reason_id_size);
out:
free(log_hdr);
return ret;
}
static void wdc_print_nand_stats_normal(__u16 version, void *data)
{
struct wdc_nand_stats *nand_stats = (struct wdc_nand_stats *)(data);
struct wdc_nand_stats_V3 *nand_stats_v3 = (struct wdc_nand_stats_V3 *)(data);
__u64 temp_raw;
__u16 temp_norm;
__u64 *temp_ptr = NULL;
switch (version) {
case 0:
printf(" NAND Statistics :-\n");
printf(" NAND Writes TLC (Bytes) %s\n",
uint128_t_to_string(
le128_to_cpu(nand_stats->nand_write_tlc)));
printf(" NAND Writes SLC (Bytes) %s\n",
uint128_t_to_string(
le128_to_cpu(nand_stats->nand_write_slc)));
printf(" NAND Program Failures %"PRIu32"\n",
(uint32_t)le32_to_cpu(nand_stats->nand_prog_failure));
printf(" NAND Erase Failures %"PRIu32"\n",
(uint32_t)le32_to_cpu(nand_stats->nand_erase_failure));
printf(" Bad Block Count %"PRIu32"\n",
(uint32_t)le32_to_cpu(nand_stats->bad_block_count));
printf(" NAND XOR/RAID Recovery Trigger Events %"PRIu64"\n",
le64_to_cpu(nand_stats->nand_rec_trigger_event));
printf(" E2E Error Counter %"PRIu64"\n",
le64_to_cpu(nand_stats->e2e_error_counter));
printf(" Number Successful NS Resizing Events %"PRIu64"\n",
le64_to_cpu(nand_stats->successful_ns_resize_event));
printf(" log page version %"PRIu16"\n",
le16_to_cpu(nand_stats->log_page_version));
break;
case 3:
printf(" NAND Statistics V3:-\n");
printf(" TLC Units Written %s\n",
uint128_t_to_string(
le128_to_cpu(nand_stats_v3->nand_write_tlc)));
printf(" SLC Units Written %s\n",
uint128_t_to_string(
le128_to_cpu(nand_stats_v3->nand_write_slc)));
temp_ptr = (__u64 *)nand_stats_v3->bad_nand_block_count;
temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
printf(" Bad NAND Blocks Count - Normalized %"PRIu16"\n",
le16_to_cpu(temp_norm));
printf(" Bad NAND Blocks Count - Raw %"PRIu64"\n",
le64_to_cpu(temp_raw));
printf(" NAND XOR Recovery count %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->xor_recovery_count));
printf(" UECC Read Error count %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->uecc_read_error_count));
printf(" SSD End to End corrected errors %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->ssd_correction_counts[0]));
printf(" SSD End to End detected errors %"PRIu32"\n",
le32_to_cpu(nand_stats_v3->ssd_correction_counts[8]));
printf(" SSD End to End uncorrected E2E errors %"PRIu32"\n",
le32_to_cpu(nand_stats_v3->ssd_correction_counts[12]));
printf(" System data %% life-used %u\n",
nand_stats_v3->percent_life_used);
printf(" User Data Erase Counts - TLC Min %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->user_data_erase_counts[0]));
printf(" User Data Erase Counts - TLC Max %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->user_data_erase_counts[1]));
printf(" User Data Erase Counts - SLC Min %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->user_data_erase_counts[2]));
printf(" User Data Erase Counts - SLC Max %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->user_data_erase_counts[3]));
temp_ptr = (__u64 *)nand_stats_v3->program_fail_count;
temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
printf(" Program Fail Count - Normalized %"PRIu16"\n",
le16_to_cpu(temp_norm));
printf(" Program Fail Count - Raw %"PRIu64"\n",
le64_to_cpu(temp_raw));
temp_ptr = (__u64 *)nand_stats_v3->erase_fail_count;
temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
printf(" Erase Fail Count - Normalized %"PRIu16"\n",
le16_to_cpu(temp_norm));
printf(" Erase Fail Count - Raw %"PRIu64"\n",
le64_to_cpu(temp_raw));
printf(" PCIe Correctable Error Count %"PRIu16"\n",
le16_to_cpu(nand_stats_v3->correctable_error_count));
printf(" %% Free Blocks (User) %u\n",
nand_stats_v3->percent_free_blocks_user);
printf(" Security Version Number %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->security_version_number));
printf(" %% Free Blocks (System) %u\n",
nand_stats_v3->percent_free_blocks_system);
printf(" Data Set Management Commands %s\n",
uint128_t_to_string(
le128_to_cpu(nand_stats_v3->trim_completions)));
printf(" Estimate of Incomplete Trim Data %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->trim_completions[16]));
printf(" %% of completed trim %u\n",
nand_stats_v3->trim_completions[24]);
printf(" Background Back-Pressure-Guage %u\n",
nand_stats_v3->back_pressure_guage);
printf(" Soft ECC Error Count %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->soft_ecc_error_count));
printf(" Refresh Count %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->refresh_count));
temp_ptr = (__u64 *)nand_stats_v3->bad_sys_nand_block_count;
temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
printf(" Bad System Nand Block Count - Normalized %"PRIu16"\n",
le16_to_cpu(temp_norm));
printf(" Bad System Nand Block Count - Raw %"PRIu64"\n",
le64_to_cpu(temp_raw));
printf(" Endurance Estimate %s\n",
uint128_t_to_string(
le128_to_cpu(nand_stats_v3->endurance_estimate)));
printf(" Thermal Throttling Count %u\n",
nand_stats_v3->thermal_throttling_st_ct[0]);
printf(" Thermal Throttling Status %u\n",
nand_stats_v3->thermal_throttling_st_ct[1]);
printf(" Unaligned I/O %"PRIu64"\n",
le64_to_cpu(nand_stats_v3->unaligned_IO));
printf(" Physical Media Units Read %s\n",
uint128_t_to_string(
le128_to_cpu(nand_stats_v3->physical_media_units)));
printf(" log page version %"PRIu16"\n",
le16_to_cpu(nand_stats_v3->log_page_version));
break;
default:
fprintf(stderr, "WDC: Nand Stats ERROR: Invalid version\n");
break;
}
}
static void wdc_print_nand_stats_json(__u16 version, void *data)
{
struct wdc_nand_stats *nand_stats = (struct wdc_nand_stats *)(data);
struct wdc_nand_stats_V3 *nand_stats_v3 = (struct wdc_nand_stats_V3 *)(data);
struct json_object *root = json_create_object();
__u64 temp_raw;
__u16 temp_norm;
__u64 *temp_ptr = NULL;
switch (version) {
case 0:
json_object_add_value_uint128(root, "NAND Writes TLC (Bytes)",
le128_to_cpu(nand_stats->nand_write_tlc));
json_object_add_value_uint128(root, "NAND Writes SLC (Bytes)",
le128_to_cpu(nand_stats->nand_write_slc));
json_object_add_value_uint(root, "NAND Program Failures",
le32_to_cpu(nand_stats->nand_prog_failure));
json_object_add_value_uint(root, "NAND Erase Failures",
le32_to_cpu(nand_stats->nand_erase_failure));
json_object_add_value_uint(root, "Bad Block Count",
le32_to_cpu(nand_stats->bad_block_count));
json_object_add_value_uint64(root, "NAND XOR/RAID Recovery Trigger Events",
le64_to_cpu(nand_stats->nand_rec_trigger_event));
json_object_add_value_uint64(root, "E2E Error Counter",
le64_to_cpu(nand_stats->e2e_error_counter));
json_object_add_value_uint64(root, "Number Successful NS Resizing Events",
le64_to_cpu(nand_stats->successful_ns_resize_event));
json_print_object(root, NULL);
printf("\n");
break;
case 3:
json_object_add_value_uint128(root, "NAND Writes TLC (Bytes)",
le128_to_cpu(nand_stats_v3->nand_write_tlc));
json_object_add_value_uint128(root, "NAND Writes SLC (Bytes)",
le128_to_cpu(nand_stats_v3->nand_write_slc));
temp_ptr = (__u64 *)nand_stats_v3->bad_nand_block_count;
temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
json_object_add_value_uint(root, "Bad NAND Blocks Count - Normalized",
le16_to_cpu(temp_norm));
json_object_add_value_uint64(root, "Bad NAND Blocks Count - Raw",
le64_to_cpu(temp_raw));
json_object_add_value_uint64(root, "NAND XOR Recovery count",
le64_to_cpu(nand_stats_v3->xor_recovery_count));
json_object_add_value_uint64(root, "UECC Read Error count",
le64_to_cpu(nand_stats_v3->uecc_read_error_count));
json_object_add_value_uint64(root, "SSD End to End corrected errors",
le64_to_cpu(nand_stats_v3->ssd_correction_counts[0]));
json_object_add_value_uint(root, "SSD End to End detected errors",
le32_to_cpu(nand_stats_v3->ssd_correction_counts[8]));
json_object_add_value_uint(root, "SSD End to End uncorrected E2E errors",
le32_to_cpu(nand_stats_v3->ssd_correction_counts[12]));
json_object_add_value_uint(root, "System data % life-used",
nand_stats_v3->percent_life_used);
json_object_add_value_uint64(root, "User Data Erase Counts - SLC Min",
le64_to_cpu(nand_stats_v3->user_data_erase_counts[0]));
json_object_add_value_uint64(root, "User Data Erase Counts - SLC Max",
le64_to_cpu(nand_stats_v3->user_data_erase_counts[1]));
json_object_add_value_uint64(root, "User Data Erase Counts - TLC Min",
le64_to_cpu(nand_stats_v3->user_data_erase_counts[2]));
json_object_add_value_uint64(root, "User Data Erase Counts - TLC Max",
le64_to_cpu(nand_stats_v3->user_data_erase_counts[3]));
temp_ptr = (__u64 *)nand_stats_v3->program_fail_count;
temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
json_object_add_value_uint(root, "Program Fail Count - Normalized",
le16_to_cpu(temp_norm));
json_object_add_value_uint64(root, "Program Fail Count - Raw",
le64_to_cpu(temp_raw));
temp_ptr = (__u64 *)nand_stats_v3->erase_fail_count;
temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
json_object_add_value_uint(root, "Erase Fail Count - Normalized",
le16_to_cpu(temp_norm));
json_object_add_value_uint64(root, "Erase Fail Count - Raw",
le64_to_cpu(temp_raw));
json_object_add_value_uint(root, "PCIe Correctable Error Count",
le16_to_cpu(nand_stats_v3->correctable_error_count));
json_object_add_value_uint(root, "% Free Blocks (User)",
nand_stats_v3->percent_free_blocks_user);
json_object_add_value_uint64(root, "Security Version Number",
le64_to_cpu(nand_stats_v3->security_version_number));
json_object_add_value_uint(root, "% Free Blocks (System)",
nand_stats_v3->percent_free_blocks_system);
json_object_add_value_uint128(root, "Data Set Management Commands",
le128_to_cpu(nand_stats_v3->trim_completions));
json_object_add_value_uint64(root, "Estimate of Incomplete Trim Data",
le64_to_cpu(nand_stats_v3->trim_completions[16]));
json_object_add_value_uint(root, "%% of completed trim",
nand_stats_v3->trim_completions[24]);
json_object_add_value_uint(root, "Background Back-Pressure-Guage",
nand_stats_v3->back_pressure_guage);
json_object_add_value_uint64(root, "Soft ECC Error Count",
le64_to_cpu(nand_stats_v3->soft_ecc_error_count));
json_object_add_value_uint64(root, "Refresh Count",
le64_to_cpu(nand_stats_v3->refresh_count));
temp_ptr = (__u64 *)nand_stats_v3->bad_sys_nand_block_count;
temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
json_object_add_value_uint(root, "Bad System Nand Block Count - Normalized",
le16_to_cpu(temp_norm));
json_object_add_value_uint64(root, "Bad System Nand Block Count - Raw",
le64_to_cpu(temp_raw));
json_object_add_value_uint128(root, "Endurance Estimate",
le128_to_cpu(nand_stats_v3->endurance_estimate));
json_object_add_value_uint(root, "Thermal Throttling Status",
nand_stats_v3->thermal_throttling_st_ct[0]);
json_object_add_value_uint(root, "Thermal Throttling Count",
nand_stats_v3->thermal_throttling_st_ct[1]);
json_object_add_value_uint64(root, "Unaligned I/O",
le64_to_cpu(nand_stats_v3->unaligned_IO));
json_object_add_value_uint128(root, "Physical Media Units Read",
le128_to_cpu(nand_stats_v3->physical_media_units));
json_object_add_value_uint(root, "log page version",
le16_to_cpu(nand_stats_v3->log_page_version));
json_print_object(root, NULL);
printf("\n");
break;
default:
printf("%s: Invalid Stats Version = %d\n", __func__, version);
break;
}
json_free_object(root);
}
static void wdc_print_pcie_stats_normal(struct wdc_vs_pcie_stats *pcie_stats)
{
printf(" PCIE Statistics :-\n");
printf(" Unsupported Request Error Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->unsupportedRequestErrorCount));
printf(" ECRC Error Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->ecrcErrorStatusCount));
printf(" Malformed TLP Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->malformedTlpStatusCount));
printf(" Receiver Overflow Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->receiverOverflowStatusCount));
printf(" Unexpected Completion Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->unexpectedCmpltnStatusCount));
printf(" Complete Abort Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->completeAbortStatusCount));
printf(" Completion Timeout Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->cmpltnTimoutStatusCount));
printf(" Flow Control Error Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->flowControlErrorStatusCount));
printf(" Poisoned TLP Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->poisonedTlpStatusCount));
printf(" Dlink Protocol Error Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->dLinkPrtclErrorStatusCount));
printf(" Advisory Non Fatal Error Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->advsryNFatalErrStatusCount));
printf(" Replay Timer TO Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->replayTimerToStatusCount));
printf(" Replay Number Rollover Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->replayNumRolloverStCount));
printf(" Bad DLLP Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->badDllpStatusCount));
printf(" Bad TLP Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->badTlpStatusCount));
printf(" Receiver Error Status Counter %20"PRIu64"\n",
le64_to_cpu(pcie_stats->receiverErrStatusCount));
}
static void wdc_print_pcie_stats_json(struct wdc_vs_pcie_stats *pcie_stats)
{
struct json_object *root = json_create_object();
json_object_add_value_uint64(root, "Unsupported Request Error Counter",
le64_to_cpu(pcie_stats->unsupportedRequestErrorCount));
json_object_add_value_uint64(root, "ECRC Error Status Counter",
le64_to_cpu(pcie_stats->ecrcErrorStatusCount));
json_object_add_value_uint64(root, "Malformed TLP Status Counter",
le64_to_cpu(pcie_stats->malformedTlpStatusCount));
json_object_add_value_uint64(root, "Receiver Overflow Status Counter",
le64_to_cpu(pcie_stats->receiverOverflowStatusCount));
json_object_add_value_uint64(root, "Unexpected Completion Status Counter",
le64_to_cpu(pcie_stats->unexpectedCmpltnStatusCount));
json_object_add_value_uint64(root, "Complete Abort Status Counter",
le64_to_cpu(pcie_stats->completeAbortStatusCount));
json_object_add_value_uint64(root, "Completion Timeout Status Counter",
le64_to_cpu(pcie_stats->cmpltnTimoutStatusCount));
json_object_add_value_uint64(root, "Flow Control Error Status Counter",
le64_to_cpu(pcie_stats->flowControlErrorStatusCount));
json_object_add_value_uint64(root, "Poisoned TLP Status Counter",
le64_to_cpu(pcie_stats->poisonedTlpStatusCount));
json_object_add_value_uint64(root, "Dlink Protocol Error Status Counter",
le64_to_cpu(pcie_stats->dLinkPrtclErrorStatusCount));
json_object_add_value_uint64(root, "Advisory Non Fatal Error Status Counter",
le64_to_cpu(pcie_stats->advsryNFatalErrStatusCount));
json_object_add_value_uint64(root, "Replay Timer TO Status Counter",
le64_to_cpu(pcie_stats->replayTimerToStatusCount));
json_object_add_value_uint64(root, "Replay Number Rollover Status Counter",
le64_to_cpu(pcie_stats->replayNumRolloverStCount));
json_object_add_value_uint64(root, "Bad DLLP Status Counter",
le64_to_cpu(pcie_stats->badDllpStatusCount));
json_object_add_value_uint64(root, "Bad TLP Status Counter",
le64_to_cpu(pcie_stats->badTlpStatusCount));
json_object_add_value_uint64(root, "Receiver Error Status Counter",
le64_to_cpu(pcie_stats->receiverErrStatusCount));
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static int wdc_do_vs_nand_stats_sn810_2(struct nvme_dev *dev, char *format)
{
enum nvme_print_flags fmt;
uint8_t *data = NULL;
int ret;
data = NULL;
ret = nvme_get_ext_smart_cloud_log(dev_fd(dev), &data, 0,
NVME_NSID_ALL);
if (ret) {
fprintf(stderr, "ERROR: WDC: %s : Failed to retrieve NAND stats\n", __func__);
goto out;
} else {
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: %s : invalid output format\n", __func__);
goto out;
}
/* parse the data */
switch (fmt) {
case NORMAL:
wdc_print_ext_smart_cloud_log_normal(data, WDC_SCA_V1_NAND_STATS);
break;
case JSON:
wdc_print_ext_smart_cloud_log_json(data, WDC_SCA_V1_NAND_STATS);
break;
default:
break;
}
}
out:
if (data)
free(data);
return ret;
}
static int wdc_do_vs_nand_stats(struct nvme_dev *dev, char *format)
{
enum nvme_print_flags fmt;
uint8_t *output = NULL;
__u16 version = 0;
int ret;
output = (uint8_t *)calloc(WDC_NVME_NAND_STATS_SIZE, sizeof(uint8_t));
if (!output) {
fprintf(stderr, "ERROR: WDC: calloc: %s\n", strerror(errno));
ret = -1;
goto out;
}
ret = nvme_get_log_simple(dev_fd(dev), WDC_NVME_NAND_STATS_LOG_ID,
WDC_NVME_NAND_STATS_SIZE, (void *)output);
if (ret) {
fprintf(stderr, "ERROR: WDC: %s : Failed to retrieve NAND stats\n", __func__);
goto out;
} else {
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
goto out;
}
version = output[WDC_NVME_NAND_STATS_SIZE - 2];
/* parse the data */
switch (fmt) {
case NORMAL:
wdc_print_nand_stats_normal(version, output);
break;
case JSON:
wdc_print_nand_stats_json(version, output);
break;
default:
break;
}
}
out:
free(output);
return ret;
}
static int wdc_vs_nand_stats(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve NAND statistics.";
struct nvme_dev *dev;
nvme_root_t r;
__u64 capabilities = 0;
uint32_t read_device_id = 0, read_vendor_id = 0;
int ret;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_NAND_STATS)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
} else {
ret = wdc_get_pci_ids(r, dev, &read_device_id, &read_vendor_id);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: %s: failure to get pci ids, ret = %d\n", __func__, ret);
return -1;
}
switch (read_device_id) {
case WDC_NVME_SN820CL_DEV_ID:
ret = wdc_do_vs_nand_stats_sn810_2(dev,
cfg.output_format);
break;
default:
ret = wdc_do_vs_nand_stats(dev, cfg.output_format);
break;
}
}
if (ret)
fprintf(stderr, "ERROR: WDC: Failure reading NAND statistics, ret = %d\n", ret);
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_do_vs_pcie_stats(struct nvme_dev *dev,
struct wdc_vs_pcie_stats *pcieStatsPtr)
{
int ret;
struct nvme_passthru_cmd admin_cmd;
int pcie_stats_size = sizeof(struct wdc_vs_pcie_stats);
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
admin_cmd.opcode = WDC_NVME_PCIE_STATS_OPCODE;
admin_cmd.addr = (__u64)(uintptr_t)pcieStatsPtr;
admin_cmd.data_len = pcie_stats_size;
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
return ret;
}
static int wdc_vs_pcie_stats(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve PCIE statistics.";
enum nvme_print_flags fmt;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
__u64 capabilities = 0;
_cleanup_huge_ struct nvme_mem_huge mh = { 0, };
struct wdc_vs_pcie_stats *pcieStatsPtr = NULL;
int pcie_stats_size = sizeof(struct wdc_vs_pcie_stats);
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
ret = validate_output_format(cfg.output_format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
goto out;
}
pcieStatsPtr = nvme_alloc_huge(pcie_stats_size, &mh);
if (!pcieStatsPtr) {
fprintf(stderr, "ERROR: WDC: PCIE Stats alloc: %s\n", strerror(errno));
ret = -1;
goto out;
}
memset((void *)pcieStatsPtr, 0, pcie_stats_size);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_PCIE_STATS)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
} else {
ret = wdc_do_vs_pcie_stats(dev, pcieStatsPtr);
if (ret) {
fprintf(stderr, "ERROR: WDC: Failure reading PCIE statistics, ret = 0x%x\n", ret);
} else {
/* parse the data */
switch (fmt) {
case NORMAL:
wdc_print_pcie_stats_normal(pcieStatsPtr);
break;
case JSON:
wdc_print_pcie_stats_json(pcieStatsPtr);
break;
default:
break;
}
}
}
out:
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_vs_drive_info(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a vs-drive-info command.";
enum nvme_print_flags fmt;
nvme_root_t r;
uint64_t capabilities = 0;
struct nvme_dev *dev;
int ret;
__le32 result;
__u16 size;
double rev;
struct nvme_id_ctrl ctrl;
char vsData[32] = {0};
char major_rev = 0, minor_rev = 0;
__u8 *data = NULL;
__u32 ftl_unit_size = 0, tcg_dev_ownership = 0;
__u16 boot_spec_major = 0, boot_spec_minor = 0;
struct json_object *root = NULL;
char formatter[41] = { 0 };
char rev_str[16] = { 0 };
uint32_t read_device_id = -1, read_vendor_id = -1;
struct __packed wdc_nvme_ext_smart_log * ext_smart_log_ptr = NULL;
struct ocp_drive_info info;
__u32 data_len = 0;
unsigned int num_dwords = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
ret = validate_output_format(cfg.output_format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC %s invalid output format\n", __func__);
dev_close(dev);
return ret;
}
/* get the id ctrl data used to fill in drive info below */
ret = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (ret) {
fprintf(stderr, "ERROR: WDC %s: Identify Controller failed\n", __func__);
dev_close(dev);
return ret;
}
r = nvme_scan(NULL);
wdc_check_device(r, dev);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_INFO) == WDC_DRIVE_CAP_INFO) {
ret = wdc_get_pci_ids(r, dev, &read_device_id, &read_vendor_id);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: %s: failure to get pci ids, ret = %d\n", __func__, ret);
goto out;
}
switch (read_device_id) {
case WDC_NVME_SN640_DEV_ID:
case WDC_NVME_SN640_DEV_ID_1:
case WDC_NVME_SN640_DEV_ID_2:
case WDC_NVME_SN640_DEV_ID_3:
case WDC_NVME_SN650_DEV_ID:
case WDC_NVME_SN650_DEV_ID_1:
case WDC_NVME_SN650_DEV_ID_2:
case WDC_NVME_SN650_DEV_ID_3:
case WDC_NVME_SN650_DEV_ID_4:
case WDC_NVME_SN655_DEV_ID:
case WDC_NVME_SN560_DEV_ID_1:
case WDC_NVME_SN560_DEV_ID_2:
case WDC_NVME_SN560_DEV_ID_3:
case WDC_NVME_SN550_DEV_ID:
case WDC_NVME_ZN350_DEV_ID:
case WDC_NVME_ZN350_DEV_ID_1:
ret = wdc_do_drive_info(dev, &result);
if (!ret) {
size = (__u16)((cpu_to_le32(result) & 0xffff0000) >> 16);
rev = (double)(cpu_to_le32(result) & 0x0000ffff);
if (fmt == NORMAL) {
printf("Drive HW Revision: %4.1f\n", (.1 * rev));
printf("FTL Unit Size: 0x%x KB\n", size);
printf("Customer SN: %-.*s\n", (int)sizeof(ctrl.sn), &ctrl.sn[0]);
} else if (fmt == JSON) {
root = json_create_object();
sprintf(rev_str, "%4.1f", (.1 * rev));
json_object_add_value_string(root, "Drive HW Revision", rev_str);
json_object_add_value_int(root, "FTL Unit Size", le16_to_cpu(size));
wdc_StrFormat(formatter, sizeof(formatter), &ctrl.sn[0], sizeof(ctrl.sn));
json_object_add_value_string(root, "Customer SN", formatter);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
}
break;
case WDC_NVME_SN730_DEV_ID:
memcpy(vsData, &ctrl.vs[0], 32);
major_rev = ctrl.sn[12];
minor_rev = ctrl.sn[13];
if (fmt == NORMAL) {
printf("Drive HW Revision: %c.%c\n", major_rev, minor_rev);
printf("Customer SN: %-.*s\n", 14, &ctrl.sn[0]);
} else if (fmt == JSON) {
root = json_create_object();
sprintf(rev_str, "%c.%c", major_rev, minor_rev);
json_object_add_value_string(root, "Drive HW Revison", rev_str);
wdc_StrFormat(formatter, sizeof(formatter), &ctrl.sn[0], 14);
json_object_add_value_string(root, "Customer SN", formatter);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
break;
case WDC_NVME_SN820CL_DEV_ID:
/* Get the Drive HW Rev from the C6 Log page */
ret = nvme_get_hw_rev_log(dev_fd(dev), &data, 0,
NVME_NSID_ALL);
if (!ret) {
struct wdc_nvme_hw_rev_log *log_data = (struct wdc_nvme_hw_rev_log *)data;
major_rev = log_data->hw_rev_gdr;
free(data);
data = NULL;
} else {
fprintf(stderr, "ERROR: WDC: %s: failure to get hw revision log\n", __func__);
ret = -1;
goto out;
}
/* Get the Smart C0 log page */
if (!(capabilities & WDC_DRIVE_CAP_CLOUD_LOG_PAGE)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
ret = nvme_get_ext_smart_cloud_log(dev_fd(dev), &data,
0, NVME_NSID_ALL);
if (!ret) {
ext_smart_log_ptr = (struct __packed wdc_nvme_ext_smart_log *)data;
/* Set the FTL Unit size */
ftl_unit_size = le32_to_cpu(ext_smart_log_ptr->ext_smart_ftlus);
/* Set the Boot Spec Version */
boot_spec_major = le16_to_cpu(ext_smart_log_ptr->ext_smart_maj);
boot_spec_minor = le16_to_cpu(ext_smart_log_ptr->ext_smart_min);
/* Set the Drive Ownership Status */
tcg_dev_ownership = le32_to_cpu(ext_smart_log_ptr->ext_smart_tcgos);
free(data);
} else {
fprintf(stderr, "ERROR: WDC: %s: failure to get extended smart cloud log\n", __func__);
ret = -1;
goto out;
}
if (fmt == NORMAL) {
printf("Drive HW Revision: %2d\n", major_rev);
printf("FTL Unit Size: %d\n", ftl_unit_size);
printf("HyperScale Boot Version Spec: %d.%d\n", boot_spec_major, boot_spec_minor);
printf("TCG Device Ownership Status: %2d\n", tcg_dev_ownership);
} else if (fmt == JSON) {
root = json_create_object();
json_object_add_value_int(root, "Drive HW Revison", major_rev);
json_object_add_value_int(root, "FTL Unit Size", ftl_unit_size);
sprintf(rev_str, "%d.%d", boot_spec_major, boot_spec_minor);
json_object_add_value_string(root, "HyperScale Boot Version Spec", rev_str);
json_object_add_value_int(root, "TCG Device Ownership Status", tcg_dev_ownership);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
break;
case WDC_NVME_SN861_DEV_ID:
case WDC_NVME_SN861_DEV_ID_1:
data_len = sizeof(info);
num_dwords = data_len / 4;
if (data_len % 4 != 0)
num_dwords += 1;
ret = nvme_admin_passthru(dev_fd(dev),
WDC_NVME_ADMIN_VUC_OPCODE_D2,
0, 0, 0, 0, 0, num_dwords, 0,
WDC_VUC_SUBOPCODE_VS_DRIVE_INFO_D2,
0, 0, 0, data_len, &info, 0,
NULL, 0, NULL);
if (!ret) {
__u16 hw_rev_major, hw_rev_minor;
hw_rev_major = le32_to_cpu(info.hw_revision) / 10;
hw_rev_minor = le32_to_cpu(info.hw_revision) % 10;
if (fmt == NORMAL) {
printf("HW Revision : %" PRIu32 ".%" PRIu32 "\n",
hw_rev_major, hw_rev_minor);
printf("FTL Unit Size : %" PRIu32 "\n",
le32_to_cpu(info.ftl_unit_size));
} else if (fmt == JSON) {
char buf[20];
root = json_create_object();
memset((void *)buf, 0, 20);
sprintf(buf, "%" PRIu32 ".%" PRIu32,
hw_rev_major, hw_rev_minor);
json_object_add_value_string(root,
"hw_revision", buf);
json_object_add_value_uint(root,
"ftl_unit_size",
le32_to_cpu(info.ftl_unit_size));
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
}
break;
default:
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
break;
}
} else {
fprintf(stderr, "ERROR: WDC: capability not supported by this device\n");
ret = -1;
}
out:
nvme_show_status(ret);
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_vs_temperature_stats(int argc, char **argv,
struct command *command, struct plugin *plugin)
{
const char *desc = "Send a vs-temperature-stats command.";
struct nvme_smart_log smart_log;
struct nvme_id_ctrl id_ctrl;
enum nvme_print_flags fmt;
struct nvme_dev *dev;
nvme_root_t r;
uint64_t capabilities = 0;
__u32 hctm_tmt;
int temperature, temp_tmt1, temp_tmt2;
int ret;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
r = nvme_scan(NULL);
ret = validate_output_format(cfg.output_format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR: WDC: invalid output format\n");
goto out;
}
/* check if command is supported */
wdc_check_device(r, dev);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_TEMP_STATS) != WDC_DRIVE_CAP_TEMP_STATS) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
ret = -1;
goto out;
}
/* get the temperature stats or report errors */
ret = nvme_identify_ctrl(dev_fd(dev), &id_ctrl);
if (ret)
goto out;
ret = nvme_get_log_smart(dev_fd(dev), NVME_NSID_ALL, false,
&smart_log);
if (ret)
goto out;
/* convert from kelvins to degrees Celsius */
temperature = ((smart_log.temperature[1] << 8) | smart_log.temperature[0]) - 273;
/* retrieve HCTM Thermal Management Temperatures */
nvme_get_features_simple(dev_fd(dev), 0x10, 0, &hctm_tmt);
temp_tmt1 = ((hctm_tmt >> 16) & 0xffff) ? ((hctm_tmt >> 16) & 0xffff) - 273 : 0;
temp_tmt2 = (hctm_tmt & 0xffff) ? (hctm_tmt & 0xffff) - 273 : 0;
if (fmt == NORMAL) {
/* print the temperature stats */
printf("Temperature Stats for NVME device:%s namespace-id:%x\n",
dev->name, WDC_DE_GLOBAL_NSID);
printf("Current Composite Temperature : %d °C\n", temperature);
printf("WCTEMP : %"PRIu16" °C\n", id_ctrl.wctemp - 273);
printf("CCTEMP : %"PRIu16" °C\n", id_ctrl.cctemp - 273);
printf("DITT support : 0\n");
printf("HCTM support : %"PRIu16"\n", id_ctrl.hctma);
printf("HCTM Light (TMT1) : %"PRIu16" °C\n", temp_tmt1);
printf("TMT1 Transition Counter : %"PRIu32"\n", smart_log.thm_temp1_trans_count);
printf("TMT1 Total Time : %"PRIu32"\n", smart_log.thm_temp1_total_time);
printf("HCTM Heavy (TMT2) : %"PRIu16" °C\n", temp_tmt2);
printf("TMT2 Transition Counter : %"PRIu32"\n", smart_log.thm_temp2_trans_count);
printf("TMT2 Total Time : %"PRIu32"\n", smart_log.thm_temp2_total_time);
printf("Thermal Shutdown Threshold : 95 °C\n");
} else if (fmt == JSON) {
struct json_object *root;
root = json_create_object();
json_object_add_value_int(root, "Current Composite Temperature", le32_to_cpu(temperature));
json_object_add_value_int(root, "WCTEMP", le16_to_cpu(id_ctrl.wctemp - 273));
json_object_add_value_int(root, "CCTEMP", le16_to_cpu(id_ctrl.cctemp - 273));
json_object_add_value_int(root, "DITT support", 0);
json_object_add_value_int(root, "HCTM support", le16_to_cpu(id_ctrl.hctma));
json_object_add_value_int(root, "HCTM Light (TMT1)", le16_to_cpu(temp_tmt1));
json_object_add_value_int(root, "TMT1 Transition Counter", le32_to_cpu(smart_log.thm_temp1_trans_count));
json_object_add_value_int(root, "TMT1 Total Time", le32_to_cpu(smart_log.thm_temp1_total_time));
json_object_add_value_int(root, "HCTM Light (TMT2)", le16_to_cpu(temp_tmt2));
json_object_add_value_int(root, "TMT2 Transition Counter", le32_to_cpu(smart_log.thm_temp2_trans_count));
json_object_add_value_int(root, "TMT2 Total Time", le32_to_cpu(smart_log.thm_temp2_total_time));
json_object_add_value_int(root, "Thermal Shutdown Threshold", 95);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else {
printf("%s: Invalid format\n", __func__);
}
out:
nvme_show_status(ret);
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_capabilities(int argc, char **argv, struct command *command, struct plugin *plugin)
{
const char *desc = "Send a capabilities command.";
uint64_t capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
OPT_ARGS(opts) = {
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
/* get capabilities */
r = nvme_scan(NULL);
wdc_check_device(r, dev);
capabilities = wdc_get_drive_capabilities(r, dev);
/* print command and supported status */
printf("WDC Plugin Capabilities for NVME device:%s\n", dev->name);
printf("cap-diag : %s\n",
capabilities & WDC_DRIVE_CAP_CAP_DIAG ? "Supported" : "Not Supported");
printf("drive-log : %s\n",
capabilities & WDC_DRIVE_CAP_DRIVE_LOG ? "Supported" : "Not Supported");
printf("get-crash-dump : %s\n",
capabilities & WDC_DRIVE_CAP_CRASH_DUMP ? "Supported" : "Not Supported");
printf("get-pfail-dump : %s\n",
capabilities & WDC_DRIVE_CAP_PFAIL_DUMP ? "Supported" : "Not Supported");
printf("id-ctrl : Supported\n");
printf("purge : %s\n",
capabilities & WDC_DRIVE_CAP_PURGE ? "Supported" : "Not Supported");
printf("purge-monitor : %s\n",
capabilities & WDC_DRIVE_CAP_PURGE ? "Supported" : "Not Supported");
printf("vs-internal-log : %s\n",
capabilities & WDC_DRIVE_CAP_INTERNAL_LOG_MASK ? "Supported" : "Not Supported");
printf("vs-nand-stats : %s\n",
capabilities & WDC_DRIVE_CAP_NAND_STATS ? "Supported" : "Not Supported");
printf("vs-smart-add-log : %s\n",
capabilities & WDC_DRIVE_CAP_SMART_LOG_MASK ? "Supported" : "Not Supported");
printf("--C0 Log Page : %s\n",
capabilities & WDC_DRIVE_CAP_C0_LOG_PAGE ? "Supported" : "Not Supported");
printf("--C1 Log Page : %s\n",
capabilities & WDC_DRIVE_CAP_C1_LOG_PAGE ? "Supported" : "Not Supported");
printf("--C3 Log Page : %s\n",
capabilities & WDC_DRIVE_CAP_C3_LOG_PAGE ? "Supported" : "Not Supported");
printf("--CA Log Page : %s\n",
capabilities & WDC_DRIVE_CAP_CA_LOG_PAGE ? "Supported" : "Not Supported");
printf("--D0 Log Page : %s\n",
capabilities & WDC_DRIVE_CAP_D0_LOG_PAGE ? "Supported" : "Not Supported");
printf("clear-pcie-correctable-errors : %s\n",
capabilities & WDC_DRIVE_CAP_CLEAR_PCIE_MASK ? "Supported" : "Not Supported");
printf("drive-essentials : %s\n",
capabilities & WDC_DRIVE_CAP_DRIVE_ESSENTIALS ? "Supported" : "Not Supported");
printf("get-drive-status : %s\n",
capabilities & WDC_DRIVE_CAP_DRIVE_STATUS ? "Supported" : "Not Supported");
printf("clear-assert-dump : %s\n",
capabilities & WDC_DRIVE_CAP_CLEAR_ASSERT ? "Supported" : "Not Supported");
printf("drive-resize : %s\n",
capabilities & WDC_DRIVE_CAP_RESIZE ? "Supported" : "Not Supported");
printf("vs-fw-activate-history : %s\n",
capabilities & WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_MASK ? "Supported" : "Not Supported");
printf("clear-fw-activate-history : %s\n",
capabilities & WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY_MASK ? "Supported" : "Not Supported");
printf("vs-telemetry-controller-option: %s\n",
capabilities & WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG ? "Supported" : "Not Supported");
printf("vs-error-reason-identifier : %s\n",
capabilities & WDC_DRIVE_CAP_REASON_ID ? "Supported" : "Not Supported");
printf("log-page-directory : %s\n",
capabilities & WDC_DRIVE_CAP_LOG_PAGE_DIR ? "Supported" : "Not Supported");
printf("namespace-resize : %s\n",
capabilities & WDC_DRIVE_CAP_NS_RESIZE ? "Supported" : "Not Supported");
printf("vs-drive-info : %s\n",
capabilities & WDC_DRIVE_CAP_INFO ? "Supported" : "Not Supported");
printf("vs-temperature-stats : %s\n",
capabilities & WDC_DRIVE_CAP_TEMP_STATS ? "Supported" : "Not Supported");
printf("cloud-SSD-plugin-version : %s\n",
capabilities & WDC_DRIVE_CAP_CLOUD_SSD_VERSION ? "Supported" : "Not Supported");
printf("vs-pcie-stats : %s\n",
capabilities & WDC_DRIVE_CAP_PCIE_STATS ? "Supported" : "Not Supported");
printf("get-error-recovery-log : %s\n",
capabilities & WDC_DRIVE_CAP_OCP_C1_LOG_PAGE ? "Supported" : "Not Supported");
printf("get-dev-capabilities-log : %s\n",
capabilities & WDC_DRIVE_CAP_OCP_C4_LOG_PAGE ? "Supported" : "Not Supported");
printf("get-unsupported-reqs-log : %s\n",
capabilities & WDC_DRIVE_CAP_OCP_C5_LOG_PAGE ? "Supported" : "Not Supported");
printf("get-latency-monitor-log : %s\n",
capabilities & WDC_DRIVE_CAP_C3_LOG_PAGE ? "Supported" : "Not Supported");
printf("cloud-boot-SSD-version : %s\n",
capabilities & WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION ? "Supported" : "Not Supported");
printf("vs-cloud-log : %s\n",
capabilities & WDC_DRIVE_CAP_CLOUD_LOG_PAGE ? "Supported" : "Not Supported");
printf("vs-hw-rev-log : %s\n",
capabilities & WDC_DRIVE_CAP_HW_REV_LOG_PAGE ? "Supported" : "Not Supported");
printf("vs-device_waf : %s\n",
capabilities & WDC_DRIVE_CAP_DEVICE_WAF ? "Supported" : "Not Supported");
printf("set-latency-monitor-feature : %s\n",
capabilities & WDC_DRIVE_CAP_SET_LATENCY_MONITOR ? "Supported" : "Not Supported");
printf("capabilities : Supported\n");
nvme_free_tree(r);
dev_close(dev);
return 0;
}
static int wdc_cloud_ssd_plugin_version(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Get Cloud SSD Plugin Version command.";
uint64_t capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
OPT_ARGS(opts) = {
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
/* get capabilities */
r = nvme_scan(NULL);
wdc_check_device(r, dev);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_CLOUD_SSD_VERSION) == WDC_DRIVE_CAP_CLOUD_SSD_VERSION) {
/* print command and supported status */
printf("WDC Cloud SSD Plugin Version: 1.0\n");
} else {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
}
nvme_free_tree(r);
dev_close(dev);
return 0;
}
static int wdc_cloud_boot_SSD_version(int argc, char **argv, struct command *command,
struct plugin *plugin)
{
const char *desc = "Get Cloud Boot SSD Version command.";
const char *namespace_id = "desired namespace id";
nvme_root_t r;
uint64_t capabilities = 0;
struct nvme_dev *dev;
int ret;
int major = 0, minor = 0;
__u8 *data = NULL;
struct __packed wdc_nvme_ext_smart_log * ext_smart_log_ptr = NULL;
struct config {
__u32 namespace_id;
};
struct config cfg = {
.namespace_id = NVME_NSID_ALL,
};
OPT_ARGS(opts) = {
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
/* get capabilities */
r = nvme_scan(NULL);
wdc_check_device(r, dev);
capabilities = wdc_get_drive_capabilities(r, dev);
if ((capabilities & WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION) == WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION) {
/* Get the 0xC0 Smart Cloud Attribute V1 log data */
ret = nvme_get_ext_smart_cloud_log(dev_fd(dev), &data, 0,
cfg.namespace_id);
ext_smart_log_ptr = (struct __packed wdc_nvme_ext_smart_log *)data;
if (!ret) {
major = le16_to_cpu(ext_smart_log_ptr->ext_smart_maj);
minor = le16_to_cpu(ext_smart_log_ptr->ext_smart_min);
/* print the version returned from the log page */
printf("HyperScale Boot Version: %d.%d\n", major, minor);
} else {
fprintf(stderr, "ERROR: WDC: Unable to read Extended Smart/C0 Log Page data\n");
ret = -1;
}
if (data)
free(data);
} else {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
}
nvme_free_tree(r);
dev_close(dev);
return ret;
}
static int wdc_enc_get_log(int argc, char **argv, struct command *command, struct plugin *plugin)
{
char *desc = "Get Enclosure Log.";
char *file = "Output file pathname.";
char *size = "Data retrieval transfer size.";
char *log = "Enclosure Log Page ID.";
struct nvme_dev *dev;
FILE *output_fd;
int xfer_size = 0;
int len;
int err = 0;
struct config {
char *file;
__u32 xfer_size;
__u32 log_id;
};
struct config cfg = {
.file = NULL,
.xfer_size = 0,
.log_id = 0xffffffff,
};
OPT_ARGS(opts) = {
OPT_FILE("output-file", 'o', &cfg.file, file),
OPT_UINT("transfer-size", 's', &cfg.xfer_size, size),
OPT_UINT("log-id", 'l', &cfg.log_id, log),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
goto ret;
if (!wdc_enc_check_model(dev)) {
err = -EINVAL;
goto closed_fd;
}
if (cfg.log_id > 0xff) {
fprintf(stderr,
"Invalid log identifier: %d. Valid 0xd1, 0xd2, 0xd3, 0xd4, 0xe2, 0xe4\n",
cfg.log_id);
goto closed_fd;
}
if (cfg.xfer_size) {
xfer_size = cfg.xfer_size;
if (!wdc_check_power_of_2(cfg.xfer_size)) {
fprintf(stderr, "%s: ERROR: xfer-size (%d) must be a power of 2\n",
__func__, cfg.xfer_size);
err = -EINVAL;
goto closed_fd;
}
}
/* Log IDs are only for specific enclosures */
if (cfg.log_id) {
xfer_size = (xfer_size) ? xfer_size : WDC_NVME_ENC_LOG_SIZE_CHUNK;
len = !cfg.file ? 0 : strlen(cfg.file);
if (len > 0) {
output_fd = fopen(cfg.file, "wb");
if (!output_fd) {
fprintf(stderr, "%s: ERROR: opening:%s: %s\n", __func__, cfg.file,
strerror(errno));
err = -EINVAL;
goto closed_fd;
}
} else {
output_fd = stdout;
}
if (cfg.log_id == WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_1 ||
cfg.log_id == WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_2 ||
cfg.log_id == WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_3 ||
cfg.log_id == WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_4) {
fprintf(stderr, "args - sz:%x logid:%x of:%s\n", xfer_size, cfg.log_id,
cfg.file);
err = wdc_enc_get_nic_log(dev, cfg.log_id, xfer_size,
WDC_NVME_ENC_NIC_LOG_SIZE, output_fd);
} else {
fprintf(stderr, "args - sz:%x logid:%x of:%s\n", xfer_size, cfg.log_id,
cfg.file);
err = wdc_enc_submit_move_data(dev, NULL, 0, xfer_size, output_fd,
cfg.log_id, 0, 0);
}
if (err == WDC_RESULT_NOT_AVAILABLE) {
fprintf(stderr, "No Log/Crashdump available\n");
err = 0;
} else if (err) {
fprintf(stderr, "ERROR: 0x%x Failed to collect log-id:%x\n", err,
cfg.log_id);
}
}
closed_fd:
dev_close(dev);
ret:
return err;
}
static int wdc_enc_submit_move_data(struct nvme_dev *dev, char *cmd, int len,
int xfer_size, FILE *out, int log_id,
int cdw14, int cdw15)
{
struct timespec time;
uint32_t response_size, more;
int err;
int handle;
uint32_t offset = 0;
char *buf;
buf = (char *)malloc(sizeof(__u8) * xfer_size);
if (!buf) {
fprintf(stderr, "%s: ERROR: malloc: %s\n", __func__, strerror(errno));
return -1;
}
/* send something no matter what */
cmd = (len) ? cmd : buf;
len = (len) ? len : 0x20;
struct nvme_passthru_cmd nvme_cmd = {
.opcode = WDC_NVME_ADMIN_ENC_MGMT_SND,
.nsid = 0,
.addr = (__u64)(uintptr_t) cmd,
.data_len = ((len + sizeof(uint32_t) - 1) / sizeof(uint32_t)) * sizeof(uint32_t),
.cdw10 = len,
.cdw12 = log_id,
.cdw13 = 0,
.cdw14 = cdw14,
.cdw15 = cdw15,
};
clock_gettime(CLOCK_REALTIME, &time);
srand(time.tv_nsec);
handle = random(); /* Handle to associate send request with receive request */
nvme_cmd.cdw11 = handle;
#ifdef WDC_NVME_CLI_DEBUG
unsigned char *d = (unsigned char *)nvme_cmd.addr;
unsigned char *md = (unsigned char *)nvme_cmd.metadata;
printf("NVME_ADMIN_COMMAND:\n");
printf("opcode: 0x%02x, flags: 0x%02x, rsvd: 0x%04x, nsid: 0x%08x, cdw2: 0x%08x, ",
nvme_cmd.opcode, nvme_cmd.flags, nvme_cmd.rsvd1, nvme_cmd.nsid, nvme_cmd.cdw2);
printf("cdw3: 0x%08x, metadata_len: 0x%08x, data_len: 0x%08x, cdw10: 0x%08x, "
nvme_cmd.cdw3, nvme_cmd.metadata_len, nvme_cmd.data_len, nvme_cmd.cdw10);
printf("cdw11: 0x%08x, cdw12: 0x%08x, cdw13: 0x%08x, cdw14: 0x%08x, cdw15: 0x%08x, "
nvme_cmd.cdw11, nvme_cmd.cdw12, nvme_cmd.cdw13, nvme_cmd.cdw14, nvme_cmd.cdw15);
printf("timeout_ms: 0x%08x, result: 0x%08x, metadata: %s, data: %s\n",
nvme_cmd.timeout_ms, nvme_cmd.result, md, d);
#endif
nvme_cmd.result = 0;
err = nvme_submit_admin_passthru(dev_fd(dev), &nvme_cmd, NULL);
if (nvme_status_equals(err, NVME_STATUS_TYPE_NVME, NVME_SC_INTERNAL)) {
fprintf(stderr, "%s: WARNING : WDC: No log ID:x%x available\n", __func__, log_id);
} else if (err) {
fprintf(stderr, "%s: ERROR: WDC: NVMe Snd Mgmt\n", __func__);
nvme_show_status(err);
} else {
if (nvme_cmd.result == WDC_RESULT_NOT_AVAILABLE) {
free(buf);
return WDC_RESULT_NOT_AVAILABLE;
}
do {
/* Sent request, now go retrieve response */
nvme_cmd.flags = 0;
nvme_cmd.opcode = WDC_NVME_ADMIN_ENC_MGMT_RCV;
nvme_cmd.addr = (__u64)(uintptr_t) buf;
nvme_cmd.data_len = xfer_size;
nvme_cmd.cdw10 = xfer_size / sizeof(uint32_t);
nvme_cmd.cdw11 = handle;
nvme_cmd.cdw12 = log_id;
nvme_cmd.cdw13 = offset / sizeof(uint32_t);
nvme_cmd.cdw14 = cdw14;
nvme_cmd.cdw15 = cdw15;
nvme_cmd.result = 0; /* returned result !=0 indicates more data available */
err = nvme_submit_admin_passthru(dev_fd(dev),
&nvme_cmd, NULL);
if (err) {
more = 0;
fprintf(stderr, "%s: ERROR: WDC: NVMe Rcv Mgmt ", __func__);
nvme_show_status(err);
} else {
more = nvme_cmd.result & WDC_RESULT_MORE_DATA;
response_size = nvme_cmd.result & ~WDC_RESULT_MORE_DATA;
fwrite(buf, response_size, 1, out);
offset += response_size;
if (more && (response_size & (sizeof(uint32_t)-1))) {
fprintf(stderr, "%s: ERROR: WDC: NVMe Rcv Mgmt response size:x%x not LW aligned\n",
__func__, response_size);
}
}
} while (more);
}
free(buf);
return err;
}
static int wdc_enc_get_nic_log(struct nvme_dev *dev, __u8 log_id, __u32 xfer_size, __u32 data_len, FILE *out)
{
__u8 *dump_data;
__u32 curr_data_offset, curr_data_len;
int i, ret = -1;
struct nvme_passthru_cmd admin_cmd;
__u32 dump_length = data_len;
__u32 numd;
__u16 numdu, numdl;
dump_data = (__u8 *)malloc(sizeof(__u8) * dump_length);
if (!dump_data) {
fprintf(stderr, "%s: ERROR: malloc: %s\n", __func__, strerror(errno));
return -1;
}
memset(dump_data, 0, sizeof(__u8) * dump_length);
memset(&admin_cmd, 0, sizeof(struct nvme_passthru_cmd));
curr_data_offset = 0;
curr_data_len = xfer_size;
i = 0;
numd = (curr_data_len >> 2) - 1;
numdu = numd >> 16;
numdl = numd & 0xffff;
admin_cmd.opcode = nvme_admin_get_log_page;
admin_cmd.nsid = curr_data_offset;
admin_cmd.addr = (__u64)(uintptr_t) dump_data;
admin_cmd.data_len = curr_data_len;
admin_cmd.cdw10 = log_id | (numdl << 16);
admin_cmd.cdw11 = numdu;
while (curr_data_offset < data_len) {
#ifdef WDC_NVME_CLI_DEBUG
fprintf(stderr,
"nsid 0x%08x addr 0x%08llx, data_len 0x%08x, cdw10 0x%08x, cdw11 0x%08x, cdw12 0x%08x, cdw13 0x%08x, cdw14 0x%08x\n",
admin_cmd.nsid, admin_cmd.addr, admin_cmd.data_len, admin_cmd.cdw10,
admin_cmd.cdw11, admin_cmd.cdw12, admin_cmd.cdw13, admin_cmd.cdw14);
#endif
ret = nvme_submit_admin_passthru(dev_fd(dev), &admin_cmd, NULL);
if (ret) {
nvme_show_status(ret);
fprintf(stderr, "%s: ERROR: WDC: Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n",
__func__, i, admin_cmd.data_len, curr_data_offset, (unsigned long)admin_cmd.addr);
break;
}
if ((curr_data_offset + xfer_size) <= data_len)
curr_data_len = xfer_size;
else
curr_data_len = data_len - curr_data_offset; /* last transfer */
curr_data_offset += curr_data_len;
numd = (curr_data_len >> 2) - 1;
numdu = numd >> 16;
numdl = numd & 0xffff;
admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset;
admin_cmd.nsid = curr_data_offset;
admin_cmd.data_len = curr_data_len;
admin_cmd.cdw10 = log_id | (numdl << 16);
admin_cmd.cdw11 = numdu;
i++;
}
fwrite(dump_data, data_len, 1, out);
free(dump_data);
return ret;
}
//------------------------------------------------------------------------------------
// Description: set latency monitor feature
//
int wdc_set_latency_monitor_feature(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Set Latency Monitor feature.";
uint64_t capabilities = 0;
struct nvme_dev *dev;
nvme_root_t r;
int ret;
__u32 result;
struct feature_latency_monitor buf = {0,};
const char *active_bucket_timer_threshold =
"This is the value that loads the Active Bucket Timer Threshold.";
const char *active_threshold_a =
"This is the value that loads into the Active Threshold A.";
const char *active_threshold_b =
"This is the value that loads into the Active Threshold B.";
const char *active_threshold_c =
"This is the value that loads into the Active Threshold C.";
const char *active_threshold_d =
"This is the value that loads into the Active Threshold D.";
const char *active_latency_config =
"This is the value that loads into the Active Latency Configuration.";
const char *active_latency_minimum_window =
"This is the value that loads into the Active Latency Minimum Window.";
const char *debug_log_trigger_enable =
"This is the value that loads into the Debug Log Trigger Enable.";
const char *discard_debug_log = "Discard Debug Log.";
const char *latency_monitor_feature_enable = "Latency Monitor Feature Enable.";
struct config {
__u16 active_bucket_timer_threshold;
__u8 active_threshold_a;
__u8 active_threshold_b;
__u8 active_threshold_c;
__u8 active_threshold_d;
__u16 active_latency_config;
__u8 active_latency_minimum_window;
__u16 debug_log_trigger_enable;
__u8 discard_debug_log;
__u8 latency_monitor_feature_enable;
};
struct config cfg = {
.active_bucket_timer_threshold = 0x7E0,
.active_threshold_a = 0x5,
.active_threshold_b = 0x13,
.active_threshold_c = 0x1E,
.active_threshold_d = 0x2E,
.active_latency_config = 0xFFF,
.active_latency_minimum_window = 0xA,
.debug_log_trigger_enable = 0,
.discard_debug_log = 0,
.latency_monitor_feature_enable = 0x7,
};
OPT_ARGS(opts) = {
OPT_UINT("active_bucket_timer_threshold", 't',
&cfg.active_bucket_timer_threshold,
active_bucket_timer_threshold),
OPT_UINT("active_threshold_a", 'a', &cfg.active_threshold_a,
active_threshold_a),
OPT_UINT("active_threshold_b", 'b', &cfg.active_threshold_b,
active_threshold_b),
OPT_UINT("active_threshold_c", 'c', &cfg.active_threshold_c,
active_threshold_c),
OPT_UINT("active_threshold_d", 'd', &cfg.active_threshold_d,
active_threshold_d),
OPT_UINT("active_latency_config", 'f',
&cfg.active_latency_config, active_latency_config),
OPT_UINT("active_latency_minimum_window", 'w',
&cfg.active_latency_minimum_window,
active_latency_minimum_window),
OPT_UINT("debug_log_trigger_enable", 'r',
&cfg.debug_log_trigger_enable, debug_log_trigger_enable),
OPT_UINT("discard_debug_log", 'l', &cfg.discard_debug_log,
discard_debug_log),
OPT_UINT("latency_monitor_feature_enable", 'e',
&cfg.latency_monitor_feature_enable,
latency_monitor_feature_enable),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret < 0)
return ret;
/* get capabilities */
r = nvme_scan(NULL);
wdc_check_device(r, dev);
capabilities = wdc_get_drive_capabilities(r, dev);
if (!(capabilities & WDC_DRIVE_CAP_SET_LATENCY_MONITOR)) {
fprintf(stderr, "ERROR: WDC: unsupported device for this command\n");
return -1;
}
memset(&buf, 0, sizeof(struct feature_latency_monitor));
buf.active_bucket_timer_threshold = cfg.active_bucket_timer_threshold;
buf.active_threshold_a = cfg.active_threshold_a;
buf.active_threshold_b = cfg.active_threshold_b;
buf.active_threshold_c = cfg.active_threshold_c;
buf.active_threshold_d = cfg.active_threshold_d;
buf.active_latency_config = cfg.active_latency_config;
buf.active_latency_minimum_window = cfg.active_latency_minimum_window;
buf.debug_log_trigger_enable = cfg.debug_log_trigger_enable;
buf.discard_debug_log = cfg.discard_debug_log;
buf.latency_monitor_feature_enable = cfg.latency_monitor_feature_enable;
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = NVME_FEAT_OCP_LATENCY_MONITOR,
.nsid = 0,
.cdw12 = 0,
.save = 1,
.data_len = sizeof(struct feature_latency_monitor),
.data = (void *)&buf,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
ret = nvme_set_features(&args);
if (ret < 0) {
perror("set-feature");
} else if (!ret) {
printf("NVME_FEAT_OCP_LATENCY_MONITOR: 0x%02x\n",
NVME_FEAT_OCP_LATENCY_MONITOR);
printf("active bucket timer threshold: 0x%x\n",
buf.active_bucket_timer_threshold);
printf("active threshold a: 0x%x\n", buf.active_threshold_a);
printf("active threshold b: 0x%x\n", buf.active_threshold_b);
printf("active threshold c: 0x%x\n", buf.active_threshold_c);
printf("active threshold d: 0x%x\n", buf.active_threshold_d);
printf("active latency config: 0x%x\n", buf.active_latency_config);
printf("active latency minimum window: 0x%x\n",
buf.active_latency_minimum_window);
printf("debug log trigger enable: 0x%x\n",
buf.debug_log_trigger_enable);
printf("discard debug log: 0x%x\n", buf.discard_debug_log);
printf("latency monitor feature enable: 0x%x\n",
buf.latency_monitor_feature_enable);
} else if (ret > 0)
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(ret, false), ret);
return ret;
}