/* Lziprecover - Data recovery tool for the lzip format Copyright (C) 2023-2024 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include // STDERR_FILENO #include "lzip.h" #include "md5.h" #include "fec.h" namespace { const uint16_t u16_one = 1; const bool little_endian = *(const uint8_t *)&u16_one == 1; inline uint16_t swap_bytes( const uint16_t a ) { return ( a >> 8 ) | ( a << 8 ); } struct Galois16_table // addition/subtraction is exclusive or { enum { size = 1 << 16, poly = 0x1100B }; // generator polynomial uint16_t * log, * ilog, * mul_tables; Galois16_table() : log( 0 ), ilog( 0 ), mul_tables( 0 ) {} // ~Galois16_table() { delete[] mul_tables; delete[] ilog; delete[] log; } void init() // fill log, inverse log, and multiplication tables { if( log ) return; log = new uint16_t[size]; ilog = new uint16_t[size]; mul_tables = new uint16_t[3 * 256 * 256]; // LL, LH, HH for( unsigned b = 1, i = 0; i < size - 1; ++i ) { log[b] = i; ilog[i] = b; b <<= 1; if( b & size ) b ^= poly; } log[0] = size - 1; // log(0) is not defined, so use a special value ilog[size-1] = 1; uint16_t * p = mul_tables; for( int i = 0; i < 16; i += 8 ) for( int j = i; j < 16; j += 8 ) for( int a = 0; a < 256 << i; a += 1 << i ) for( int b = 0; b < 256 << j; b += 1 << j ) *p++ = mul( a, b ); } uint16_t mul( const uint16_t a, const uint16_t b ) const { if( a == 0 || b == 0 ) return 0; const unsigned sum = log[a] + log[b]; return ( sum >= size - 1 ) ? ilog[sum-(size-1)] : ilog[sum]; // return ilog[(log[a] + log[b]) % (size-1)]; } uint16_t inverse( const uint16_t a ) const { return ilog[size-1-log[a]]; } } gf; inline bool check_element( const uint16_t * const A, const uint16_t * const B, const unsigned k, const unsigned row, const unsigned col ) { const uint16_t * pa = A + row * k; const uint16_t * pb = B + col; uint16_t sum = 0; for( unsigned i = 0; i < k; ++i, ++pa, pb += k ) sum ^= gf.mul( *pa, *pb ); return sum == ( row == col ); } /* Check that A * B = I (A, B, I are square matrices of size k * k). Check just the diagonals for matrices larger than 1024 x 1024. */ bool check_inverse( const uint16_t * const A, const uint16_t * const B, const unsigned k ) { const bool print = verbosity >= 1 && k > max_k8 && isatty( STDERR_FILENO ); for( unsigned row = 0; row < k; ++row ) // multiply A * B { if( k <= 1024 ) for( unsigned col = 0; col < k; ++col ) { if( !check_element( A, B, k, row, col ) ) { if( print && row ) std::fputc( '\n', stderr ); return false; } } else if( !check_element( A, B, k, row, row ) || !check_element( A, B, k, row, k - 1 - row ) ) { if( print && row ) std::fputc( '\n', stderr ); return false; } if( print ) std::fprintf( stderr, "\r%5u rows checked \r", row + 1 ); } return true; // A * B == I } /* Invert in place a matrix of size k * k. This is like Gaussian elimination with a virtual identity matrix: A --some_changes--> I, I --same_changes--> A^-1 Galois arithmetic is exact. Swapping rows or columns is not needed. */ bool invert_matrix( uint16_t * const matrix, const unsigned k ) { const bool print = verbosity >= 1 && k > max_k8 && isatty( STDERR_FILENO ); for( unsigned row = 0; row < k; ++row ) { uint16_t * const pivot_row = matrix + row * k; uint16_t pivot = pivot_row[row]; if( pivot == 0 ) { if( print && row ) std::fputc( '\n', stderr ); return false; } if( pivot != 1 ) // scale the pivot_row { pivot = gf.inverse( pivot ); pivot_row[row] = 1; for( unsigned col = 0; col < k; ++col ) pivot_row[col] = gf.mul( pivot_row[col], pivot ); } // subtract pivot_row from the other rows for( unsigned row2 = 0; row2 < k; ++row2 ) if( row2 != row ) { uint16_t * const dst_row = matrix + row2 * k; const uint16_t c = dst_row[row]; dst_row[row] = 0; for( unsigned col = 0; col < k; ++col ) dst_row[col] ^= gf.mul( pivot_row[col], c ); } if( print ) std::fprintf( stderr, "\r%5u rows inverted\r", row + 1 ); } return true; } // create dec_matrix containing only the rows needed and invert it in place const uint16_t * init_dec_matrix( const std::vector< unsigned > & bb_vector, const std::vector< unsigned > & fbn_vector ) { const unsigned bad_blocks = bb_vector.size(); uint16_t * const dec_matrix = new uint16_t[bad_blocks * bad_blocks]; // one row for each missing data block for( unsigned row = 0; row < bad_blocks; ++row ) { uint16_t * const dec_row = dec_matrix + row * bad_blocks; const unsigned fbn = fbn_vector[row] | 0x8000; for( unsigned col = 0; col < bad_blocks; ++col ) dec_row[col] = gf.inverse( fbn ^ bb_vector[col] ); } if( !invert_matrix( dec_matrix, bad_blocks ) ) internal_error( "GF(2^16) matrix not invertible." ); return dec_matrix; } #if 0 /* compute dst[] += c * src[] treat the buffers as arrays of 16-bit Galois values */ inline void mul_add( const uint8_t * const src, uint8_t * const dst, const unsigned long fbs, const uint16_t c ) { if( c == 0 ) return; // nothing to add const uint16_t * const src16 = (const uint16_t *)src; uint16_t * const dst16 = (uint16_t *)dst; if( little_endian ) for( unsigned long i = 0; i < fbs / 2; ++i ) dst16[i] ^= gf.mul( src16[i], c ); else // big endian for( unsigned long i = 0; i < fbs / 2; ++i ) dst16[i] ^= swap_bytes( gf.mul( swap_bytes( src16[i] ), c ) ); } #else /* compute dst[] += c * src[] treat the buffers as arrays of pairs of 16-bit Galois values */ inline void mul_add( const uint8_t * const src, uint8_t * const dst, const unsigned long fbs, const uint16_t c ) { if( c == 0 ) return; // nothing to add const int cl = c & 0xFF; // split factor c into low and high bytes const int ch = c >> 8; // pointers to the four multiplication tables (c.low/high * src.low/high) const uint16_t * LL = &gf.mul_tables[cl * 256]; const uint16_t * LH = &gf.mul_tables[65536 + cl * 256]; const uint16_t * HL = &gf.mul_tables[65536 + ch]; // step 256 const uint16_t * HH = &gf.mul_tables[131072 + ch * 256]; uint16_t L[256]; // extract the two tables for factor c uint16_t H[256]; if( little_endian ) for( int i = 0; i < 256; ++i ) { L[i] = *LL++ ^ *HL; HL+=256; H[i] = *LH++ ^ *HH++; } else // big endian for( int i = 0; i < 256; ++i ) { H[i] = swap_bytes( *LL++ ^ *HL ); HL+=256; L[i] = swap_bytes( *LH++ ^ *HH++ ); } const uint32_t * const src32 = (const uint32_t *)src; uint32_t * const dst32 = (uint32_t *)dst; for( unsigned long i = 0; i < fbs / 4; ++i ) { const uint32_t s = src32[i]; dst32[i] ^= L[s & 0xFF] ^ H[s >> 8 & 0xFF] ^ L[s >> 16 & 0xFF] << 16 ^ H[s >> 24] << 16; } } #endif } // end namespace void gf16_init() { gf.init(); } bool gf16_check( const std::vector< unsigned > & fbn_vector, const unsigned k ) { if( k == 0 ) return true; gf.init(); bool good = true; for( unsigned a = 1; a < gf.size; ++a ) if( gf.mul( a, gf.inverse( a ) ) != 1 ) { good = false; std::fprintf( stderr, "%u * ( 1/%u ) != 1 in GF(2^16)\n", a, a ); } uint16_t * const enc_matrix = new uint16_t[k * k]; uint16_t * const dec_matrix = new uint16_t[k * k]; const bool random = fbn_vector.size() == k; for( unsigned row = 0; row < k; ++row ) { const unsigned fbn = ( random ? fbn_vector[row] : row ) | 0x8000; uint16_t * const enc_row = enc_matrix + row * k; for( unsigned col = 0; col < k; ++col ) enc_row[col] = gf.inverse( fbn ^ col ); } std::memcpy( dec_matrix, enc_matrix, k * k * sizeof (uint16_t) ); if( !invert_matrix( dec_matrix, k ) ) { good = false; show_error( "GF(2^16) matrix not invertible." ); } else if( !check_inverse( enc_matrix, dec_matrix, k ) ) { good = false; show_error( "GF(2^16) matrix A * A^-1 != I" ); } delete[] dec_matrix; delete[] enc_matrix; return good; } void rs16_encode( const uint8_t * const buffer, const uint8_t * const lastbuf, uint8_t * const fec_block, const unsigned long fbs, const unsigned fbn, const unsigned k ) { if( !gf.log ) internal_error( "GF(2^16) tables not initialized." ); /* The encode matrix is a Hilbert matrix of size k * k with one row per fec block and one column per data block. The value of each element is computed on the fly with inverse. */ const unsigned row = fbn | 0x8000; std::memset( fec_block, 0, fbs ); for( unsigned col = 0; col < k; ++col ) { const uint8_t * const src = ( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf; mul_add( src, fec_block, fbs, gf.inverse( row ^ col ) ); } } void rs16_decode( uint8_t * const buffer, uint8_t * const lastbuf, const std::vector< unsigned > & bb_vector, const std::vector< unsigned > & fbn_vector, uint8_t * const fecbuf, const unsigned long fbs, const unsigned k ) { gf.init(); const unsigned bad_blocks = bb_vector.size(); for( unsigned col = 0, bi = 0; col < k; ++col ) // reduce { if( bi < bad_blocks && col == bb_vector[bi] ) { ++bi; continue; } const uint8_t * const src = ( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf; for( unsigned row = 0; row < bad_blocks; ++row ) { const unsigned fbn = fbn_vector[row] | 0x8000; mul_add( src, fecbuf + row * fbs, fbs, gf.inverse( fbn ^ col ) ); } } const uint16_t * const dec_matrix = init_dec_matrix( bb_vector, fbn_vector ); for( unsigned col = 0; col < bad_blocks; ++col ) // solve { const unsigned di = bb_vector[col]; uint8_t * const dst = ( di < k - (lastbuf != 0) ) ? buffer + di * fbs : lastbuf; std::memset( dst, 0, fbs ); const uint16_t * const dec_row = dec_matrix + col * bad_blocks; for( unsigned row = 0; row < bad_blocks; ++row ) mul_add( fecbuf + row * fbs, dst, fbs, dec_row[row] ); } delete[] dec_matrix; }