1
0
Fork 0
nvme-cli/plugins/micron/micron-nvme.c
Daniel Baumann d6fd2fdea9
Merging upstream version 1.14.
Signed-off-by: Daniel Baumann <daniel@debian.org>
2025-02-16 11:31:10 +01:00

2345 lines
74 KiB
C

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <string.h>
#include <libgen.h>
#include <sys/stat.h>
#include "nvme.h"
#include "nvme-print.h"
#include "nvme-ioctl.h"
#include <sys/ioctl.h>
#include <limits.h>
#define CREATE_CMD
#include "micron-nvme.h"
/* Supported Vendor specific feature ids */
#define MICRON_FEATURE_CLEAR_PCI_CORRECTABLE_ERRORS 0xC3
#define MICRON_FEATURE_CLEAR_FW_ACTIVATION_HISTORY 0xCE
#define MICRON_FEATURE_TELEMETRY_CONTROL_OPTION 0xCF
#define MICRON_FEATURE_SMBUS_OPTION 0xD5
/* Supported Vendor specific log page sizes */
#define C5_log_size (((452 + 16 * 1024) / 4) * 4096)
#define C0_log_size 512
#define C2_log_size 4096
#define D0_log_size 512
#define FB_log_size 512
#define MaxLogChunk 16 * 1024
#define CommonChunkSize 16 * 4096
#define min(x, y) ((x) > (y) ? (y) : (x))
#define SensorCount 2
/* Plugin version major_number.minor_number.patch */
static const char *__version_major = "1";
static const char *__version_minor = "0";
static const char *__version_patch = "5";
/* supported models of micron plugin; new models should be added at the end
* before UNKNOWN_MODEL. Make sure M5410 is first in the list !
*/
typedef enum { M5410 = 0, M51AX, M51BX, M51CX, M5407, M5411, UNKNOWN_MODEL } eDriveModel;
#define MICRON_VENDOR_ID 0x1344
static char *fvendorid1 = "/sys/class/nvme/nvme%d/device/vendor";
static char *fvendorid2 = "/sys/class/misc/nvme%d/device/vendor";
static char *fdeviceid1 = "/sys/class/nvme/nvme%d/device/device";
static char *fdeviceid2 = "/sys/class/misc/nvme%d/device/device";
static unsigned short vendor_id;
static unsigned short device_id;
typedef struct _LogPageHeader_t {
unsigned char numDwordsInLogPageHeaderLo;
unsigned char logPageHeaderFormatVersion;
unsigned char logPageId;
unsigned char numDwordsInLogPageHeaderHi;
unsigned int numValidDwordsInPayload;
unsigned int numDwordsInEntireLogPage;
} LogPageHeader_t;
static void WriteData(__u8 *data, __u32 len, const char *dir, const char *file, const char *msg)
{
char tempFolder[PATH_MAX] = { 0 };
FILE *fpOutFile = NULL;
sprintf(tempFolder, "%s/%s", dir, file);
if ((fpOutFile = fopen(tempFolder, "ab+")) != NULL) {
if (fwrite(data, 1, len, fpOutFile) != len) {
printf("Failed to write %s data to %s\n", msg, tempFolder);
}
fclose(fpOutFile);
} else {
printf("Failed to open %s file to write %s\n", tempFolder, msg);
}
}
static int ReadSysFile(const char *file, unsigned short *id)
{
int ret = 0;
char idstr[32] = { '\0' };
int fd = open(file, O_RDONLY);
if (fd > 0) {
ret = read(fd, idstr, sizeof(idstr));
close(fd);
}
if (fd < 0 || ret < 0)
perror(file);
else
*id = strtol(idstr, NULL, 16);
return ret;
}
static eDriveModel GetDriveModel(int idx)
{
eDriveModel eModel = UNKNOWN_MODEL;
char path[512];
sprintf(path, fvendorid1, idx);
if (ReadSysFile(path, &vendor_id) < 0) {
sprintf(path, fvendorid2, idx);
ReadSysFile(path, &vendor_id);
}
sprintf(path, fdeviceid1, idx);
if (ReadSysFile(path, &device_id) < 0) {
sprintf(path, fdeviceid2, idx);
ReadSysFile(path, &device_id);
}
if (vendor_id == MICRON_VENDOR_ID) {
switch (device_id) {
case 0x51A0:
case 0x51A1:
case 0x51A2:
eModel = M51AX;
break;
case 0x51B0:
case 0x51B1:
case 0x51B2:
eModel = M51BX;
break;
case 0x51C0:
case 0x51C1:
case 0x51C2:
case 0x51C3:
eModel = M51CX;
break;
case 0x5405:
case 0x5406:
case 0x5407:
eModel = M5407;
break;
case 0x5410:
eModel = M5410;
break;
case 0x5411:
eModel = M5411;
break;
default:
break;
}
}
return eModel;
}
static int ZipAndRemoveDir(char *strDirName, char *strFileName)
{
int err = 0;
char strBuffer[PATH_MAX];
int nRet;
bool is_tgz = false;
struct stat sb;
if (strstr(strFileName, ".tar.gz") || strstr(strFileName, ".tgz")) {
sprintf(strBuffer, "tar -zcf \"%s\" \"%s\"", strFileName,
strDirName);
is_tgz = true;
} else {
sprintf(strBuffer, "zip -r \"%s\" \"%s\" >temp.txt 2>&1", strFileName,
strDirName);
}
err = EINVAL;
nRet = system(strBuffer);
/* check if log file is created, if not print error message */
if (nRet < 0 || (stat(strFileName, &sb) == -1)) {
if (is_tgz)
sprintf(strBuffer, "check if tar and gzip commands are installed");
else
sprintf(strBuffer, "check if zip command is installed");
fprintf(stderr, "Failed to create log data package, %s!\n", strBuffer);
}
sprintf(strBuffer, "rm -f -R \"%s\" >temp.txt 2>&1", strDirName);
nRet = system(strBuffer);
if (nRet < 0)
printf("Failed to remove temporary files!\n");
err = system("rm -f temp.txt");
return err;
}
static int SetupDebugDataDirectories(char *strSN, char *strFilePath,
char *strMainDirName, char *strOSDirName,
char *strCtrlDirName)
{
int err = 0;
char strAppend[250];
struct stat st;
char *fileLocation = NULL;
char *fileName;
int length = 0;
int nIndex = 0;
char *strTemp = NULL;
struct stat dirStat;
int j;
int k = 0;
int i = 0;
if (strchr(strFilePath, '/') != NULL) {
fileName = strrchr(strFilePath, '\\');
if (fileName == NULL) {
fileName = strrchr(strFilePath, '/');
}
if (fileName != NULL) {
if (!strcmp(fileName, "/")) {
goto exit_status;
}
while (strFilePath[nIndex] != '\0') {
if ('\\' == strFilePath[nIndex] && '\\' == strFilePath[nIndex + 1]) {
goto exit_status;
}
nIndex++;
}
length = (int)strlen(strFilePath) - (int)strlen(fileName);
if (fileName == strFilePath) {
length = 1;
}
if ((fileLocation = (char *)malloc(length + 1)) == NULL) {
goto exit_status;
}
strncpy(fileLocation, strFilePath, length);
fileLocation[length] = '\0';
while (fileLocation[k] != '\0') {
if (fileLocation[k] == '\\') {
fileLocation[k] = '/';
}
k++;
}
length = (int)strlen(fileLocation);
if (':' == fileLocation[length - 1]) {
if ((strTemp = (char *)malloc(length + 2)) == NULL) {
goto exit_status;
}
strcpy(strTemp, fileLocation);
strcat(strTemp, "/");
free(fileLocation);
length = (int)strlen(strTemp);
if ((fileLocation = (char *)malloc(length + 1)) == NULL) {
goto exit_status;
}
memcpy(fileLocation, strTemp, length + 1);
free(strTemp);
}
if (stat(fileLocation, &st) != 0) {
free(fileLocation);
goto exit_status;
}
free(fileLocation);
} else {
goto exit_status;
}
}
nIndex = 0;
for (i = 0; i < (int)strlen(strSN); i++) {
if (strSN[i] != ' ' && strSN[i] != '\n' && strSN[i] != '\t' && strSN[i] != '\r') {
strMainDirName[nIndex++] = strSN[i];
}
}
strMainDirName[nIndex] = '\0';
j = 1;
while (stat(strMainDirName, &dirStat) == 0) {
strMainDirName[nIndex] = '\0';
sprintf(strAppend, "-%d", j);
strcat(strMainDirName, strAppend);
j++;
}
mkdir(strMainDirName, 0777);
if (strOSDirName != NULL) {
sprintf(strOSDirName, "%s/%s", strMainDirName, "OS");
mkdir(strOSDirName, 0777);
}
if (strCtrlDirName != NULL) {
sprintf(strCtrlDirName, "%s/%s", strMainDirName, "Controller");
mkdir(strCtrlDirName, 0777);
}
exit_status:
return err;
}
static int GetLogPageSize(int nFD, unsigned char ucLogID, int *nLogSize)
{
int err = 0;
unsigned char pTmpBuf[CommonChunkSize] = { 0 };
LogPageHeader_t *pLogHeader = NULL;
if (ucLogID == 0xC1 || ucLogID == 0xC2 || ucLogID == 0xC4) {
err = nvme_get_log(nFD, NVME_NSID_ALL, ucLogID, false, NVME_NO_LOG_LSP,
CommonChunkSize, pTmpBuf);
if (err == 0) {
pLogHeader = (LogPageHeader_t *) pTmpBuf;
LogPageHeader_t *pLogHeader1 = (LogPageHeader_t *) pLogHeader;
*nLogSize = (int)(pLogHeader1->numDwordsInEntireLogPage) * 4;
if (pLogHeader1->logPageHeaderFormatVersion == 0) {
printf ("Unsupported log page format version %d of log page : 0x%X\n",
ucLogID, err);
*nLogSize = 0;
err = -1;
}
} else {
printf ("Getting size of log page : 0x%X failed with %d\n", ucLogID, err);
*nLogSize = 0;
}
}
return err;
}
static int NVMEGetLogPage(int nFD, unsigned char ucLogID, unsigned char *pBuffer, int nBuffSize)
{
int err = 0;
struct nvme_admin_cmd cmd = { 0 };
unsigned int uiNumDwords = (unsigned int)nBuffSize / sizeof(unsigned int);
unsigned int uiMaxChunk = uiNumDwords;
unsigned int uiNumChunks = 1;
unsigned int uiXferDwords = 0;
unsigned long long ullBytesRead = 0;
unsigned char *pTempPtr = pBuffer;
unsigned char ucOpCode = 0x02;
if (ullBytesRead == 0 && (ucLogID == 0xE6 || ucLogID == 0xE7)) {
uiMaxChunk = 4096;
} else if (uiMaxChunk > 16 * 1024) {
uiMaxChunk = 16 * 1024;
}
uiNumChunks = uiNumDwords / uiMaxChunk;
if (uiNumDwords % uiMaxChunk > 0) {
uiNumChunks += 1;
}
for (unsigned int i = 0; i < uiNumChunks; i++) {
memset(&cmd, 0, sizeof(cmd));
uiXferDwords = uiMaxChunk;
if (i == uiNumChunks - 1 && uiNumDwords % uiMaxChunk > 0) {
uiXferDwords = uiNumDwords % uiMaxChunk;
}
cmd.opcode = ucOpCode;
cmd.cdw10 |= ucLogID;
cmd.cdw10 |= ((uiXferDwords - 1) & 0x0000FFFF) << 16;
if (ucLogID == 0x7) {
cmd.cdw10 |= 0x80;
}
if (ullBytesRead == 0 && (ucLogID == 0xE6 || ucLogID == 0xE7)) {
cmd.cdw11 = 1;
}
if (ullBytesRead > 0 && !(ucLogID == 0xE6 || ucLogID == 0xE7)) {
unsigned long long ullOffset = ullBytesRead;
cmd.cdw12 = ullOffset & 0xFFFFFFFF;
cmd.cdw13 = (ullOffset >> 32) & 0xFFFFFFFF;
}
cmd.addr = (__u64) (uintptr_t) pTempPtr;
cmd.nsid = 0xFFFFFFFF;
cmd.data_len = uiXferDwords * 4;
err = nvme_submit_passthru(nFD, NVME_IOCTL_ADMIN_CMD, &cmd);
ullBytesRead += uiXferDwords * 4;
pTempPtr = pBuffer + ullBytesRead;
}
return err;
}
static int NVMEResetLog(int nFD, unsigned char ucLogID, int nBufferSize,
long long llMaxSize)
{
unsigned int *pBuffer = NULL;
int err = 0;
if ((pBuffer = (unsigned int *)calloc(1, nBufferSize)) == NULL)
return err;
while (err == 0 && llMaxSize > 0) {
err = NVMEGetLogPage(nFD, ucLogID, (unsigned char *)pBuffer, nBufferSize);
if (err)
return err;
if (pBuffer[0] == 0xdeadbeef)
break;
llMaxSize = llMaxSize - nBufferSize;
}
free(pBuffer);
return err;
}
static int GetCommonLogPage(int nFD, unsigned char ucLogID,
unsigned char **pBuffer, int nBuffSize)
{
unsigned char *pTempPtr = NULL;
int err = 0;
pTempPtr = (unsigned char *)malloc(nBuffSize);
if (!pTempPtr) {
goto exit_status;
}
memset(pTempPtr, 0, nBuffSize);
err = nvme_get_log(nFD, NVME_NSID_ALL, ucLogID, false, NVME_NO_LOG_LSP,
nBuffSize, pTempPtr);
*pBuffer = pTempPtr;
exit_status:
return err;
}
/*
* Plugin Commands
*/
static int micron_parse_options(int argc, char **argv, const char *desc,
const struct argconfig_commandline_options *opts, eDriveModel *modelp)
{
int idx = 0;
int fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0) {
perror("open");
return -1;
}
if (modelp) {
sscanf(argv[optind], "/dev/nvme%d", &idx);
*modelp = GetDriveModel(idx);
}
return fd;
}
static int micron_fw_commit(int fd, int select)
{
struct nvme_admin_cmd cmd = {
.opcode = nvme_admin_activate_fw,
.cdw10 = 8,
.cdw12 = select,
};
return ioctl(fd, NVME_IOCTL_ADMIN_CMD, &cmd);
}
static int micron_selective_download(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
const char *desc =
"This performs a selective firmware download, which allows the user to "
"select which firmware binary to update for 9200 devices. This requires "
"a power cycle once the update completes. The options available are: \n\n"
"OOB - This updates the OOB and main firmware\n"
"EEP - This updates the eeprom and main firmware\n"
"ALL - This updates the eeprom, OOB, and main firmware";
const char *fw = "firmware file (required)";
const char *select = "FW Select (e.g., --select=ALL)";
int xfer = 4096;
void *fw_buf;
int fd, selectNo, fw_fd, fw_size, err, offset = 0;
struct stat sb;
struct config {
char *fw;
char *select;
};
struct config cfg = {
.fw = "",
.select = "\0",
};
OPT_ARGS(opts) = {
OPT_STRING("fw", 'f', "FILE", &cfg.fw, fw),
OPT_STRING("select", 's', "flag", &cfg.select, select),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
return fd;
if (strlen(cfg.select) != 3) {
fprintf(stderr, "Invalid select flag\n");
err = EINVAL;
goto out;
}
for (int i = 0; i < 3; i++) {
cfg.select[i] = toupper(cfg.select[i]);
}
if (strncmp(cfg.select, "OOB", 3) == 0) {
selectNo = 18;
} else if (strncmp(cfg.select, "EEP", 3) == 0) {
selectNo = 10;
} else if (strncmp(cfg.select, "ALL", 3) == 0) {
selectNo = 26;
} else {
fprintf(stderr, "Invalid select flag\n");
err = EINVAL;
goto out;
}
fw_fd = open(cfg.fw, O_RDONLY);
if (fw_fd < 0) {
fprintf(stderr, "no firmware file provided\n");
err = EINVAL;
goto out;
}
err = fstat(fw_fd, &sb);
if (err < 0) {
perror("fstat");
err = errno;
}
fw_size = sb.st_size;
if (fw_size & 0x3) {
fprintf(stderr, "Invalid size:%d for f/w image\n", fw_size);
err = EINVAL;
goto out;
}
if (posix_memalign(&fw_buf, getpagesize(), fw_size)) {
fprintf(stderr, "No memory for f/w size:%d\n", fw_size);
err = ENOMEM;
goto out;
}
if (read(fw_fd, fw_buf, fw_size) != ((ssize_t) (fw_size)))
return EIO;
while (fw_size > 0) {
xfer = min(xfer, fw_size);
err = nvme_fw_download(fd, offset, xfer, fw_buf);
if (err < 0) {
perror("fw-download");
goto out;
} else if (err != 0) {
fprintf(stderr, "NVME Admin command error:%s(%x)\n",
nvme_status_to_string(err), err);
goto out;
}
fw_buf += xfer;
fw_size -= xfer;
offset += xfer;
}
err = micron_fw_commit(fd, selectNo);
if (err == 0x10B || err == 0x20B) {
err = 0;
fprintf(stderr,
"Update successful! Power cycle for changes to take effect\n");
}
out:
return err;
}
static int micron_smbus_option(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
__u32 result = 0;
__u32 cdw10 = 0;
__u32 cdw11 = 0;
const char *desc = "Enable/Disable/Get status of SMBUS option on controller";
const char *option = "enable or disable or status";
const char *value = "1 - hottest component temperature, 0 - composite "
"temperature (default) for enable option, 0 (current), "
"1 (default), 2 (saved) for status options";
const char *save = "1 - persistent, 0 - non-persistent (default)";
int err = 0;
int fd = 0;
int fid = MICRON_FEATURE_SMBUS_OPTION;
eDriveModel model = UNKNOWN_MODEL;
struct {
char *option;
int value;
int save;
int status;
} opt = {
.option = "disable",
.value = 0,
.save = 0,
.status = 0,
};
OPT_ARGS(opts) = {
OPT_STRING("option", 'o', "option", &opt.option, option),
OPT_UINT("value", 'v', &opt.value, value),
OPT_UINT("save", 's', &opt.save, save),
OPT_END()
};
if ((fd = micron_parse_options(argc, argv, desc, opts, &model)) < 0)
return err;
if (model != M5407 && model != M5411) {
printf ("This option is not supported for specified drive\n");
close(fd);
return err;
}
if (!strcmp(opt.option, "enable")) {
cdw11 = opt.value << 1 | 1;
err = nvme_set_feature(fd, 1, fid, cdw11, 0, opt.save, 0, 0, &result);
if (err == 0) {
printf("successfully enabled SMBus on drive\n");
} else {
printf("Failed to enabled SMBus on drive\n");
}
}
else if (!strcmp(opt.option, "status")) {
cdw10 = opt.value;
err = nvme_get_feature(fd, 1, fid, cdw10, 0, 0, 0, &result);
if (err == 0) {
printf("SMBus status on the drive: %s (returns %s temperature) \n",
(result & 1) ? "enabled" : "disabled",
(result & 2) ? "hottest component" : "composite");
} else {
printf("Failed to retrieve SMBus status on the drive\n");
}
}
else if (!strcmp(opt.option, "disable")) {
cdw11 = opt.value << 1 | 0;
err = nvme_set_feature(fd, 1, fid, cdw11, 0, opt.save, 0, 0, &result);
if (err == 0) {
printf("Successfully disabled SMBus on drive\n");
} else {
printf("Failed to disable SMBus on drive\n");
}
} else {
printf("Invalid option %s, valid values are enable, disable or status\n",
opt.option);
close(fd);
return -1;
}
close(fd);
return err;
}
static int micron_temp_stats(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
struct nvme_smart_log smart_log;
unsigned int temperature = 0, i = 0, err = 0;
unsigned int tempSensors[SensorCount] = { 0 };
const char *desc = "Retrieve Micron temperature info for the given device ";
const char *fmt = "output format normal|json";
struct format {
char *fmt;
};
struct format cfg = {
.fmt = "normal",
};
bool is_json = false;
struct json_object *root;
struct json_object *logPages;
int fd;
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0) {
printf("\nDevice not found \n");;
return -1;
}
if (strcmp(cfg.fmt, "json") == 0)
is_json = true;
err = nvme_smart_log(fd, 0xffffffff, &smart_log);
if (!err) {
temperature = ((smart_log.temperature[1] << 8) | smart_log.temperature[0]);
temperature = temperature ? temperature - 273 : 0;
for (i = 0; i < SensorCount; i++) {
tempSensors[i] = le16_to_cpu(smart_log.temp_sensor[i]);
tempSensors[i] = tempSensors[i] ? tempSensors[i] - 273 : 0;
}
if (is_json) {
struct json_object *stats = json_create_object();
char tempstr[64] = { 0 };
root = json_create_object();
logPages = json_create_array();
json_object_add_value_array(root, "Micron temperature information", logPages);
sprintf(tempstr, "%u C", temperature);
json_object_add_value_string(stats, "Current Composite Temperature", tempstr);
for (i = 0; i < SensorCount; i++) {
char sensor_str[256] = { 0 };
char datastr[64] = { 0 };
sprintf(sensor_str, "Temperature Sensor #%d", (i + 1));
sprintf(datastr, "%u C", tempSensors[i]);
json_object_add_value_string(stats, sensor_str, datastr);
}
json_array_add_value_object(logPages, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else {
printf("Micron temperature information:\n");
printf("%-10s : %u C\n", "Current Composite Temperature", temperature);
for (i = 0; i < SensorCount; i++) {
printf("%-10s%d : %u C\n", "Temperature Sensor #", i + 1, tempSensors[i]);
}
}
}
return err;
}
static int micron_pcie_stats(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
int i, fd, err = 0, bus = 0, domain = 0, device = 0, function = 0, ctrlIdx;
char strTempFile[1024], strTempFile2[1024], command[1024];
char *businfo = NULL;
char *devicename = NULL;
char tdevice[NAME_MAX] = { 0 };
ssize_t sLinkSize = 0;
FILE *fp;
char correctable[8] = { 0 };
char uncorrectable[8] = { 0 };
eDriveModel eModel = UNKNOWN_MODEL;
char *res;
bool is_json = true;
struct format {
char *fmt;
};
const char *desc = "Retrieve PCIe event counters";
const char *fmt = "output format json|normal";
struct format cfg = {
.fmt = "json",
};
struct {
char *err;
int bit;
int val;
} pcie_correctable_errors[] = {
{ "Unsupported Request Error Status (URES)", 20},
{ "ECRC Error Status (ECRCES)", 19},
{ "Malformed TLP Status (MTS)", 18},
{ "Receiver Overflow Status (ROS)", 17},
{ "Unexpected Completion Status (UCS)", 16},
{ "Completer Abort Status (CAS)", 15},
{ "Completion Timeout Stats (CTS)", 14},
{ "Flow Control Protocol Error Status (FCPES)", 13},
{ "Poisoned TLP Status (PTS)", 12},
{ "Data Link Protocol Error Status (DLPES)", 4},
},
pcie_uncorrectable_errors[] = {
{ "Advisory Non-Fatal Error Status (ANFES)", 13},
{ "Replay Timer Timeout Status (RTS)", 12},
{ "REPLY NUM Rollover Status (RRS)", 8},
{ "Bad DLLP Status (BDS)", 7},
{ "Bad TLP Status (BTS)", 6},
{ "Receiver Error Status (RES)", 0},
};
__u32 correctable_errors;
__u32 uncorrectable_errors;
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0) {
printf("\nDevice not found \n");;
return -1;
}
/* pull log details based on the model name */
sscanf(argv[optind], "/dev/nvme%d", &ctrlIdx);
if ((eModel = GetDriveModel(ctrlIdx)) == UNKNOWN_MODEL) {
printf ("Unsupported drive model for vs-pcie-stats command\n");
close(fd);
goto out;
}
if (strcmp(cfg.fmt, "normal") == 0)
is_json = false;
if (strstr(argv[optind], "/dev/nvme") && strstr(argv[optind], "n1")) {
devicename = strrchr(argv[optind], '/');
} else if (strstr(argv[optind], "/dev/nvme")) {
devicename = strrchr(argv[optind], '/');
sprintf(tdevice, "%s%s", devicename, "n1");
devicename = tdevice;
} else {
printf("Invalid device specified!\n");
goto out;
}
sprintf(strTempFile, "/sys/block/%s/device", devicename);
sLinkSize = readlink(strTempFile, strTempFile2, 1024);
if (sLinkSize < 0) {
err = -errno;
printf("Failed to read device\n");
goto out;
}
if (strstr(strTempFile2, "../../nvme")) {
sprintf(strTempFile, "/sys/block/%s/device/device", devicename);
sLinkSize = readlink(strTempFile, strTempFile2, 1024);
if (sLinkSize < 0) {
err = -errno;
printf("Failed to read device\n");
goto out;
}
}
businfo = strrchr(strTempFile2, '/');
sscanf(businfo, "/%x:%x:%x.%x", &domain, &bus, &device, &function);
sprintf(command, "setpci -s %x:%x.%x ECAP_AER+10.L", bus, device,
function);
fp = popen(command, "r");
if (fp == NULL) {
printf("Failed to retrieve error count\n");
goto out;
}
res = fgets(correctable, sizeof(correctable), fp);
if (res == NULL) {
printf("Failed to retrieve error count\n");
goto out;
}
pclose(fp);
sprintf(command, "setpci -s %x:%x.%x ECAP_AER+0x4.L", bus, device,
function);
fp = popen(command, "r");
if (fp == NULL) {
printf("Failed to retrieve error count\n");
goto out;
}
res = fgets(uncorrectable, sizeof(uncorrectable), fp);
if (res == NULL) {
printf("Failed to retrieve error count\n");
goto out;
}
pclose(fp);
correctable_errors = (__u32)strtol(correctable, NULL, 16);
uncorrectable_errors = (__u32)strtol(uncorrectable, NULL, 16);
if (is_json) {
struct json_object *root = json_create_object();
struct json_object *pcieErrors = json_create_array();
struct json_object *stats = json_create_object();
json_object_add_value_array(root, "PCIE Stats", pcieErrors);
for (i = 0; i < sizeof(pcie_correctable_errors) / sizeof(pcie_correctable_errors[0]); i++) {
json_object_add_value_int(stats, pcie_correctable_errors[i].err,
((correctable_errors >> pcie_correctable_errors[i].bit) & 1));
}
for (i = 0; i < sizeof(pcie_uncorrectable_errors) / sizeof(pcie_uncorrectable_errors[0]); i++) {
json_object_add_value_int(stats, pcie_uncorrectable_errors[i].err,
((uncorrectable_errors >> pcie_uncorrectable_errors[i].bit) & 1));
}
json_array_add_value_object(pcieErrors, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else if (eModel == M5407 || eModel == M5410) {
for (i = 0; i < sizeof(pcie_correctable_errors) / sizeof(pcie_correctable_errors[0]); i++) {
printf("%-40s : %-1d\n", pcie_correctable_errors[i].err,
((correctable_errors >> pcie_correctable_errors[i].bit) & 1));
}
for (i = 0; i < sizeof(pcie_uncorrectable_errors) / sizeof(pcie_uncorrectable_errors[0]); i++) {
printf("%-40s : %-1d\n", pcie_uncorrectable_errors[i].err,
((uncorrectable_errors >> pcie_uncorrectable_errors[i].bit) & 1));
}
} else {
printf("PCIE Stats:\n");
printf("Device correctable errors detected: %s\n", correctable);
printf("Device uncorrectable errors detected: %s\n", uncorrectable);
}
out:
return err;
}
static int micron_clear_pcie_correctable_errors(int argc, char **argv,
struct command *cmd,
struct plugin *plugin)
{
int err = -EINVAL, bus = 0, domain = 0, device = 0, function = 0;
char strTempFile[1024], strTempFile2[1024], command[1024];
char *businfo = NULL;
char *devicename = NULL;
char tdevice[PATH_MAX] = { 0 };
ssize_t sLinkSize = 0;
eDriveModel model = UNKNOWN_MODEL;
char correctable[8] = { 0 };
int fd = -1;
FILE *fp;
char *res;
const char *desc = "Clear PCIe Device Correctable Errors";
__u32 result = 0;
__u8 fid = MICRON_FEATURE_CLEAR_PCI_CORRECTABLE_ERRORS;
OPT_ARGS(opts) = {
OPT_END()
};
if ((fd = micron_parse_options(argc, argv, desc, opts, &model)) < 0)
return err;
/* For M51CX models, PCIe errors are cleared using 0xC3 feature */
if (model == M51CX) {
err = nvme_set_feature(fd, 0, fid, (1 << 31), 0, 0, 0, 0, &result);
if (err == 0 && (err = (int)result) == 0)
printf("Device correctable errors cleared!\n");
else
printf("Error clearing Device correctable errors = 0x%x\n", err);
goto out;
}
if (strstr(argv[optind], "/dev/nvme") && strstr(argv[optind], "n1")) {
devicename = strrchr(argv[optind], '/');
} else if (strstr(argv[optind], "/dev/nvme")) {
devicename = strrchr(argv[optind], '/');
sprintf(tdevice, "%s%s", devicename, "n1");
devicename = tdevice;
} else {
printf("Invalid device specified!\n");
goto out;
}
err = snprintf(strTempFile, sizeof(strTempFile),
"/sys/block/%s/device", devicename);
if (err < 0)
goto out;
sLinkSize = readlink(strTempFile, strTempFile2, 1024);
if (sLinkSize < 0) {
err = -errno;
printf("Failed to read device\n");
goto out;
}
if (strstr(strTempFile2, "../../nvme")) {
err = snprintf(strTempFile, sizeof(strTempFile),
"/sys/block/%s/device/device", devicename);
if (err < 0)
goto out;
sLinkSize = readlink(strTempFile, strTempFile2, 1024);
if (sLinkSize < 0) {
err = -errno;
printf("Failed to read device\n");
goto out;
}
}
businfo = strrchr(strTempFile2, '/');
sscanf(businfo, "/%x:%x:%x.%x", &domain, &bus, &device, &function);
sprintf(command, "setpci -s %x:%x.%x ECAP_AER+0x10.L=0xffffffff", bus,
device, function);
err = -1;
fp = popen(command, "r");
if (fp == NULL) {
printf("Failed to clear error count\n");
goto out;
}
pclose(fp);
sprintf(command, "setpci -s %x:%x.%x ECAP_AER+0x10.L", bus, device,
function);
fp = popen(command, "r");
if (fp == NULL) {
printf("Failed to retrieve error count\n");
goto out;
}
res = fgets(correctable, sizeof(correctable), fp);
if (res == NULL) {
printf("Failed to retrieve error count\n");
goto out;
}
pclose(fp);
printf("Device correctable errors cleared!\n");
printf("Device correctable errors detected: %s\n", correctable);
err = 0;
out:
if (fd > 0)
close(fd);
return err;
}
static struct logpage {
const char *field;
char datastr[128];
} d0_log_page[] = {
{ "NAND Writes (Bytes Written)", { 0 }},
{ "Program Failure Count", { 0 }},
{ "Erase Failures", { 0 }},
{ "Bad Block Count", { 0 }},
{ "NAND XOR/RAID Recovery Trigger Events", { 0 }},
{ "NSZE Change Supported", { 0 }},
{ "Number of NSZE Modifications", { 0 }}
};
static void init_d0_log_page(__u8 *buf, __u8 nsze)
{
unsigned int logD0[D0_log_size/sizeof(int)] = { 0 };
__u64 count_lo, count_hi, count;
memcpy(logD0, buf, sizeof(logD0));
count = ((__u64)logD0[45] << 32) | logD0[44];
sprintf(d0_log_page[0].datastr, "0x%"PRIx64, le64_to_cpu(count));
count_hi = ((__u64)logD0[39] << 32) | logD0[38];
count_lo = ((__u64)logD0[37] << 32) | logD0[36];
if (count_hi != 0)
sprintf(d0_log_page[1].datastr, "0x%"PRIx64"%016"PRIx64,
le64_to_cpu(count_hi), le64_to_cpu(count_lo));
else
sprintf(d0_log_page[1].datastr, "0x%"PRIx64, le64_to_cpu(count_lo));
count = ((__u64)logD0[25] << 32) | logD0[24];
sprintf(d0_log_page[2].datastr, "0x%"PRIx64, le64_to_cpu(count));
sprintf(d0_log_page[3].datastr, "0x%x", logD0[3]);
count_lo = ((__u64)logD0[37] << 32) | logD0[36];
count = ((__u64)logD0[25] << 32) | logD0[24];
count = (__u64)logD0[3] - (count_lo + count);
sprintf(d0_log_page[4].datastr, "0x%"PRIx64, le64_to_cpu(count));
sprintf(d0_log_page[5].datastr, "0x%x", nsze);
sprintf(d0_log_page[6].datastr, "0x%x", logD0[1]);
}
/* OCP and Vendor specific log data format */
struct micron_vs_logpage {
char *field;
int size;
}
/* Smart Health Log information as per OCP spec */
ocp_c0_log_page[] = {
{ "Physical Media Units Written", 16 },
{ "Physical Media Units Read", 16 },
{ "Raw Bad User NAND Block Count", 6},
{ "Normalized Bad User NAND Block Count", 2},
{ "Raw Bad System NAND Block Count", 6},
{ "Normalized Bad System NAND Block Count", 2},
{ "XOR Recovery Count", 8},
{ "Uncorrectable Read Error Count", 8},
{ "Soft ECC Error Count", 8},
{ "SSD End to End Detected Counts", 4},
{ "SSD End to End Corrected Errors", 4},
{ "System data % life-used", 1},
{ "Refresh Count", 7},
{ "Maximum User Data Erase Count", 4},
{ "Minimum User Data Erase Count", 4},
{ "Thermal Throttling Count", 1},
{ "Thermal Throttling Status", 1},
{ "Reserved", 6},
{ "PCIe Correctable Error count", 8},
{ "Incomplete Shutdowns", 4},
{ "Reserved", 4},
{ "% Free Blocks", 1},
{ "Reserved", 7},
{ "Capacitor Health", 2},
{ "Reserved", 6},
{ "Unaligned I/O", 8},
{ "Security Version Number", 8},
{ "NUSE", 8},
{ "PLP Start Count", 16},
{ "Endurance Estimate", 16},
{ "Reserved", 302},
{ "Log Page Version", 2},
{ "Log Page GUID", 16},
},
/* Vendor Specific Health Log information */
fb_log_page[] = {
{ "Physical Media Units Written - TLC", 16 },
{ "Physical Media Units Written - SLC", 16 },
{ "Normalized Bad User NAND Block Count", 2},
{ "Raw Bad User NAND Block Count", 6},
{ "XOR Recovery Count", 8},
{ "Uncorrectable Read Error Count", 8},
{ "SSD End to End Corrected Errors", 8},
{ "SSD End to End Detected Counts", 4},
{ "SSD End to End Uncorrected Counts", 4},
{ "System data % life-used", 1},
{ "Minimum User Data Erase Count - TLC", 8},
{ "Maximum User Data Erase Count - TLC", 8},
{ "Minimum User Data Erase Count - SLC", 8},
{ "Maximum User Data Erase Count - SLC", 8},
{ "Normalized Program Fail Count", 2},
{ "Raw Program Fail Count", 6},
{ "Normalized Erase Fail Count", 2},
{ "Raw Erase Fail Count", 6},
{ "Pcie Correctable Error Count", 8},
{ "% Free Blocks (User)", 1},
{ "Security Version Number", 8},
{ "% Free Blocks (System)", 1},
{ "Dataset Management (Deallocate) Commands", 16},
{ "Incomplete TRIM Data", 8},
{ "% Age of Completed TRIM", 1},
{ "Background Back-Pressure Gauge", 1},
{ "Soft ECC Error Count", 8},
{ "Refresh Count", 8},
{ "Normalized Bad System NAND Block Count", 2},
{ "Raw Bad System NAND Block Count", 6},
{ "Endurance Estimate", 16},
{ "Thermal Throttling Count", 1},
{ "Thermal Throttling Status", 1},
{ "Unaligned I/O", 8},
{ "Physical Media Units Read", 16},
{ "Reserved", 279},
{ "Log Page Version", 2}
};
/* Common function to print Micron VS log pages */
static void print_micron_vs_logs(
__u8 *buf, /* raw log data */
struct micron_vs_logpage *log_page, /* format of the data */
int field_count, /* log field count */
struct json_object *stats /* json object to add fields */
)
{
__u64 lval_lo, lval_hi;
__u32 ival;
__u16 sval;
__u8 cval, lval[8] = { 0 };
int field, guid_index;
int offset = 0;
for (field = 0; field < field_count; field++) {
char datastr[1024] = { 0 };
if (log_page[field].size == 16) {
if (strstr(log_page[field].field, "GUID")) {
char *tmpstr = datastr;
tmpstr += sprintf(datastr, "0x");
for(guid_index = 0; guid_index < 16; guid_index++)
tmpstr += sprintf(tmpstr, "%01X", buf[offset + guid_index]);
} else {
lval_lo = *((__u64 *)(&buf[offset]));
lval_hi = *((__u64 *)(&buf[offset + 8]));
if (lval_hi)
sprintf(datastr, "0x%"PRIx64"_%"PRIx64"",
le64_to_cpu(lval_hi), le64_to_cpu(lval_lo));
else
sprintf(datastr, "0x%"PRIx64"", le64_to_cpu(lval_lo));
}
} else if (log_page[field].size == 8) {
lval_lo = *((__u64 *)(&buf[offset]));
sprintf(datastr, "0x%"PRIx64"", le64_to_cpu(lval_lo));
} else if (log_page[field].size == 7) {
/* 7 bytes will be in little-endian format, with last byte as MSB */
memcpy(&lval[0], &buf[offset], 7);
memcpy((void *)&lval_lo, lval, 8);
sprintf(datastr, "0x%"PRIx64"", le64_to_cpu(lval_lo));
} else if (log_page[field].size == 6) {
ival = *((__u32 *)(&buf[offset]));
sval = *((__u16 *)(&buf[offset + 4]));
lval_lo = (((__u64)sval << 32) | ival);
sprintf(datastr, "0x%"PRIx64"", le64_to_cpu(lval_lo));
} else if (log_page[field].size == 4) {
ival = *((__u32 *)(&buf[offset]));
sprintf(datastr, "0x%x", le32_to_cpu(ival));
} else if (log_page[field].size == 2) {
sval = *((__u16 *)(&buf[offset]));
sprintf(datastr, "0x%04x", le16_to_cpu(sval));
} else if (log_page[field].size == 1) {
cval = buf[offset];
sprintf(datastr, "0x%02x", cval);
} else {
sprintf(datastr, "0");
}
offset += log_page[field].size;
/* do not print reserved values */
if (strstr(log_page[field].field, "Reserved"))
continue;
if (stats != NULL) {
json_object_add_value_string(stats, log_page[field].field, datastr);
} else {
printf("%-40s : %-4s\n", log_page[field].field, datastr);
}
}
}
static void print_smart_cloud_health_log(__u8 *buf, bool is_json)
{
struct json_object *root;
struct json_object *logPages;
struct json_object *stats = NULL;
int field_count = sizeof(ocp_c0_log_page)/sizeof(ocp_c0_log_page[0]);
if (is_json) {
root = json_create_object();
stats = json_create_object();
logPages = json_create_array();
json_object_add_value_array(root, "OCP SMART Cloud Health Log: 0xC0",
logPages);
}
print_micron_vs_logs(buf, ocp_c0_log_page, field_count, stats);
if (is_json) {
json_array_add_value_object(logPages, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
}
static void print_nand_stats_fb(__u8 *buf, __u8 *buf2, __u8 nsze, bool is_json)
{
struct json_object *root;
struct json_object *logPages;
struct json_object *stats = NULL;
int field_count = sizeof(fb_log_page)/sizeof(fb_log_page[0]);
if (is_json) {
root = json_create_object();
stats = json_create_object();
logPages = json_create_array();
json_object_add_value_array(root, "Extended Smart Log Page : 0xFB",
logPages);
}
print_micron_vs_logs(buf, fb_log_page, field_count, stats);
/* print last three entries from D0 log page */
init_d0_log_page(buf2, nsze);
if (is_json) {
for (int i = 4; i < 7; i++) {
json_object_add_value_string(stats,
d0_log_page[i].field,
d0_log_page[i].datastr);
}
} else {
for (int i = 4; i < 7; i++) {
printf("%-40s : %s\n", d0_log_page[i].field, d0_log_page[i].datastr);
}
}
if (is_json) {
json_array_add_value_object(logPages, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
}
}
static void print_nand_stats_d0(__u8 *buf, __u8 oacs, bool is_json)
{
init_d0_log_page(buf, oacs);
if (is_json) {
struct json_object *root = json_create_object();
struct json_object *stats = json_create_object();
struct json_object *logPages = json_create_array();
json_object_add_value_array(root,
"Extended Smart Log Page : 0xD0",
logPages);
for (int i = 0; i < 7; i++) {
json_object_add_value_string(stats,
d0_log_page[i].field,
d0_log_page[i].datastr);
}
json_array_add_value_object(logPages, stats);
json_print_object(root, NULL);
printf("\n");
json_free_object(root);
} else {
for (int i = 0; i < 7; i++) {
printf("%-40s : %s\n", d0_log_page[i].field, d0_log_page[i].datastr);
}
}
}
static bool nsze_from_oacs = false; /* read nsze for now from idd[4059] */
static int micron_nand_stats(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
const char *desc = "Retrieve Micron NAND stats for the given device ";
unsigned int extSmartLog[D0_log_size/sizeof(int)] = { 0 };
unsigned int logFB[FB_log_size/sizeof(int)] = { 0 };
eDriveModel eModel = UNKNOWN_MODEL;
struct nvme_id_ctrl ctrl;
int fd, err, ctrlIdx;
__u8 nsze;
bool has_d0_log = true;
bool has_fb_log = false;
bool is_json = true;
struct format {
char *fmt;
};
const char *fmt = "output format json|normal";
struct format cfg = {
.fmt = "json",
};
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0) {
printf("\nDevice not found \n");;
return -1;
}
if (strcmp(cfg.fmt, "normal") == 0)
is_json = false;
err = nvme_identify_ctrl(fd, &ctrl);
if (err)
goto out;
/* pull log details based on the model name */
sscanf(argv[optind], "/dev/nvme%d", &ctrlIdx);
if ((eModel = GetDriveModel(ctrlIdx)) == UNKNOWN_MODEL) {
printf ("Unsupported drive model for vs-nand-stats command\n");
close(fd);
goto out;
}
err = nvme_get_log(fd, NVME_NSID_ALL, 0xD0, false, NVME_NO_LOG_LSP,
D0_log_size, extSmartLog);
has_d0_log = (0 == err);
/* should check for firmware version if this log is supported or not */
if (eModel == M5407 || eModel == M5410) {
err = nvme_get_log(fd, NVME_NSID_ALL, 0xFB, false, NVME_NO_LOG_LSP,
FB_log_size, logFB);
has_fb_log = (0 == err);
}
nsze = (ctrl.vs[987] == 0x12);
if (nsze == 0 && nsze_from_oacs)
nsze = ((ctrl.oacs >> 3) & 0x1);
err = 0;
if (has_fb_log)
print_nand_stats_fb((__u8 *)logFB, (__u8 *)extSmartLog, nsze, is_json);
else if (has_d0_log)
print_nand_stats_d0((__u8 *)extSmartLog, nsze, is_json);
else {
printf("Unable to retrieve extended smart log for the drive\n");
err = -ENOTTY;
}
out:
close(fd);
return err;
}
static void GetDriveInfo(const char *strOSDirName, int nFD,
struct nvme_id_ctrl *ctrlp)
{
FILE *fpOutFile = NULL;
char tempFile[256] = { 0 };
char strBuffer[1024] = { 0 };
char model[41] = { 0 };
char serial[21] = { 0 };
char fwrev[9] = { 0 };
char *strPDir = strdup(strOSDirName);
char *strDest = dirname(strPDir);
sprintf(tempFile, "%s/%s", strDest, "drive-info.txt");
fpOutFile = fopen(tempFile, "w+");
if (!fpOutFile) {
printf("Failed to create %s\n", tempFile);
free(strPDir);
return;
}
strncpy(model, ctrlp->mn, 40);
strncpy(serial, ctrlp->sn, 20);
strncpy(fwrev, ctrlp->fr, 8);
sprintf(strBuffer,
"********************\nDrive Info\n********************\n");
fprintf(fpOutFile, "%s", strBuffer);
sprintf(strBuffer,
"%-20s : /dev/nvme%d\n%-20s : %s\n%-20s : %-20s\n%-20s : %-20s\n",
"Device Name", nFD,
"Model No", (char *)model,
"Serial No", (char *)serial, "FW-Rev", (char *)fwrev);
fprintf(fpOutFile, "%s", strBuffer);
sprintf(strBuffer,
"\n********************\nPCI Info\n********************\n");
fprintf(fpOutFile, "%s", strBuffer);
sprintf(strBuffer,
"%-22s : %04X\n%-22s : %04X\n",
"VendorId", vendor_id, "DeviceId", device_id);
fprintf(fpOutFile, "%s", strBuffer);
fclose(fpOutFile);
free(strPDir);
}
static void GetTimestampInfo(const char *strOSDirName)
{
__u8 outstr[1024];
time_t t;
struct tm *tmp;
size_t num;
char *strPDir;
char *strDest;
t = time(NULL);
tmp = localtime(&t);
if (tmp == NULL)
return;
num = strftime((char *)outstr, sizeof(outstr),
"Timestamp (UTC): %a, %d %b %Y %T %z", tmp);
num += sprintf((char *)(outstr + num), "\nPackage Version: 1.4");
if (num) {
strPDir = strdup(strOSDirName);
strDest = dirname(strPDir);
WriteData(outstr, num, strDest, "timestamp_info.txt", "timestamp");
free(strPDir);
}
}
static void GetCtrlIDDInfo(const char *dir, struct nvme_id_ctrl *ctrlp)
{
WriteData((__u8*)ctrlp, sizeof(*ctrlp), dir,
"nvme_controller_identify_data.bin", "id-ctrl");
}
static void GetSmartlogData(int fd, const char *dir)
{
struct nvme_smart_log smart_log;
if (nvme_smart_log(fd, -1, &smart_log) == 0) {
WriteData((__u8*)&smart_log, sizeof(smart_log), dir,
"smart_data.bin", "smart log");
}
}
static void GetErrorlogData(int fd, int entries, const char *dir)
{
int logSize = entries * sizeof(struct nvme_error_log_page);
struct nvme_error_log_page *error_log =
(struct nvme_error_log_page *)calloc(1, logSize);
if (error_log == NULL)
return;
if (nvme_error_log(fd, entries, error_log) == 0) {
WriteData((__u8*)error_log, logSize, dir,
"error_information_log.bin", "error log");
}
free(error_log);
}
static void GetNSIDDInfo(int fd, const char *dir, int nsid)
{
char file[PATH_MAX] = { 0 };
struct nvme_id_ns ns;
if (nvme_identify_ns(fd, nsid, 0, &ns) == 0) {
sprintf(file, "identify_namespace_%d_data.bin", nsid);
WriteData((__u8*)&ns, sizeof(ns), dir, file, "id-ns");
}
}
static void GetOSConfig(const char *strOSDirName)
{
FILE *fpOSConfig = NULL;
char strBuffer[1024], strTemp[1024];
char strFileName[PATH_MAX];
int i;
struct {
char *strcmdHeader;
char *strCommand;
} cmdArray[] = {
{ (char *)"SYSTEM INFORMATION", (char *)"uname -a >> %s" },
{ (char *)"LINUX KERNEL MODULE INFORMATION", (char *)"lsmod >> %s" },
{ (char *)"LINUX SYSTEM MEMORY INFORMATION", (char *)"cat /proc/meminfo >> %s" },
{ (char *)"SYSTEM INTERRUPT INFORMATION", (char *)"cat /proc/interrupts >> %s" },
{ (char *)"CPU INFORMATION", (char *)"cat /proc/cpuinfo >> %s" },
{ (char *)"IO MEMORY MAP INFORMATION", (char *)"cat /proc/iomem >> %s" },
{ (char *)"MAJOR NUMBER AND DEVICE GROUP", (char *)"cat /proc/devices >> %s" },
{ (char *)"KERNEL DMESG", (char *)"dmesg >> %s" },
{ (char *)"/VAR/LOG/MESSAGES", (char *)"cat /var/log/messages >> %s" }
};
sprintf(strFileName, "%s/%s", strOSDirName, "os_config.txt");
for (i = 0; i < 7; i++) {
fpOSConfig = fopen(strFileName, "a+");
fprintf(fpOSConfig,
"\n\n\n\n%s\n-----------------------------------------------\n",
cmdArray[i].strcmdHeader);
if (NULL != fpOSConfig) {
fclose(fpOSConfig);
fpOSConfig = NULL;
}
strcpy(strTemp, cmdArray[i].strCommand);
sprintf(strBuffer, strTemp, strFileName);
if (system(strBuffer))
fprintf(stderr, "Failed to send \"%s\"\n", strBuffer);
}
}
static int micron_telemetry_log(int fd, __u8 gen, __u8 type, __u8 **data,
int *logSize, int da)
{
int err;
unsigned short data_area[4];
unsigned char ctrl_init = (type == 0x8);
__u8 *buffer = (unsigned char *)calloc(512, 1);
if (buffer == NULL)
return -1;
err = nvme_get_telemetry_log(fd, buffer, gen, ctrl_init, 512, 0);
if (err != 0) {
fprintf(stderr, "Failed to get telemetry log header for 0x%X\n", type);
if (buffer != NULL) {
free(buffer);
}
return err;
}
// compute size of the log
data_area[1] = buffer[9] << 16 | buffer[8];
data_area[2] = buffer[11] << 16 | buffer[10];
data_area[3] = buffer[13] << 16 | buffer[12];
data_area[0] = data_area[1] > data_area[2] ? data_area[1] : data_area[2];
data_area[0] = data_area[3] > data_area[0] ? data_area[3] : data_area[0];
if (data_area[da] == 0) {
fprintf(stderr, "Requested telemetry data for 0x%X is empty\n", type);
if (buffer != NULL) {
free(buffer);
buffer = NULL;
}
return -1;
}
*logSize = data_area[da] * 512;
if ((buffer = (unsigned char *)realloc(buffer, (size_t)(*logSize))) != NULL) {
err = nvme_get_telemetry_log(fd, buffer, gen, ctrl_init, *logSize, 0);
}
if (err == 0 && buffer != NULL) {
*data = buffer;
} else {
fprintf(stderr, "Failed to get telemetry data for 0x%x\n", type);
if (buffer != NULL)
free(buffer);
}
return err;
}
static int GetTelemetryData(int fd, const char *dir)
{
unsigned char *buffer = NULL;
int i, err, logSize = 0;
char msg[256] = {0};
struct {
__u8 log;
char *file;
} tmap[] = {
{0x07, "nvme_host_telemetry.bin"},
{0x08, "nvme_cntrl_telemetry.bin"},
};
for(i = 0; i < (int)(sizeof(tmap)/sizeof(tmap[0])); i++) {
err = micron_telemetry_log(fd, 0, tmap[i].log, &buffer, &logSize, 0);
if (err == 0 && logSize > 0 && buffer != NULL) {
sprintf(msg, "telemetry log: 0x%X", tmap[i].log);
WriteData(buffer, logSize, dir, tmap[i].file, msg);
if (buffer != NULL)
free(buffer);
}
buffer = NULL;
logSize = 0;
}
return err;
}
static int GetFeatureSettings(int fd, const char *dir)
{
unsigned char *bufp, buf[4096] = { 0 };
int i, err, len, errcnt = 0;
__u32 attrVal = 0;
char msg[256] = { 0 };
struct features {
int id;
char *file;
} fmap[] = {
{0x01, "nvme_feature_setting_arbitration.bin"},
{0x02, "nvme_feature_setting_pm.bin"},
{0x03, "nvme_feature_setting_lba_range_namespace_1.bin"},
{0x04, "nvme_feature_setting_temp_threshold.bin"},
{0x05, "nvme_feature_setting_error_recovery.bin"},
{0x06, "nvme_feature_setting_volatile_write_cache.bin"},
{0x07, "nvme_feature_setting_num_queues.bin"},
{0x08, "nvme_feature_setting_interrupt_coalescing.bin"},
{0x09, "nvme_feature_setting_interrupt_vec_config.bin"},
{0x0A, "nvme_feature_setting_write_atomicity.bin"},
{0x0B, "nvme_feature_setting_async_event_config.bin"},
{0x80, "nvme_feature_setting_sw_progress_marker.bin"},
};
for (i = 0; i < (int)(sizeof(fmap)/sizeof(fmap[0])); i++) {
if (fmap[i].id == 0x03) {
len = 4096;
bufp = (unsigned char *)(&buf[0]);
} else {
len = 0;
bufp = NULL;
}
err = nvme_get_feature(fd, 1, fmap[i].id, 0, 0x0, len, bufp, &attrVal);
if (err == 0) {
sprintf(msg, "feature: 0x%X", fmap[i].id);
WriteData((__u8*)&attrVal, sizeof(attrVal), dir, fmap[i].file, msg);
if (bufp != NULL) {
WriteData(bufp, len, dir, fmap[i].file, msg);
}
} else {
printf("Failed to retrieve feature 0x%x data !\n", fmap[i].id);
errcnt++;
}
}
return (int)(errcnt == sizeof(fmap)/sizeof(fmap[0]));
}
static int micron_drive_info(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Get drive HW information";
int fd, err = 0;
struct nvme_id_ctrl ctrl = { 0 };
OPT_ARGS(opts) = {
OPT_END()
};
if ((fd = micron_parse_options(argc, argv, desc, opts, NULL)) < 0)
return err;
err = nvme_identify_ctrl(fd, &ctrl);
if (err) {
fprintf(stderr, "ERROR : nvme_identify_ctrl() failed with 0x%x\n", err);
return -1;
}
printf("%u.%u\n", ctrl.vs[820], ctrl.vs[821]);
return 0;
}
static int micron_cloud_ssd_plugin_version(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
printf("nvme-cli Micron cloud SSD plugin version: %s.%s\n",
__version_major, __version_minor);
return 0;
}
static int micron_plugin_version(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
printf("nvme-cli Micron plugin version: %s.%s.%s\n",
__version_major, __version_minor, __version_patch);
return 0;
}
static int micron_logpage_dir(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
printf("This command is not implemented for the drive\n");
return 0;
}
/* Binary format of firmware activation history entry */
struct __attribute__((__packed__)) fw_activation_history_entry {
__u8 version;
__u8 length;
__u16 rsvd1;
__le16 valid;
__le64 power_on_hour;
__le64 rsvd2;
__le64 power_cycle_count;
__u8 previous_fw[8];
__u8 activated_fw[8];
__u8 slot;
__u8 commit_action_type;
__le16 result;
__u8 rsvd3[14];
};
/* Binary format for firmware activation history table */
struct __attribute__((__packed__)) micron_fw_activation_history_table {
__u8 log_page;
__u8 rsvd1[3];
__le32 num_entries;
struct fw_activation_history_entry entries[20];
__u8 rsvd2[2790];
__u16 version;
__u8 GUID[16];
};
/* header to be printed field widths = 10 | 12 | 10 | 11 | 12 | 9 | 9 | 9 */
const char *fw_activation_history_table_header = "\
__________________________________________________________________________________\n\
| | | | | | | \n\
Firmware | Power | Power | Previous | New FW | Slot | Commit | Result \n\
Activation| On Hour | cycle | firmware | activated | number | Action | \n\
Counter | | count | | | | Type | \n\
__________|___________|_________|__________|___________|________|________|________\n";
static int display_fw_activate_entry (
int entry_count,
struct fw_activation_history_entry *entry,
char *formatted_entry,
struct json_object *stats
)
{
time_t timestamp, hours;
char buffer[32];
__u8 minutes, seconds;
char *ca[] = {"000b", "001b", "010b", "011b"};
char *ptr = formatted_entry;
int index = 0, entry_size = 82;
if (entry->version != 1 || entry->length != 64) {
fprintf(stderr, "unsupported entry ! version: %x with length: %d\n",
entry->version, entry->length);
return -EINVAL;
}
sprintf(ptr, "%d", entry_count);
ptr += 10;
timestamp = (le64_to_cpu(entry->power_on_hour) & 0x0000FFFFFFFFFFFFUL) / 1000;
hours = timestamp / 3600;
minutes = (timestamp % 3600) / 60;
seconds = (timestamp % 3600) % 60;
sprintf(ptr, "|%"PRIu64":%hhu:%hhu", (uint64_t)hours, minutes, seconds);
ptr += 12;
sprintf(ptr, "| %"PRIu64, le64_to_cpu(entry->power_cycle_count));
ptr += 10;
/* firmware details */
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, entry->previous_fw, sizeof(entry->previous_fw));
sprintf(ptr, "| %s", buffer);
ptr += 11;
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, entry->activated_fw, sizeof(entry->activated_fw));
sprintf(ptr, "| %s", buffer);
ptr += 12;
/* firmware slot and commit action*/
sprintf(ptr, "| %d", entry->slot);
ptr += 9;
if (entry->commit_action_type <= 3)
sprintf(ptr, "| %s", ca[entry->commit_action_type]);
else
sprintf(ptr, "| xxxb");
ptr += 9;
/* result */
if (entry->result) {
sprintf(ptr, "| Fail #%d", entry->result);
} else {
sprintf(ptr, "| pass");
}
/* replace all null charecters with spaces */
ptr = formatted_entry;
while (index < entry_size) {
if (ptr[index] == '\0')
ptr[index] = ' ';
index++;
}
return 0;
}
static int micron_fw_activation_history(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Retrieve Firmware Activation history of the given drive";
char formatted_output[100];
int count = 0;
unsigned int logC2[C2_log_size/sizeof(int)] = { 0 };
eDriveModel eModel = UNKNOWN_MODEL;
struct nvme_id_ctrl ctrl;
int fd, err, ctrlIdx;
struct format {
char *fmt;
};
const char *fmt = "output format normal";
struct format cfg = {
.fmt = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0) {
printf("\nDevice not found \n");;
return -1;
}
if (strcmp(cfg.fmt, "normal") != 0) {
fprintf (stderr, "only normal format is supported currently\n");
close(fd);
return -1;
}
err = nvme_identify_ctrl(fd, &ctrl);
if (err) {
fprintf(stderr, "failed get device identification data, error: %x\n", err);
goto out;
}
/* check if product supports fw_history log */
err = -EINVAL;
sscanf(argv[optind], "/dev/nvme%d", &ctrlIdx);
eModel = GetDriveModel(ctrlIdx);
if (eModel != M51CX) {
fprintf(stderr, "Unsupported drive model for vs-fw-activate-history command\n");
goto out;
}
err = nvme_get_log(fd, NVME_NSID_ALL, 0xC2, false, NVME_NO_LOG_LSP, C2_log_size, logC2);
if (err) {
fprintf(stderr, "Failed to retrieve fw activation history log, error: %x\n", err);
goto out;
}
/* check if we have atleast one entry to print */
struct micron_fw_activation_history_table *table =
(struct micron_fw_activation_history_table *)logC2;
/* check version and log page */
if (table->version != 2 || table->log_page != 0xC2) {
fprintf(stderr, "Unsupported fw activation history page: %x, version: %x\n",
table->log_page, table->version);
goto out;
}
if (table->num_entries == 0) {
fprintf(stderr, "No entries were found in fw activation history log\n");
goto out;
}
printf("%s", fw_activation_history_table_header);
for(count = 0; count < table->num_entries; count++) {
memset(formatted_output, '\0', 100);
if (display_fw_activate_entry(count,
&table->entries[count],
formatted_output, NULL) == 0)
{
printf("%s\n", formatted_output);
}
}
out:
if (fd > 0)
close(fd);
return err;
}
static int micron_error_reason(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
printf("This command is not implemented for the drive\n");
return 0;
}
static int micron_ocp_smart_health_logs(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
const char *desc = "Retrieve Micron OCP Smart Health log for the given device ";
unsigned int logC0[C0_log_size/sizeof(int)] = { 0 };
eDriveModel eModel = UNKNOWN_MODEL;
struct nvme_id_ctrl ctrl;
int fd, err, ctrlIdx;
bool is_json = false;
struct format {
char *fmt;
};
const char *fmt = "output format normal|json";
struct format cfg = {
.fmt = "normal",
};
OPT_ARGS(opts) = {
OPT_FMT("format", 'f', &cfg.fmt, fmt),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0) {
printf("\nDevice not found \n");;
return -1;
}
if (strcmp(cfg.fmt, "json") == 0)
is_json = true;
err = nvme_identify_ctrl(fd, &ctrl);
if (err)
goto out;
/* pull log details based on the model name */
sscanf(argv[optind], "/dev/nvme%d", &ctrlIdx);
if ((eModel = GetDriveModel(ctrlIdx)) == UNKNOWN_MODEL) {
printf ("Unsupported drive model for vs-smart-add-log commmand\n");
close(fd);
goto out;
}
/* should check for firmware version if this log is supported or not */
if (eModel == M5407 || eModel == M5410) {
err = nvme_get_log(fd, NVME_NSID_ALL, 0xC0, false, NVME_NO_LOG_LSP,
C0_log_size, logC0);
}
if (err < 0) {
printf("Unable to retrieve extended smart log for the drive\n");
err = -ENOTTY;
} else {
print_smart_cloud_health_log((__u8 *)logC0, is_json);
}
out:
close(fd);
return err;
}
static int micron_clr_fw_activation_history(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
const char *desc = "Clear FW activation history";
int fd, err = 0;
__u32 result = 0;
__u8 fid = MICRON_FEATURE_CLEAR_FW_ACTIVATION_HISTORY;
eDriveModel model = UNKNOWN_MODEL;
OPT_ARGS(opts) = {
OPT_END()
};
if ((fd = micron_parse_options(argc, argv, desc, opts, &model)) < 0)
return err;
if (model != M51CX) {
printf ("This option is not supported for specified drive\n");
close(fd);
return err;
}
//err = nvme_set_feature(fd, 1, fid, cdw11, 0, opt.save, 0, 0, &result);
err = nvme_set_feature(fd, 1, fid, 0, 0, 0, 0, 0, &result);
if (err == 0) err = (int)result;
return err;
}
static int micron_telemetry_cntrl_option(int argc, char **argv,
struct command *cmd, struct plugin *plugin)
{
int err = 0;
__u32 result = 0;
const char *desc = "Enable or Disable Controller telemetry log generation";
const char *option = "enable or disable or status";
const char *select = "select/save values: enable/disable options"
"1 - save (persistent), 0 - non-persistent and for "
"status options: 0 - current, 1 - default, 2-saved";
int fd = 0;
int fid = MICRON_FEATURE_TELEMETRY_CONTROL_OPTION;
eDriveModel model = UNKNOWN_MODEL;
struct nvme_id_ctrl ctrl = { 0 };
struct {
char *option;
int select;
} opt = {
.option = "disable",
.select= 0,
};
OPT_ARGS(opts) = {
OPT_STRING("option", 'o', "option", &opt.option, option),
OPT_UINT("select", 's', &opt.select, select),
OPT_END()
};
if ((fd = micron_parse_options(argc, argv, desc, opts, &model)) < 0) {
return -1;
}
err = nvme_identify_ctrl(fd, &ctrl);
if ((ctrl.lpa & 0x8) != 0x8) {
printf("drive doesn't support host/controller generated telemetry logs\n");
close(fd);
return err;
}
if (!strcmp(opt.option, "enable")) {
err = nvme_set_feature(fd, 1, fid, 1, 0, (opt.select & 0x1), 0, 0, &result);
if (err == 0) {
printf("successfully set controller telemetry option\n");
} else {
printf("Failed to set controller telemetry option\n");
}
} else if (!strcmp(opt.option, "disable")) {
err = nvme_set_feature(fd, 1, fid, 0, 0, (opt.select & 0x1), 0, 0, &result);
if (err == 0) {
printf("successfully disabled controller telemetry option\n");
} else {
printf("Failed to disable controller telemetry option\n");
}
} else if (!strcmp(opt.option, "status")) {
opt.select &= 0x3;
err = nvme_get_feature(fd, 1, fid, opt.select, 0, 0, 0, &result);
if (err == 0) {
printf("Controller telemetry option : %s\n",
(result) ? "enabled" : "disabled");
} else {
printf("Failed to retrieve controller telemetry option\n");
}
} else {
printf("invalid option %s, valid values are enable,disable or status\n", opt.option);
close(fd);
return -1;
}
close(fd);
return err;
}
static int micron_internal_logs(int argc, char **argv, struct command *cmd,
struct plugin *plugin)
{
int err = -EINVAL;
int fd = 0;
int ctrlIdx, telemetry_option = 0;
char strOSDirName[1024];
char strCtrlDirName[1024];
char strMainDirName[256];
unsigned int *puiIDDBuf;
unsigned int uiMask;
struct nvme_id_ctrl ctrl;
char sn[20] = { 0 };
char msg[256] = { 0 };
struct {
unsigned char ucLogPage;
const char *strFileName;
int nLogSize;
int nMaxSize;
} aVendorLogs[32] = {
{ 0x03, "firmware_slot_info_log.bin", 512, 0 },
{ 0xC1, "nvmelog_C1.bin", 0, 0 },
{ 0xC2, "nvmelog_C2.bin", 0, 0 },
{ 0xC4, "nvmelog_C4.bin", 0, 0 },
{ 0xC5, "nvmelog_C5.bin", C5_log_size, 0 },
{ 0xD0, "nvmelog_D0.bin", D0_log_size, 0 },
{ 0xE6, "nvmelog_E6.bin", 0, 0 },
{ 0xE7, "nvmelog_E7.bin", 0, 0 }
},
aM51XXLogs[] = {
{ 0xFB, "nvmelog_FB.bin", 4096, 0 }, /* this should be collected first for M51AX */
{ 0xD0, "nvmelog_D0.bin", 512, 0 },
{ 0x03, "firmware_slot_info_log.bin", 512, 0},
{ 0xF7, "nvmelog_F7.bin", 4096, 512 * 1024 },
{ 0xF8, "nvmelog_F8.bin", 4096, 512 * 1024 },
{ 0xF9, "nvmelog_F9.bin", 4096, 200 * 1024 * 1024 },
{ 0xFC, "nvmelog_FC.bin", 4096, 200 * 1024 * 1024 },
{ 0xFD, "nvmelog_FD.bin", 4096, 80 * 1024 * 1024 }
},
aM51AXLogs[] = {
{ 0xCA, "nvmelog_CA.bin", 512, 0 },
{ 0xFA, "nvmelog_FA.bin", 4096, 15232 },
{ 0xF6, "nvmelog_F6.bin", 4096, 512 * 1024 },
{ 0xFE, "nvmelog_FE.bin", 4096, 512 * 1024 },
{ 0xFF, "nvmelog_FF.bin", 4096, 162 * 1024 },
{ 0x04, "changed_namespace_log.bin", 4096, 0 },
{ 0x05, "command_effects_log.bin", 4096, 0 },
{ 0x06, "drive_self_test.bin", 4096, 0 }
},
aM51BXLogs[] = {
{ 0xFA, "nvmelog_FA.bin", 4096, 16376 },
{ 0xFE, "nvmelog_FE.bin", 4096, 256 * 1024 },
{ 0xFF, "nvmelog_FF.bin", 4096, 64 * 1024 },
{ 0xCA, "nvmelog_CA.bin", 512, 1024 }
};
eDriveModel eModel;
const char *desc = "This retrieves the micron debug log package";
const char *package = "Log output data file name (required)";
const char *type = "telemetry log type - host or controller";
const char *data_area = "telemetry log data area 1, 2 or 3";
unsigned char *dataBuffer = NULL;
int bSize = 0;
int maxSize = 0;
struct config {
char *type;
char *package;
int data_area;
int log;
};
struct config cfg = {
.type = "",
.package = "",
.data_area = -1,
.log = 0x07,
};
OPT_ARGS(opts) = {
OPT_STRING("type", 't', "log type", &cfg.type, type),
OPT_STRING("package", 'p', "FILE", &cfg.package, package),
OPT_UINT("data_area", 'd', &cfg.data_area, data_area),
OPT_END()
};
fd = parse_and_open(argc, argv, desc, opts);
if (fd < 0)
goto out;
/* if telemetry type is specified, check for data area */
if (strlen(cfg.type) != 0) {
if (!strcmp(cfg.type, "controller")) {
cfg.log = 0x08;
} else if (strcmp(cfg.type, "host")) {
printf ("telemetry type (host or controller) should be specified i.e. -t=host\n");
close(fd);
goto out;
}
if (cfg.data_area <= 0 || cfg.data_area > 3) {
printf ("data area must be selected using -d option ie --d=1,2,3\n");
close(fd);
goto out;
}
telemetry_option = 1;
} else if (cfg.data_area > 0) {
printf ("data area option is valid only for telemetry option (i.e --type=host|controller)\n");
close(fd);
goto out;
}
if (strlen(cfg.package) == 0) {
if (telemetry_option)
printf ("Log data file must be specified. ie -p=logfile.bin\n");
else
printf ("Log data file must be specified. ie -p=logfile.zip or -p=logfile.tgz|logfile.tar.gz\n");
goto out;
}
/* pull log details based on the model name */
sscanf(argv[optind], "/dev/nvme%d", &ctrlIdx);
if ((eModel = GetDriveModel(ctrlIdx)) == UNKNOWN_MODEL) {
printf ("Unsupported drive model for vs-internal-log collection\n");
close(fd);
goto out;
}
err = nvme_identify_ctrl(fd, &ctrl);
if (err)
goto out;
err = -EINVAL;
if (telemetry_option) {
if ((ctrl.lpa & 0x8) != 0x8) {
printf("telemetry option is not supported for specified drive\n");
close(fd);
goto out;
}
int logSize = 0; __u8 *buffer = NULL; const char *dir = ".";
err = micron_telemetry_log(fd, 0, cfg.log, &buffer, &logSize, cfg.data_area);
if (err == 0 && logSize > 0 && buffer != NULL) {
sprintf(msg, "telemetry log: 0x%X", cfg.log);
WriteData(buffer, logSize, dir, cfg.package, msg);
free(buffer);
}
close(fd);
goto out;
}
printf("Preparing log package. This will take a few seconds...\n");
// trim spaces out of serial number string */
int i, j = 0;
for (i = 0; i < sizeof(ctrl.sn); i++) {
if (isblank(ctrl.sn[i]))
continue;
sn[j++] = ctrl.sn[i];
}
sn[j] = '\0';
strcpy(ctrl.sn, sn);
SetupDebugDataDirectories(ctrl.sn, cfg.package, strMainDirName, strOSDirName, strCtrlDirName);
GetTimestampInfo(strOSDirName);
GetCtrlIDDInfo(strCtrlDirName, &ctrl);
GetOSConfig(strOSDirName);
GetDriveInfo(strOSDirName, ctrlIdx, &ctrl);
for (int i = 1; i <= ctrl.nn; i++)
GetNSIDDInfo(fd, strCtrlDirName, i);
GetSmartlogData(fd, strCtrlDirName);
GetErrorlogData(fd, ctrl.elpe, strCtrlDirName);
// pull if telemetry log data is supported
if ((ctrl.lpa & 0x8) == 0x8)
GetTelemetryData(fd, strCtrlDirName);
GetFeatureSettings(fd, strCtrlDirName);
if (eModel != M5410) {
memcpy(aVendorLogs, aM51XXLogs, sizeof(aM51XXLogs));
if (eModel == M51AX)
memcpy((char *)aVendorLogs + sizeof(aM51XXLogs), aM51AXLogs, sizeof(aM51AXLogs));
else
memcpy((char *)aVendorLogs + sizeof(aM51XXLogs), aM51BXLogs, sizeof(aM51BXLogs));
}
for (int i = 0; i < (int)(sizeof(aVendorLogs) / sizeof(aVendorLogs[0])) &&
aVendorLogs[i].ucLogPage != 0; i++) {
err = -1;
switch (aVendorLogs[i].ucLogPage) {
case 0xC1:
case 0xC2:
case 0xC4:
err = GetLogPageSize(fd, aVendorLogs[i].ucLogPage, &bSize);
if (err == 0 && bSize > 0)
err = GetCommonLogPage(fd, aVendorLogs[i].ucLogPage, &dataBuffer, bSize);
break;
case 0xE6:
case 0xE7:
puiIDDBuf = (unsigned int *)&ctrl;
uiMask = puiIDDBuf[1015];
if (uiMask == 0 || (aVendorLogs[i].ucLogPage == 0xE6 && uiMask == 2) ||
(aVendorLogs[i].ucLogPage == 0xE7 && uiMask == 1)) {
bSize = 0;
} else {
bSize = (int)puiIDDBuf[1023];
if (bSize % (16 * 1024)) {
bSize += (16 * 1024) - (bSize % (16 * 1024));
}
}
if (bSize != 0 && (dataBuffer = (unsigned char *)malloc(bSize)) != NULL) {
memset(dataBuffer, 0, bSize);
if (eModel == M5410 || eModel == M5407)
err = NVMEGetLogPage(fd, aVendorLogs[i].ucLogPage, dataBuffer, bSize);
else
err = nvme_get_log(fd, NVME_NSID_ALL, aVendorLogs[i].ucLogPage,
false, NVME_NO_LOG_LSP, bSize, dataBuffer);
}
break;
case 0xF7:
case 0xF9:
case 0xFC:
case 0xFD:
if (eModel == M51BX)
(void)NVMEResetLog(fd, aVendorLogs[i].ucLogPage,
aVendorLogs[i].nLogSize, aVendorLogs[i].nMaxSize);
default:
bSize = aVendorLogs[i].nLogSize;
dataBuffer = (unsigned char *)malloc(bSize);
if (dataBuffer == NULL) {
break;
}
memset(dataBuffer, 0, bSize);
err = nvme_get_log(fd, NVME_NSID_ALL, aVendorLogs[i].ucLogPage,
false, NVME_NO_LOG_LSP, bSize, dataBuffer);
maxSize = aVendorLogs[i].nMaxSize - bSize;
while (err == 0 && maxSize > 0 && ((unsigned int *)dataBuffer)[0] != 0xdeadbeef) {
sprintf(msg, "log 0x%x", aVendorLogs[i].ucLogPage);
WriteData(dataBuffer, bSize, strCtrlDirName, aVendorLogs[i].strFileName, msg);
err = nvme_get_log(fd, NVME_NSID_ALL, aVendorLogs[i].ucLogPage,
false, NVME_NO_LOG_LSP, bSize, dataBuffer);
if (err || (((unsigned int *)dataBuffer)[0] == 0xdeadbeef))
break;
maxSize -= bSize;
}
break;
}
if (err == 0 && dataBuffer != NULL && ((unsigned int *)dataBuffer)[0] != 0xdeadbeef) {
sprintf(msg, "log 0x%x", aVendorLogs[i].ucLogPage);
WriteData(dataBuffer, bSize, strCtrlDirName, aVendorLogs[i].strFileName, msg);
}
if (dataBuffer != NULL) {
free(dataBuffer);
dataBuffer = NULL;
}
}
err = ZipAndRemoveDir(strMainDirName, cfg.package);
out:
return err;
}