1
0
Fork 0
clzip/decoder.h
Daniel Baumann c6f07d4c80
Adding upstream version 1.0~rc2.
Signed-off-by: Daniel Baumann <daniel@debian.org>
2025-02-17 18:33:31 +01:00

393 lines
13 KiB
C

/* Clzip - A data compressor based on the LZMA algorithm
Copyright (C) 2010 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
enum { Ib_buffer_size = 65536 };
struct Input_buffer
{
uint8_t * buffer;
int pos;
int stream_pos; // when reached, a new block must be read
int infd_; // input file descriptor
bool at_stream_end;
};
bool Ib_read_block( struct Input_buffer * const ibuf );
static inline void Ib_init( struct Input_buffer * const ibuf, const int infd )
{
ibuf->buffer = (uint8_t *)malloc( Ib_buffer_size );
if( !ibuf->buffer )
{
show_error( "not enough memory. Find a machine with more memory", 0, false );
cleanup_and_fail( 1 );
}
ibuf->pos = 0;
ibuf->stream_pos = 0;
ibuf->infd_ = infd;
ibuf->at_stream_end = false;
}
static inline void Ib_free( struct Input_buffer * const ibuf )
{ free( ibuf->buffer ); ibuf->buffer = 0; }
static inline bool Ib_finished( struct Input_buffer * const ibuf )
{ return ibuf->at_stream_end && ibuf->pos >= ibuf->stream_pos; }
static inline uint8_t Ib_get_byte( struct Input_buffer * const ibuf )
{
if( ibuf->pos >= ibuf->stream_pos && !Ib_read_block( ibuf ) )
return 0;
return ibuf->buffer[ibuf->pos++];
}
struct Range_decoder
{
long long member_pos;
uint32_t code;
uint32_t range;
struct Input_buffer * ibuf;
};
static inline uint8_t Rd_get_byte( struct Range_decoder * const range_decoder )
{
++range_decoder->member_pos;
return Ib_get_byte( range_decoder->ibuf );
}
static inline void Rd_init( struct Range_decoder * const range_decoder,
struct Input_buffer * const buf )
{
range_decoder->member_pos = sizeof (File_header);
range_decoder->code = 0;
range_decoder->range = 0xFFFFFFFF;
range_decoder->ibuf = buf;
for( int i = 0; i < 5; ++i )
range_decoder->code = (range_decoder->code << 8) |
Rd_get_byte( range_decoder );
}
static inline bool Rd_code_is_zero( struct Range_decoder * const range_decoder )
{ return ( range_decoder->code == 0 ); }
static inline bool Rd_finished( struct Range_decoder * const range_decoder )
{ return Ib_finished( range_decoder->ibuf ); }
static inline long long Rd_member_position( struct Range_decoder * const range_decoder )
{ return range_decoder->member_pos; }
static inline void Rd_reload( struct Range_decoder * const range_decoder )
{
range_decoder->code = 0;
range_decoder->range = 0xFFFFFFFF;
for( int i = 0; i < 5; ++i )
range_decoder->code = (range_decoder->code << 8) |
Rd_get_byte( range_decoder );
}
static inline void Rd_normalize( struct Range_decoder * const range_decoder )
{
if( range_decoder->range <= 0x00FFFFFF )
{
range_decoder->range <<= 8;
range_decoder->code = (range_decoder->code << 8) |
Rd_get_byte( range_decoder );
}
}
static inline int Rd_decode( struct Range_decoder * const range_decoder,
const int num_bits )
{
int symbol = 0;
for( int i = num_bits; i > 0; --i )
{
symbol <<= 1;
if( range_decoder->range <= 0x00FFFFFF )
{
range_decoder->range <<= 7;
range_decoder->code = (range_decoder->code << 8) |
Rd_get_byte( range_decoder );
if( range_decoder->code >= range_decoder->range )
{ range_decoder->code -= range_decoder->range; symbol |= 1; }
}
else
{
range_decoder->range >>= 1;
if( range_decoder->code >= range_decoder->range )
{ range_decoder->code -= range_decoder->range; symbol |= 1; }
}
}
return symbol;
}
static inline int Rd_decode_bit( struct Range_decoder * const range_decoder,
Bit_model * const probability )
{
Rd_normalize( range_decoder );
const uint32_t bound = ( range_decoder->range >> bit_model_total_bits ) *
*probability;
if( range_decoder->code < bound )
{
range_decoder->range = bound;
*probability += (bit_model_total - *probability) >> bit_model_move_bits;
return 0;
}
else
{
range_decoder->range -= bound;
range_decoder->code -= bound;
*probability -= *probability >> bit_model_move_bits;
return 1;
}
}
static inline int Rd_decode_tree( struct Range_decoder * const range_decoder,
Bit_model bm[], const int num_bits )
{
int model = 1;
for( int i = num_bits; i > 0; --i )
model = ( model << 1 ) | Rd_decode_bit( range_decoder, &bm[model] );
return model - (1 << num_bits);
}
static inline int Rd_decode_tree_reversed( struct Range_decoder * const range_decoder,
Bit_model bm[], const int num_bits )
{
int model = 1;
int symbol = 0;
for( int i = 0; i < num_bits; ++i )
{
const int bit = Rd_decode_bit( range_decoder, &bm[model] );
model <<= 1;
if( bit ) { model |= 1; symbol |= (1 << i); }
}
return symbol;
}
static inline int Rd_decode_matched( struct Range_decoder * const range_decoder,
Bit_model bm[], const int match_byte )
{
Bit_model *bm1 = bm + 0x100;
int symbol = 1;
for( int i = 1; i <= 8; ++i )
{
const int match_bit = ( match_byte << i ) & 0x100;
const int bit = Rd_decode_bit( range_decoder, &bm1[match_bit+symbol] );
symbol = ( symbol << 1 ) | bit;
if( ( match_bit && !bit ) || ( !match_bit && bit ) )
{
while( ++i <= 8 )
symbol = ( symbol << 1 ) | Rd_decode_bit( range_decoder, &bm[symbol] );
break;
}
}
return symbol & 0xFF;
}
struct Len_decoder
{
Bit_model choice1;
Bit_model choice2;
Bit_model bm_low[pos_states][len_low_symbols];
Bit_model bm_mid[pos_states][len_mid_symbols];
Bit_model bm_high[len_high_symbols];
};
static inline void Led_init( struct Len_decoder * const len_decoder )
{
Bm_init( &len_decoder->choice1 );
Bm_init( &len_decoder->choice2 );
for( int i = 0; i < pos_states; ++i )
for( int j = 0; j < len_low_symbols; ++j )
Bm_init( &len_decoder->bm_low[i][j] );
for( int i = 0; i < pos_states; ++i )
for( int j = 0; j < len_mid_symbols; ++j )
Bm_init( &len_decoder->bm_mid[i][j] );
for( int i = 0; i < len_high_symbols; ++i )
Bm_init( &len_decoder->bm_high[i] );
}
static inline int Led_decode( struct Len_decoder * const len_decoder,
struct Range_decoder * const range_decoder,
const int pos_state )
{
if( Rd_decode_bit( range_decoder, &len_decoder->choice1 ) == 0 )
return Rd_decode_tree( range_decoder, len_decoder->bm_low[pos_state],
len_low_bits );
if( Rd_decode_bit( range_decoder, &len_decoder->choice2 ) == 0 )
return len_low_symbols +
Rd_decode_tree( range_decoder, len_decoder->bm_mid[pos_state],
len_mid_bits );
return len_low_symbols + len_mid_symbols +
Rd_decode_tree( range_decoder, len_decoder->bm_high, len_high_bits );
}
struct Literal_decoder
{
Bit_model bm_literal[1<<literal_context_bits][0x300];
};
static inline void Lid_init( struct Literal_decoder * const literal_decoder )
{
for( int i = 0; i < 1<<literal_context_bits; ++i )
for( int j = 0; j < 0x300; ++j )
Bm_init( &literal_decoder->bm_literal[i][j] );
}
static inline int Lid_state( const int prev_byte )
{ return ( prev_byte >> ( 8 - literal_context_bits ) ); }
static inline uint8_t Lid_decode( struct Literal_decoder * const literal_decoder,
struct Range_decoder * const range_decoder,
const uint8_t prev_byte )
{ return Rd_decode_tree( range_decoder, literal_decoder->bm_literal[Lid_state(prev_byte)], 8 ); }
static inline uint8_t Lid_decode_matched( struct Literal_decoder * const literal_decoder,
struct Range_decoder * const range_decoder,
const uint8_t prev_byte,
const uint8_t match_byte )
{ return Rd_decode_matched( range_decoder, literal_decoder->bm_literal[Lid_state(prev_byte)], match_byte ); }
struct LZ_decoder
{
long long partial_data_pos;
int format_version;
int dictionary_size;
int buffer_size;
uint8_t * buffer;
int pos;
int stream_pos; // first byte not yet written to file
uint32_t crc_;
int outfd_; // output file descriptor
Bit_model bm_match[St_states][pos_states];
Bit_model bm_rep[St_states];
Bit_model bm_rep0[St_states];
Bit_model bm_rep1[St_states];
Bit_model bm_rep2[St_states];
Bit_model bm_len[St_states][pos_states];
Bit_model bm_dis_slot[max_dis_states][1<<dis_slot_bits];
Bit_model bm_dis[modeled_distances-end_dis_model];
Bit_model bm_align[dis_align_size];
struct Range_decoder range_decoder;
struct Len_decoder len_decoder;
struct Len_decoder rep_match_len_decoder;
struct Literal_decoder literal_decoder;
};
void LZd_flush_data( struct LZ_decoder * const decoder );
static inline uint8_t LZd_get_byte( struct LZ_decoder * const decoder,
const int distance )
{
int i = decoder->pos - distance - 1;
if( i < 0 ) i += decoder->buffer_size;
return decoder->buffer[i];
}
static inline void LZd_put_byte( struct LZ_decoder * const decoder,
const uint8_t b )
{
decoder->buffer[decoder->pos] = b;
if( ++decoder->pos >= decoder->buffer_size )
LZd_flush_data( decoder );
}
static inline void LZd_copy_block( struct LZ_decoder * const decoder,
const int distance, int len )
{
int i = decoder->pos - distance - 1;
if( i < 0 ) i += decoder->buffer_size;
if( len < decoder->buffer_size - max( decoder->pos, i ) &&
len <= abs( decoder->pos - i ) )
{
memcpy( decoder->buffer + decoder->pos, decoder->buffer + i, len );
decoder->pos += len;
}
else for( ; len > 0 ; --len )
{
decoder->buffer[decoder->pos] = decoder->buffer[i];
if( ++decoder->pos >= decoder->buffer_size )
LZd_flush_data( decoder );
if( ++i >= decoder->buffer_size ) i = 0;
}
}
bool LZd_verify_trailer( struct LZ_decoder * const decoder,
struct Pretty_print * const pp );
static inline void LZd_init( struct LZ_decoder * const decoder,
const File_header header,
struct Input_buffer * const ibuf, const int outfd )
{
decoder->partial_data_pos = 0;
decoder->format_version = Fh_version( header );
decoder->dictionary_size = Fh_get_dictionary_size( header );
decoder->buffer_size = max( 65536, decoder->dictionary_size );
decoder->buffer = (uint8_t *)malloc( decoder->buffer_size );
if( !decoder->buffer )
{
show_error( "not enough memory. Find a machine with more memory", 0, false );
cleanup_and_fail( 1 );
}
decoder->pos = 0;
decoder->stream_pos = 0;
decoder->crc_ = 0xFFFFFFFF;
decoder->outfd_ = outfd;
for( int i = 0; i < St_states; ++i )
{
for( int j = 0; j < pos_states; ++j )
{
Bm_init( &decoder->bm_match[i][j] );
Bm_init( &decoder->bm_len[i][j] );
}
Bm_init( &decoder->bm_rep[i] );
Bm_init( &decoder->bm_rep0[i] );
Bm_init( &decoder->bm_rep1[i] );
Bm_init( &decoder->bm_rep2[i] );
}
for( int i = 0; i < max_dis_states; ++i )
for( int j = 0; j < 1<<dis_slot_bits; ++j )
Bm_init( &decoder->bm_dis_slot[i][j] );
for( int i = 0; i < modeled_distances-end_dis_model; ++i )
Bm_init( &decoder->bm_dis[i] );
for( int i = 0; i < dis_align_size; ++i )
Bm_init( &decoder->bm_align[i] );
Rd_init( &decoder->range_decoder, ibuf );
Led_init( &decoder->len_decoder );
Led_init( &decoder->rep_match_len_decoder );
Lid_init( &decoder->literal_decoder );
decoder->buffer[decoder->buffer_size-1] = 0; // prev_byte of first_byte
}
static inline void LZd_free( struct LZ_decoder * const decoder )
{ free( decoder->buffer ); decoder->buffer = 0; }
static inline uint32_t LZd_crc( struct LZ_decoder * const decoder )
{ return decoder->crc_ ^ 0xFFFFFFFF; }
int LZd_decode_member( struct LZ_decoder * const decoder,
struct Pretty_print * const pp );
static inline long long LZd_member_position( struct LZ_decoder * const decoder )
{ return Rd_member_position( &decoder->range_decoder ); }
static inline long long LZd_data_position( struct LZ_decoder * const decoder )
{ return decoder->partial_data_pos + decoder->pos; }