1
0
Fork 0
nvme-cli/plugins/seagate/seagate-nvme.c
Daniel Baumann d6e1a5d456
Adding upstream version 2.7.1.
Signed-off-by: Daniel Baumann <daniel@debian.org>
2025-02-16 12:25:41 +01:00

1968 lines
65 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Do NOT modify or remove this copyright and license
*
* Copyright (c) 2017-2018 Seagate Technology LLC and/or its Affiliates, All Rights Reserved
*
* ******************************************************************************************
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* \file seagate-nvme.c
* \brief This file defines the functions and macros to make building a nvme-cli seagate plug-in.
*
* Author: Debabrata Bardhan <debabrata.bardhan@seagate.com>
*/
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/stat.h>
#include <ctype.h>
#include "common.h"
#include "nvme.h"
#include "libnvme.h"
#include "plugin.h"
#include "linux/types.h"
#include "nvme-print.h"
#include <time.h>
#define CREATE_CMD
#include "seagate-nvme.h"
#include "seagate-diag.h"
/***************************************
* Command for "log-pages-supp"
***************************************/
static char *log_pages_supp_print(__u32 pageID)
{
switch (pageID) {
case 0x01:
return "ERROR_INFORMATION";
case 0x02:
return "SMART_INFORMATION";
case 0x03:
return "FW_SLOT_INFORMATION";
case 0x04:
return "CHANGED_NAMESPACE_LIST";
case 0x05:
return "COMMANDS_SUPPORTED_AND_EFFECTS";
case 0x06:
return "DEVICE_SELF_TEST";
case 0x07:
return "TELEMETRY_HOST_INITIATED";
case 0x08:
return "TELEMETRY_CONTROLLER_INITIATED";
case 0xC0:
return "VS_MEDIA_SMART_LOG";
case 0xC1:
return "VS_DEBUG_LOG1";
case 0xC2:
return "VS_SEC_ERROR_LOG_PAGE";
case 0xC3:
return "VS_LIFE_TIME_DRIVE_HISTORY";
case 0xC4:
return "VS_EXTENDED_SMART_INFO";
case 0xC5:
return "VS_LIST_SUPPORTED_LOG_PAGE";
case 0xC6:
return "VS_POWER_MONITOR_LOG_PAGE";
case 0xC7:
return "VS_CRITICAL_EVENT_LOG_PAGE";
case 0xC8:
return "VS_RECENT_DRIVE_HISTORY";
case 0xC9:
return "VS_SEC_ERROR_LOG_PAGE";
case 0xCA:
return "VS_LIFE_TIME_DRIVE_HISTORY";
case 0xCB:
return "VS_PCIE_ERROR_LOG_PAGE";
case 0xCF:
return "DRAM Supercap SMART Attributes";
case 0xD6:
return "VS_OEM2_WORK_LOAD";
case 0xD7:
return "VS_OEM2_FW_SECURITY";
case 0xD8:
return "VS_OEM2_REVISION";
default:
return "UNKNOWN";
}
}
static int stx_is_jag_pan(char *devMN)
{
int match_found = 1; /* found = 0, not_found = 1 */
for (int i = 0; i < STX_NUM_LEGACY_DRV; i++) {
match_found = strncmp(devMN, stx_jag_pan_mn[i], strlen(stx_jag_pan_mn[i]));
if (!match_found)
break;
}
return match_found;
}
static void json_log_pages_supp(log_page_map *logPageMap)
{
struct json_object *root;
struct json_object *logPages;
__u32 i = 0;
root = json_create_object();
logPages = json_create_array();
json_object_add_value_array(root, "supported_log_pages", logPages);
for (i = 0; i < le32_to_cpu(logPageMap->NumLogPages); i++) {
struct json_object *lbaf = json_create_object();
json_object_add_value_int(lbaf, "logpage_id",
le32_to_cpu(logPageMap->LogPageEntry[i].LogPageID));
json_object_add_value_string(lbaf, "logpage_name",
log_pages_supp_print(le32_to_cpu(logPageMap->LogPageEntry[i].LogPageID)));
json_array_add_value_object(logPages, lbaf);
}
json_print_object(root, NULL);
json_free_object(root);
}
static int log_pages_supp(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
int err = 0;
__u32 i = 0;
log_page_map logPageMap;
const char *desc = "Retrieve Seagate Supported Log-Page information for the given device ";
const char *output_format = "output in binary format";
struct nvme_dev *dev;
int fmt;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, output_format),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
err = nvme_get_log_simple(dev_fd(dev), 0xc5,
sizeof(logPageMap), &logPageMap);
if (!err) {
if (strcmp(cfg.output_format, "json")) {
printf("Seagate Supported Log-pages count :%d\n",
le32_to_cpu(logPageMap.NumLogPages));
printf("%-15s %-30s\n", "LogPage-Id", "LogPage-Name");
for (fmt = 0; fmt < 45; fmt++)
printf("-");
printf("\n");
} else
json_log_pages_supp(&logPageMap);
for (i = 0; i < le32_to_cpu(logPageMap.NumLogPages); i++) {
if (strcmp(cfg.output_format, "json")) {
printf("0x%-15X",
le32_to_cpu(logPageMap.LogPageEntry[i].LogPageID));
printf("%-30s\n",
log_pages_supp_print(le32_to_cpu(logPageMap.LogPageEntry[i].LogPageID)));
}
}
}
if (err > 0)
nvme_show_status(err);
dev_close(dev);
return err;
}
/* EOF Command for "log-pages-supp" */
/***************************************
* Extended-SMART Information
***************************************/
static char *print_ext_smart_id(__u8 attrId)
{
switch (attrId) {
case VS_ATTR_ID_SOFT_READ_ERROR_RATE:
return "Soft ECC error count";
case VS_ATTR_ID_REALLOCATED_SECTOR_COUNT:
return "Bad NAND block count";
case VS_ATTR_ID_POWER_ON_HOURS:
return "Power On Hours";
case VS_ATTR_ID_POWER_FAIL_EVENT_COUNT:
return "Power Fail Event Count";
case VS_ATTR_ID_DEVICE_POWER_CYCLE_COUNT:
return "Device Power Cycle Count";
case VS_ATTR_ID_RAW_READ_ERROR_RATE:
return "Raw Read Error Count";
case VS_ATTR_ID_GROWN_BAD_BLOCK_COUNT:
return "Bad NAND block count";
case VS_ATTR_ID_END_2_END_CORRECTION_COUNT:
return "SSD End to end correction counts";
case VS_ATTR_ID_MIN_MAX_WEAR_RANGE_COUNT:
return "User data erase counts";
case VS_ATTR_ID_REFRESH_COUNT:
return "Refresh count";
case VS_ATTR_ID_BAD_BLOCK_COUNT_USER:
return "User data erase fail count";
case VS_ATTR_ID_BAD_BLOCK_COUNT_SYSTEM:
return "System area erase fail count";
case VS_ATTR_ID_THERMAL_THROTTLING_STATUS:
return "Thermal throttling status and count";
case VS_ATTR_ID_ALL_PCIE_CORRECTABLE_ERROR_COUNT:
return "PCIe Correctable Error count";
case VS_ATTR_ID_ALL_PCIE_UNCORRECTABLE_ERROR_COUNT:
return "PCIe Uncorrectable Error count";
case VS_ATTR_ID_INCOMPLETE_SHUTDOWN_COUNT:
return "Incomplete shutdowns";
case VS_ATTR_ID_GB_ERASED_LSB:
return "LSB of Flash GB erased";
case VS_ATTR_ID_GB_ERASED_MSB:
return "MSB of Flash GB erased";
case VS_ATTR_ID_LIFETIME_DEVSLEEP_EXIT_COUNT:
return "LIFETIME_DEV_SLEEP_EXIT_COUNT";
case VS_ATTR_ID_LIFETIME_ENTERING_PS4_COUNT:
return "LIFETIME_ENTERING_PS4_COUNT";
case VS_ATTR_ID_LIFETIME_ENTERING_PS3_COUNT:
return "LIFETIME_ENTERING_PS3_COUNT";
case VS_ATTR_ID_RETIRED_BLOCK_COUNT:
return "Retired block count";
case VS_ATTR_ID_PROGRAM_FAILURE_COUNT:
return "Program fail count";
case VS_ATTR_ID_ERASE_FAIL_COUNT:
return "Erase Fail Count";
case VS_ATTR_ID_AVG_ERASE_COUNT:
return "System data % used";
case VS_ATTR_ID_UNEXPECTED_POWER_LOSS_COUNT:
return "Unexpected power loss count";
case VS_ATTR_ID_WEAR_RANGE_DELTA:
return "Wear range delta";
case VS_ATTR_ID_SATA_INTERFACE_DOWNSHIFT_COUNT:
return "PCIE_INTF_DOWNSHIFT_COUNT";
case VS_ATTR_ID_END_TO_END_CRC_ERROR_COUNT:
return "E2E_CRC_ERROR_COUNT";
case VS_ATTR_ID_UNCORRECTABLE_READ_ERRORS:
return "Uncorrectable Read Error Count";
case VS_ATTR_ID_MAX_LIFE_TEMPERATURE:
return "Max lifetime temperature";
case VS_ATTR_ID_RAISE_ECC_CORRECTABLE_ERROR_COUNT:
return "RAIS_ECC_CORRECT_ERR_COUNT";
case VS_ATTR_ID_UNCORRECTABLE_RAISE_ERRORS:
return "Uncorrectable RAISE error count";
case VS_ATTR_ID_DRIVE_LIFE_PROTECTION_STATUS:
return "DRIVE_LIFE_PROTECTION_STATUS";
case VS_ATTR_ID_REMAINING_SSD_LIFE:
return "Remaining SSD life";
case VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_LSB:
return "LSB of Physical (NAND) bytes written";
case VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_MSB:
return "MSB of Physical (NAND) bytes written";
case VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_LSB:
return "LSB of Physical (HOST) bytes written";
case VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_MSB:
return "MSB of Physical (HOST) bytes written";
case VS_ATTR_ID_LIFETIME_READS_TO_HOST_LSB:
return "LSB of Physical (NAND) bytes read";
case VS_ATTR_ID_LIFETIME_READS_TO_HOST_MSB:
return "MSB of Physical (NAND) bytes read";
case VS_ATTR_ID_FREE_SPACE:
return "Free Space";
case VS_ATTR_ID_TRIM_COUNT_LSB:
return "LSB of Trim count";
case VS_ATTR_ID_TRIM_COUNT_MSB:
return "MSB of Trim count";
case VS_ATTR_ID_OP_PERCENTAGE:
return "OP percentage";
case VS_ATTR_ID_MAX_SOC_LIFE_TEMPERATURE:
return "Max lifetime SOC temperature";
default:
return "Un-Known";
}
}
static __u64 smart_attribute_vs(__u16 verNo, SmartVendorSpecific attr)
{
__u64 val = 0;
vendor_smart_attribute_data *attrVendor;
/**
* These are all Vendor A specific attributes.
*/
if (verNo >= EXTENDED_SMART_VERSION_VENDOR1) {
attrVendor = (vendor_smart_attribute_data *)&attr;
memcpy(&val, &(attrVendor->LSDword), sizeof(val));
return val;
} else
return le32_to_cpu(attr.Raw0_3);
}
static void print_smart_log(__u16 verNo, SmartVendorSpecific attr, int lastAttr)
{
static __u64 lsbGbErased = 0, msbGbErased = 0, lsbLifWrtToFlash = 0, msbLifWrtToFlash = 0,
lsbLifWrtFrmHost = 0, msbLifWrtFrmHost = 0, lsbLifRdToHost = 0, msbLifRdToHost = 0, lsbTrimCnt = 0, msbTrimCnt = 0;
char buf[40] = {0};
char strBuf[35] = {0};
int hideAttr = 0;
if (attr.AttributeNumber == VS_ATTR_ID_GB_ERASED_LSB) {
lsbGbErased = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if (attr.AttributeNumber == VS_ATTR_ID_GB_ERASED_MSB) {
msbGbErased = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if (attr.AttributeNumber == VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_LSB) {
lsbLifWrtToFlash = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if (attr.AttributeNumber == VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_MSB) {
msbLifWrtToFlash = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if (attr.AttributeNumber == VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_LSB) {
lsbLifWrtFrmHost = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if (attr.AttributeNumber == VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_MSB) {
msbLifWrtFrmHost = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if (attr.AttributeNumber == VS_ATTR_ID_LIFETIME_READS_TO_HOST_LSB) {
lsbLifRdToHost = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if (attr.AttributeNumber == VS_ATTR_ID_LIFETIME_READS_TO_HOST_MSB) {
msbLifRdToHost = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if (attr.AttributeNumber == VS_ATTR_ID_TRIM_COUNT_LSB) {
lsbTrimCnt = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if (attr.AttributeNumber == VS_ATTR_ID_TRIM_COUNT_MSB) {
msbTrimCnt = smart_attribute_vs(verNo, attr);
hideAttr = 1;
}
if ((attr.AttributeNumber) && (hideAttr != 1)) {
printf("%-40s", print_ext_smart_id(attr.AttributeNumber));
printf("%-15d", attr.AttributeNumber);
printf(" 0x%016"PRIx64"\n", (uint64_t)smart_attribute_vs(verNo, attr));
}
if (lastAttr == 1) {
sprintf(strBuf, "%s", (print_ext_smart_id(VS_ATTR_ID_GB_ERASED_LSB) + 7));
printf("%-40s", strBuf);
printf("%-15d", VS_ATTR_ID_GB_ERASED_MSB << 8 | VS_ATTR_ID_GB_ERASED_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbGbErased, (uint64_t)lsbGbErased);
printf(" %s\n", buf);
sprintf(strBuf, "%s", (print_ext_smart_id(VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_LSB) + 7));
printf("%-40s", strBuf);
printf("%-15d", VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_MSB << 8 | VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbLifWrtToFlash, (uint64_t)lsbLifWrtToFlash);
printf(" %s\n", buf);
sprintf(strBuf, "%s", (print_ext_smart_id(VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_LSB) + 7));
printf("%-40s", strBuf);
printf("%-15d", VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_MSB << 8 | VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbLifWrtFrmHost, (uint64_t)lsbLifWrtFrmHost);
printf(" %s\n", buf);
sprintf(strBuf, "%s", (print_ext_smart_id(VS_ATTR_ID_LIFETIME_READS_TO_HOST_LSB) + 7));
printf("%-40s", strBuf);
printf("%-15d", VS_ATTR_ID_LIFETIME_READS_TO_HOST_MSB << 8 | VS_ATTR_ID_LIFETIME_READS_TO_HOST_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbLifRdToHost, (uint64_t)lsbLifRdToHost);
printf(" %s\n", buf);
sprintf(strBuf, "%s", (print_ext_smart_id(VS_ATTR_ID_TRIM_COUNT_LSB) + 7));
printf("%-40s", strBuf);
printf("%-15d", VS_ATTR_ID_TRIM_COUNT_MSB << 8 | VS_ATTR_ID_TRIM_COUNT_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbTrimCnt, (uint64_t)lsbTrimCnt);
printf(" %s\n", buf);
}
}
static void json_print_smart_log(struct json_object *root, EXTENDED_SMART_INFO_T *ExtdSMARTInfo)
{
struct json_object *lbafs;
int index = 0;
static __u64 lsbGbErased = 0, msbGbErased = 0, lsbLifWrtToFlash = 0, msbLifWrtToFlash = 0,
lsbLifWrtFrmHost = 0, msbLifWrtFrmHost = 0, lsbLifRdToHost = 0, msbLifRdToHost = 0, lsbTrimCnt = 0, msbTrimCnt = 0;
char buf[40] = {0};
lbafs = json_create_array();
json_object_add_value_array(root, "Extended-SMART-Attributes", lbafs);
for (index = 0; index < NUMBER_EXTENDED_SMART_ATTRIBUTES; index++) {
struct json_object *lbaf = json_create_object();
if (ExtdSMARTInfo->vendorData[index].AttributeNumber) {
json_object_add_value_string(lbaf, "attribute_name", print_ext_smart_id(ExtdSMARTInfo->vendorData[index].AttributeNumber));
json_object_add_value_int(lbaf, "attribute_id", ExtdSMARTInfo->vendorData[index].AttributeNumber);
json_object_add_value_int(lbaf, "attribute_value", smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]));
json_array_add_value_object(lbafs, lbaf);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_GB_ERASED_LSB)
lsbGbErased = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_GB_ERASED_MSB)
msbGbErased = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_LSB)
lsbLifWrtToFlash = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_MSB)
msbLifWrtToFlash = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_LSB)
lsbLifWrtFrmHost = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_MSB)
msbLifWrtFrmHost = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_LIFETIME_READS_TO_HOST_LSB)
lsbLifRdToHost = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_LIFETIME_READS_TO_HOST_MSB)
msbLifRdToHost = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_TRIM_COUNT_LSB)
lsbTrimCnt = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
if (ExtdSMARTInfo->vendorData[index].AttributeNumber == VS_ATTR_ID_TRIM_COUNT_MSB)
msbTrimCnt = smart_attribute_vs(ExtdSMARTInfo->Version, ExtdSMARTInfo->vendorData[index]);
}
}
struct json_object *lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", (print_ext_smart_id(VS_ATTR_ID_GB_ERASED_LSB) + 7));
json_object_add_value_int(lbaf, "attribute_id", VS_ATTR_ID_GB_ERASED_MSB << 8 | VS_ATTR_ID_GB_ERASED_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbGbErased, (uint64_t)lsbGbErased);
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(lbafs, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", (print_ext_smart_id(VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_LSB) + 7));
json_object_add_value_int(lbaf, "attribute_id", VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_MSB << 8 | VS_ATTR_ID_LIFETIME_WRITES_TO_FLASH_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbLifWrtToFlash, (uint64_t)lsbLifWrtToFlash);
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(lbafs, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", (print_ext_smart_id(VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_LSB) + 7));
json_object_add_value_int(lbaf, "attribute_id", VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_MSB << 8 | VS_ATTR_ID_LIFETIME_WRITES_FROM_HOST_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbLifWrtFrmHost, (uint64_t)lsbLifWrtFrmHost);
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(lbafs, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", (print_ext_smart_id(VS_ATTR_ID_LIFETIME_READS_TO_HOST_LSB) + 7));
json_object_add_value_int(lbaf, "attribute_id", VS_ATTR_ID_LIFETIME_READS_TO_HOST_MSB << 8 | VS_ATTR_ID_LIFETIME_READS_TO_HOST_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbLifRdToHost, (uint64_t)lsbLifRdToHost);
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(lbafs, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", (print_ext_smart_id(VS_ATTR_ID_TRIM_COUNT_LSB) + 7));
json_object_add_value_int(lbaf, "attribute_id", VS_ATTR_ID_TRIM_COUNT_MSB << 8 | VS_ATTR_ID_TRIM_COUNT_LSB);
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", (uint64_t)msbTrimCnt, (uint64_t)lsbTrimCnt);
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(lbafs, lbaf);
}
static void print_smart_log_CF(vendor_log_page_CF *pLogPageCF)
{
__u64 currentTemp, maxTemp;
printf("\n\nSeagate DRAM Supercap SMART Attributes :\n");
printf("%-39s %-19s\n", "Description", "Supercap Attributes");
printf("%-40s", "Super-cap current temperature");
currentTemp = pLogPageCF->AttrCF.SuperCapCurrentTemperature;
printf(" 0x%016"PRIx64"\n", le64_to_cpu(currentTemp));
maxTemp = pLogPageCF->AttrCF.SuperCapMaximumTemperature;
printf("%-40s", "Super-cap maximum temperature");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(maxTemp));
printf("%-40s", "Super-cap status");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageCF->AttrCF.SuperCapStatus));
printf("%-40s", "Data units read to DRAM namespace");
printf(" 0x%016"PRIx64"%016"PRIx64"\n", le64_to_cpu(pLogPageCF->AttrCF.DataUnitsReadToDramNamespace.MS__u64),
le64_to_cpu(pLogPageCF->AttrCF.DataUnitsReadToDramNamespace.LS__u64));
printf("%-40s", "Data units written to DRAM namespace");
printf(" 0x%016"PRIx64"%016"PRIx64"\n", le64_to_cpu(pLogPageCF->AttrCF.DataUnitsWrittenToDramNamespace.MS__u64),
le64_to_cpu(pLogPageCF->AttrCF.DataUnitsWrittenToDramNamespace.LS__u64));
printf("%-40s", "DRAM correctable error count");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageCF->AttrCF.DramCorrectableErrorCount));
printf("%-40s", "DRAM uncorrectable error count");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageCF->AttrCF.DramUncorrectableErrorCount));
}
static void json_print_smart_log_CF(struct json_object *root, vendor_log_page_CF *pLogPageCF)
{
struct json_object *logPages;
unsigned int currentTemp, maxTemp;
char buf[40];
logPages = json_create_array();
json_object_add_value_array(root, "DRAM Supercap SMART Attributes", logPages);
struct json_object *lbaf = json_create_object();
currentTemp = pLogPageCF->AttrCF.SuperCapCurrentTemperature;
json_object_add_value_string(lbaf, "attribute_name", "Super-cap current temperature");
json_object_add_value_int(lbaf, "attribute_value", currentTemp);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
maxTemp = pLogPageCF->AttrCF.SuperCapMaximumTemperature;
json_object_add_value_string(lbaf, "attribute_name", "Super-cap maximum temperature");
json_object_add_value_int(lbaf, "attribute_value", maxTemp);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Super-cap status");
json_object_add_value_int(lbaf, "attribute_value", pLogPageCF->AttrCF.SuperCapStatus);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Data units read to DRAM namespace");
memset(buf, 0, sizeof(buf));
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", le64_to_cpu(pLogPageCF->AttrCF.DataUnitsReadToDramNamespace.MS__u64),
le64_to_cpu(pLogPageCF->AttrCF.DataUnitsReadToDramNamespace.LS__u64));
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Data units written to DRAM namespace");
memset(buf, 0, sizeof(buf));
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", le64_to_cpu(pLogPageCF->AttrCF.DataUnitsWrittenToDramNamespace.MS__u64),
le64_to_cpu(pLogPageCF->AttrCF.DataUnitsWrittenToDramNamespace.LS__u64));
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "DRAM correctable error count");
json_object_add_value_int(lbaf, "attribute_value", pLogPageCF->AttrCF.DramCorrectableErrorCount);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "DRAM uncorrectable error count");
json_object_add_value_int(lbaf, "attribute_value", pLogPageCF->AttrCF.DramUncorrectableErrorCount);
json_array_add_value_object(logPages, lbaf);
}
static void print_stx_smart_log_C0(STX_EXT_SMART_LOG_PAGE_C0 *pLogPageC0)
{
printf("\n\nSeagate SMART Health Attributes :\n");
printf("%-39s %-19s\n", "Description", "Health Attributes");
printf("%-40s", "Physical Media Units Written");
printf(" 0x%016"PRIx64"%016"PRIx64"\n", le64_to_cpu(pLogPageC0->phyMediaUnitsWrt.MS__u64),
le64_to_cpu(pLogPageC0->phyMediaUnitsWrt.LS__u64));
printf("%-40s", "Physical Media Units Read");
printf(" 0x%016"PRIx64"%016"PRIx64"\n", le64_to_cpu(pLogPageC0->phyMediaUnitsRd.MS__u64),
le64_to_cpu(pLogPageC0->phyMediaUnitsRd.LS__u64));
printf("%-40s", "Bad User NAND Blocks");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->badUsrNandBlocks));
printf("%-40s", "Bad System NAND Blocks");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->badSysNandBlocks));
printf("%-40s", "XOR Recovery Count");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->xorRecoveryCnt));
printf("%-40s", "Uncorrectable Read Error Count");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->ucRdEc));
printf("%-40s", "Soft ECC Error Count");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->softEccEc));
printf("%-40s", "End to End Correction Counts");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->etoeCrrCnt));
printf("%-40s", "System Data Used in Parcent");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->sysDataUsed));
printf("%-40s", "Refresh Counts");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->refreshCount));
printf("%-40s", "User Data Erase Counts");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->usrDataEraseCnt));
printf("%-40s", "Thermal Throttling Status and Count");
printf(" 0x%04x\n", le16_to_cpu(pLogPageC0->thermalThrottling));
printf("%-40s", "DSSD Specification Version");
printf(" %d.%d.%d.%d\n", pLogPageC0->dssdSpecVerMajor,
le16_to_cpu(pLogPageC0->dssdSpecVerMinor),
le16_to_cpu(pLogPageC0->dssdSpecVerPoint),
pLogPageC0->dssdSpecVerErrata);
printf("%-40s", "PCIe Correctable Error Count");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->pcieCorrEc));
printf("%-40s", "Incomplete Shutdowns");
printf(" 0x%08x\n", le32_to_cpu(pLogPageC0->incompleteShutdowns));
printf("%-40s", "Free Blocks in Percent");
printf(" %d\n", pLogPageC0->freeBlocks);
printf("%-40s", "Capacitor Health");
printf(" 0x%04x\n", le16_to_cpu(pLogPageC0->capHealth));
printf("%-40s", "NVMe Errata Version");
printf(" %c\n", pLogPageC0->nvmeErrataVer);
printf("%-40s", "Unaligned IO");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->unalignedIO));
printf("%-40s", "Security Version Number");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->secVerNum));
printf("%-40s", "Total Namespace Utilization");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->totalNUSE));
printf("%-40s", "PLP Start Count");
printf(" 0x%016"PRIx64"%016"PRIx64"\n", le64_to_cpu(pLogPageC0->plpStartCnt.MS__u64),
le64_to_cpu(pLogPageC0->plpStartCnt.LS__u64));
printf("%-40s", "Endurance Estimate");
printf(" 0x%016"PRIx64"%016"PRIx64"\n", le64_to_cpu(pLogPageC0->enduranceEstimate.MS__u64),
le64_to_cpu(pLogPageC0->enduranceEstimate.LS__u64));
printf("%-40s", "PCIe Link Retraining Count");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->pcieLinkRetCnt));
printf("%-40s", "Power State Change Count");
printf(" 0x%016"PRIx64"\n", le64_to_cpu(pLogPageC0->powStateChangeCnt));
printf("%-40s", "Log Page Version");
printf(" 0x%04x\n", le16_to_cpu(pLogPageC0->logPageVer));
printf("%-40s", "Log Page GUID");
printf(" 0x%016"PRIx64"%016"PRIx64"\n", le64_to_cpu(pLogPageC0->logPageGUID.MS__u64),
le64_to_cpu(pLogPageC0->logPageGUID.LS__u64));
}
static void json_print_stx_smart_log_C0(struct json_object *root, STX_EXT_SMART_LOG_PAGE_C0 *pLogPageC0)
{
struct json_object *logPages;
char buf[40];
logPages = json_create_array();
json_object_add_value_array(root, "Seagate SMART Health Attributes", logPages);
struct json_object *lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Physical Media Units Written");
memset(buf, 0, sizeof(buf));
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", le64_to_cpu(pLogPageC0->phyMediaUnitsWrt.MS__u64),
le64_to_cpu(pLogPageC0->phyMediaUnitsWrt.LS__u64));
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Physical Media Units Read");
memset(buf, 0, sizeof(buf));
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", le64_to_cpu(pLogPageC0->phyMediaUnitsRd.MS__u64),
le64_to_cpu(pLogPageC0->phyMediaUnitsRd.LS__u64));
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Bad User NAND Blocks");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->badUsrNandBlocks));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Bad System NAND Blocks");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->badSysNandBlocks));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "XOR Recovery Count");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->xorRecoveryCnt));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Uncorrectable Read Error Count");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->ucRdEc));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Soft ECC Error Count");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->softEccEc));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "End to End Correction Counts");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->etoeCrrCnt));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "System Data Used in Parcent");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->sysDataUsed));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Refresh Counts");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->refreshCount));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "User Data Erase Counts");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->usrDataEraseCnt));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Thermal Throttling Status and Count");
json_object_add_value_int(lbaf, "attribute_value", le16_to_cpu(pLogPageC0->thermalThrottling));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "DSSD Specification Version");
memset(buf, 0, sizeof(buf));
sprintf(buf, "%d.%d.%d.%d", pLogPageC0->dssdSpecVerMajor,
le16_to_cpu(pLogPageC0->dssdSpecVerMinor),
le16_to_cpu(pLogPageC0->dssdSpecVerPoint),
pLogPageC0->dssdSpecVerErrata);
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "PCIe Correctable Error Count");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->pcieCorrEc));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Incomplete Shutdowns");
json_object_add_value_int(lbaf, "attribute_value", le32_to_cpu(pLogPageC0->incompleteShutdowns));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Free Blocks in Percent");
json_object_add_value_int(lbaf, "attribute_value", pLogPageC0->freeBlocks);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Capacitor Health");
json_object_add_value_int(lbaf, "attribute_value", le16_to_cpu(pLogPageC0->capHealth));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "NVMe Errata Version");
json_object_add_value_int(lbaf, "attribute_value", pLogPageC0->nvmeErrataVer);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Unaligned IO");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->unalignedIO));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Security Version Number");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->secVerNum));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Total Namespace Utilization");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->totalNUSE));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "PLP Start Count");
memset(buf, 0, sizeof(buf));
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", le64_to_cpu(pLogPageC0->plpStartCnt.MS__u64),
le64_to_cpu(pLogPageC0->plpStartCnt.LS__u64));
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Endurance Estimate");
memset(buf, 0, sizeof(buf));
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", le64_to_cpu(pLogPageC0->enduranceEstimate.MS__u64),
le64_to_cpu(pLogPageC0->enduranceEstimate.LS__u64));
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "PCIe Link Retraining Count");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->pcieLinkRetCnt));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Power State Change Count");
json_object_add_value_int(lbaf, "attribute_value", le64_to_cpu(pLogPageC0->powStateChangeCnt));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Log Page Version");
json_object_add_value_int(lbaf, "attribute_value", le16_to_cpu(pLogPageC0->logPageVer));
json_array_add_value_object(logPages, lbaf);
lbaf = json_create_object();
json_object_add_value_string(lbaf, "attribute_name", "Log Page GUID");
memset(buf, 0, sizeof(buf));
sprintf(buf, "0x%016"PRIx64"%016"PRIx64"", le64_to_cpu(pLogPageC0->logPageGUID.MS__u64),
le64_to_cpu(pLogPageC0->logPageGUID.LS__u64));
json_object_add_value_string(lbaf, "attribute_value", buf);
json_array_add_value_object(logPages, lbaf);
}
static int vs_smart_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
struct nvme_id_ctrl ctrl;
char modelNo[40];
STX_EXT_SMART_LOG_PAGE_C0 ehExtSmart;
EXTENDED_SMART_INFO_T ExtdSMARTInfo;
vendor_log_page_CF logPageCF;
struct json_object *root = json_create_object();
struct json_object *lbafs = json_create_array();
struct json_object *lbafs_ExtSmart, *lbafs_DramSmart;
const char *desc = "Retrieve the Firmware Activation History for Seagate NVMe drives";
const char *output_format = "output in binary format";
struct nvme_dev *dev;
int err, index = 0;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, output_format),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err) {
printf("\nDevice not found\n");
return -1;
}
if (strcmp(cfg.output_format, "json"))
printf("Seagate Extended SMART Information :\n");
/**
* Here we should identify if the drive is a Panthor or Jaguar.
* Here we need to extract the model no from ctrl-id abd use it
* to determine drive family.
*/
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (!err) {
memcpy(modelNo, ctrl.mn, sizeof(modelNo));
} else {
nvme_show_status(err);
return err;
}
if (!stx_is_jag_pan(modelNo)) {
err = nvme_get_log_simple(dev_fd(dev), 0xC4, sizeof(ExtdSMARTInfo), &ExtdSMARTInfo);
if (!err) {
if (strcmp(cfg.output_format, "json")) {
printf("%-39s %-15s %-19s\n", "Description", "Ext-Smart-Id", "Ext-Smart-Value");
for (index = 0; index < 80; index++)
printf("-");
printf("\n");
for (index = 0; index < NUMBER_EXTENDED_SMART_ATTRIBUTES; index++)
print_smart_log(ExtdSMARTInfo.Version, ExtdSMARTInfo.vendorData[index], index == (NUMBER_EXTENDED_SMART_ATTRIBUTES - 1));
} else {
lbafs_ExtSmart = json_create_object();
json_print_smart_log(lbafs_ExtSmart, &ExtdSMARTInfo);
json_object_add_value_array(root, "SMART-Attributes", lbafs);
json_array_add_value_object(lbafs, lbafs_ExtSmart);
}
/**
* Next get Log Page 0xCF
*/
err = nvme_get_log_simple(dev_fd(dev), 0xCF, sizeof(logPageCF), &logPageCF);
if (!err) {
if (strcmp(cfg.output_format, "json")) {
print_smart_log_CF(&logPageCF);
} else {
lbafs_DramSmart = json_create_object();
json_print_smart_log_CF(lbafs_DramSmart, &logPageCF);
json_array_add_value_object(lbafs, lbafs_DramSmart);
json_print_object(root, NULL);
}
} else if (!strcmp(cfg.output_format, "json")) {
json_print_object(root, NULL);
json_free_object(root);
}
} else if (err > 0) {
nvme_show_status(err);
}
} else {
err = nvme_get_log_simple(dev_fd(dev), 0xC0, sizeof(ehExtSmart), &ehExtSmart);
if (!err) {
if (strcmp(cfg.output_format, "json")) {
print_stx_smart_log_C0(&ehExtSmart);
} else {
lbafs_ExtSmart = json_create_object();
json_print_stx_smart_log_C0(lbafs_ExtSmart, &ehExtSmart);
json_object_add_value_array(root, "SMART-Attributes", lbafs);
json_array_add_value_object(lbafs, lbafs_ExtSmart);
json_print_object(root, NULL);
json_free_object(root);
}
}
if (err > 0)
nvme_show_status(err);
}
err = nvme_get_log_simple(dev_fd(dev), 0xC4,
sizeof(ExtdSMARTInfo), &ExtdSMARTInfo);
if (!err) {
if (strcmp(cfg.output_format, "json")) {
printf("%-39s %-15s %-19s\n", "Description", "Ext-Smart-Id", "Ext-Smart-Value");
for (index = 0; index < 80; index++)
printf("-");
printf("\n");
for (index = 0; index < NUMBER_EXTENDED_SMART_ATTRIBUTES; index++)
print_smart_log(ExtdSMARTInfo.Version, ExtdSMARTInfo.vendorData[index], index == (NUMBER_EXTENDED_SMART_ATTRIBUTES - 1));
} else {
lbafs_ExtSmart = json_create_object();
json_print_smart_log(lbafs_ExtSmart, &ExtdSMARTInfo);
json_object_add_value_array(root, "SMART-Attributes", lbafs);
json_array_add_value_object(lbafs, lbafs_ExtSmart);
}
/**
* Next get Log Page 0xCF
*/
err = nvme_get_log_simple(dev_fd(dev), 0xCF,
sizeof(logPageCF), &logPageCF);
if (!err) {
if (strcmp(cfg.output_format, "json")) {
print_smart_log_CF(&logPageCF);
} else {
lbafs_DramSmart = json_create_object();
json_print_smart_log_CF(lbafs_DramSmart, &logPageCF);
json_array_add_value_object(lbafs, lbafs_DramSmart);
json_print_object(root, NULL);
}
} else if (!strcmp(cfg.output_format, "json")) {
json_print_object(root, NULL);
}
} else if (err > 0) {
nvme_show_status(err);
}
dev_close(dev);
return err;
}
/*EOF Extended-SMART Information */
/***************************************
* Temperature-Stats information
***************************************/
static void json_temp_stats(__u32 temperature, __u32 PcbTemp, __u32 SocTemp, __u32 maxTemperature,
__u32 MaxSocTemp, __u32 cf_err, __u32 scCurrentTemp, __u32 scMaxTem)
{
struct json_object *root = json_create_object();
json_object_add_value_int(root, "Current temperature", temperature);
json_object_add_value_int(root, "Current PCB temperature", PcbTemp);
json_object_add_value_int(root, "Current SOC temperature", SocTemp);
json_object_add_value_int(root, "Highest temperature", maxTemperature);
json_object_add_value_int(root, "Max SOC temperature", MaxSocTemp);
if (!cf_err) {
json_object_add_value_int(root, "SuperCap Current temperature", scCurrentTemp);
json_object_add_value_int(root, "SuperCap Max temperature", scMaxTem);
}
json_print_object(root, NULL);
}
static int temp_stats(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
struct nvme_smart_log smart_log;
EXTENDED_SMART_INFO_T ExtdSMARTInfo;
vendor_log_page_CF logPageCF;
int err, cf_err;
int index;
const char *desc = "Retrieve Seagate Temperature Stats information for the given device ";
const char *output_format = "output in binary format";
unsigned int temperature = 0, PcbTemp = 0, SocTemp = 0, scCurrentTemp = 0, scMaxTemp = 0;
unsigned long long maxTemperature = 0, MaxSocTemp = 0;
struct nvme_dev *dev;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, output_format),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err) {
printf("\nDevice not found\n");
return -1;
}
if (strcmp(cfg.output_format, "json"))
printf("Seagate Temperature Stats Information :\n");
/*STEP-1 : Get Current Temperature from SMART */
err = nvme_get_log_smart(dev_fd(dev), 0xffffffff, false, &smart_log);
if (!err) {
temperature = ((smart_log.temperature[1] << 8) | smart_log.temperature[0]);
temperature = temperature ? temperature - 273 : 0;
PcbTemp = le16_to_cpu(smart_log.temp_sensor[0]);
PcbTemp = PcbTemp ? PcbTemp - 273 : 0;
SocTemp = le16_to_cpu(smart_log.temp_sensor[1]);
SocTemp = SocTemp ? SocTemp - 273 : 0;
if (strcmp(cfg.output_format, "json")) {
printf("%-20s : %u C\n", "Current Temperature", temperature);
printf("%-20s : %u C\n", "Current PCB Temperature", PcbTemp);
printf("%-20s : %u C\n", "Current SOC Temperature", SocTemp);
}
}
/* STEP-2 : Get Max temperature form Ext SMART-id 194 */
err = nvme_get_log_simple(dev_fd(dev), 0xC4,
sizeof(ExtdSMARTInfo), &ExtdSMARTInfo);
if (!err) {
for (index = 0; index < NUMBER_EXTENDED_SMART_ATTRIBUTES; index++) {
if (ExtdSMARTInfo.vendorData[index].AttributeNumber == VS_ATTR_ID_MAX_LIFE_TEMPERATURE) {
maxTemperature = smart_attribute_vs(ExtdSMARTInfo.Version, ExtdSMARTInfo.vendorData[index]);
maxTemperature = maxTemperature ? maxTemperature - 273 : 0;
if (strcmp(cfg.output_format, "json"))
printf("%-20s : %d C\n", "Highest Temperature", (unsigned int)maxTemperature);
}
if (ExtdSMARTInfo.vendorData[index].AttributeNumber == VS_ATTR_ID_MAX_SOC_LIFE_TEMPERATURE) {
MaxSocTemp = smart_attribute_vs(ExtdSMARTInfo.Version, ExtdSMARTInfo.vendorData[index]);
MaxSocTemp = MaxSocTemp ? MaxSocTemp - 273 : 0;
if (strcmp(cfg.output_format, "json"))
printf("%-20s : %d C\n", "Max SOC Temperature", (unsigned int)MaxSocTemp);
}
}
} else {
if (err > 0)
nvme_show_status(err);
}
cf_err = nvme_get_log_simple(dev_fd(dev), 0xCF,
sizeof(ExtdSMARTInfo), &logPageCF);
if (!cf_err) {
scCurrentTemp = logPageCF.AttrCF.SuperCapCurrentTemperature;
scCurrentTemp = scCurrentTemp ? scCurrentTemp - 273 : 0;
printf("%-20s : %d C\n", "Super-cap Current Temperature", scCurrentTemp);
scMaxTemp = logPageCF.AttrCF.SuperCapMaximumTemperature;
scMaxTemp = scMaxTemp ? scMaxTemp - 273 : 0;
printf("%-20s : %d C\n", "Super-cap Max Temperature", scMaxTemp);
}
if (!strcmp(cfg.output_format, "json"))
json_temp_stats(temperature, PcbTemp, SocTemp, maxTemperature, MaxSocTemp, cf_err, scCurrentTemp, scMaxTemp);
dev_close(dev);
return err;
}
/* EOF Temperature Stats information */
/***************************************
* PCIe error-log information
***************************************/
static void print_vs_pcie_error_log(pcie_error_log_page pcieErrorLog)
{
__u32 correctPcieEc = pcieErrorLog.BadDllpErrCnt + pcieErrorLog.BadTlpErrCnt +
pcieErrorLog.RcvrErrCnt + pcieErrorLog.ReplayTOErrCnt +
pcieErrorLog.ReplayNumRolloverErrCnt;
__u32 uncorrectPcieEc = pcieErrorLog.FCProtocolErrCnt + pcieErrorLog.DllpProtocolErrCnt +
pcieErrorLog.CmpltnTOErrCnt + pcieErrorLog.RcvrQOverflowErrCnt +
pcieErrorLog.UnexpectedCplTlpErrCnt + pcieErrorLog.CplTlpURErrCnt +
pcieErrorLog.CplTlpCAErrCnt + pcieErrorLog.ReqCAErrCnt +
pcieErrorLog.ReqURErrCnt + pcieErrorLog.EcrcErrCnt +
pcieErrorLog.MalformedTlpErrCnt + pcieErrorLog.CplTlpPoisonedErrCnt +
pcieErrorLog.MemRdTlpPoisonedErrCnt;
printf("%-45s : %u\n", "PCIe Correctable Error Count", correctPcieEc);
printf("%-45s : %u\n", "PCIe Un-Correctable Error Count", uncorrectPcieEc);
printf("%-45s : %u\n", "Unsupported Request Error Status (URES)", pcieErrorLog.ReqURErrCnt);
printf("%-45s : %u\n", "ECRC Error Status (ECRCES)", pcieErrorLog.EcrcErrCnt);
printf("%-45s : %u\n", "Malformed TLP Status (MTS)", pcieErrorLog.MalformedTlpErrCnt);
printf("%-45s : %u\n", "Receiver Overflow Status (ROS)", pcieErrorLog.RcvrQOverflowErrCnt);
printf("%-45s : %u\n", "Unexpected Completion Status(UCS)", pcieErrorLog.UnexpectedCplTlpErrCnt);
printf("%-45s : %u\n", "Completion Timeout Status (CTS)", pcieErrorLog.CmpltnTOErrCnt);
printf("%-45s : %u\n", "Flow Control Protocol Error Status (FCPES)", pcieErrorLog.FCProtocolErrCnt);
printf("%-45s : %u\n", "Poisoned TLP Status (PTS)", pcieErrorLog.MemRdTlpPoisonedErrCnt);
printf("%-45s : %u\n", "Data Link Protocol Error Status(DLPES)", pcieErrorLog.DllpProtocolErrCnt);
printf("%-45s : %u\n", "Replay Timer Timeout Status(RTS)", pcieErrorLog.ReplayTOErrCnt);
printf("%-45s : %u\n", "Replay_NUM Rollover Status(RRS)", pcieErrorLog.ReplayNumRolloverErrCnt);
printf("%-45s : %u\n", "Bad DLLP Status (BDS)", pcieErrorLog.BadDllpErrCnt);
printf("%-45s : %u\n", "Bad TLP Status (BTS)", pcieErrorLog.BadTlpErrCnt);
printf("%-45s : %u\n", "Receiver Error Status (RES)", pcieErrorLog.RcvrErrCnt);
printf("%-45s : %u\n", "Cpl TLP Unsupported Request Error Count", pcieErrorLog.CplTlpURErrCnt);
printf("%-45s : %u\n", "Cpl TLP Completion Abort Error Count", pcieErrorLog.CplTlpCAErrCnt);
printf("%-45s : %u\n", "Cpl TLP Poisoned Error Count", pcieErrorLog.CplTlpPoisonedErrCnt);
printf("%-45s : %u\n", "Request Completion Abort Error Count", pcieErrorLog.ReqCAErrCnt);
printf("%-45s : %s\n", "Advisory Non-Fatal Error Status(ANFES)", "Not Supported");
printf("%-45s : %s\n", "Completer Abort Status (CAS)", "Not Supported");
}
static void json_vs_pcie_error_log(pcie_error_log_page pcieErrorLog)
{
struct json_object *root = json_create_object();
__u32 correctPcieEc = pcieErrorLog.BadDllpErrCnt + pcieErrorLog.BadTlpErrCnt +
pcieErrorLog.RcvrErrCnt + pcieErrorLog.ReplayTOErrCnt +
pcieErrorLog.ReplayNumRolloverErrCnt;
__u32 uncorrectPcieEc = pcieErrorLog.FCProtocolErrCnt + pcieErrorLog.DllpProtocolErrCnt +
pcieErrorLog.CmpltnTOErrCnt + pcieErrorLog.RcvrQOverflowErrCnt +
pcieErrorLog.UnexpectedCplTlpErrCnt + pcieErrorLog.CplTlpURErrCnt +
pcieErrorLog.CplTlpCAErrCnt + pcieErrorLog.ReqCAErrCnt +
pcieErrorLog.ReqURErrCnt + pcieErrorLog.EcrcErrCnt +
pcieErrorLog.MalformedTlpErrCnt + pcieErrorLog.CplTlpPoisonedErrCnt +
pcieErrorLog.MemRdTlpPoisonedErrCnt;
json_object_add_value_int(root, "PCIe Correctable Error Count", correctPcieEc);
json_object_add_value_int(root, "PCIe Un-Correctable Error Count", uncorrectPcieEc);
json_object_add_value_int(root, "Unsupported Request Error Status (URES)", pcieErrorLog.ReqURErrCnt);
json_object_add_value_int(root, "ECRC Error Status (ECRCES)", pcieErrorLog.EcrcErrCnt);
json_object_add_value_int(root, "Malformed TLP Status (MTS)", pcieErrorLog.MalformedTlpErrCnt);
json_object_add_value_int(root, "Receiver Overflow Status (ROS)", pcieErrorLog.RcvrQOverflowErrCnt);
json_object_add_value_int(root, "Unexpected Completion Status(UCS)", pcieErrorLog.UnexpectedCplTlpErrCnt);
json_object_add_value_int(root, "Completion Timeout Status (CTS)", pcieErrorLog.CmpltnTOErrCnt);
json_object_add_value_int(root, "Flow Control Protocol Error Status (FCPES)", pcieErrorLog.FCProtocolErrCnt);
json_object_add_value_int(root, "Poisoned TLP Status (PTS)", pcieErrorLog.MemRdTlpPoisonedErrCnt);
json_object_add_value_int(root, "Data Link Protocol Error Status(DLPES)", pcieErrorLog.DllpProtocolErrCnt);
json_object_add_value_int(root, "Replay Timer Timeout Status(RTS)", pcieErrorLog.ReplayTOErrCnt);
json_object_add_value_int(root, "Replay_NUM Rollover Status(RRS)", pcieErrorLog.ReplayNumRolloverErrCnt);
json_object_add_value_int(root, "Bad DLLP Status (BDS)", pcieErrorLog.BadDllpErrCnt);
json_object_add_value_int(root, "Bad TLP Status (BTS)", pcieErrorLog.BadTlpErrCnt);
json_object_add_value_int(root, "Receiver Error Status (RES)", pcieErrorLog.RcvrErrCnt);
json_object_add_value_int(root, "Cpl TLP Unsupported Request Error Count", pcieErrorLog.CplTlpURErrCnt);
json_object_add_value_int(root, "Cpl TLP Completion Abort Error Count", pcieErrorLog.CplTlpCAErrCnt);
json_object_add_value_int(root, "Cpl TLP Poisoned Error Count", pcieErrorLog.CplTlpPoisonedErrCnt);
json_object_add_value_int(root, "Request Completion Abort Error Count", pcieErrorLog.ReqCAErrCnt);
json_print_object(root, NULL);
}
static int vs_pcie_error_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
pcie_error_log_page pcieErrorLog;
struct nvme_dev *dev;
const char *desc = "Retrieve Seagate PCIe error counters for the given device ";
const char *output_format = "output in binary format";
int err;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, output_format),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err) {
printf("\nDevice not found\n");
return -1;
}
if (strcmp(cfg.output_format, "json"))
printf("Seagate PCIe error counters Information :\n");
err = nvme_get_log_simple(dev_fd(dev), 0xCB,
sizeof(pcieErrorLog), &pcieErrorLog);
if (!err) {
if (strcmp(cfg.output_format, "json"))
print_vs_pcie_error_log(pcieErrorLog);
else
json_vs_pcie_error_log(pcieErrorLog);
} else if (err > 0) {
nvme_show_status(err);
}
dev_close(dev);
return err;
}
/* EOF PCIE error-log information */
/***************************************
* FW Activation History log
***************************************/
static void print_stx_vs_fw_activate_history(stx_fw_activ_history_log_page fwActivHis)
{
__u32 i;
char prev_fw[9] = {0};
char new_fw[9] = {0};
char buf[80];
if (fwActivHis.numValidFwActHisEnt > 0) {
printf("\n\nSeagate FW Activation History :\n");
printf("%-9s %-21s %-7s %-13s %-9s %-5s %-15s %-9s\n", "Counter ", " Timestamp ", " PCC ", "Previous FW ", "New FW ", "Slot", "Commit Action", "Result");
for (i = 0; i < fwActivHis.numValidFwActHisEnt; i++) {
printf(" %-4d ", fwActivHis.fwActHisEnt[i].fwActivCnt);
time_t t = fwActivHis.fwActHisEnt[i].timeStamp / 1000;
struct tm ts = *localtime(&t);
strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &ts);
printf(" %-20s ", buf);
printf("%-5" PRId64 " ",
(uint64_t)fwActivHis.fwActHisEnt[i].powCycleCnt);
memset(prev_fw, 0, sizeof(prev_fw));
memcpy(prev_fw, fwActivHis.fwActHisEnt[i].previousFW, sizeof(fwActivHis.fwActHisEnt[i].previousFW));
printf("%-8s ", prev_fw);
memset(new_fw, 0, sizeof(new_fw));
memcpy(new_fw, fwActivHis.fwActHisEnt[i].newFW, sizeof(fwActivHis.fwActHisEnt[i].newFW));
printf("%-8s ", new_fw);
printf(" %-2d ", fwActivHis.fwActHisEnt[i].slotNum);
printf(" 0x%02x ", fwActivHis.fwActHisEnt[i].commitActionType);
printf(" 0x%02x\n", fwActivHis.fwActHisEnt[i].result);
}
} else {
printf("%s\n", "Do not have valid FW Activation History");
}
}
static void json_stx_vs_fw_activate_history(stx_fw_activ_history_log_page fwActivHis)
{
struct json_object *root = json_create_object();
__u32 i;
char buf[80];
struct json_object *historyLogPage = json_create_array();
json_object_add_value_array(root, "Seagate FW Activation History", historyLogPage);
if (fwActivHis.numValidFwActHisEnt > 0) {
for (i = 0; i < fwActivHis.numValidFwActHisEnt; i++) {
struct json_object *lbaf = json_create_object();
char prev_fw[8] = { 0 };
char new_fw[8] = { 0 };
json_object_add_value_int(lbaf, "Counter", fwActivHis.fwActHisEnt[i].fwActivCnt);
time_t t = fwActivHis.fwActHisEnt[i].timeStamp / 1000;
struct tm ts = *localtime(&t);
strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &ts);
printf(" %-20s ", buf);
json_object_add_value_string(lbaf, "Timestamp", buf);
json_object_add_value_int(lbaf, "PCC", fwActivHis.fwActHisEnt[i].powCycleCnt);
sprintf(prev_fw, "%s", fwActivHis.fwActHisEnt[i].previousFW);
json_object_add_value_string(lbaf, "Previous_FW", prev_fw);
sprintf(new_fw, "%s", fwActivHis.fwActHisEnt[i].newFW);
json_object_add_value_string(lbaf, "New_FW", new_fw);
json_object_add_value_int(lbaf, "Slot", fwActivHis.fwActHisEnt[i].slotNum);
json_object_add_value_int(lbaf, "Commit_Action", fwActivHis.fwActHisEnt[i].commitActionType);
json_object_add_value_int(lbaf, "Result", fwActivHis.fwActHisEnt[i].result);
json_array_add_value_object(historyLogPage, lbaf);
}
} else {
printf("%s\n", "Do not have valid FW Activation History");
}
json_print_object(root, NULL);
json_free_object(root);
}
static int stx_vs_fw_activate_history(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
stx_fw_activ_history_log_page fwActivHis;
struct nvme_dev *dev;
const char *desc = "Retrieve FW Activate History for Seagate device ";
const char *output_format = "output in binary format";
int err;
struct config {
char *output_format;
};
struct config cfg = {
.output_format = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("output-format", 'o', &cfg.output_format, output_format),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err < 0) {
printf("\nDevice not found\n");
return -1;
}
if (strcmp(cfg.output_format, "json"))
printf("Seagate FW Activation History Information :\n");
err = nvme_get_log_simple(dev_fd(dev), 0xC2, sizeof(fwActivHis), &fwActivHis);
if (!err) {
if (strcmp(cfg.output_format, "json"))
print_stx_vs_fw_activate_history(fwActivHis);
else
json_stx_vs_fw_activate_history(fwActivHis);
} else if (err > 0) {
nvme_show_status(err);
}
dev_close(dev);
return err;
}
/* EOF FW Activation History log information */
static int clear_fw_activate_history(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc = "Clear FW Activation History for the given Seagate device ";
const char *save = "specifies that the controller shall save the attribute";
int err;
struct nvme_dev *dev;
struct nvme_id_ctrl ctrl;
char modelNo[40];
__u32 result;
struct config {
bool save;
};
struct config cfg = {
.save = 0,
};
OPT_ARGS(opts) = {
OPT_FLAG("save", 's', &cfg.save, save),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err < 0) {
printf("\nDevice not found\n");
return -1;
}
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (!err) {
memcpy(modelNo, ctrl.mn, sizeof(modelNo));
} else {
nvme_show_status(err);
return err;
}
if (!stx_is_jag_pan(modelNo)) {
printf("\nDevice does not support Clear FW Activation History\n");
} else {
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = 0xC1,
.nsid = 0,
.cdw11 = 0x80000000,
.cdw12 = 0,
.save = 0,
.uuidx = 0,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (err)
fprintf(stderr, "%s: couldn't clear PCIe correctable errors\n",
__func__);
}
if (err < 0) {
perror("set-feature");
return errno;
}
dev_close(dev);
return err;
}
static int vs_clr_pcie_correctable_errs(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc = "Clear Seagate PCIe Correctable counters for the given device ";
const char *save = "specifies that the controller shall save the attribute";
struct nvme_id_ctrl ctrl;
char modelNo[40];
struct nvme_dev *dev;
__u32 result;
int err;
struct config {
bool save;
};
struct config cfg = {
.save = 0,
};
OPT_ARGS(opts) = {
OPT_FLAG("save", 's', &cfg.save, save),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err) {
printf("\nDevice not found\n");
return -1;
}
err = nvme_identify_ctrl(dev_fd(dev), &ctrl);
if (!err) {
memcpy(modelNo, ctrl.mn, sizeof(modelNo));
} else {
nvme_show_status(err);
return err;
}
if (!stx_is_jag_pan(modelNo)) {
err = nvme_set_features_simple(dev_fd(dev), 0xE1, 0, 0xCB, cfg.save, &result);
} else {
struct nvme_set_features_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.fid = 0xC3,
.nsid = 0,
.cdw11 = 0x80000000,
.cdw12 = 0,
.save = 0,
.uuidx = 0,
.cdw15 = 0,
.data_len = 0,
.data = NULL,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = &result,
};
err = nvme_set_features(&args);
if (err)
fprintf(stderr, "%s: couldn't clear PCIe correctable errors\n", __func__);
}
err = nvme_set_features_simple(dev_fd(dev), 0xE1, 0, 0xCB, cfg.save, &result);
if (err < 0) {
perror("set-feature");
return errno;
}
dev_close(dev);
return err;
}
static int get_host_tele(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc =
"Capture the Telemetry Host-Initiated Data in either hex-dump (default) or binary format";
const char *namespace_id = "desired namespace";
const char *log_specific = "1 - controller shall capture Data representing the internal\n"
"state of the controller at the time the command is processed.\n"
"0 - controller shall not update the Telemetry Host Initiated Data.";
const char *raw = "output in raw format";
struct nvme_temetry_log_hdr tele_log;
int blkCnt, maxBlk = 0, blksToGet;
struct nvme_dev *dev;
unsigned char *log;
__le64 offset = 0;
int err, dump_fd;
struct config {
__u32 namespace_id;
__u32 log_id;
bool raw_binary;
};
struct config cfg = {
.namespace_id = 0xffffffff,
.log_id = 0,
};
OPT_ARGS(opts) = {
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_UINT("log_specific", 'i', &cfg.log_id, log_specific),
OPT_FLAG("raw-binary", 'b', &cfg.raw_binary, raw),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
dump_fd = STDOUT_FILENO;
cfg.log_id = (cfg.log_id << 8) | 0x07;
err = nvme_get_nsid_log(dev_fd(dev), false, cfg.log_id,
cfg.namespace_id,
sizeof(tele_log), (void *)(&tele_log));
if (!err) {
maxBlk = tele_log.tele_data_area3;
offset += 512;
if (!cfg.raw_binary) {
printf("Device:%s log-id:%d namespace-id:%#x\n",
dev->name, cfg.log_id,
cfg.namespace_id);
printf("Data Block 1 Last Block:%d Data Block 2 Last Block:%d Data Block 3 Last Block:%d\n",
tele_log.tele_data_area1, tele_log.tele_data_area2, tele_log.tele_data_area3);
d((unsigned char *)(&tele_log), sizeof(tele_log), 16, 1);
} else
seaget_d_raw((unsigned char *)(&tele_log), sizeof(tele_log), dump_fd);
} else if (err > 0) {
nvme_show_status(err);
} else {
perror("log page");
}
blkCnt = 0;
while (blkCnt < maxBlk) {
unsigned long long bytesToGet;
blksToGet = ((maxBlk - blkCnt) >= TELEMETRY_BLOCKS_TO_READ) ? TELEMETRY_BLOCKS_TO_READ : (maxBlk - blkCnt);
if (!blksToGet) {
dev_close(dev);
return err;
}
bytesToGet = (unsigned long long)blksToGet * 512;
log = malloc(bytesToGet);
if (!log) {
fprintf(stderr, "could not alloc buffer for log\n");
dev_close(dev);
return -EINVAL;
}
memset(log, 0, bytesToGet);
struct nvme_get_log_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.lid = cfg.log_id,
.nsid = cfg.namespace_id,
.lpo = offset,
.lsp = 0,
.lsi = 0,
.rae = true,
.uuidx = 0,
.csi = NVME_CSI_NVM,
.ot = false,
.len = bytesToGet,
.log = (void *)log,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
err = nvme_get_log(&args);
if (!err) {
offset += (__le64)bytesToGet;
if (!cfg.raw_binary) {
printf("\nBlock # :%d to %d\n", blkCnt + 1, blkCnt + blksToGet);
d((unsigned char *)log, bytesToGet, 16, 1);
} else
seaget_d_raw((unsigned char *)log, bytesToGet, dump_fd);
} else if (err > 0) {
nvme_show_status(err);
} else {
perror("log page");
}
blkCnt += blksToGet;
free(log);
}
dev_close(dev);
return err;
}
static int get_ctrl_tele(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc =
"Capture the Telemetry Controller-Initiated Data in either hex-dump (default) or binary format";
const char *namespace_id = "desired namespace";
const char *raw = "output in raw format";
struct nvme_dev *dev;
int err, dump_fd;
struct nvme_temetry_log_hdr tele_log;
__le64 offset = 0;
__u16 log_id;
int blkCnt, maxBlk = 0, blksToGet;
unsigned char *log;
struct config {
__u32 namespace_id;
bool raw_binary;
};
struct config cfg = {
.namespace_id = 0xffffffff,
};
OPT_ARGS(opts) = {
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_FLAG("raw-binary", 'b', &cfg.raw_binary, raw),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
dump_fd = STDOUT_FILENO;
log_id = 0x08;
err = nvme_get_nsid_log(dev_fd(dev), false, log_id, cfg.namespace_id,
sizeof(tele_log), (void *)(&tele_log));
if (!err) {
maxBlk = tele_log.tele_data_area3;
offset += 512;
if (!cfg.raw_binary) {
printf("Device:%s namespace-id:%#x\n",
dev->name, cfg.namespace_id);
printf("Data Block 1 Last Block:%d Data Block 2 Last Block:%d Data Block 3 Last Block:%d\n",
tele_log.tele_data_area1, tele_log.tele_data_area2, tele_log.tele_data_area3);
d((unsigned char *)(&tele_log), sizeof(tele_log), 16, 1);
} else
seaget_d_raw((unsigned char *)(&tele_log), sizeof(tele_log), dump_fd);
} else if (err > 0) {
nvme_show_status(err);
} else {
perror("log page");
}
blkCnt = 0;
while (blkCnt < maxBlk) {
unsigned long long bytesToGet;
blksToGet = ((maxBlk - blkCnt) >= TELEMETRY_BLOCKS_TO_READ) ? TELEMETRY_BLOCKS_TO_READ : (maxBlk - blkCnt);
if (!blksToGet)
return err;
bytesToGet = (unsigned long long)blksToGet * 512;
log = malloc(bytesToGet);
if (!log) {
fprintf(stderr, "could not alloc buffer for log\n");
return -EINVAL;
}
memset(log, 0, bytesToGet);
struct nvme_get_log_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.lid = log_id,
.nsid = cfg.namespace_id,
.lpo = offset,
.lsp = 0,
.lsi = 0,
.rae = true,
.uuidx = 0,
.csi = NVME_CSI_NVM,
.ot = false,
.len = bytesToGet,
.log = (void *)log,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
err = nvme_get_log(&args);
if (!err) {
offset += (__le64)bytesToGet;
if (!cfg.raw_binary) {
printf("\nBlock # :%d to %d\n", blkCnt + 1, blkCnt + blksToGet);
d((unsigned char *)log, bytesToGet, 16, 1);
} else
seaget_d_raw((unsigned char *)log, bytesToGet, dump_fd);
} else if (err > 0) {
nvme_show_status(err);
} else {
perror("log page");
}
blkCnt += blksToGet;
free(log);
}
dev_close(dev);
return err;
}
void seaget_d_raw(unsigned char *buf, int len, int fd)
{
if (write(fd, (void *)buf, len) <= 0)
printf("%s: Write Failed\n", __func__);
}
static int vs_internal_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
const char *desc = "Capture the Telemetry Controller-Initiated Data in binary format";
const char *namespace_id = "desired namespace";
const char *file = "dump file";
struct nvme_dev *dev;
int err, dump_fd;
int flags = O_WRONLY | O_CREAT;
int mode = 0664;
struct nvme_temetry_log_hdr tele_log;
__le64 offset = 0;
__u16 log_id;
int blkCnt, maxBlk = 0, blksToGet;
unsigned char *log;
struct config {
__u32 namespace_id;
char *file;
};
struct config cfg = {
.namespace_id = 0xffffffff,
.file = "",
};
OPT_ARGS(opts) = {
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_FILE("dump-file", 'f', &cfg.file, file),
OPT_END()
};
err = parse_and_open(&dev, argc, argv, desc, opts);
if (err)
return err;
dump_fd = STDOUT_FILENO;
if (strlen(cfg.file)) {
dump_fd = open(cfg.file, flags, mode);
if (dump_fd < 0) {
perror(cfg.file);
dev_close(dev);
return -EINVAL;
}
}
log_id = 0x08;
err = nvme_get_nsid_log(dev_fd(dev), false, log_id, cfg.namespace_id,
sizeof(tele_log), (void *)(&tele_log));
if (!err) {
maxBlk = tele_log.tele_data_area3;
offset += 512;
seaget_d_raw((unsigned char *)(&tele_log), sizeof(tele_log), dump_fd);
} else if (err > 0) {
nvme_show_status(err);
} else {
perror("log page");
}
blkCnt = 0;
while (blkCnt < maxBlk) {
unsigned long long bytesToGet;
blksToGet = ((maxBlk - blkCnt) >= TELEMETRY_BLOCKS_TO_READ) ? TELEMETRY_BLOCKS_TO_READ : (maxBlk - blkCnt);
if (!blksToGet)
goto out;
bytesToGet = (unsigned long long)blksToGet * 512;
log = malloc(bytesToGet);
if (!log) {
fprintf(stderr, "could not alloc buffer for log\n");
err = EINVAL;
goto out;
}
memset(log, 0, bytesToGet);
struct nvme_get_log_args args = {
.args_size = sizeof(args),
.fd = dev_fd(dev),
.lid = log_id,
.nsid = cfg.namespace_id,
.lpo = offset,
.lsp = 0,
.lsi = 0,
.rae = true,
.uuidx = 0,
.csi = NVME_CSI_NVM,
.ot = false,
.len = bytesToGet,
.log = (void *)log,
.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,
.result = NULL,
};
err = nvme_get_log(&args);
if (!err) {
offset += (__le64)bytesToGet;
seaget_d_raw((unsigned char *)log, bytesToGet, dump_fd);
} else if (err > 0) {
nvme_show_status(err);
} else {
perror("log page");
}
blkCnt += blksToGet;
free(log);
}
out:
if (strlen(cfg.file))
close(dump_fd);
dev_close(dev);
return err;
}
/*SEAGATE-PLUGIN Version */
static int seagate_plugin_version(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
printf("Seagate-Plugin version : %d.%d\n",
SEAGATE_PLUGIN_VERSION_MAJOR,
SEAGATE_PLUGIN_VERSION_MINOR);
return 0;
}
/*EOF SEAGATE-PLUGIN Version */
/*OCP SEAGATE-PLUGIN Version */
static int stx_ocp_plugin_version(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
printf("Seagate-OCP-Plugin version : %d.%d\n",
SEAGATE_OCP_PLUGIN_VERSION_MAJOR,
SEAGATE_OCP_PLUGIN_VERSION_MINOR);
return 0;
}
/*EOF OCP SEAGATE-PLUGIN Version */