1
0
Fork 0
nvme-cli/plugins/ocp/ocp-nvme.c
Daniel Baumann 37275c4af3
Merging upstream version 2.10.
Signed-off-by: Daniel Baumann <daniel@debian.org>
2025-02-16 12:27:38 +01:00

4145 lines
129 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2023 Meta Platforms, Inc.
*
* Authors: Arthur Shau <arthurshau@meta.com>,
* Wei Zhang <wzhang@meta.com>,
* Venkat Ramesh <venkatraghavan@meta.com>
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include <errno.h>
#include <limits.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include "common.h"
#include "nvme.h"
#include "libnvme.h"
#include "plugin.h"
#include "linux/types.h"
#include "util/types.h"
#include "nvme-print.h"
#include "nvme-wrap.h"
#include "ocp-smart-extended-log.h"
#include "ocp-clear-features.h"
#include "ocp-fw-activation-history.h"
#include "ocp-telemetry-decode.h"
#define CREATE_CMD
#include "ocp-nvme.h"
#include "ocp-utils.h"
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// Latency Monitor Log
#define C3_LATENCY_MON_LOG_BUF_LEN 0x200
#define C3_LATENCY_MON_OPCODE 0xC3
#define C3_LATENCY_MON_VERSION 0x0001
#define C3_GUID_LENGTH 16
#define NVME_FEAT_OCP_LATENCY_MONITOR 0xC5
#define C3_ACTIVE_BUCKET_TIMER_INCREMENT 5
#define C3_ACTIVE_THRESHOLD_INCREMENT 5
#define C3_MINIMUM_WINDOW_INCREMENT 100
#define C3_BUCKET_NUM 4
static __u8 lat_mon_guid[C3_GUID_LENGTH] = {
0x92, 0x7a, 0xc0, 0x8c,
0xd0, 0x84, 0x6c, 0x9c,
0x70, 0x43, 0xe6, 0xd4,
0x58, 0x5e, 0xd4, 0x85
};
#define READ 3
#define WRITE 2
#define TRIM 1
#define RESERVED 0
struct __packed ssd_latency_monitor_log {
__u8 feature_status; /* 0x00 */
__u8 rsvd1; /* 0x01 */
__le16 active_bucket_timer; /* 0x02 */
__le16 active_bucket_timer_threshold; /* 0x04 */
__u8 active_threshold_a; /* 0x06 */
__u8 active_threshold_b; /* 0x07 */
__u8 active_threshold_c; /* 0x08 */
__u8 active_threshold_d; /* 0x09 */
__le16 active_latency_config; /* 0x0A */
__u8 active_latency_min_window; /* 0x0C */
__u8 rsvd2[0x13]; /* 0x0D */
__le32 active_bucket_counter[4][4]; /* 0x20 - 0x5F */
__le64 active_latency_timestamp[4][3]; /* 0x60 - 0xBF */
__le16 active_measured_latency[4][3]; /* 0xC0 - 0xD7 */
__le16 active_latency_stamp_units; /* 0xD8 */
__u8 rsvd3[0x16]; /* 0xDA */
__le32 static_bucket_counter[4][4]; /* 0x0F0 - 0x12F */
__le64 static_latency_timestamp[4][3]; /* 0x130 - 0x18F */
__le16 static_measured_latency[4][3]; /* 0x190 - 0x1A7 */
__le16 static_latency_stamp_units; /* 0x1A8 */
__u8 rsvd4[0x16]; /* 0x1AA */
__le16 debug_log_trigger_enable; /* 0x1C0 */
__le16 debug_log_measured_latency; /* 0x1C2 */
__le64 debug_log_latency_stamp; /* 0x1C4 */
__le16 debug_log_ptr; /* 0x1CC */
__le16 debug_log_counter_trigger; /* 0x1CE */
__u8 debug_log_stamp_units; /* 0x1D0 */
__u8 rsvd5[0x1D]; /* 0x1D1 */
__le16 log_page_version; /* 0x1EE */
__u8 log_page_guid[0x10]; /* 0x1F0 */
};
struct __packed feature_latency_monitor {
__u16 active_bucket_timer_threshold;
__u8 active_threshold_a;
__u8 active_threshold_b;
__u8 active_threshold_c;
__u8 active_threshold_d;
__u16 active_latency_config;
__u8 active_latency_minimum_window;
__u16 debug_log_trigger_enable;
__u8 discard_debug_log;
__u8 latency_monitor_feature_enable;
__u8 reserved[4083];
};
struct erri_entry {
union {
__u8 flags;
struct {
__u8 enable:1;
__u8 single:1;
__u8 rsvd2:6;
};
};
__u8 rsvd1;
__le16 type;
union {
__u8 specific[28];
struct {
__le16 nrtdp;
__u8 rsvd4[26];
};
};
};
#define ERRI_ENTRIES_MAX 127
enum erri_type {
ERRI_TYPE_CPU_CTRL_HANG = 1,
ERRI_TYPE_NAND_HANG,
ERRI_TYPE_PLP_DEFECT,
ERRI_TYPE_LOGICAL_FIRMWARE_ERROR,
ERRI_TYPE_DRAM_CORRUPT_CRIT,
ERRI_TYPE_DRAM_CORRUPT_NON_CRIT,
ERRI_TYPE_NAND_CORRUPT,
ERRI_TYPE_SRAM_CORRUPT,
ERRI_TYPE_HW_MALFUNCTION,
ERRI_TYPE_NO_MORE_NAND_SPARES,
ERRI_TYPE_INCOMPLETE_SHUTDOWN,
};
const char *erri_type_to_string(__le16 type)
{
switch (type) {
case ERRI_TYPE_CPU_CTRL_HANG:
return "CPU/controller hang";
case ERRI_TYPE_NAND_HANG:
return "NAND hang";
case ERRI_TYPE_PLP_DEFECT:
return "PLP defect";
case ERRI_TYPE_LOGICAL_FIRMWARE_ERROR:
return "logical firmware error";
case ERRI_TYPE_DRAM_CORRUPT_CRIT:
return "DRAM corruption critical path";
case ERRI_TYPE_DRAM_CORRUPT_NON_CRIT:
return "DRAM corruption non-critical path";
case ERRI_TYPE_NAND_CORRUPT:
return "NAND corruption";
case ERRI_TYPE_SRAM_CORRUPT:
return "SRAM corruption";
case ERRI_TYPE_HW_MALFUNCTION:
return "HW malfunction";
case ERRI_TYPE_NO_MORE_NAND_SPARES:
return "no more NAND spares available";
case ERRI_TYPE_INCOMPLETE_SHUTDOWN:
return "incomplete shutdown";
default:
break;
}
return "unknown";
}
struct erri_get_cq_entry {
__u32 nume:7;
__u32 rsvd7:25;
};
struct erri_config {
char *file;
__u8 number;
__u16 type;
__u16 nrtdp;
};
static const char *sel = "[0-3]: current/default/saved/supported";
static const char *no_uuid = "Skip UUID index search (UUID index not required for OCP 1.0)";
const char *data = "Error injection data structure entries";
const char *number = "Number of valid error injection data entries";
static const char *type = "Error injection type";
static const char *nrtdp = "Number of reads to trigger device panic";
static int ocp_print_C3_log_normal(struct nvme_dev *dev,
struct ssd_latency_monitor_log *log_data)
{
char ts_buf[128];
int i, j;
printf("-Latency Monitor/C3 Log Page Data-\n");
printf(" Controller : %s\n", dev->name);
printf(" Feature Status 0x%x\n",
log_data->feature_status);
printf(" Active Bucket Timer %d min\n",
C3_ACTIVE_BUCKET_TIMER_INCREMENT *
le16_to_cpu(log_data->active_bucket_timer));
printf(" Active Bucket Timer Threshold %d min\n",
C3_ACTIVE_BUCKET_TIMER_INCREMENT *
le16_to_cpu(log_data->active_bucket_timer_threshold));
printf(" Active Threshold A %d ms\n",
C3_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_a+1));
printf(" Active Threshold B %d ms\n",
C3_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_b+1));
printf(" Active Threshold C %d ms\n",
C3_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_c+1));
printf(" Active Threshold D %d ms\n",
C3_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_d+1));
printf(" Active Latency Configuration 0x%x\n",
le16_to_cpu(log_data->active_latency_config));
printf(" Active Latency Minimum Window %d ms\n",
C3_MINIMUM_WINDOW_INCREMENT *
le16_to_cpu(log_data->active_latency_min_window));
printf(" Active Latency Stamp Units %d\n",
le16_to_cpu(log_data->active_latency_stamp_units));
printf(" Static Latency Stamp Units %d\n",
le16_to_cpu(log_data->static_latency_stamp_units));
printf(" Debug Log Trigger Enable %d\n",
le16_to_cpu(log_data->debug_log_trigger_enable));
printf(" Debug Log Measured Latency %d\n",
le16_to_cpu(log_data->debug_log_measured_latency));
if (le64_to_cpu(log_data->debug_log_latency_stamp) == -1) {
printf(" Debug Log Latency Time Stamp N/A\n");
} else {
convert_ts(le64_to_cpu(log_data->debug_log_latency_stamp), ts_buf);
printf(" Debug Log Latency Time Stamp %s\n", ts_buf);
}
printf(" Debug Log Pointer %d\n",
le16_to_cpu(log_data->debug_log_ptr));
printf(" Debug Counter Trigger Source %d\n",
le16_to_cpu(log_data->debug_log_counter_trigger));
printf(" Debug Log Stamp Units %d\n",
le16_to_cpu(log_data->debug_log_stamp_units));
printf(" Log Page Version %d\n",
le16_to_cpu(log_data->log_page_version));
char guid[(C3_GUID_LENGTH * 2) + 1];
char *ptr = &guid[0];
for (i = C3_GUID_LENGTH - 1; i >= 0; i--)
ptr += sprintf(ptr, "%02X", log_data->log_page_guid[i]);
printf(" Log Page GUID %s\n", guid);
printf("\n");
printf(" Read Write Deallocate/Trim\n");
for (i = 0; i < C3_BUCKET_NUM; i++) {
printf(" Active Bucket Counter: Bucket %d %27d %27d %27d\n",
i,
le32_to_cpu(log_data->active_bucket_counter[i][READ]),
le32_to_cpu(log_data->active_bucket_counter[i][WRITE]),
le32_to_cpu(log_data->active_bucket_counter[i][TRIM]));
}
for (i = 0; i < C3_BUCKET_NUM; i++) {
printf(" Active Latency Time Stamp: Bucket %d ", i);
for (j = 2; j >= 0; j--) {
if (le64_to_cpu(log_data->active_latency_timestamp[3-i][j]) == -1) {
printf(" N/A ");
} else {
convert_ts(le64_to_cpu(log_data->active_latency_timestamp[3-i][j]), ts_buf);
printf("%s ", ts_buf);
}
}
printf("\n");
}
for (i = 0; i < C3_BUCKET_NUM; i++) {
printf(" Active Measured Latency: Bucket %d %27d ms %27d ms %27d ms\n",
i,
le16_to_cpu(log_data->active_measured_latency[3-i][READ-1]),
le16_to_cpu(log_data->active_measured_latency[3-i][WRITE-1]),
le16_to_cpu(log_data->active_measured_latency[3-i][TRIM-1]));
}
printf("\n");
for (i = 0; i < C3_BUCKET_NUM; i++) {
printf(" Static Bucket Counter: Bucket %d %27d %27d %27d\n",
i,
le32_to_cpu(log_data->static_bucket_counter[i][READ]),
le32_to_cpu(log_data->static_bucket_counter[i][WRITE]),
le32_to_cpu(log_data->static_bucket_counter[i][TRIM]));
}
for (i = 0; i < C3_BUCKET_NUM; i++) {
printf(" Static Latency Time Stamp: Bucket %d ", i);
for (j = 2; j >= 0; j--) {
if (le64_to_cpu(log_data->static_latency_timestamp[3-i][j]) == -1) {
printf(" N/A ");
} else {
convert_ts(le64_to_cpu(log_data->static_latency_timestamp[3-i][j]), ts_buf);
printf("%s ", ts_buf);
}
}
printf("\n");
}
for (i = 0; i < C3_BUCKET_NUM; i++) {
printf(" Static Measured Latency: Bucket %d %27d ms %27d ms %27d ms\n",
i,
le16_to_cpu(log_data->static_measured_latency[3-i][READ-1]),
le16_to_cpu(log_data->static_measured_latency[3-i][WRITE-1]),
le16_to_cpu(log_data->static_measured_latency[3-i][TRIM-1]));
}
return 0;
}
static void ocp_print_C3_log_json(struct ssd_latency_monitor_log *log_data)
{
struct json_object *root;
char ts_buf[128];
char buf[128];
int i, j;
char *operation[3] = {"Trim", "Write", "Read"};
root = json_create_object();
json_object_add_value_uint(root, "Feature Status",
log_data->feature_status);
json_object_add_value_uint(root, "Active Bucket Timer",
C3_ACTIVE_BUCKET_TIMER_INCREMENT *
le16_to_cpu(log_data->active_bucket_timer));
json_object_add_value_uint(root, "Active Bucket Timer Threshold",
C3_ACTIVE_BUCKET_TIMER_INCREMENT *
le16_to_cpu(log_data->active_bucket_timer_threshold));
json_object_add_value_uint(root, "Active Threshold A",
C3_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_a + 1));
json_object_add_value_uint(root, "Active Threshold B",
C3_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_b + 1));
json_object_add_value_uint(root, "Active Threshold C",
C3_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_c + 1));
json_object_add_value_uint(root, "Active Threshold D",
C3_ACTIVE_THRESHOLD_INCREMENT *
le16_to_cpu(log_data->active_threshold_d + 1));
json_object_add_value_uint(root, "Active Latency Configuration",
le16_to_cpu(log_data->active_latency_config));
json_object_add_value_uint(root, "Active Latency Minimum Window",
C3_MINIMUM_WINDOW_INCREMENT *
le16_to_cpu(log_data->active_latency_min_window));
for (i = 0; i < C3_BUCKET_NUM; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Active Bucket Counter: Bucket %d", i);
for (j = 2; j >= 0; j--) {
json_object_add_value_uint(bucket, operation[j],
le32_to_cpu(log_data->active_bucket_counter[i][j+1]));
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i < C3_BUCKET_NUM; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Active Latency Time Stamp: Bucket %d", i);
for (j = 2; j >= 0; j--) {
if (le64_to_cpu(log_data->active_latency_timestamp[3-i][j]) == -1) {
json_object_add_value_string(bucket, operation[j], "NA");
} else {
convert_ts(le64_to_cpu(log_data->active_latency_timestamp[3-i][j]), ts_buf);
json_object_add_value_string(bucket, operation[j], ts_buf);
}
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i < C3_BUCKET_NUM; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Active Measured Latency: Bucket %d", i);
for (j = 2; j >= 0; j--) {
json_object_add_value_uint(bucket, operation[j],
le16_to_cpu(log_data->active_measured_latency[3-i][j]));
}
json_object_add_value_object(root, buf, bucket);
}
json_object_add_value_uint(root, "Active Latency Stamp Units",
le16_to_cpu(log_data->active_latency_stamp_units));
for (i = 0; i < C3_BUCKET_NUM; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Static Bucket Counter: Bucket %d", i);
for (j = 2; j >= 0; j--) {
json_object_add_value_uint(bucket, operation[j],
le32_to_cpu(log_data->static_bucket_counter[i][j+1]));
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i < C3_BUCKET_NUM; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Static Latency Time Stamp: Bucket %d", i);
for (j = 2; j >= 0; j--) {
if (le64_to_cpu(log_data->static_latency_timestamp[3-i][j]) == -1) {
json_object_add_value_string(bucket, operation[j], "NA");
} else {
convert_ts(le64_to_cpu(log_data->static_latency_timestamp[3-i][j]), ts_buf);
json_object_add_value_string(bucket, operation[j], ts_buf);
}
}
json_object_add_value_object(root, buf, bucket);
}
for (i = 0; i < C3_BUCKET_NUM; i++) {
struct json_object *bucket;
bucket = json_create_object();
sprintf(buf, "Static Measured Latency: Bucket %d", i);
for (j = 2; j >= 0; j--) {
json_object_add_value_uint(bucket, operation[j],
le16_to_cpu(log_data->static_measured_latency[3-i][j]));
}
json_object_add_value_object(root, buf, bucket);
}
json_object_add_value_uint(root, "Static Latency Stamp Units",
le16_to_cpu(log_data->static_latency_stamp_units));
json_object_add_value_uint(root, "Debug Log Trigger Enable",
le16_to_cpu(log_data->debug_log_trigger_enable));
json_object_add_value_uint(root, "Debug Log Measured Latency",
le16_to_cpu(log_data->debug_log_measured_latency));
if (le64_to_cpu(log_data->debug_log_latency_stamp) == -1) {
json_object_add_value_string(root, "Debug Log Latency Time Stamp", "NA");
} else {
convert_ts(le64_to_cpu(log_data->debug_log_latency_stamp), ts_buf);
json_object_add_value_string(root, "Debug Log Latency Time Stamp", ts_buf);
}
json_object_add_value_uint(root, "Debug Log Pointer",
le16_to_cpu(log_data->debug_log_ptr));
json_object_add_value_uint(root, "Debug Counter Trigger Source",
le16_to_cpu(log_data->debug_log_counter_trigger));
json_object_add_value_uint(root, "Debug Log Stamp Units",
le16_to_cpu(log_data->debug_log_stamp_units));
json_object_add_value_uint(root, "Log Page Version",
le16_to_cpu(log_data->log_page_version));
char guid[(C3_GUID_LENGTH * 2) + 1];
char *ptr = &guid[0];
for (i = C3_GUID_LENGTH - 1; i >= 0; i--)
ptr += sprintf(ptr, "%02X", log_data->log_page_guid[i]);
json_object_add_value_string(root, "Log Page GUID", guid);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static int get_c3_log_page(struct nvme_dev *dev, char *format)
{
struct ssd_latency_monitor_log *log_data;
nvme_print_flags_t fmt;
int ret;
__u8 *data;
int i;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR : OCP : invalid output format\n");
return ret;
}
data = malloc(sizeof(__u8) * C3_LATENCY_MON_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR : OCP : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * C3_LATENCY_MON_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev), C3_LATENCY_MON_OPCODE,
C3_LATENCY_MON_LOG_BUF_LEN, data);
if (strcmp(format, "json"))
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret, false), ret);
if (!ret) {
log_data = (struct ssd_latency_monitor_log *)data;
/* check log page version */
if (log_data->log_page_version != C3_LATENCY_MON_VERSION) {
fprintf(stderr,
"ERROR : OCP : invalid latency monitor version\n");
ret = -1;
goto out;
}
/*
* check log page guid
* Verify GUID matches
*/
for (i = 0; i < 16; i++) {
if (lat_mon_guid[i] != log_data->log_page_guid[i]) {
int j;
fprintf(stderr, "ERROR : OCP : Unknown GUID in C3 Log Page data\n");
fprintf(stderr, "ERROR : OCP : Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", lat_mon_guid[j]);
fprintf(stderr, "\nERROR : OCP : Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", log_data->log_page_guid[j]);
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
switch (fmt) {
case NORMAL:
ocp_print_C3_log_normal(dev, log_data);
break;
case JSON:
ocp_print_C3_log_json(log_data);
break;
default:
fprintf(stderr, "unhandled output format\n");
}
} else {
fprintf(stderr,
"ERROR : OCP : Unable to read C3 data from buffer\n");
}
out:
free(data);
return ret;
}
static int ocp_latency_monitor_log(int argc, char **argv,
struct command *command,
struct plugin *plugin)
{
const char *desc = "Retrieve latency monitor log data.";
struct nvme_dev *dev;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format,
"output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
ret = get_c3_log_page(dev, cfg.output_format);
if (ret)
fprintf(stderr,
"ERROR : OCP : Failure reading the C3 Log Page, ret = %d\n",
ret);
dev_close(dev);
return ret;
}
int ocp_set_latency_monitor_feature(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
int err = -1;
struct nvme_dev *dev;
__u32 result;
struct feature_latency_monitor buf = {0,};
__u32 nsid = NVME_NSID_ALL;
struct stat nvme_stat;
struct nvme_id_ctrl ctrl;
const char *desc = "Set Latency Monitor feature.";
const char *active_bucket_timer_threshold = "This is the value that loads the Active Bucket Timer Threshold.";
const char *active_threshold_a = "This is the value that loads into the Active Threshold A.";
const char *active_threshold_b = "This is the value that loads into the Active Threshold B.";
const char *active_threshold_c = "This is the value that loads into the Active Threshold C.";
const char *active_threshold_d = "This is the value that loads into the Active Threshold D.";
const char *active_latency_config = "This is the value that loads into the Active Latency Configuration.";
const char *active_latency_minimum_window = "This is the value that loads into the Active Latency Minimum Window.";
const char *debug_log_trigger_enable = "This is the value that loads into the Debug Log Trigger Enable.";
const char *discard_debug_log = "Discard Debug Log.";
const char *latency_monitor_feature_enable = "Latency Monitor Feature Enable.";
struct config {
__u16 active_bucket_timer_threshold;
__u8 active_threshold_a;
__u8 active_threshold_b;
__u8 active_threshold_c;
__u8 active_threshold_d;
__u16 active_latency_config;
__u8 active_latency_minimum_window;
__u16 debug_log_trigger_enable;
__u8 discard_debug_log;
__u8 latency_monitor_feature_enable;
};
struct config cfg = {
.active_bucket_timer_threshold = 0x7E0,
.active_threshold_a = 0x5,
.active_threshold_b = 0x13,
.active_threshold_c = 0x1E,
.active_threshold_d = 0x2E,
.active_latency_config = 0xFFF,
.active_latency_minimum_window = 0xA,
.debug_log_trigger_enable = 0,
.discard_debug_log = 0,
.latency_monitor_feature_enable = 0x7,
};
OPT_ARGS(opts) = {
OPT_UINT("active_bucket_timer_threshold", 't', &cfg.active_bucket_timer_threshold, active_bucket_timer_threshold),
OPT_UINT("active_threshold_a", 'a', &cfg.active_threshold_a, active_threshold_a),
OPT_UINT("active_threshold_b", 'b', &cfg.active_threshold_b, active_threshold_b),
OPT_UINT("active_threshold_c", 'c', &cfg.active_threshold_c, active_threshold_c),
OPT_UINT("active_threshold_d", 'd', &cfg.active_threshold_d, active_threshold_d),
OPT_UINT("active_latency_config", 'f', &cfg.active_latency_config, active_latency_config),
OPT_UINT("active_latency_minimum_window", 'w', &cfg.active_latency_minimum_window, active_latency_minimum_window),
OPT_UINT("debug_log_trigger_enable", 'r', &cfg.debug_log_trigger_enable, debug_log_trigger_enable),
OPT_UINT("discard_debug_log", 'l', &cfg.discard_debug_log, discard_debug_log),
OPT_UINT("latency_monitor_feature_enable", 'e', &cfg.latency_monitor_feature_enable, latency_monitor_feature_enable),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
err = fstat(dev_fd(dev), &nvme_stat);
if (err < 0)
return err;
if (S_ISBLK(nvme_stat.st_mode)) {
err = nvme_get_nsid(dev_fd(dev), &nsid);
if (err < 0) {
perror("invalid-namespace-id");
return err;
}
}
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (err)
return err;
memset(&buf, 0, sizeof(struct feature_latency_monitor));
buf.active_bucket_timer_threshold = cfg.active_bucket_timer_threshold;
buf.active_threshold_a = cfg.active_threshold_a;
buf.active_threshold_b = cfg.active_threshold_b;
buf.active_threshold_c = cfg.active_threshold_c;
buf.active_threshold_d = cfg.active_threshold_d;
buf.active_latency_config = cfg.active_latency_config;
buf.active_latency_minimum_window = cfg.active_latency_minimum_window;
buf.debug_log_trigger_enable = cfg.debug_log_trigger_enable;
buf.discard_debug_log = cfg.discard_debug_log;
buf.latency_monitor_feature_enable = cfg.latency_monitor_feature_enable;
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = NVME_FEAT_OCP_LATENCY_MONITOR,
.nsid = 0,
.cdw12 = 0,
.save = 1,
.data_len = sizeof(struct feature_latency_monitor),
.data = (void *)&buf,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (err < 0) {
perror("set-feature");
} else if (!err) {
printf("NVME_FEAT_OCP_LATENCY_MONITOR: 0x%02x\n", NVME_FEAT_OCP_LATENCY_MONITOR);
printf("active bucket timer threshold: 0x%x\n", buf.active_bucket_timer_threshold);
printf("active threshold a: 0x%x\n", buf.active_threshold_a);
printf("active threshold b: 0x%x\n", buf.active_threshold_b);
printf("active threshold c: 0x%x\n", buf.active_threshold_c);
printf("active threshold d: 0x%x\n", buf.active_threshold_d);
printf("active latency config: 0x%x\n", buf.active_latency_config);
printf("active latency minimum window: 0x%x\n", buf.active_latency_minimum_window);
printf("debug log trigger enable: 0x%x\n", buf.debug_log_trigger_enable);
printf("discard debug log: 0x%x\n", buf.discard_debug_log);
printf("latency monitor feature enable: 0x%x\n", buf.latency_monitor_feature_enable);
} else if (err > 0) {
fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(err, false), err);
}
return err;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// EOL/PLP Failure Mode
static const char *eol_plp_failure_mode_to_string(__u8 mode)
{
switch (mode) {
case 1:
return "Read only mode (ROM)";
case 2:
return "Write through mode (WTM)";
case 3:
return "Normal mode";
default:
break;
}
return "Reserved";
}
static int eol_plp_failure_mode_get(struct nvme_dev *dev, const __u32 nsid, const __u8 fid,
__u8 sel, bool uuid)
{
__u32 result;
int err;
struct nvme_get_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = nsid,
.sel = sel,
.cdw11 = 0,
.uuidx = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
if (uuid) {
/* OCP 2.0 requires UUID index support */
err = ocp_get_uuid_index(dev, &args.uuidx);
if (err || !args.uuidx) {
nvme_show_error("ERROR: No OCP UUID index found");
return err;
}
}
err = nvme_get_features(&args);
if (!err) {
nvme_show_result("End of Life Behavior (feature: %#0*x): %#0*x (%s: %s)",
fid ? 4 : 2, fid, result ? 10 : 8, result,
nvme_select_to_string(sel),
eol_plp_failure_mode_to_string(result));
if (sel == NVME_GET_FEATURES_SEL_SUPPORTED)
nvme_show_select_result(fid, result);
} else {
nvme_show_error("Could not get feature: %#0*x.", fid ? 4 : 2, fid);
}
return err;
}
static int eol_plp_failure_mode_set(struct nvme_dev *dev, const __u32 nsid,
const __u8 fid, __u8 mode, bool save,
bool uuid)
{
__u32 result;
int err;
__u8 uuid_index = 0;
if (uuid) {
/* OCP 2.0 requires UUID index support */
err = ocp_get_uuid_index(dev, &uuid_index);
if (err || !uuid_index) {
nvme_show_error("ERROR: No OCP UUID index found");
return err;
}
}
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = nsid,
.cdw11 = mode << 30,
.cdw12 = 0,
.save = save,
.uuidx = uuid_index,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (err > 0) {
nvme_show_status(err);
} else if (err < 0) {
nvme_show_perror("Define EOL/PLP failure mode");
fprintf(stderr, "Command failed while parsing.\n");
} else {
nvme_show_result("Successfully set mode (feature: %#0*x): %#0*x (%s: %s).",
fid ? 4 : 2, fid, mode ? 10 : 8, mode,
save ? "Save" : "Not save",
eol_plp_failure_mode_to_string(mode));
}
return err;
}
static int eol_plp_failure_mode(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Define EOL or PLP circuitry failure mode.\n"
"No argument prints current mode.";
const char *mode = "[0-3]: default/rom/wtm/normal";
const char *save = "Specifies that the controller shall save the attribute";
const char *sel = "[0-3]: current/default/saved/supported";
const __u32 nsid = 0;
const __u8 fid = 0xc2;
struct nvme_dev *dev;
int err;
struct config {
__u8 mode;
bool save;
__u8 sel;
};
struct config cfg = {
.mode = 0,
.save = false,
.sel = 0,
};
NVME_ARGS(opts,
OPT_BYTE("mode", 'm', &cfg.mode, mode),
OPT_FLAG("save", 's', &cfg.save, save),
OPT_BYTE("sel", 'S', &cfg.sel, sel),
OPT_FLAG("no-uuid", 'n', NULL,
"Skip UUID index search (UUID index not required for OCP 1.0)"));
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
if (argconfig_parse_seen(opts, "mode"))
err = eol_plp_failure_mode_set(dev, nsid, fid, cfg.mode,
cfg.save,
!argconfig_parse_seen(opts, "no-uuid"));
else
err = eol_plp_failure_mode_get(dev, nsid, fid, cfg.sel,
!argconfig_parse_seen(opts, "no-uuid"));
dev_close(dev);
return err;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// Telemetry Log
//global buffers
static __le64 total_log_page_sz;
static __u8 *header_data;
static struct telemetry_str_log_format *log_data;
__u8 *ptelemetry_buffer;
__u8 *pstring_buffer;
__u8 *pC9_string_buffer;
static void get_serial_number(struct nvme_id_ctrl *ctrl, char *sn)
{
int i;
/* Remove trailing spaces from the name */
for (i = 0; i < sizeof(ctrl->sn); i++) {
if (ctrl->sn[i] == ' ')
break;
sn[i] = ctrl->sn[i];
}
}
static void print_telemetry_header(struct telemetry_initiated_log *logheader,
int tele_type)
{
if (logheader) {
unsigned int i = 0, j = 0;
__u8 dataGenNum;
if (tele_type == TELEMETRY_TYPE_HOST) {
printf("============ Telemetry Host Header ============\n");
dataGenNum = logheader->DataHostGenerationNumber;
} else {
printf("========= Telemetry Controller Header =========\n");
dataGenNum = logheader->DataCtlrGenerationNumber;
}
printf("Log Identifier : 0x%02X\n", logheader->LogIdentifier);
printf("IEEE : 0x%02X%02X%02X\n",
logheader->IEEE[0], logheader->IEEE[1], logheader->IEEE[2]);
printf("Data Area 1 Last Block : 0x%04X\n",
le16_to_cpu(logheader->DataArea1LastBlock));
printf("Data Area 2 Last Block : 0x%04X\n",
le16_to_cpu(logheader->DataArea2LastBlock));
printf("Data Area 3 Last Block : 0x%04X\n",
le16_to_cpu(logheader->DataArea3LastBlock));
printf("Data Available : 0x%02X\n",
logheader->CtlrDataAvailable);
printf("Data Generation Number : 0x%02X\n",
dataGenNum);
printf("Reason Identifier :\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 16; j++)
printf("%02X ", logheader->ReasonIdentifier[127 - ((i * 16) + j)]);
printf("\n");
}
printf("===============================================\n\n");
}
}
static int get_telemetry_data(struct nvme_dev *dev, __u32 ns, __u8 tele_type,
__u32 data_len, void *data, __u8 nLSP, __u8 nRAE,
__u64 offset)
{
struct nvme_passthru_cmd cmd = {
.opcode = nvme_admin_get_log_page,
.nsid = ns,
.addr = (__u64)(uintptr_t) data,
.data_len = data_len,
};
__u32 numd = (data_len >> 2) - 1;
__u16 numdu = numd >> 16;
__u16 numdl = numd & 0xffff;
cmd.cdw10 = tele_type |
(nLSP & 0x0F) << 8 |
(nRAE & 0x01) << 15 |
(numdl & 0xFFFF) << 16;
cmd.cdw11 = numdu;
cmd.cdw12 = (__u32)(0x00000000FFFFFFFF & offset);
cmd.cdw13 = (__u32)((0xFFFFFFFF00000000 & offset) >> 8);
cmd.cdw14 = 0;
return nvme_submit_admin_passthru(dev_fd(dev), &cmd, NULL);
}
static void print_telemetry_data_area_1(struct telemetry_data_area_1 *da1,
int tele_type)
{
if (da1) {
int i = 0;
if (tele_type == TELEMETRY_TYPE_HOST)
printf("============ Telemetry Host Data area 1 ============\n");
else
printf("========= Telemetry Controller Data area 1 =========\n");
printf("Major Version : 0x%x\n", le16_to_cpu(da1->major_version));
printf("Minor Version : 0x%x\n", le16_to_cpu(da1->minor_version));
printf("Timestamp : %"PRIu64"\n", le64_to_cpu(da1->timestamp));
printf("Log Page GUID : 0x");
for (int j = 15; j >= 0; j--)
printf("%02x", da1->log_page_guid[j]);
printf("\n");
printf("Number Telemetry Profiles Supported : 0x%x\n",
da1->no_of_tps_supp);
printf("Telemetry Profile Selected (TPS) : 0x%x\n",
da1->tps);
printf("Telemetry String Log Size (SLS) : 0x%lx\n",
le64_to_cpu(da1->sls));
printf("Firmware Revision : ");
for (i = 0; i < 8; i++)
printf("%c", (char)da1->fw_revision[i]);
printf("\n");
printf("Data Area 1 Statistic Start : 0x%lx\n",
le64_to_cpu(da1->da1_stat_start));
printf("Data Area 1 Statistic Size : 0x%lx\n",
le64_to_cpu(da1->da1_stat_size));
printf("Data Area 2 Statistic Start : 0x%lx\n",
le64_to_cpu(da1->da2_stat_start));
printf("Data Area 2 Statistic Size : 0x%lx\n",
le64_to_cpu(da1->da2_stat_size));
for (i = 0; i < 16; i++) {
printf("Event FIFO %d Data Area : 0x%x\n",
i, da1->event_fifo_da[i]);
printf("Event FIFO %d Start : 0x%"PRIx64"\n",
i, le64_to_cpu(da1->event_fifos[i].start));
printf("Event FIFO %d Size : 0x%"PRIx64"\n",
i, le64_to_cpu(da1->event_fifos[i].size));
}
printf("SMART / Health Information :\n");
printf("0x");
for (i = 0; i < 512; i++)
printf("%02x", da1->smart_health_info[i]);
printf("\n");
printf("SMART / Health Information Extended :\n");
printf("0x");
for (i = 0; i < 512; i++)
printf("%02x", da1->smart_health_info_extended[i]);
printf("\n");
printf("===============================================\n\n");
}
}
static void print_telemetry_da_stat(struct telemetry_stats_desc *da_stat,
int tele_type,
__u16 buf_size,
__u8 data_area)
{
if (da_stat) {
unsigned int i = 0;
struct telemetry_stats_desc *next_da_stat = da_stat;
if (tele_type == TELEMETRY_TYPE_HOST)
printf("============ Telemetry Host Data Area %d Statistics ============\n",
data_area);
else
printf("========= Telemetry Controller Data Area %d Statistics =========\n",
data_area);
while ((i + 8) < buf_size) {
print_stats_desc(next_da_stat);
i += 8 + ((next_da_stat->size) * 4);
next_da_stat = (struct telemetry_stats_desc *)((__u64)da_stat + i);
if ((next_da_stat->id == 0) && (next_da_stat->size == 0))
break;
}
printf("===============================================\n\n");
}
}
static void print_telemetry_da_fifo(struct telemetry_event_desc *da_fifo,
__le64 buf_size,
int tele_type,
int da,
int index)
{
if (da_fifo) {
unsigned int i = 0;
struct telemetry_event_desc *next_da_fifo = da_fifo;
if (tele_type == TELEMETRY_TYPE_HOST)
printf("========= Telemetry Host Data area %d Event FIFO %d =========\n",
da, index);
else
printf("====== Telemetry Controller Data area %d Event FIFO %d ======\n",
da, index);
while ((i + 4) < buf_size) {
/* Print Event Data */
print_telemetry_fifo_event(next_da_fifo->class, /* Event class type */
next_da_fifo->id, /* Event ID */
next_da_fifo->size, /* Event data size */
(__u8 *)&next_da_fifo->data); /* Event data */
i += (4 + (next_da_fifo->size * 4));
next_da_fifo = (struct telemetry_event_desc *)((__u64)da_fifo + i);
}
printf("===============================================\n\n");
}
}
static int extract_dump_get_log(struct nvme_dev *dev, char *featurename, char *filename, char *sn,
int dumpsize, int transfersize, __u32 nsid, __u8 log_id,
__u8 lsp, __u64 offset, bool rae)
{
int i = 0, err = 0;
char *data = calloc(transfersize, sizeof(char));
char filepath[FILE_NAME_SIZE] = {0,};
int output = 0;
int total_loop_cnt = dumpsize / transfersize;
int last_xfer_size = dumpsize % transfersize;
if (last_xfer_size)
total_loop_cnt++;
else
last_xfer_size = transfersize;
if (filename == 0)
snprintf(filepath, FILE_NAME_SIZE, "%s_%s.bin", featurename, sn);
else
snprintf(filepath, FILE_NAME_SIZE, "%s%s_%s.bin", filename, featurename, sn);
for (i = 0; i < total_loop_cnt; i++) {
memset(data, 0, transfersize);
struct nvme_get_log_args args = {
.lpo = offset,
.result = NULL,
.log = (void *)data,
.args_size = sizeof(args),
.fd = dev_fd(dev),
.lid = log_id,
.len = transfersize,
.nsid = nsid,
.lsp = lsp,
.uuidx = 0,
.rae = rae,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.csi = NVME_CSI_NVM,
.ot = false,
};
err = nvme_get_log(&args);
if (err) {
if (i > 0)
goto close_output;
else
goto end;
}
if (i != total_loop_cnt - 1) {
if (!i) {
output = open(filepath, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (output < 0) {
err = -13;
goto end;
}
}
if (write(output, data, transfersize) < 0) {
err = -10;
goto close_output;
}
} else {
if (write(output, data, last_xfer_size) < 0) {
err = -10;
goto close_output;
}
}
offset += transfersize;
printf("%d%%\r", (i + 1) * 100 / total_loop_cnt);
}
printf("100%%\nThe log file was saved at \"%s\"\n", filepath);
close_output:
close(output);
end:
free(data);
return err;
}
static int get_telemetry_dump(struct nvme_dev *dev, char *filename, char *sn,
enum TELEMETRY_TYPE tele_type, int data_area, bool header_print)
{
__u32 err = 0, nsid = 0;
__le64 da1_sz = 512, m_512_sz = 0, da1_off = 0, m_512_off = 0, diff = 0,
temp_sz = 0, temp_ofst = 0;
__u8 lsp = 0, rae = 0, flag = 0;
__u8 data[TELEMETRY_HEADER_SIZE] = { 0 };
unsigned int i = 0;
char data1[TELEMETRY_DATA_SIZE] = { 0 };
char *featurename = 0;
struct telemetry_initiated_log *logheader = (struct telemetry_initiated_log *)data;
struct telemetry_data_area_1 *da1 = (struct telemetry_data_area_1 *)data1;
__u64 offset = 0, size = 0;
char dumpname[FILE_NAME_SIZE] = { 0 };
if (tele_type == TELEMETRY_TYPE_HOST_0) {
featurename = "Host(0)";
lsp = 0;
rae = 0;
tele_type = TELEMETRY_TYPE_HOST;
} else if (tele_type == TELEMETRY_TYPE_HOST_1) {
featurename = "Host(1)";
lsp = 1;
rae = 0;
tele_type = TELEMETRY_TYPE_HOST;
} else {
featurename = "Controller";
lsp = 0;
rae = 1;
}
/* Get the telemetry header */
err = get_telemetry_data(dev, nsid, tele_type, TELEMETRY_HEADER_SIZE,
(void *)data, lsp, rae, 0);
if (err) {
printf("get_telemetry_header failed, err: %d.\n", err);
return err;
}
if (header_print)
print_telemetry_header(logheader, tele_type);
/* Get the telemetry data */
err = get_telemetry_data(dev, nsid, tele_type, TELEMETRY_DATA_SIZE,
(void *)data1, lsp, rae, 512);
if (err) {
printf("get_telemetry_data failed for type: 0x%x, err: %d.\n", tele_type, err);
return err;
}
print_telemetry_data_area_1(da1, tele_type);
/* Print the Data Area 1 Stats */
if (da1->da1_stat_size != 0) {
diff = 0;
da1_sz = (da1->da1_stat_size) * 4;
m_512_sz = (da1->da1_stat_size) * 4;
da1_off = (da1->da1_stat_start) * 4;
m_512_off = (da1->da1_stat_start) * 4;
temp_sz = (da1->da1_stat_size) * 4;
temp_ofst = (da1->da1_stat_start) * 4;
flag = 0;
if ((da1_off % 512) > 0) {
m_512_off = (__le64) ((da1_off / 512));
da1_off = m_512_off * 512;
diff = temp_ofst - da1_off;
flag = 1;
}
if (da1_sz < 512)
da1_sz = 512;
else if ((da1_sz % 512) > 0) {
if (flag == 0) {
m_512_sz = (__le64) ((da1_sz / 512) + 1);
da1_sz = m_512_sz * 512;
} else {
if (diff < 512)
diff = 1;
else
diff = (diff / 512) * 512;
m_512_sz = (__le64) ((da1_sz / 512) + 1 + diff + 1);
da1_sz = m_512_sz * 512;
}
}
char *da1_stat = calloc(da1_sz, sizeof(char));
err = get_telemetry_data(dev, nsid, tele_type, da1_sz,
(void *)da1_stat, lsp, rae, da1_off);
if (err) {
printf("get_telemetry_data da1 stats failed, err: %d.\n", err);
return err;
}
print_telemetry_da_stat((void *)(da1_stat + (temp_ofst - da1_off)),
tele_type, (da1->da1_stat_size) * 4, 1);
}
/* Print the Data Area 1 Event FIFO's */
for (i = 0; i < 16 ; i++) {
if ((da1->event_fifo_da[i] == 1) && (da1->event_fifos[i].size != 0)) {
diff = 0;
da1_sz = da1->event_fifos[i].size * 4;
m_512_sz = da1->event_fifos[i].size * 4;
da1_off = da1->event_fifos[i].start * 4;
m_512_off = da1->event_fifos[i].start * 4;
temp_sz = da1->event_fifos[i].size * 4;
temp_ofst = da1->event_fifos[i].start * 4;
flag = 0;
if ((da1_off % 512) > 0) {
m_512_off = (__le64) ((da1_off / 512));
da1_off = m_512_off * 512;
diff = temp_ofst - da1_off;
flag = 1;
}
if (da1_sz < 512)
da1_sz = 512;
else if ((da1_sz % 512) > 0) {
if (flag == 0) {
m_512_sz = (__le64) ((da1_sz / 512) + 1);
da1_sz = m_512_sz * 512;
} else {
if (diff < 512)
diff = 1;
else
diff = (diff / 512) * 512;
m_512_sz = (__le64) ((da1_sz / 512) + 1 + diff + 1);
da1_sz = m_512_sz * 512;
}
}
char *da1_fifo = calloc(da1_sz, sizeof(char));
err = get_telemetry_data(dev, nsid, tele_type,
(da1->event_fifos[i].size) * 4,
(void *)da1_fifo, lsp, rae, da1_off);
if (err) {
printf("get_telemetry_data da1 event fifos failed, err: %d.\n",
err);
return err;
}
print_telemetry_da_fifo((void *)(da1_fifo + (temp_ofst - da1_off)),
temp_sz,
tele_type,
da1->event_fifo_da[i],
i);
}
}
/* Print the Data Area 2 Stats */
if (da1->da2_stat_size != 0) {
da1_off = (da1->da2_stat_start) * 4;
temp_ofst = (da1->da2_stat_start) * 4;
da1_sz = (da1->da2_stat_size) * 4;
diff = 0;
flag = 0;
if (da1->da2_stat_start == 0) {
da1_off = 512 + (logheader->DataArea1LastBlock * 512);
temp_ofst = 512 + (le16_to_cpu(logheader->DataArea1LastBlock) * 512);
if ((da1_off % 512) == 0) {
m_512_off = (__le64) (((da1_off) / 512));
da1_off = m_512_off * 512;
diff = temp_ofst - da1_off;
flag = 1;
}
} else {
if (((da1_off * 4) % 512) > 0) {
m_512_off = (__le64) ((((da1->da2_stat_start) * 4) / 512));
da1_off = m_512_off * 512;
diff = ((da1->da2_stat_start) * 4) - da1_off;
flag = 1;
}
}
if (da1_sz < 512)
da1_sz = 512;
else if ((da1_sz % 512) > 0) {
if (flag == 0) {
m_512_sz = (__le64) ((da1->da2_stat_size / 512) + 1);
da1_sz = m_512_sz * 512;
} else {
if (diff < 512)
diff = 1;
else
diff = (diff / 512) * 512;
m_512_sz = (__le64) ((da1->da2_stat_size / 512) + 1 + diff + 1);
da1_sz = m_512_sz * 512;
}
}
char *da2_stat = calloc(da1_sz, sizeof(char));
err = get_telemetry_data(dev, nsid, tele_type, da1_sz,
(void *)da2_stat, lsp, rae, da1_off);
if (err) {
printf("get_telemetry_data da2 stats failed, err: %d.\n", err);
return err;
}
print_telemetry_da_stat((void *)(da2_stat + (temp_ofst - da1_off)),
tele_type,
(da1->da2_stat_size) * 4,
2);
}
/* Print the Data Area 2 Event FIFO's */
for (i = 0; i < 16 ; i++) {
if ((da1->event_fifo_da[i] == 2) && (da1->event_fifos[i].size != 0)) {
diff = 0;
da1_sz = da1->event_fifos[i].size * 4;
m_512_sz = da1->event_fifos[i].size * 4;
da1_off = da1->event_fifos[i].start * 4;
m_512_off = da1->event_fifos[i].start * 4;
temp_sz = da1->event_fifos[i].size * 4;
temp_ofst = da1->event_fifos[i].start * 4;
flag = 0;
if ((da1_off % 512) > 0) {
m_512_off = (__le64) ((da1_off / 512));
da1_off = m_512_off * 512;
diff = temp_ofst - da1_off;
flag = 1;
}
if (da1_sz < 512)
da1_sz = 512;
else if ((da1_sz % 512) > 0) {
if (flag == 0) {
m_512_sz = (__le64) ((da1_sz / 512) + 1);
da1_sz = m_512_sz * 512;
}
else {
if (diff < 512)
diff = 1;
else
diff = (diff / 512) * 512;
m_512_sz = (__le64) ((da1_sz / 512) + 1 + diff + 1);
da1_sz = m_512_sz * 512;
}
}
char *da1_fifo = calloc(da1_sz, sizeof(char));
err = get_telemetry_data(dev, nsid, tele_type,
(da1->event_fifos[i].size) * 4,
(void *)da1_fifo, lsp, rae, da1_off);
if (err) {
printf("get_telemetry_data da2 event fifos failed, err: %d.\n",
err);
return err;
}
print_telemetry_da_fifo((void *)(da1_fifo + (temp_ofst - da1_off)),
temp_sz,
tele_type,
da1->event_fifo_da[i],
i);
}
}
printf("------------------------------FIFO End---------------------------\n");
switch (data_area) {
case 1:
offset = TELEMETRY_HEADER_SIZE;
size = le16_to_cpu(logheader->DataArea1LastBlock);
break;
case 2:
offset = TELEMETRY_HEADER_SIZE
+ (le16_to_cpu(logheader->DataArea1LastBlock) * TELEMETRY_BYTE_PER_BLOCK);
size = le16_to_cpu(logheader->DataArea2LastBlock)
- le16_to_cpu(logheader->DataArea1LastBlock);
break;
case 3:
offset = TELEMETRY_HEADER_SIZE
+ (le16_to_cpu(logheader->DataArea2LastBlock) * TELEMETRY_BYTE_PER_BLOCK);
size = le16_to_cpu(logheader->DataArea3LastBlock)
- le16_to_cpu(logheader->DataArea2LastBlock);
break;
default:
break;
}
if (!size) {
printf("Telemetry %s Area %d is empty.\n", featurename, data_area);
return err;
}
snprintf(dumpname, FILE_NAME_SIZE,
"Telemetry_%s_Area_%d", featurename, data_area);
err = extract_dump_get_log(dev, dumpname, filename, sn, size * TELEMETRY_BYTE_PER_BLOCK,
TELEMETRY_TRANSFER_SIZE, nsid, tele_type,
0, offset, rae);
return err;
}
static int get_telemetry_log_page_data(struct nvme_dev *dev, int tele_type)
{
char file_path[PATH_MAX];
void *telemetry_log;
const size_t bs = 512;
struct nvme_telemetry_log *hdr;
size_t full_size, offset = bs;
int err, fd;
if ((tele_type == TELEMETRY_TYPE_HOST_0) || (tele_type == TELEMETRY_TYPE_HOST_1))
tele_type = TELEMETRY_TYPE_HOST;
int log_id = (tele_type == TELEMETRY_TYPE_HOST ? NVME_LOG_LID_TELEMETRY_HOST :
NVME_LOG_LID_TELEMETRY_CTRL);
hdr = malloc(bs);
telemetry_log = malloc(bs);
if (!hdr || !telemetry_log) {
fprintf(stderr, "Failed to allocate %zu bytes for log: %s\n",
bs, strerror(errno));
err = -ENOMEM;
goto exit_status;
}
memset(hdr, 0, bs);
sprintf(file_path, DEFAULT_TELEMETRY_BIN);
fd = open(file_path, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd < 0) {
fprintf(stderr, "Failed to open output file %s: %s!\n",
file_path, strerror(errno));
err = fd;
goto exit_status;
}
struct nvme_get_log_args args = {
.lpo = 0,
.result = NULL,
.log = hdr,
.args_size = sizeof(args),
.fd = dev_fd(dev),
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.lid = log_id,
.len = bs,
.nsid = NVME_NSID_ALL,
.csi = NVME_CSI_NVM,
.lsi = NVME_LOG_LSI_NONE,
.lsp = NVME_LOG_TELEM_HOST_LSP_CREATE,
.uuidx = NVME_UUID_NONE,
.rae = true,
.ot = false,
};
err = nvme_get_log(&args);
if (err < 0)
nvme_show_error("Failed to fetch the log from drive.\n");
else if (err > 0) {
nvme_show_status(err);
nvme_show_error("Failed to fetch telemetry-header. Error:%d.\n", err);
goto close_fd;
}
err = write(fd, (void *)hdr, bs);
if (err != bs) {
nvme_show_error("Failed to write data to file.\n");
goto close_fd;
}
full_size = (le16_to_cpu(hdr->dalb3) * bs) + offset;
while (offset != full_size) {
args.log = telemetry_log;
args.lpo = offset;
args.lsp = NVME_LOG_LSP_NONE;
err = nvme_get_log(&args);
if (err < 0) {
nvme_show_error("Failed to fetch the log from drive.\n");
break;
} else if (err > 0) {
nvme_show_error("Failed to fetch telemetry-log.\n");
nvme_show_status(err);
break;
}
err = write(fd, (void *)telemetry_log, bs);
if (err != bs) {
nvme_show_error("Failed to write data to file.\n");
break;
}
err = 0;
offset += bs;
}
close_fd:
close(fd);
exit_status:
free(hdr);
free(telemetry_log);
return err;
}
static int get_c9_log_page_data(struct nvme_dev *dev, int print_data, int save_bin)
{
int ret = 0, fd;
__le64 stat_id_str_table_ofst = 0;
__le64 event_str_table_ofst = 0;
__le64 vu_event_str_table_ofst = 0;
__le64 ascii_table_ofst = 0;
char file_path[PATH_MAX];
header_data = (__u8 *)malloc(sizeof(__u8) * C9_TELEMETRY_STR_LOG_LEN);
if (!header_data) {
fprintf(stderr, "ERROR : OCP : malloc : %s\n", strerror(errno));
return -1;
}
memset(header_data, 0, sizeof(__u8) * C9_TELEMETRY_STR_LOG_LEN);
ret = nvme_get_log_simple(dev_fd(dev), C9_TELEMETRY_STRING_LOG_ENABLE_OPCODE,
C9_TELEMETRY_STR_LOG_LEN, header_data);
if (!ret) {
log_data = (struct telemetry_str_log_format *)header_data;
if (print_data) {
printf("Statistics Identifier String Table Size = %lld\n",
log_data->sitsz);
printf("Event String Table Size = %lld\n", log_data->estsz);
printf("VU Event String Table Size = %lld\n", log_data->vu_eve_st_sz);
printf("ASCII Table Size = %lld\n", log_data->asctsz);
}
//Calculating the offset for dynamic fields.
stat_id_str_table_ofst = log_data->sits * 4;
event_str_table_ofst = log_data->ests * 4;
vu_event_str_table_ofst = log_data->vu_eve_sts * 4;
ascii_table_ofst = log_data->ascts * 4;
total_log_page_sz = C9_TELEMETRY_STR_LOG_LEN +
(log_data->sitsz * 4) + (log_data->estsz * 4) +
(log_data->vu_eve_st_sz * 4) + (log_data->asctsz * 4);
if (print_data) {
printf("stat_id_str_table_ofst = %lld\n", stat_id_str_table_ofst);
printf("event_str_table_ofst = %lld\n", event_str_table_ofst);
printf("vu_event_str_table_ofst = %lld\n", vu_event_str_table_ofst);
printf("ascii_table_ofst = %lld\n", ascii_table_ofst);
printf("total_log_page_sz = %lld\n", total_log_page_sz);
}
pC9_string_buffer = (__u8 *)malloc(sizeof(__u8) * total_log_page_sz);
if (!pC9_string_buffer) {
fprintf(stderr, "ERROR : OCP : malloc : %s\n", strerror(errno));
return -1;
}
memset(pC9_string_buffer, 0, sizeof(__u8) * total_log_page_sz);
ret = nvme_get_log_simple(dev_fd(dev), C9_TELEMETRY_STRING_LOG_ENABLE_OPCODE,
total_log_page_sz, pC9_string_buffer);
} else
fprintf(stderr, "ERROR : OCP : Unable to read C9 data.\n");
if (save_bin) {
sprintf(file_path, DEFAULT_STRING_BIN);
fd = open(file_path, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd < 0) {
fprintf(stderr, "Failed to open output file %s: %s!\n",
file_path, strerror(errno));
goto exit_status;
}
ret = write(fd, (void *)pC9_string_buffer, total_log_page_sz);
if (ret != total_log_page_sz)
fprintf(stderr, "Failed to flush all data to file!\n");
close(fd);
}
exit_status:
return 0;
}
int parse_ocp_telemetry_log(struct ocp_telemetry_parse_options *options)
{
int status = 0;
long telemetry_buffer_size = 0;
long string_buffer_size = 0;
enum nvme_print_flags fmt;
unsigned char log_id;
if (options->telemetry_log) {
if (strstr((const char *)options->telemetry_log, "bin")) {
// Read the data from the telemetry binary file
ptelemetry_buffer =
read_binary_file(NULL, (const char *)options->telemetry_log,
&telemetry_buffer_size, 1);
if (ptelemetry_buffer == NULL) {
nvme_show_error("Failed to read telemetry-log.\n");
return -1;
}
}
} else {
nvme_show_error("telemetry-log is empty.\n");
return -1;
}
log_id = ptelemetry_buffer[0];
if ((log_id != NVME_LOG_LID_TELEMETRY_HOST) && (log_id != NVME_LOG_LID_TELEMETRY_CTRL)) {
nvme_show_error("Invalid LogPageId [0x%02X]\n", log_id);
return -1;
}
if (options->string_log) {
// Read the data from the string binary file
if (strstr((const char *)options->string_log, "bin")) {
pstring_buffer = read_binary_file(NULL, (const char *)options->string_log,
&string_buffer_size, 1);
if (pstring_buffer == NULL) {
nvme_show_error("Failed to read string-log.\n");
return -1;
}
}
} else {
nvme_show_error("string-log is empty.\n");
return -1;
}
status = validate_output_format(options->output_format, &fmt);
if (status < 0) {
nvme_show_error("Invalid output format\n");
return status;
}
switch (fmt) {
case NORMAL:
print_ocp_telemetry_normal(options);
break;
case JSON:
print_ocp_telemetry_json(options);
break;
default:
break;
}
return 0;
}
static int ocp_telemetry_log(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Retrieve and parse OCP Telemetry log.";
const char *telemetry_log = "Telemetry log binary;\n 'host.bin' or 'controller.bin'";
const char *string_log = "String log binary; 'C9.bin'";
const char *output_file = "Output file name with path;\n"
"e.g. '-o ./path/name'\n'-o ./path1/path2/';\n"
"If requested path does not exist, the directory will be newly created.";
const char *output_format = "output format normal|json";
const char *data_area = "Telemetry Data Area; 1 or 2;\n"
"e.g. '-a 1 for Data Area 1.'\n'-a 2 for Data Areas 1 and 2.';\n";
const char *telemetry_type = "Telemetry Type; 'host' or 'controller'";
struct nvme_dev *dev;
int err = 0;
__u32 nsid = NVME_NSID_ALL;
struct stat nvme_stat;
char sn[21] = {0,};
struct nvme_id_ctrl ctrl;
bool is_support_telemetry_controller;
struct ocp_telemetry_parse_options opt;
int tele_type = 0;
int tele_area = 0;
OPT_ARGS(opts) = {
OPT_STR("telemetry-log", 'l', &opt.telemetry_log, telemetry_log),
OPT_STR("string-log", 's', &opt.string_log, string_log),
OPT_FILE("output-file", 'o', &opt.output_file, output_file),
OPT_FMT("output-format", 'f', &opt.output_format, output_format),
OPT_INT("data-area", 'a', &opt.data_area, data_area),
OPT_STR("telemetry-type", 't', &opt.telemetry_type, telemetry_type),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
err = fstat(dev_fd(dev), &nvme_stat);
if (err < 0)
return err;
if (S_ISBLK(nvme_stat.st_mode)) {
err = nvme_get_nsid(dev_fd(dev), &nsid);
if (err < 0)
return err;
}
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (err)
return err;
get_serial_number(&ctrl, sn);
is_support_telemetry_controller = ((ctrl.lpa & 0x8) >> 3);
if (!opt.data_area) {
nvme_show_result("Missing data-area. Using default data area 1.\n");
opt.data_area = DATA_AREA_1;//Default data area 1
} else if (opt.data_area != 1 && opt.data_area != 2) {
nvme_show_result("Invalid data-area specified. Please specify 1 or 2.\n");
goto out;
}
tele_area = opt.data_area;
if (opt.telemetry_type) {
if (!strcmp(opt.telemetry_type, "host0"))
tele_type = TELEMETRY_TYPE_HOST_0;
else if (!strcmp(opt.telemetry_type, "host1"))
tele_type = TELEMETRY_TYPE_HOST_1;
else if (!strcmp(opt.telemetry_type, "host"))
tele_type = TELEMETRY_TYPE_HOST;
else if (!strcmp(opt.telemetry_type, "controller"))
tele_type = TELEMETRY_TYPE_CONTROLLER;
else {
nvme_show_error("telemetry-type should be host or controller.\n");
goto out;
}
} else {
tele_type = TELEMETRY_TYPE_HOST; //Default Type - Host
nvme_show_result("Missing telemetry-type. Using default - host.\n");
}
if (!opt.telemetry_log) {
nvme_show_result("\nMissing telemetry-log. Fetching from drive...\n");
err = get_telemetry_log_page_data(dev, tele_type);//Pull Telemetry log
if (err) {
nvme_show_error("Failed to fetch telemetry-log from the drive.\n");
goto out;
}
nvme_show_result("telemetry.bin generated. Proceeding with next steps.\n");
opt.telemetry_log = DEFAULT_TELEMETRY_BIN;
}
if (!opt.string_log) {
nvme_show_result("Missing string-log. Fetching from drive...\n");
err = get_c9_log_page_data(dev, 0, 1); //Pull String log
if (err) {
nvme_show_error("Failed to fetch string-log from the drive.\n");
goto out;
}
nvme_show_result("string.bin generated. Proceeding with next steps.\n");
opt.string_log = DEFAULT_STRING_BIN;
}
if (!opt.output_format) {
nvme_show_result("Missing format. Using default format - JSON.\n");
opt.output_format = DEFAULT_OUTPUT_FORMAT_JSON;
}
switch (tele_type) {
case TELEMETRY_TYPE_HOST: {
printf("Extracting Telemetry Host Dump (Data Area %d)...\n", tele_area);
err = parse_ocp_telemetry_log(&opt);
if (err)
nvme_show_result("Status:(%x)\n", err);
}
break;
case TELEMETRY_TYPE_CONTROLLER: {
printf("Extracting Telemetry Controller Dump (Data Area %d)...\n", tele_area);
if (is_support_telemetry_controller == true) {
err = parse_ocp_telemetry_log(&opt);
if (err)
nvme_show_result("Status:(%x)\n", err);
}
}
break;
case TELEMETRY_TYPE_NONE: {
printf("\n-------------------------------------------------------------\n");
/* Host 0 (lsp == 0) must be executed before Host 1 (lsp == 1). */
printf("\nExtracting Telemetry Host 0 Dump (Data Area 1)...\n");
err = get_telemetry_dump(dev, opt.output_file, sn,
TELEMETRY_TYPE_HOST_0, 1, true);
if (err)
fprintf(stderr, "NVMe Status: %s(%x)\n", nvme_status_to_string(err, false), err);
printf("\n-------------------------------------------------------------\n");
printf("\nExtracting Telemetry Host 0 Dump (Data Area 3)...\n");
err = get_telemetry_dump(dev, opt.output_file, sn,
TELEMETRY_TYPE_HOST_0, 3, false);
if (err)
fprintf(stderr, "NVMe Status: %s(%x)\n", nvme_status_to_string(err, false), err);
printf("\n-------------------------------------------------------------\n");
printf("\nExtracting Telemetry Host 1 Dump (Data Area 1)...\n");
err = get_telemetry_dump(dev, opt.output_file, sn,
TELEMETRY_TYPE_HOST_1, 1, true);
if (err)
fprintf(stderr, "NVMe Status: %s(%x)\n", nvme_status_to_string(err, false), err);
printf("\n-------------------------------------------------------------\n");
printf("\nExtracting Telemetry Host 1 Dump (Data Area 3)...\n");
err = get_telemetry_dump(dev, opt.output_file, sn,
TELEMETRY_TYPE_HOST_1, 3, false);
if (err)
fprintf(stderr, "NVMe Status: %s(%x)\n", nvme_status_to_string(err, false), err);
printf("\n-------------------------------------------------------------\n");
printf("\nExtracting Telemetry Controller Dump (Data Area 3)...\n");
if (is_support_telemetry_controller == true) {
err = get_telemetry_dump(dev, opt.output_file, sn,
TELEMETRY_TYPE_CONTROLLER, 3, true);
if (err)
fprintf(stderr, "NVMe Status: %s(%x)\n", nvme_status_to_string(err, false), err);
}
printf("\n-------------------------------------------------------------\n");
}
break;
case TELEMETRY_TYPE_HOST_0:
case TELEMETRY_TYPE_HOST_1:
default: {
printf("Extracting Telemetry Host(%d) Dump (Data Area %d)...\n",
(tele_type == TELEMETRY_TYPE_HOST_0) ? 0 : 1, tele_area);
err = get_telemetry_dump(dev, opt.output_file, sn, tele_type, tele_area, true);
if (err)
fprintf(stderr, "NVMe Status: %s(%x)\n", nvme_status_to_string(err, false), err);
}
break;
}
printf("ocp internal-log command completed.\n");
out:
dev_close(dev);
return err;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// Unsupported Requirement Log Page (LID : C5h)
/* C5 Unsupported Requirement Log Page */
#define C5_GUID_LENGTH 16
#define C5_UNSUPPORTED_REQS_LEN 4096
#define C5_UNSUPPORTED_REQS_OPCODE 0xC5
#define C5_UNSUPPORTED_REQS_LOG_VERSION 0x1
#define C5_NUM_UNSUPPORTED_REQ_ENTRIES 253
static __u8 unsupported_req_guid[C5_GUID_LENGTH] = {
0x2F, 0x72, 0x9C, 0x0E,
0x99, 0x23, 0x2C, 0xBB,
0x63, 0x48, 0x32, 0xD0,
0xB7, 0x98, 0xBB, 0xC7
};
/*
* struct unsupported_requirement_log - unsupported requirement list
* @unsupported_count: Number of Unsupported Requirement IDs
* @rsvd1: Reserved
* @unsupported_req_list: Unsupported Requirements lists upto 253.
* @rsvd2: Reserved
* @log_page_version: indicates the version of the mapping this log page uses.
* Shall be set to 0001h
* @log_page_guid: Shall be set to C7BB98B7D0324863BB2C23990E9C722Fh.
*/
struct __packed unsupported_requirement_log {
__le16 unsupported_count;
__u8 rsvd1[14];
__u8 unsupported_req_list[C5_NUM_UNSUPPORTED_REQ_ENTRIES][16];
__u8 rsvd2[14];
__le16 log_page_version;
__u8 log_page_guid[C5_GUID_LENGTH];
};
/* Function declaration for unsupported requirement log page (LID:C5h) */
static int ocp_unsupported_requirements_log(int argc, char **argv, struct command *cmd,
struct plugin *plugin);
static int ocp_print_C5_log_normal(struct nvme_dev *dev,
struct unsupported_requirement_log *log_data)
{
int j;
printf("Unsupported Requirement-C5 Log Page Data-\n");
printf(" Number Unsupported Req IDs : 0x%x\n", le16_to_cpu(log_data->unsupported_count));
for (j = 0; j < le16_to_cpu(log_data->unsupported_count); j++)
printf(" Unsupported Requirement List %d : %s\n", j, log_data->unsupported_req_list[j]);
printf(" Log Page Version : 0x%x\n", le16_to_cpu(log_data->log_page_version));
printf(" Log page GUID : 0x");
for (j = C5_GUID_LENGTH - 1; j >= 0; j--)
printf("%x", log_data->log_page_guid[j]);
printf("\n");
return 0;
}
static void ocp_print_C5_log_json(struct unsupported_requirement_log *log_data)
{
int j;
struct json_object *root;
char unsup_req_list_str[40];
char guid_buf[C5_GUID_LENGTH];
char *guid = guid_buf;
root = json_create_object();
json_object_add_value_int(root, "Number Unsupported Req IDs", le16_to_cpu(log_data->unsupported_count));
memset((void *)unsup_req_list_str, 0, 40);
for (j = 0; j < le16_to_cpu(log_data->unsupported_count); j++) {
sprintf((char *)unsup_req_list_str, "Unsupported Requirement List %d", j);
json_object_add_value_string(root, unsup_req_list_str, (char *)log_data->unsupported_req_list[j]);
}
json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));
memset((void *)guid, 0, C5_GUID_LENGTH);
for (j = C5_GUID_LENGTH - 1; j >= 0; j--)
guid += sprintf(guid, "%02x", log_data->log_page_guid[j]);
json_object_add_value_string(root, "Log page GUID", guid_buf);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void ocp_print_c5_log_binary(struct unsupported_requirement_log *log_data)
{
return d_raw((unsigned char *)log_data, sizeof(*log_data));
}
static int get_c5_log_page(struct nvme_dev *dev, char *format)
{
nvme_print_flags_t fmt;
int ret;
__u8 *data;
int i;
struct unsupported_requirement_log *log_data;
int j;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR : OCP : invalid output format\n");
return ret;
}
data = (__u8 *)malloc(sizeof(__u8) * C5_UNSUPPORTED_REQS_LEN);
if (!data) {
fprintf(stderr, "ERROR : OCP : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * C5_UNSUPPORTED_REQS_LEN);
ret = nvme_get_log_simple(dev_fd(dev), C5_UNSUPPORTED_REQS_OPCODE,
C5_UNSUPPORTED_REQS_LEN, data);
if (!ret) {
log_data = (struct unsupported_requirement_log *)data;
/* check log page version */
if (log_data->log_page_version != C5_UNSUPPORTED_REQS_LOG_VERSION) {
fprintf(stderr, "ERROR : OCP : invalid unsupported requirement version\n");
ret = -1;
goto out;
}
/*
* check log page guid
* Verify GUID matches
*/
for (i = 0; i < 16; i++) {
if (unsupported_req_guid[i] != log_data->log_page_guid[i]) {
fprintf(stderr, "ERROR : OCP : Unknown GUID in C5 Log Page data\n");
fprintf(stderr, "ERROR : OCP : Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", unsupported_req_guid[j]);
fprintf(stderr, "\nERROR : OCP : Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", log_data->log_page_guid[j]);
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
switch (fmt) {
case NORMAL:
ocp_print_C5_log_normal(dev, log_data);
break;
case JSON:
ocp_print_C5_log_json(log_data);
break;
case BINARY:
ocp_print_c5_log_binary(log_data);
break;
default:
break;
}
} else {
fprintf(stderr, "ERROR : OCP : Unable to read C3 data from buffer\n");
}
out:
free(data);
return ret;
}
static int ocp_unsupported_requirements_log(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Retrieve unsupported requirements log data.";
struct nvme_dev *dev;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
ret = get_c5_log_page(dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : OCP : Failure reading the C5 Log Page, ret = %d\n", ret);
dev_close(dev);
return ret;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// Error Recovery Log Page(0xC1)
#define C1_ERROR_RECOVERY_LOG_BUF_LEN 0x200
#define C1_ERROR_RECOVERY_OPCODE 0xC1
#define C1_ERROR_RECOVERY_VERSION 0x0002
#define C1_GUID_LENGTH 16
static __u8 error_recovery_guid[C1_GUID_LENGTH] = {
0x44, 0xd9, 0x31, 0x21,
0xfe, 0x30, 0x34, 0xae,
0xab, 0x4d, 0xfd, 0x3d,
0xba, 0x83, 0x19, 0x5a
};
/**
* struct ocp_error_recovery_log_page - Error Recovery Log Page
* @panic_reset_wait_time: Panic Reset Wait Time
* @panic_reset_action: Panic Reset Action
* @device_recover_action_1: Device Recovery Action 1
* @panic_id: Panic ID
* @device_capabilities: Device Capabilities
* @vendor_specific_recovery_opcode: Vendor Specific Recovery Opcode
* @reserved: Reserved
* @vendor_specific_command_cdw12: Vendor Specific Command CDW12
* @vendor_specific_command_cdw13: Vendor Specific Command CDW13
* @vendor_specific_command_timeout: Vendor Specific Command Timeout
* @device_recover_action_2: Device Recovery Action 2
* @device_recover_action_2_timeout: Device Recovery Action 2 Timeout
* @reserved2: Reserved
* @log_page_version: Log Page Version
* @log_page_guid: Log Page GUID
*/
struct __packed ocp_error_recovery_log_page {
__le16 panic_reset_wait_time; /* 2 bytes - 0x00 - 0x01 */
__u8 panic_reset_action; /* 1 byte - 0x02 */
__u8 device_recover_action_1; /* 1 byte - 0x03 */
__le64 panic_id; /* 8 bytes - 0x04 - 0x0B */
__le32 device_capabilities; /* 4 bytes - 0x0C - 0x0F */
__u8 vendor_specific_recovery_opcode; /* 1 byte - 0x10 */
__u8 reserved[0x3]; /* 3 bytes - 0x11 - 0x13 */
__le32 vendor_specific_command_cdw12; /* 4 bytes - 0x14 - 0x17 */
__le32 vendor_specific_command_cdw13; /* 4 bytes - 0x18 - 0x1B */
__u8 vendor_specific_command_timeout; /* 1 byte - 0x1C */
__u8 device_recover_action_2; /* 1 byte - 0x1D */
__u8 device_recover_action_2_timeout; /* 1 byte - 0x1E */
__u8 reserved2[0x1cf]; /* 463 bytes - 0x1F - 0x1ED */
__le16 log_page_version; /* 2 bytes - 0x1EE - 0x1EF */
__u8 log_page_guid[0x10]; /* 16 bytes - 0x1F0 - 0x1FF */
};
static void ocp_print_c1_log_normal(struct ocp_error_recovery_log_page *log_data);
static void ocp_print_c1_log_json(struct ocp_error_recovery_log_page *log_data);
static void ocp_print_c1_log_binary(struct ocp_error_recovery_log_page *log_data);
static int get_c1_log_page(struct nvme_dev *dev, char *format);
static int ocp_error_recovery_log(int argc, char **argv, struct command *cmd, struct plugin *plugin);
static void ocp_print_c1_log_normal(struct ocp_error_recovery_log_page *log_data)
{
int i;
printf(" Error Recovery/C1 Log Page Data\n");
printf(" Panic Reset Wait Time : 0x%x\n", le16_to_cpu(log_data->panic_reset_wait_time));
printf(" Panic Reset Action : 0x%x\n", log_data->panic_reset_action);
printf(" Device Recovery Action 1 : 0x%x\n", log_data->device_recover_action_1);
printf(" Panic ID : 0x%x\n", le32_to_cpu(log_data->panic_id));
printf(" Device Capabilities : 0x%x\n", le32_to_cpu(log_data->device_capabilities));
printf(" Vendor Specific Recovery Opcode : 0x%x\n", log_data->vendor_specific_recovery_opcode);
printf(" Vendor Specific Command CDW12 : 0x%x\n", le32_to_cpu(log_data->vendor_specific_command_cdw12));
printf(" Vendor Specific Command CDW13 : 0x%x\n", le32_to_cpu(log_data->vendor_specific_command_cdw13));
printf(" Vendor Specific Command Timeout : 0x%x\n", log_data->vendor_specific_command_timeout);
printf(" Device Recovery Action 2 : 0x%x\n", log_data->device_recover_action_2);
printf(" Device Recovery Action 2 Timeout : 0x%x\n", log_data->device_recover_action_2_timeout);
printf(" Log Page Version : 0x%x\n", le16_to_cpu(log_data->log_page_version));
printf(" Log page GUID : 0x");
for (i = C1_GUID_LENGTH - 1; i >= 0; i--)
printf("%x", log_data->log_page_guid[i]);
printf("\n");
}
static void ocp_print_c1_log_json(struct ocp_error_recovery_log_page *log_data)
{
struct json_object *root;
root = json_create_object();
char guid[64];
json_object_add_value_int(root, "Panic Reset Wait Time", le16_to_cpu(log_data->panic_reset_wait_time));
json_object_add_value_int(root, "Panic Reset Action", log_data->panic_reset_action);
json_object_add_value_int(root, "Device Recovery Action 1", log_data->device_recover_action_1);
json_object_add_value_int(root, "Panic ID", le32_to_cpu(log_data->panic_id));
json_object_add_value_int(root, "Device Capabilities", le32_to_cpu(log_data->device_capabilities));
json_object_add_value_int(root, "Vendor Specific Recovery Opcode", log_data->vendor_specific_recovery_opcode);
json_object_add_value_int(root, "Vendor Specific Command CDW12", le32_to_cpu(log_data->vendor_specific_command_cdw12));
json_object_add_value_int(root, "Vendor Specific Command CDW13", le32_to_cpu(log_data->vendor_specific_command_cdw13));
json_object_add_value_int(root, "Vendor Specific Command Timeout", log_data->vendor_specific_command_timeout);
json_object_add_value_int(root, "Device Recovery Action 2", log_data->device_recover_action_2);
json_object_add_value_int(root, "Device Recovery Action 2 Timeout", log_data->device_recover_action_2_timeout);
json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));
memset((void *)guid, 0, 64);
sprintf((char *)guid, "0x%"PRIx64"%"PRIx64"", (uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[8]),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[0]));
json_object_add_value_string(root, "Log page GUID", guid);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void ocp_print_c1_log_binary(struct ocp_error_recovery_log_page *log_data)
{
return d_raw((unsigned char *)log_data, sizeof(*log_data));
}
static int get_c1_log_page(struct nvme_dev *dev, char *format)
{
struct ocp_error_recovery_log_page *log_data;
nvme_print_flags_t fmt;
int ret;
__u8 *data;
int i, j;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR : OCP : invalid output format\n");
return ret;
}
data = (__u8 *)malloc(sizeof(__u8) * C1_ERROR_RECOVERY_LOG_BUF_LEN);
if (!data) {
fprintf(stderr, "ERROR : OCP : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * C1_ERROR_RECOVERY_LOG_BUF_LEN);
ret = nvme_get_log_simple(dev_fd(dev), C1_ERROR_RECOVERY_OPCODE, C1_ERROR_RECOVERY_LOG_BUF_LEN, data);
if (!ret) {
log_data = (struct ocp_error_recovery_log_page *)data;
/* check log page version */
if (log_data->log_page_version != C1_ERROR_RECOVERY_VERSION) {
fprintf(stderr, "ERROR : OCP : invalid error recovery log page version\n");
ret = -1;
goto out;
}
/*
* check log page guid
* Verify GUID matches
*/
for (i = 0; i < 16; i++) {
if (error_recovery_guid[i] != log_data->log_page_guid[i]) {
fprintf(stderr, "ERROR : OCP : Unknown GUID in C1 Log Page data\n");
fprintf(stderr, "ERROR : OCP : Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", error_recovery_guid[j]);
fprintf(stderr, "\nERROR : OCP : Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", log_data->log_page_guid[j]);
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
switch (fmt) {
case NORMAL:
ocp_print_c1_log_normal(log_data);
break;
case JSON:
ocp_print_c1_log_json(log_data);
break;
case BINARY:
ocp_print_c1_log_binary(log_data);
break;
default:
break;
}
} else {
fprintf(stderr, "ERROR : OCP : Unable to read C1 data from buffer\n");
}
out:
free(data);
return ret;
}
static int ocp_error_recovery_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc = "Retrieve C1h Error Recovery Log data.";
struct nvme_dev *dev;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "output Format: normal|json|binary"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
ret = get_c1_log_page(dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : OCP : Failure reading the C1h Log Page, ret = %d\n", ret);
dev_close(dev);
return ret;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// Device Capabilities (Log Identifier C4h) Requirements
#define C4_DEV_CAP_REQ_LEN 0x1000
#define C4_DEV_CAP_REQ_OPCODE 0xC4
#define C4_DEV_CAP_REQ_VERSION 0x0001
#define C4_GUID_LENGTH 16
static __u8 dev_cap_req_guid[C4_GUID_LENGTH] = {
0x97, 0x42, 0x05, 0x0d,
0xd1, 0xe1, 0xc9, 0x98,
0x5d, 0x49, 0x58, 0x4b,
0x91, 0x3c, 0x05, 0xb7
};
/**
* struct ocp_device_capabilities_log_page - Device Capability Log page
* @pcie_exp_port: PCI Express Ports
* @oob_management_support: OOB Management Support
* @wz_cmd_support: Write Zeroes Command Support
* @sanitize_cmd_support: Sanitize Command Support
* @dsm_cmd_support: Dataset Management Command Support
* @wu_cmd_support: Write Uncorrectable Command Support
* @fused_operation_support: Fused Operation Support
* @min_valid_dssd_pwr_state: Minimum Valid DSSD Power State
* @dssd_pwr_state_desc: DSSD Power State Descriptors
* @vendor_specific_command_timeout: Vendor Specific Command Timeout
* @reserved: Reserved
* @log_page_version: Log Page Version
* @log_page_guid: Log Page GUID
*/
struct __packed ocp_device_capabilities_log_page {
__le16 pcie_exp_port;
__le16 oob_management_support;
__le16 wz_cmd_support;
__le16 sanitize_cmd_support;
__le16 dsm_cmd_support;
__le16 wu_cmd_support;
__le16 fused_operation_support;
__le16 min_valid_dssd_pwr_state;
__u8 dssd_pwr_state_desc[128];
__u8 reserved[3934];
__le16 log_page_version;
__u8 log_page_guid[16];
};
static void ocp_print_c4_log_normal(struct ocp_device_capabilities_log_page *log_data);
static void ocp_print_c4_log_json(struct ocp_device_capabilities_log_page *log_data);
static void ocp_print_c4_log_binary(struct ocp_device_capabilities_log_page *log_data);
static int get_c4_log_page(struct nvme_dev *dev, char *format);
static int ocp_device_capabilities_log(int argc, char **argv, struct command *cmd, struct plugin *plugin);
static void ocp_print_c4_log_normal(struct ocp_device_capabilities_log_page *log_data)
{
int i;
printf(" Device Capability/C4 Log Page Data\n");
printf(" PCI Express Ports : 0x%x\n", le16_to_cpu(log_data->pcie_exp_port));
printf(" OOB Management Support : 0x%x\n", le16_to_cpu(log_data->oob_management_support));
printf(" Write Zeroes Command Support : 0x%x\n", le16_to_cpu(log_data->wz_cmd_support));
printf(" Sanitize Command Support : 0x%x\n", le16_to_cpu(log_data->sanitize_cmd_support));
printf(" Dataset Management Command Support : 0x%x\n", le16_to_cpu(log_data->dsm_cmd_support));
printf(" Write Uncorrectable Command Support : 0x%x\n", le16_to_cpu(log_data->wu_cmd_support));
printf(" Fused Operation Support : 0x%x\n", le16_to_cpu(log_data->fused_operation_support));
printf(" Minimum Valid DSSD Power State : 0x%x\n", le16_to_cpu(log_data->min_valid_dssd_pwr_state));
printf(" DSSD Power State Descriptors : 0x");
for (i = 0; i <= 127; i++)
printf("%x", log_data->dssd_pwr_state_desc[i]);
printf("\n");
printf(" Log Page Version : 0x%x\n", le16_to_cpu(log_data->log_page_version));
printf(" Log page GUID : 0x");
for (i = C4_GUID_LENGTH - 1; i >= 0; i--)
printf("%x", log_data->log_page_guid[i]);
printf("\n");
}
static void ocp_print_c4_log_json(struct ocp_device_capabilities_log_page *log_data)
{
struct json_object *root = json_create_object();
char guid[64];
int i;
json_object_add_value_int(root, "PCI Express Ports", le16_to_cpu(log_data->pcie_exp_port));
json_object_add_value_int(root, "OOB Management Support", le16_to_cpu(log_data->oob_management_support));
json_object_add_value_int(root, "Write Zeroes Command Support", le16_to_cpu(log_data->wz_cmd_support));
json_object_add_value_int(root, "Sanitize Command Support", le16_to_cpu(log_data->sanitize_cmd_support));
json_object_add_value_int(root, "Dataset Management Command Support", le16_to_cpu(log_data->dsm_cmd_support));
json_object_add_value_int(root, "Write Uncorrectable Command Support", le16_to_cpu(log_data->wu_cmd_support));
json_object_add_value_int(root, "Fused Operation Support", le16_to_cpu(log_data->fused_operation_support));
json_object_add_value_int(root, "Minimum Valid DSSD Power State", le16_to_cpu(log_data->min_valid_dssd_pwr_state));
for (i = 0; i <= 127; i++)
json_object_add_value_int(root, "DSSD Power State Descriptors", log_data->dssd_pwr_state_desc[i]);
json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));
memset((void *)guid, 0, 64);
sprintf((char *)guid, "0x%"PRIx64"%"PRIx64"", (uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[8]),
(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[0]));
json_object_add_value_string(root, "Log page GUID", guid);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void ocp_print_c4_log_binary(struct ocp_device_capabilities_log_page *log_data)
{
return d_raw((unsigned char *)log_data, sizeof(*log_data));
}
static int get_c4_log_page(struct nvme_dev *dev, char *format)
{
struct ocp_device_capabilities_log_page *log_data;
nvme_print_flags_t fmt;
int ret;
__u8 *data;
int i, j;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR : OCP : invalid output format\n");
return ret;
}
data = (__u8 *)malloc(sizeof(__u8) * C4_DEV_CAP_REQ_LEN);
if (!data) {
fprintf(stderr, "ERROR : OCP : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * C4_DEV_CAP_REQ_LEN);
ret = nvme_get_log_simple(dev_fd(dev), C4_DEV_CAP_REQ_OPCODE, C4_DEV_CAP_REQ_LEN, data);
if (!ret) {
log_data = (struct ocp_device_capabilities_log_page *)data;
/* check log page version */
if (log_data->log_page_version != C4_DEV_CAP_REQ_VERSION) {
fprintf(stderr, "ERROR : OCP : invalid device capabilities log page version\n");
ret = -1;
goto out;
}
/*
* check log page guid
* Verify GUID matches
*/
for (i = 0; i < 16; i++) {
if (dev_cap_req_guid[i] != log_data->log_page_guid[i]) {
fprintf(stderr, "ERROR : OCP : Unknown GUID in C4 Log Page data\n");
fprintf(stderr, "ERROR : OCP : Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", dev_cap_req_guid[j]);
fprintf(stderr, "\nERROR : OCP : Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", log_data->log_page_guid[j]);
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
switch (fmt) {
case NORMAL:
ocp_print_c4_log_normal(log_data);
break;
case JSON:
ocp_print_c4_log_json(log_data);
break;
case BINARY:
ocp_print_c4_log_binary(log_data);
break;
default:
break;
}
} else {
fprintf(stderr, "ERROR : OCP : Unable to read C4 data from buffer\n");
}
out:
free(data);
return ret;
}
static int ocp_device_capabilities_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc = "Retrieve C4h Device Capabilities Log data.";
struct nvme_dev *dev;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "output Format: normal|json|binary"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
ret = get_c4_log_page(dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : OCP : Failure reading the C4h Log Page, ret = %d\n", ret);
dev_close(dev);
return ret;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// Set Telemetry Profile (Feature Identifier C8h) Set Feature
static int ocp_set_telemetry_profile(struct nvme_dev *dev, __u8 tps)
{
__u32 result;
int err;
__u8 uuid_index = 0;
/* OCP 2.0 requires UUID index support */
err = ocp_get_uuid_index(dev, &uuid_index);
if (err || !uuid_index) {
nvme_show_error("ERROR: No OCP UUID index found");
return err;
}
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = 0xC8,
.nsid = 0xFFFFFFFF,
.cdw11 = tps,
.cdw12 = 0,
.save = true,
.uuidx = uuid_index,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (err > 0) {
nvme_show_status(err);
} else if (err < 0) {
nvme_show_perror("Set Telemetry Profile");
fprintf(stderr, "Command failed while parsing.\n");
} else {
printf("Successfully Set Telemetry Profile (feature: 0xC8) to below values\n");
printf("Telemetry Profile Select: 0x%x\n", tps);
}
return err;
}
static int ocp_set_telemetry_profile_feature(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Set Telemetry Profile (Feature Identifier C8h) Set Feature.";
const char *tps = "Telemetry Profile Select for device debug data collection";
struct nvme_dev *dev;
int err;
struct config {
__u8 tps;
};
struct config cfg = {
.tps = 0,
};
OPT_ARGS(opts) = {
OPT_BYTE("telemetry-profile-select", 't', &cfg.tps, tps),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
if (argconfig_parse_seen(opts, "telemetry-profile-select"))
err = ocp_set_telemetry_profile(dev, cfg.tps);
else
nvme_show_error("Telemetry Profile Select is a required argument");
dev_close(dev);
return err;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// DSSD Power State (Feature Identifier C7h) Set Feature
static int set_dssd_power_state(struct nvme_dev *dev, const __u32 nsid,
const __u8 fid, __u8 power_state, bool save,
bool uuid)
{
__u32 result;
int err;
__u8 uuid_index = 0;
if (uuid) {
/* OCP 2.0 requires UUID index support */
err = ocp_get_uuid_index(dev, &uuid_index);
if (err || !uuid_index) {
nvme_show_error("ERROR: No OCP UUID index found");
return err;
}
}
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = nsid,
.cdw11 = power_state,
.cdw12 = 0,
.save = save,
.uuidx = uuid_index,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (err > 0) {
nvme_show_status(err);
} else if (err < 0) {
nvme_show_perror("Define DSSD Power State");
fprintf(stderr, "Command failed while parsing.\n");
} else {
printf("Successfully set DSSD Power State (feature: 0xC7) to below values\n");
printf("DSSD Power State: 0x%x\n", power_state);
printf("Save bit Value: 0x%x\n", save);
}
return err;
}
static int set_dssd_power_state_feature(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Define DSSD Power State (Feature Identifier C7h) Set Feature.";
const char *power_state = "DSSD Power State to set in watts";
const char *save = "Specifies that the controller shall save the attribute";
const __u32 nsid = 0;
const __u8 fid = 0xC7;
struct nvme_dev *dev;
int err;
struct config {
__u8 power_state;
bool save;
};
struct config cfg = {
.power_state = 0,
.save = false,
};
OPT_ARGS(opts) = {
OPT_BYTE("power-state", 'p', &cfg.power_state, power_state),
OPT_FLAG("save", 's', &cfg.save, save),
OPT_FLAG("no-uuid", 'n', NULL,
"Skip UUID index search (UUID index not required for OCP 1.0)"),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
if (argconfig_parse_seen(opts, "power-state"))
err = set_dssd_power_state(dev, nsid, fid, cfg.power_state,
cfg.save,
!argconfig_parse_seen(opts, "no-uuid"));
dev_close(dev);
return err;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// DSSD Power State (Feature Identifier C7h) Get Feature
static int get_dssd_power_state(struct nvme_dev *dev, const __u32 nsid,
const __u8 fid, __u8 sel, bool uuid)
{
__u32 result;
int err;
__u8 uuid_index = 0;
if (uuid) {
/* OCP 2.0 requires UUID index support */
err = ocp_get_uuid_index(dev, &uuid_index);
if (err || !uuid_index) {
nvme_show_error("ERROR: No OCP UUID index found");
return err;
}
}
struct nvme_get_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = nsid,
.sel = sel,
.cdw11 = 0,
.uuidx = uuid_index,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_get_features(&args);
if (!err) {
printf("get-feature:0xC7 %s value: %#08x\n", nvme_select_to_string(sel), result);
if (sel == NVME_GET_FEATURES_SEL_SUPPORTED)
nvme_show_select_result(fid, result);
} else {
nvme_show_error("Could not get feature: 0xC7 with sel: %d\n", sel);
}
return err;
}
static int get_dssd_power_state_feature(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Define DSSD Power State (Feature Identifier C7h) Get Feature.";
const char *all = "Print out all 3 values at once - Current, Default, and Saved";
const char *sel = "[0-3]: current/default/saved/supported/";
const __u32 nsid = 0;
const __u8 fid = 0xC7;
struct nvme_dev *dev;
int i, err;
struct config {
__u8 sel;
bool all;
};
struct config cfg = {
.sel = 0,
.all = false,
};
OPT_ARGS(opts) = {
OPT_BYTE("sel", 'S', &cfg.sel, sel),
OPT_FLAG("all", 'a', NULL, all),
OPT_FLAG("no-uuid", 'n', NULL,
"Skip UUID index search (UUID index not required for OCP 1.0)"),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
if (argconfig_parse_seen(opts, "all")) {
for (i = 0; i < 3; i++) {
err = get_dssd_power_state(dev, nsid, fid, i,
!argconfig_parse_seen(opts, "no-uuid"));
if (err)
break;
}
} else if (argconfig_parse_seen(opts, "sel"))
err = get_dssd_power_state(dev, nsid, fid, cfg.sel,
!argconfig_parse_seen(opts, "no-uuid"));
else
nvme_show_error("Required to have --sel as an argument, or pass the --all flag.");
dev_close(dev);
return err;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// plp_health_check_interval
static int set_plp_health_check_interval(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Define Issue Set Feature command (FID : 0xC6) PLP Health Check Interval";
const char *plp_health_interval = "[31:16]:PLP Health Check Interval";
const char *save = "Specifies that the controller shall save the attribute";
const __u32 nsid = 0;
const __u8 fid = 0xc6;
struct nvme_dev *dev;
int err;
__u32 result;
__u8 uuid_index = 0;
struct config {
__le16 plp_health_interval;
bool save;
};
struct config cfg = {
.plp_health_interval = 0,
.save = false,
};
OPT_ARGS(opts) = {
OPT_BYTE("plp_health_interval", 'p', &cfg.plp_health_interval, plp_health_interval),
OPT_FLAG("save", 's', &cfg.save, save),
OPT_FLAG("no-uuid", 'n', NULL,
"Skip UUID index search (UUID index not required for OCP 1.0)"),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
if (!argconfig_parse_seen(opts, "no-uuid")) {
/* OCP 2.0 requires UUID index support */
err = ocp_get_uuid_index(dev, &uuid_index);
if (err || !uuid_index) {
printf("ERROR: No OCP UUID index found");
return err;
}
}
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = nsid,
.cdw11 = cfg.plp_health_interval << 16,
.cdw12 = 0,
.save = cfg.save,
.uuidx = uuid_index,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (err > 0) {
nvme_show_status(err);
} else if (err < 0) {
nvme_show_perror("Define PLP Health Check Interval");
fprintf(stderr, "Command failed while parsing.\n");
} else {
printf("Successfully set the PLP Health Check Interval");
printf("PLP Health Check Interval: 0x%x\n", cfg.plp_health_interval);
printf("Save bit Value: 0x%x\n", cfg.save);
}
return err;
}
static int get_plp_health_check_interval(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Define Issue Get Feature command (FID : 0xC6) PLP Health Check Interval";
const char *sel = "[0-3,8]: current/default/saved/supported/changed";
const __u32 nsid = 0;
const __u8 fid = 0xc6;
struct nvme_dev *dev;
__u32 result;
int err;
struct config {
__u8 sel;
};
struct config cfg = {
.sel = 0,
};
OPT_ARGS(opts) = {
OPT_BYTE("sel", 'S', &cfg.sel, sel),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
struct nvme_get_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = nsid,
.sel = cfg.sel,
.cdw11 = 0,
.uuidx = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_get_features(&args);
if (!err) {
printf("get-feature:0xC6 %s value: %#08x\n", nvme_select_to_string(cfg.sel), result);
if (cfg.sel == NVME_GET_FEATURES_SEL_SUPPORTED)
nvme_show_select_result(fid, result);
} else {
nvme_show_error("Could not get feature: 0xC6");
}
return err;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// dssd_async_event_config
static int set_dssd_async_event_config(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Issue Set Feature command (FID : 0xC9) DSSD Async Event Config";
const char *epn = "[0]:Enable Panic Notices";
const char *save = "Specifies that the controller shall save the attribute";
const __u32 nsid = 0;
const __u8 fid = 0xc9;
struct nvme_dev *dev;
int err;
__u32 result;
__u8 uuid_index = 0;
struct config {
bool epn;
bool save;
};
struct config cfg = {
.epn = false,
.save = false,
};
OPT_ARGS(opts) = {
OPT_FLAG("enable-panic-notices", 'e', &cfg.epn, epn),
OPT_FLAG("save", 's', &cfg.save, save),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
/* OCP 2.0 requires UUID index support */
err = ocp_get_uuid_index(dev, &uuid_index);
if (err || !uuid_index) {
printf("ERROR: No OCP UUID index found\n");
return err;
}
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = nsid,
.cdw11 = cfg.epn ? 1 : 0,
.cdw12 = 0,
.save = cfg.save,
.uuidx = uuid_index,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (err > 0) {
nvme_show_status(err);
} else if (err < 0) {
nvme_show_perror("Set DSSD Asynchronous Event Configuration\n");
fprintf(stderr, "Command failed while parsing.\n");
} else {
printf("Successfully set the DSSD Asynchronous Event Configuration\n");
printf("Enable Panic Notices bit Value: 0x%x\n", cfg.epn);
printf("Save bit Value: 0x%x\n", cfg.save);
}
return err;
}
static int get_dssd_async_event_config(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Issue Get Feature command (FID : 0xC9) DSSD Async Event Config";
const char *sel = "[0-3]: current/default/saved/supported";
const __u32 nsid = 0;
const __u8 fid = 0xc9;
struct nvme_dev *dev;
__u32 result;
int err;
struct config {
__u8 sel;
};
struct config cfg = {
.sel = 0,
};
OPT_ARGS(opts) = {
OPT_BYTE("sel", 'S', &cfg.sel, sel),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
struct nvme_get_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = fid,
.nsid = nsid,
.sel = cfg.sel,
.cdw11 = 0,
.uuidx = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_get_features(&args);
if (!err) {
printf("get-feature:0xC9 %s value: %#08x\n", nvme_select_to_string(cfg.sel), result);
if (cfg.sel == NVME_GET_FEATURES_SEL_SUPPORTED)
nvme_show_select_result(fid, result);
} else {
nvme_show_error("Could not get feature: 0xC9\n");
}
return err;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// Telemetry String Log Format Log Page (LID : C9h)
/* Function declaration for Telemetry String Log Format (LID:C9h) */
static int ocp_telemetry_str_log_format(int argc, char **argv, struct command *cmd,
struct plugin *plugin);
static int ocp_print_C9_log_normal(struct telemetry_str_log_format *log_data, __u8 *log_data_buf)
{
//calculating the index value for array
__le64 stat_id_index = (log_data->sitsz * 4) / 16;
__le64 eve_id_index = (log_data->estsz * 4) / 16;
__le64 vu_eve_index = (log_data->vu_eve_st_sz * 4) / 16;
__le64 ascii_table_index = (log_data->asctsz * 4);
//Calculating the offset for dynamic fields.
__le64 stat_id_str_table_ofst = log_data->sits * 4;
__le64 event_str_table_ofst = log_data->ests * 4;
__le64 vu_event_str_table_ofst = log_data->vu_eve_sts * 4;
__le64 ascii_table_ofst = log_data->ascts * 4;
struct statistics_id_str_table_entry stat_id_str_table_arr[stat_id_index];
struct event_id_str_table_entry event_id_str_table_arr[eve_id_index];
struct vu_event_id_str_table_entry vu_event_id_str_table_arr[vu_eve_index];
int j;
printf(" Log Page Version : 0x%x\n", log_data->log_page_version);
printf(" Reserved : ");
for (j = 0; j < 15; j++)
printf("%d", log_data->reserved1[j]);
printf("\n");
printf(" Log page GUID : 0x");
for (j = C9_GUID_LENGTH - 1; j >= 0; j--)
printf("%x", log_data->log_page_guid[j]);
printf("\n");
printf(" Telemetry String Log Size : 0x%lx\n", le64_to_cpu(log_data->sls));
printf(" Reserved : ");
for (j = 0; j < 24; j++)
printf("%d", log_data->reserved2[j]);
printf("\n");
printf(" Statistics Identifier String Table Start : 0x%lx\n", le64_to_cpu(log_data->sits));
printf(" Statistics Identifier String Table Size : 0x%lx\n", le64_to_cpu(log_data->sitsz));
printf(" Event String Table Start : 0x%lx\n", le64_to_cpu(log_data->ests));
printf(" Event String Table Size : 0x%lx\n", le64_to_cpu(log_data->estsz));
printf(" VU Event String Table Start : 0x%lx\n", le64_to_cpu(log_data->vu_eve_sts));
printf(" VU Event String Table Size : 0x%lx\n", le64_to_cpu(log_data->vu_eve_st_sz));
printf(" ASCII Table Start : 0x%lx\n", le64_to_cpu(log_data->ascts));
printf(" ASCII Table Size : 0x%lx\n", le64_to_cpu(log_data->asctsz));
printf(" FIFO 1 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo1[j], log_data->fifo1[j]);
printf(" FIFO 2 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo2[j], log_data->fifo2[j]);
printf(" FIFO 3 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo3[j], log_data->fifo3[j]);
printf(" FIFO 4 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo4[j], log_data->fifo4[j]);
printf(" FIFO 5 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo5[j], log_data->fifo5[j]);
printf(" FIFO 6 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo6[j], log_data->fifo6[j]);
printf(" FIFO 7 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo7[j], log_data->fifo7[j]);
printf(" FIFO 8 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo8[j], log_data->fifo8[j]);
printf(" FIFO 9 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo9[j], log_data->fifo9[j]);
printf(" FIFO 10 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo10[j], log_data->fifo10[j]);
printf(" FIFO 11 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo11[j], log_data->fifo11[j]);
printf(" FIFO 12 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo12[j], log_data->fifo12[j]);
printf(" FIFO 13 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo13[j], log_data->fifo13[j]);
printf(" FIFO 14 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo14[j], log_data->fifo14[j]);
printf(" FIFO 15 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo15[j], log_data->fifo16[j]);
printf(" FIFO 16 ASCII String\n");
printf(" index value ascii_val\n");
for (j = 0; j < 16; j++)
printf(" %d %d %c \n", j, log_data->fifo16[j], log_data->fifo16[j]);
printf(" Reserved : ");
for (j = 0; j < 48; j++)
printf("%d", log_data->reserved3[j]);
printf("\n");
if (log_data->sitsz != 0) {
memcpy(stat_id_str_table_arr,
(__u8 *)log_data_buf + stat_id_str_table_ofst,
(log_data->sitsz * 4));
printf(" Statistics Identifier String Table\n");
for (j = 0; j < stat_id_index; j++) {
printf(" Vendor Specific Statistic Identifier : 0x%x\n",
le16_to_cpu(stat_id_str_table_arr[j].vs_si));
printf(" Reserved : 0x%x\n",
stat_id_str_table_arr[j].reserved1);
printf(" ASCII ID Length : 0x%x\n",
stat_id_str_table_arr[j].ascii_id_len);
printf(" ASCII ID offset : 0x%lx\n",
le64_to_cpu(stat_id_str_table_arr[j].ascii_id_ofst));
printf(" Reserved : 0x%x\n",
stat_id_str_table_arr[j].reserved2);
}
}
if (log_data->estsz != 0) {
memcpy(event_id_str_table_arr, (__u8 *)log_data_buf +
event_str_table_ofst, (log_data->estsz * 4));
printf(" Event Identifier String Table Entry\n");
for (j = 0; j < eve_id_index; j++) {
printf(" Debug Event Class : 0x%x\n",
event_id_str_table_arr[j].deb_eve_class);
printf(" Event Identifier : 0x%x\n",
le16_to_cpu(event_id_str_table_arr[j].ei));
printf(" ASCII ID Length : 0x%x\n",
event_id_str_table_arr[j].ascii_id_len);
printf(" ASCII ID offset : 0x%lx\n",
le64_to_cpu(event_id_str_table_arr[j].ascii_id_ofst));
printf(" Reserved : 0x%x\n",
event_id_str_table_arr[j].reserved2);
}
}
if (log_data->vu_eve_st_sz != 0) {
memcpy(vu_event_id_str_table_arr, (__u8 *)log_data_buf +
vu_event_str_table_ofst, (log_data->vu_eve_st_sz * 4));
printf(" VU Event Identifier String Table Entry\n");
for (j = 0; j < vu_eve_index; j++) {
printf(" Debug Event Class : 0x%x\n",
vu_event_id_str_table_arr[j].deb_eve_class);
printf(" VU Event Identifier : 0x%x\n",
le16_to_cpu(vu_event_id_str_table_arr[j].vu_ei));
printf(" ASCII ID Length : 0x%x\n",
vu_event_id_str_table_arr[j].ascii_id_len);
printf(" ASCII ID offset : 0x%lx\n",
le64_to_cpu(vu_event_id_str_table_arr[j].ascii_id_ofst));
printf(" Reserved : 0x%x\n",
vu_event_id_str_table_arr[j].reserved);
}
}
if (log_data->asctsz != 0) {
printf(" ASCII Table\n");
printf(" Byte Data_Byte ASCII_Character\n");
for (j = 0; j < ascii_table_index; j++)
printf(" %lld %d %c\n",
ascii_table_ofst+j, log_data_buf[ascii_table_ofst + j],
(char)log_data_buf[ascii_table_ofst + j]);
}
return 0;
}
static int ocp_print_C9_log_json(struct telemetry_str_log_format *log_data, __u8 *log_data_buf)
{
struct json_object *root = json_create_object();
char res_arr[48];
char *res = res_arr;
char guid_buf[C9_GUID_LENGTH];
char *guid = guid_buf;
char fifo_arr[16];
char *fifo = fifo_arr;
char buf[128];
//calculating the index value for array
__le64 stat_id_index = (log_data->sitsz * 4) / 16;
__le64 eve_id_index = (log_data->estsz * 4) / 16;
__le64 vu_eve_index = (log_data->vu_eve_st_sz * 4) / 16;
__le64 ascii_table_index = (log_data->asctsz * 4);
//Calculating the offset for dynamic fields.
__le64 stat_id_str_table_ofst = log_data->sits * 4;
__le64 event_str_table_ofst = log_data->ests * 4;
__le64 vu_event_str_table_ofst = log_data->vu_eve_sts * 4;
__le64 ascii_table_ofst = log_data->ascts * 4;
struct statistics_id_str_table_entry stat_id_str_table_arr[stat_id_index];
struct event_id_str_table_entry event_id_str_table_arr[eve_id_index];
struct vu_event_id_str_table_entry vu_event_id_str_table_arr[vu_eve_index];
__u8 ascii_table_info_arr[ascii_table_index];
char ascii_buf[ascii_table_index];
char *ascii = ascii_buf;
int j;
json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));
memset((__u8 *)res, 0, 15);
for (j = 0; j < 15; j++)
res += sprintf(res, "%d", log_data->reserved1[j]);
json_object_add_value_string(root, "Reserved", res_arr);
memset((void *)guid, 0, C9_GUID_LENGTH);
for (j = C9_GUID_LENGTH - 1; j >= 0; j--)
guid += sprintf(guid, "%02x", log_data->log_page_guid[j]);
json_object_add_value_string(root, "Log page GUID", guid_buf);
json_object_add_value_int(root, "Telemetry String Log Size", le64_to_cpu(log_data->sls));
memset((__u8 *)res, 0, 24);
for (j = 0; j < 24; j++)
res += sprintf(res, "%d", log_data->reserved2[j]);
json_object_add_value_string(root, "Reserved", res_arr);
json_object_add_value_int(root, "Statistics Identifier String Table Start", le64_to_cpu(log_data->sits));
json_object_add_value_int(root, "Event String Table Start", le64_to_cpu(log_data->ests));
json_object_add_value_int(root, "Event String Table Size", le64_to_cpu(log_data->estsz));
json_object_add_value_int(root, "VU Event String Table Start", le64_to_cpu(log_data->vu_eve_sts));
json_object_add_value_int(root, "VU Event String Table Size", le64_to_cpu(log_data->vu_eve_st_sz));
json_object_add_value_int(root, "ASCII Table Start", le64_to_cpu(log_data->ascts));
json_object_add_value_int(root, "ASCII Table Size", le64_to_cpu(log_data->asctsz));
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo1[j]);
json_object_add_value_string(root, "FIFO 1 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo2[j]);
json_object_add_value_string(root, "FIFO 2 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo3[j]);
json_object_add_value_string(root, "FIFO 3 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo4[j]);
json_object_add_value_string(root, "FIFO 4 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo5[j]);
json_object_add_value_string(root, "FIFO 5 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo6[j]);
json_object_add_value_string(root, "FIFO 6 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo7[j]);
json_object_add_value_string(root, "FIFO 7 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo8[j]);
json_object_add_value_string(root, "FIFO 8 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo9[j]);
json_object_add_value_string(root, "FIFO 9 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo10[j]);
json_object_add_value_string(root, "FIFO 10 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo11[j]);
json_object_add_value_string(root, "FIFO 11 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo12[j]);
json_object_add_value_string(root, "FIFO 12 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo13[j]);
json_object_add_value_string(root, "FIFO 13 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo14[j]);
json_object_add_value_string(root, "FIFO 14 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo15[j]);
json_object_add_value_string(root, "FIFO 15 ASCII String", fifo_arr);
memset((void *)fifo, 0, 16);
for (j = 0; j < 16; j++)
fifo += sprintf(fifo, "%c", log_data->fifo16[j]);
json_object_add_value_string(root, "FIFO 16 ASCII String", fifo_arr);
memset((__u8 *)res, 0, 48);
for (j = 0; j < 48; j++)
res += sprintf(res, "%d", log_data->reserved3[j]);
json_object_add_value_string(root, "Reserved", res_arr);
if (log_data->sitsz != 0) {
memcpy(stat_id_str_table_arr,
(__u8 *)log_data_buf + stat_id_str_table_ofst,
(log_data->sitsz * 4));
struct json_object *stat_table = json_create_object();
for (j = 0; j < stat_id_index; j++) {
struct json_object *entry = json_create_object();
json_object_add_value_uint(entry, "Vendor Specific Statistic Identifier",
le16_to_cpu(stat_id_str_table_arr[j].vs_si));
json_object_add_value_uint(entry, "Reserved",
le64_to_cpu(stat_id_str_table_arr[j].reserved1));
json_object_add_value_uint(entry, "ASCII ID Length",
le64_to_cpu(stat_id_str_table_arr[j].ascii_id_len));
json_object_add_value_uint(entry, "ASCII ID offset",
le64_to_cpu(stat_id_str_table_arr[j].ascii_id_ofst));
json_object_add_value_uint(entry, "Reserved2",
le64_to_cpu(stat_id_str_table_arr[j].reserved2));
sprintf(buf, "Statistics Identifier String Table %d", j);
json_object_add_value_object(stat_table, buf, entry);
}
json_object_add_value_object(root,
"Statistics Identifier String Table", stat_table);
}
if (log_data->estsz != 0) {
struct json_object *eve_table = json_create_object();
memcpy(event_id_str_table_arr,
(__u8 *)log_data_buf + event_str_table_ofst,
(log_data->estsz * 4));
for (j = 0; j < eve_id_index; j++) {
struct json_object *entry = json_create_object();
json_object_add_value_int(entry, "Debug Event Class",
le16_to_cpu(event_id_str_table_arr[j].deb_eve_class));
json_object_add_value_int(entry, "Event Identifier",
le16_to_cpu(event_id_str_table_arr[j].ei));
json_object_add_value_int(entry, "ASCII ID Length",
le64_to_cpu(event_id_str_table_arr[j].ascii_id_len));
json_object_add_value_int(entry, "ASCII ID offset",
le64_to_cpu(event_id_str_table_arr[j].ascii_id_ofst));
json_object_add_value_int(entry, "Reserved",
le64_to_cpu(event_id_str_table_arr[j].reserved2));
sprintf(buf, "Event Identifier String Table Entry %d", j);
json_object_add_value_object(eve_table, buf, entry);
}
json_object_add_value_object(root,
"Event Identifier String Table Entry",
eve_table);
}
if (log_data->vu_eve_st_sz != 0) {
struct json_object *vu_eve_table = json_create_object();
memcpy(vu_event_id_str_table_arr,
(__u8 *)log_data_buf + vu_event_str_table_ofst,
(log_data->vu_eve_st_sz * 4));
for (j = 0; j < vu_eve_index; j++) {
struct json_object *entry = json_create_object();
json_object_add_value_int(entry, "Debug Event Class",
le16_to_cpu(vu_event_id_str_table_arr[j].deb_eve_class));
json_object_add_value_int(entry, "VU Event Identifier",
le16_to_cpu(vu_event_id_str_table_arr[j].vu_ei));
json_object_add_value_int(entry, "ASCII ID Length",
le64_to_cpu(vu_event_id_str_table_arr[j].ascii_id_len));
json_object_add_value_int(entry, "ASCII ID offset",
le64_to_cpu(vu_event_id_str_table_arr[j].ascii_id_ofst));
json_object_add_value_int(entry, "Reserved",
le64_to_cpu(vu_event_id_str_table_arr[j].reserved));
sprintf(buf, "VU Event Identifier String Table Entry %d", j);
json_object_add_value_object(vu_eve_table, buf, entry);
}
json_object_add_value_object(root,
"VU Event Identifier String Table Entry",
vu_eve_table);
}
if (log_data->asctsz != 0) {
memcpy(ascii_table_info_arr,
(__u8 *)log_data_buf + ascii_table_ofst,
(log_data->asctsz * 4));
memset((void *)ascii, 0, ascii_table_index);
for (j = 0; j < ascii_table_index; j++)
ascii += sprintf(ascii, "%c", ascii_table_info_arr[j]);
json_object_add_value_string(root, "ASCII Table", ascii_buf);
}
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
return 0;
}
static void ocp_print_c9_log_binary(__u8 *log_data_buf, int total_log_page_size)
{
return d_raw((unsigned char *)log_data_buf, total_log_page_size);
}
static int get_c9_log_page(struct nvme_dev *dev, char *format)
{
int ret = 0;
nvme_print_flags_t fmt;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR : OCP : invalid output format\n");
return ret;
}
get_c9_log_page_data(dev, 1, 0);
if (!ret) {
switch (fmt) {
case NORMAL:
ocp_print_C9_log_normal(log_data, pC9_string_buffer);
break;
case JSON:
ocp_print_C9_log_json(log_data, pC9_string_buffer);
break;
case BINARY:
ocp_print_c9_log_binary(pC9_string_buffer, total_log_page_sz);
break;
default:
fprintf(stderr, "unhandled output format\n");
break;
}
} else
fprintf(stderr, "ERROR : OCP : Unable to read C9 data from buffer\n");
free(header_data);
return ret;
}
static int ocp_telemetry_str_log_format(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
struct nvme_dev *dev;
int ret = 0;
const char *desc = "Retrieve telemetry string log format";
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
ret = get_c9_log_page(dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : OCP : Failure reading the C9 Log Page, ret = %d\n", ret);
dev_close(dev);
return ret;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// TCG Configuration Log Page (LID : C7h)
/* C7 TCG Configuration Log Page */
#define C7_GUID_LENGTH 16
#define C7_TCG_CONFIGURATION_LEN 512
#define C7_TCG_CONFIGURATION_OPCODE 0xC7
#define C7_TCG_CONFIGURATION_LOG_VERSION 0x1
static __u8 tcg_configuration_guid[C7_GUID_LENGTH] = {
0x06, 0x40, 0x24, 0xBD,
0x7E, 0xE0, 0xE6, 0x83,
0xC0, 0x47, 0x54, 0xFA,
0x9D, 0x2A, 0xE0, 0x54
};
/*
* struct tcg_configuration_log - TCG Configuration Log Page Structure
* @state: state
* @rsvd1: Reserved1
* @locking_sp_act_count: Locking SP Activation Count
* @type_rev_count: Tper Revert Count
* @locking_sp_rev_count: Locking SP Revert Count.
* @no_of_locking_obj: Number of Locking Objects
* @no_of_single_um_locking_obj: Number of Single User Mode Locking Objects
* @no_of_range_prov_locking_obj: Number of Range Provisioned Locking Objects
* @no_of_ns_prov_locking_obj: Number of Namespace Provisioned Locking Objects
* @no_of_read_lock_locking_obj: Number of Read Locked Locking Objects
* @no_of_write_lock_locking_obj: Number of Write Locked Locking Objects
* @no_of_read_unlock_locking_obj: Number of Read Unlocked Locking Objects
* @no_of_read_unlock_locking_obj: Number of Write Unlocked Locking Objects
* @rsvd2: Reserved2
* @sid_auth_try_count: SID Authentication Try Count
* @sid_auth_try_limit: SID Authentication Try Limit
* @pro_tcg_rc: Programmatic TCG Reset Count
* @pro_rlc: Programmatic Reset Lock Count
* @tcg_ec: TCG Error Count
* @rsvd3: Reserved3
* @log_page_version: Log Page Version
*/
struct __packed tcg_configuration_log {
__u8 state;
__u8 rsvd1[3];
__u8 locking_sp_act_count;
__u8 type_rev_count;
__u8 locking_sp_rev_count;
__u8 no_of_locking_obj;
__u8 no_of_single_um_locking_obj;
__u8 no_of_range_prov_locking_obj;
__u8 no_of_ns_prov_locking_obj;
__u8 no_of_read_lock_locking_obj;
__u8 no_of_write_lock_locking_obj;
__u8 no_of_read_unlock_locking_obj;
__u8 no_of_write_unlock_locking_obj;
__u8 rsvd2;
__u32 sid_auth_try_count;
__u32 sid_auth_try_limit;
__u32 pro_tcg_rc;
__u32 pro_rlc;
__u32 tcg_ec;
__u8 rsvd3[458];
__le16 log_page_version;
__u8 log_page_guid[C7_GUID_LENGTH];
};
/* Function declaration for TCG Configuration log page (LID:C7h) */
static int ocp_tcg_configuration_log(int argc, char **argv, struct command *cmd,
struct plugin *plugin);
static int ocp_print_C7_log_normal(struct nvme_dev *dev,
struct tcg_configuration_log *log_data)
{
int j;
printf("TCG Configuration C7 Log Page Data-\n");
printf(" State : 0x%x\n", log_data->state);
printf(" Reserved1 : 0x");
for (j = 0; j < 3; j++)
printf("%d", log_data->rsvd1[j]);
printf("\n");
printf(" Locking SP Activation Count : 0x%x\n", log_data->locking_sp_act_count);
printf(" Tper Revert Count : 0x%x\n", log_data->type_rev_count);
printf(" Locking SP Revert Count : 0x%x\n", log_data->locking_sp_rev_count);
printf(" Number of Locking Objects : 0x%x\n", log_data->no_of_locking_obj);
printf(" Number of Single User Mode Locking Objects : 0x%x\n", log_data->no_of_single_um_locking_obj);
printf(" Number of Range Provisioned Locking Objects : 0x%x\n", log_data->no_of_range_prov_locking_obj);
printf(" Number of Namespace Provisioned Locking Objects : 0x%x\n", log_data->no_of_ns_prov_locking_obj);
printf(" Number of Read Locked Locking Objects : 0x%x\n", log_data->no_of_read_lock_locking_obj);
printf(" Number of Write Locked Locking Objects : 0x%x\n", log_data->no_of_write_lock_locking_obj);
printf(" Number of Read Unlocked Locking Objects : 0x%x\n", log_data->no_of_read_unlock_locking_obj);
printf(" Number of Write Unlocked Locking Objects : 0x%x\n", log_data->no_of_write_unlock_locking_obj);
printf(" Reserved2 : 0x%x\n", log_data->rsvd2);
printf(" SID Authentication Try Count : 0x%x\n", le32_to_cpu(log_data->sid_auth_try_count));
printf(" SID Authentication Try Limit : 0x%x\n", le32_to_cpu(log_data->sid_auth_try_limit));
printf(" Programmatic TCG Reset Count : 0x%x\n", le32_to_cpu(log_data->pro_tcg_rc));
printf(" Programmatic Reset Lock Count : 0x%x\n", le32_to_cpu(log_data->pro_rlc));
printf(" TCG Error Count : 0x%x\n", le32_to_cpu(log_data->tcg_ec));
printf(" Reserved3 : 0x");
for (j = 0; j < 458; j++)
printf("%d", log_data->rsvd3[j]);
printf("\n");
printf(" Log Page Version : 0x%x\n", le16_to_cpu(log_data->log_page_version));
printf(" Log page GUID : 0x");
for (j = C7_GUID_LENGTH - 1; j >= 0; j--)
printf("%x", log_data->log_page_guid[j]);
printf("\n");
return 0;
}
static void ocp_print_C7_log_json(struct tcg_configuration_log *log_data)
{
int j;
struct json_object *root;
char guid_buf[C7_GUID_LENGTH];
char *guid = guid_buf;
char res_arr[458];
char *res = res_arr;
root = json_create_object();
json_object_add_value_int(root, "State", le16_to_cpu(log_data->state));
memset((__u8 *)res, 0, 3);
for (j = 0; j < 3; j++)
res += sprintf(res, "%d", log_data->rsvd1[j]);
json_object_add_value_string(root, "Reserved1", res_arr);
json_object_add_value_int(root, "Locking SP Activation Count", le16_to_cpu(log_data->locking_sp_act_count));
json_object_add_value_int(root, "Tper Revert Count", le16_to_cpu(log_data->locking_sp_rev_count));
json_object_add_value_int(root, "Number of Locking Objects", le16_to_cpu(log_data->no_of_locking_obj));
json_object_add_value_int(root, "Number of Single User Mode Locking Objects", le16_to_cpu(log_data->no_of_single_um_locking_obj));
json_object_add_value_int(root, "Number of Range Provisioned Locking Objects", le16_to_cpu(log_data->no_of_range_prov_locking_obj));
json_object_add_value_int(root, "Number of Namespace Provisioned Locking Objects", le16_to_cpu(log_data->no_of_ns_prov_locking_obj));
json_object_add_value_int(root, "Number of Read Locked Locking Objects", le16_to_cpu(log_data->no_of_read_lock_locking_obj));
json_object_add_value_int(root, "Number of Write Locked Locking Objects", le16_to_cpu(log_data->no_of_write_lock_locking_obj));
json_object_add_value_int(root, "Number of Read Unlocked Locking Objects", le16_to_cpu(log_data->no_of_read_unlock_locking_obj));
json_object_add_value_int(root, "Number of Write Unlocked Locking Objects", le16_to_cpu(log_data->no_of_write_unlock_locking_obj));
json_object_add_value_int(root, "Reserved2", le16_to_cpu(log_data->rsvd2));
json_object_add_value_int(root, "SID Authentication Try Count", le16_to_cpu(log_data->sid_auth_try_count));
json_object_add_value_int(root, "SID Authentication Try Limit", le16_to_cpu(log_data->sid_auth_try_limit));
json_object_add_value_int(root, "Programmatic TCG Reset Count", le16_to_cpu(log_data->pro_tcg_rc));
json_object_add_value_int(root, "Programmatic Reset Lock Count", le16_to_cpu(log_data->pro_rlc));
json_object_add_value_int(root, "TCG Error Count", le16_to_cpu(log_data->tcg_ec));
memset((__u8 *)res, 0, 458);
for (j = 0; j < 458; j++)
res += sprintf(res, "%d", log_data->rsvd3[j]);
json_object_add_value_string(root, "Reserved3", res_arr);
json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));
memset((void *)guid, 0, C7_GUID_LENGTH);
for (j = C7_GUID_LENGTH - 1; j >= 0; j--)
guid += sprintf(guid, "%02x", log_data->log_page_guid[j]);
json_object_add_value_string(root, "Log page GUID", guid_buf);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
static void ocp_print_c7_log_binary(struct tcg_configuration_log *log_data)
{
return d_raw((unsigned char *)log_data, sizeof(*log_data));
}
static int get_c7_log_page(struct nvme_dev *dev, char *format)
{
nvme_print_flags_t fmt;
int ret;
__u8 *data;
int i;
struct tcg_configuration_log *log_data;
int j;
ret = validate_output_format(format, &fmt);
if (ret < 0) {
fprintf(stderr, "ERROR : OCP : invalid output format\n");
return ret;
}
data = (__u8 *)malloc(sizeof(__u8) * C7_TCG_CONFIGURATION_LEN);
if (!data) {
fprintf(stderr, "ERROR : OCP : malloc : %s\n", strerror(errno));
return -1;
}
memset(data, 0, sizeof(__u8) * C7_TCG_CONFIGURATION_LEN);
ret = nvme_get_log_simple(dev_fd(dev), C7_TCG_CONFIGURATION_OPCODE,
C7_TCG_CONFIGURATION_LEN, data);
if (!ret) {
log_data = (struct tcg_configuration_log *)data;
/* check log page version */
if (log_data->log_page_version != C7_TCG_CONFIGURATION_LOG_VERSION) {
fprintf(stderr, "ERROR : OCP : invalid TCG Configuration Log Page version\n");
ret = -1;
goto out;
}
/*
* check log page guid
* Verify GUID matches
*/
for (i = 0; i < 16; i++) {
if (tcg_configuration_guid[i] != log_data->log_page_guid[i]) {
fprintf(stderr, "ERROR : OCP : Unknown GUID in C7 Log Page data\n");
fprintf(stderr, "ERROR : OCP : Expected GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", tcg_configuration_guid[j]);
fprintf(stderr, "\nERROR : OCP : Actual GUID: 0x");
for (j = 0; j < 16; j++)
fprintf(stderr, "%x", log_data->log_page_guid[j]);
fprintf(stderr, "\n");
ret = -1;
goto out;
}
}
switch (fmt) {
case NORMAL:
ocp_print_C7_log_normal(dev, log_data);
break;
case JSON:
ocp_print_C7_log_json(log_data);
break;
case BINARY:
ocp_print_c7_log_binary(log_data);
break;
default:
break;
}
} else {
fprintf(stderr, "ERROR : OCP : Unable to read C7 data from buffer\n");
}
out:
free(data);
return ret;
}
static int ocp_tcg_configuration_log(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Retrieve TCG Configuration Log Page Data";
struct nvme_dev *dev;
int ret = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, "output Format: normal|json"),
OPT_END()
};
ret = parse_and_open(&dev, argc, argv, desc, opts);
if (ret)
return ret;
ret = get_c7_log_page(dev, cfg.output_format);
if (ret)
fprintf(stderr, "ERROR : OCP : Failure reading the C7 Log Page, ret = %d\n", ret);
dev_close(dev);
return ret;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// Misc
static int clear_fw_update_history(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
return ocp_clear_fw_update_history(argc, argv, cmd, plugin);
}
static int smart_add_log(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
return ocp_smart_add_log(argc, argv, cmd, plugin);
}
static int clear_pcie_correctable_error_counters(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
return ocp_clear_pcie_correctable_errors(argc, argv, cmd, plugin);
}
static int fw_activation_history_log(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
return ocp_fw_activation_history_log(argc, argv, cmd, plugin);
}
static int error_injection_get(struct nvme_dev *dev, const __u8 sel, bool uuid)
{
struct erri_get_cq_entry cq_entry;
int err;
int i;
const __u8 fid = 0xc0;
_cleanup_free_ struct erri_entry *entry = NULL;
struct nvme_get_features_args args = {
.result = (__u32 *)&cq_entry,
.data = entry,
.args_size = sizeof(args),
.fd = dev_fd(dev),
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.sel = sel,
.data_len = sizeof(*entry) * ERRI_ENTRIES_MAX,
.fid = fid,
};
if (uuid) {
/* OCP 2.0 requires UUID index support */
err = ocp_get_uuid_index(dev, &args.uuidx);
if (err || !args.uuidx) {
nvme_show_error("ERROR: No OCP UUID index found");
return err;
}
}
entry = nvme_alloc(args.data_len);
if (!entry) {
nvme_show_error("malloc: %s", strerror(errno));
return -errno;
}
err = nvme_cli_get_features(dev, &args);
if (!err) {
nvme_show_result("Number of Error Injecttions (feature: %#0*x): %#0*x (%s: %d)",
fid ? 4 : 2, fid, cq_entry.nume ? 10 : 8, cq_entry.nume,
nvme_select_to_string(sel), cq_entry.nume);
if (sel == NVME_GET_FEATURES_SEL_SUPPORTED)
nvme_show_select_result(fid, *args.result);
for (i = 0; i < cq_entry.nume; i++) {
printf("Entry: %d, Flags: %x (%s%s), Type: %x (%s), NRTDP: %d\n", i,
entry->flags, entry->enable ? "Enabled" : "Disabled",
entry->single ? ", Single instance" : "", entry->type,
erri_type_to_string(entry->type), entry->nrtdp);
}
} else {
nvme_show_error("Could not get feature: %#0*x.", fid ? 4 : 2, fid);
}
return err;
}
static int get_error_injection(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc = "Return set of error injection";
int err;
struct config {
__u8 sel;
};
struct config cfg = { 0 };
_cleanup_nvme_dev_ struct nvme_dev *dev = NULL;
OPT_ARGS(opts) = {
OPT_BYTE("sel", 's', &cfg.sel, sel),
OPT_FLAG("no-uuid", 'n', NULL, no_uuid),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
return error_injection_get(dev, cfg.sel, !argconfig_parse_seen(opts, "no-uuid"));
}
static int error_injection_set(struct nvme_dev *dev, struct erri_config *cfg, bool uuid)
{
int err;
__u32 result;
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = 0xc0,
.cdw11 = cfg->number,
.data_len = cfg->number * sizeof(struct erri_entry),
.timeout = nvme_cfg.timeout,
.result = &result,
};
_cleanup_fd_ int ffd = -1;
_cleanup_free_ struct erri_entry *entry = NULL;
if (uuid) {
/* OCP 2.0 requires UUID index support */
err = ocp_get_uuid_index(dev, &args.uuidx);
if (err || !args.uuidx) {
nvme_show_error("ERROR: No OCP UUID index found");
return err;
}
}
entry = nvme_alloc(args.data_len);
if (!entry) {
nvme_show_error("malloc: %s", strerror(errno));
return -errno;
}
if (cfg->file && strlen(cfg->file)) {
ffd = open(cfg->file, O_RDONLY);
if (ffd < 0) {
nvme_show_error("Failed to open file %s: %s", cfg->file, strerror(errno));
return -EINVAL;
}
err = read(ffd, entry, args.data_len);
if (err < 0) {
nvme_show_error("failed to read data buffer from input file: %s",
strerror(errno));
return -errno;
}
} else {
entry->enable = 1;
entry->single = 1;
entry->type = cfg->type;
entry->nrtdp = cfg->nrtdp;
}
args.data = entry;
err = nvme_set_features(&args);
if (err) {
if (err < 0)
nvme_show_error("set-error-injection: %s", nvme_strerror(errno));
else if (err > 0)
nvme_show_status(err);
return err;
}
printf("set-error-injection, data: %s, number: %d, uuid: %d, type: %d, nrtdp: %d\n",
cfg->file, cfg->number, args.uuidx, cfg->type, cfg->nrtdp);
if (args.data)
d(args.data, args.data_len, 16, 1);
return 0;
}
static int set_error_injection(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc = "Inject error conditions";
int err;
struct erri_config cfg = {
.number = 1,
};
_cleanup_nvme_dev_ struct nvme_dev *dev = NULL;
NVME_ARGS(opts,
OPT_FILE("data", 'd', &cfg.file, data),
OPT_BYTE("number", 'n', &cfg.number, number),
OPT_FLAG("no-uuid", 'N', NULL, no_uuid),
OPT_SHRT("type", 't', &cfg.type, type),
OPT_SHRT("nrtdp", 'r', &cfg.nrtdp, nrtdp));
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
return error_injection_set(dev, &cfg, !argconfig_parse_seen(opts, "no-uuid"));
}