1
0
Fork 0
xlunzip/lzip_decompress.c
Daniel Baumann d24e3d2e19
Merging upstream version 0.8.
Signed-off-by: Daniel Baumann <daniel@debian.org>
2025-02-17 22:53:16 +01:00

874 lines
24 KiB
C

/*
* LZIP decompressor
*
* Copyright (C) 2016-2024 Antonio Diaz Diaz.
*
* Licensed under GPLv2 or later, see file LICENSE in this source tree.
*/
#include "linux_module.h"
#include "linux_lzip.h"
#include "linux_mm.h"
/*
* STATIC_RW_DATA is used in the pre-boot environment on some architectures.
* See include/linux/decompress/mm.h for details.
*/
#ifndef STATIC_RW_DATA
#define STATIC_RW_DATA static
#endif
typedef int State;
enum { states = 12 };
static inline bool St_is_char(const State st) { return st < 7; }
static inline State St_set_char(const State st)
{
STATIC_RW_DATA const State next[states] = { 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5 };
return next[st];
}
static inline State St_set_match(const State st)
{
return (st < 7) ? 7 : 10;
}
static inline State St_set_rep(const State st)
{
return (st < 7) ? 8 : 11;
}
static inline State St_set_short_rep(const State st)
{
return (st < 7) ? 9 : 11;
}
enum {
min_dictionary_bits = 12,
min_dictionary_size = 1 << min_dictionary_bits, /* >= modeled_distances */
max_dictionary_bits = 29,
max_dictionary_size = 1 << max_dictionary_bits,
literal_context_bits = 3,
pos_state_bits = 2,
pos_states = 1 << pos_state_bits,
pos_state_mask = pos_states - 1,
len_states = 4,
dis_slot_bits = 6,
start_dis_model = 4,
end_dis_model = 14,
modeled_distances = 1 << (end_dis_model / 2), /* 128 */
dis_align_bits = 4,
dis_align_size = 1 << dis_align_bits,
len_low_bits = 3,
len_mid_bits = 3,
len_high_bits = 8,
len_low_symbols = 1 << len_low_bits,
len_mid_symbols = 1 << len_mid_bits,
len_high_symbols = 1 << len_high_bits,
max_len_symbols = len_low_symbols + len_mid_symbols + len_high_symbols,
min_match_len = 2, /* must be 2 */
max_match_len = min_match_len + max_len_symbols - 1, /* 273 */
min_match_len_limit = 5
};
static inline int get_len_state(const int len)
{
return min(len - min_match_len, len_states - 1);
}
static inline int get_lit_state(const uint8_t prev_byte)
{
return prev_byte >> (8 - literal_context_bits);
}
enum { bit_model_move_bits = 5,
bit_model_total_bits = 11,
bit_model_total = 1 << bit_model_total_bits
};
typedef int Bit_model;
static inline void Bm_init(Bit_model * const probability)
{
*probability = bit_model_total / 2;
}
static inline void Bm_array_init(Bit_model bm[], const int size)
{
int i;
for (i = 0; i < size; ++i)
Bm_init(&bm[i]);
}
struct Len_model {
Bit_model choice1;
Bit_model choice2;
Bit_model bm_low[pos_states][len_low_symbols];
Bit_model bm_mid[pos_states][len_mid_symbols];
Bit_model bm_high[len_high_symbols];
};
static inline void Lm_init(struct Len_model * const lm)
{
Bm_init(&lm->choice1);
Bm_init(&lm->choice2);
Bm_array_init(lm->bm_low[0], pos_states * len_low_symbols);
Bm_array_init(lm->bm_mid[0], pos_states * len_mid_symbols);
Bm_array_init(lm->bm_high, len_high_symbols);
}
/* Table of CRCs of all 8-bit messages. */
STATIC_RW_DATA const uint32_t crc32[256] =
{
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F,
0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2,
0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9,
0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423,
0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106,
0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950,
0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7,
0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA,
0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81,
0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84,
0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB,
0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E,
0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55,
0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28,
0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F,
0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69,
0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693,
0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D };
static inline void CRC32_update_buf(uint32_t * const crc,
const uint8_t * const buffer,
const long size)
{
long i;
uint32_t c = *crc;
for (i = 0; i < size; ++i)
c = crc32[(c^buffer[i])&0xFF] ^ (c >> 8);
*crc = c;
}
STATIC_RW_DATA const uint8_t lzip_magic[4] = { 0x4C, 0x5A, 0x49, 0x50 }; /* "LZIP" */
enum { Lh_size = 6 };
typedef uint8_t Lzip_header[Lh_size]; /* 0-3 magic bytes */
/* 4 version */
/* 5 coded dictionary size */
static inline bool Lh_check_magic(const Lzip_header data)
{
int i;
for (i = 0; i < 4; ++i)
if (data[i] != lzip_magic[i])
return false;
return true;
}
/* detect (truncated) header */
static inline bool Lh_check_prefix(const Lzip_header data, const int sz)
{
int i;
for (i = 0; i < sz && i < 4; ++i)
if (data[i] != lzip_magic[i])
return false;
return sz > 0;
}
/* detect corrupt header */
static inline bool Lh_check_corrupt(const Lzip_header data)
{
int matches = 0;
int i;
for (i = 0; i < 4; ++i)
if (data[i] == lzip_magic[i])
++matches;
return matches > 1 && matches < 4;
}
static inline bool Lh_check_version(const Lzip_header data)
{
return data[4] == 1;
}
static inline unsigned Lh_get_dictionary_size(const Lzip_header data)
{
unsigned sz = 1 << (data[5] & 0x1F);
if (sz > min_dictionary_size)
sz -= (sz / 16) * ((data[5] >> 5) & 7);
return sz;
}
enum { Lt_size = 20 };
typedef uint8_t Lzip_trailer[Lt_size];
/* 0-3 CRC32 of the uncompressed data */
/* 4-11 size of the uncompressed data */
/* 12-19 member size including header and trailer */
static inline unsigned Lt_get_data_crc(const Lzip_trailer data)
{
unsigned tmp = 0;
int i;
for (i = 3; i >= 0; --i) {
tmp <<= 8;
tmp += data[i];
}
return tmp;
}
static inline unsigned long long Lt_get_data_size(const Lzip_trailer data)
{
unsigned long long tmp = 0;
int i;
for (i = 11; i >= 4; --i) {
tmp <<= 8;
tmp += data[i];
}
return tmp;
}
static inline unsigned long long Lt_get_member_size(const Lzip_trailer data)
{
unsigned long long tmp = 0;
int i;
for (i = 19; i >= 12; --i) {
tmp <<= 8;
tmp += data[i];
}
return tmp;
}
struct Range_decoder {
unsigned long long partial_member_pos;
uint8_t *buffer; /* input buffer */
long buffer_size;
long pos; /* current pos in buffer */
long stream_pos; /* when reached, a new block must be read */
uint32_t code;
uint32_t range;
long (*fill)(void*, unsigned long);
bool at_stream_end;
bool buffer_given;
};
static bool Rd_read_block(struct Range_decoder * const rdec)
{
if (!rdec->at_stream_end) {
rdec->stream_pos = rdec->fill ?
rdec->fill(rdec->buffer, rdec->buffer_size) : 0;
rdec->at_stream_end = (rdec->stream_pos < rdec->buffer_size);
rdec->partial_member_pos += rdec->pos;
rdec->pos = 0;
}
return rdec->pos < rdec->stream_pos;
}
static inline bool Rd_init(struct Range_decoder * const rdec,
uint8_t * const inbuf, const long in_len,
long (*fill)(void*, unsigned long))
{
rdec->partial_member_pos = 0;
rdec->buffer_given = (inbuf && in_len > 0);
rdec->buffer_size = rdec->buffer_given ? in_len : 16384;
rdec->buffer = rdec->buffer_given ? inbuf : malloc(rdec->buffer_size);
if (!rdec->buffer)
return false;
rdec->pos = 0;
rdec->stream_pos = rdec->buffer_given ? in_len : 0;
rdec->code = 0;
rdec->range = 0xFFFFFFFFU;
rdec->fill = fill;
rdec->at_stream_end = false;
return true;
}
static inline void Rd_free(struct Range_decoder * const rdec)
{
if (!rdec->buffer_given)
free(rdec->buffer);
}
static inline bool Rd_finished(struct Range_decoder * const rdec)
{
return rdec->pos >= rdec->stream_pos && !Rd_read_block(rdec);
}
static inline unsigned long long
Rd_member_position(const struct Range_decoder * const rdec)
{
return rdec->partial_member_pos + rdec->pos;
}
static inline void Rd_reset_member_position(struct Range_decoder * const rdec)
{
rdec->partial_member_pos = 0; rdec->partial_member_pos -= rdec->pos;
}
static inline uint8_t Rd_get_byte(struct Range_decoder * const rdec)
{
/* 0xFF avoids decoder error if member is truncated at EOS marker */
if (Rd_finished(rdec))
return 0xFF;
return rdec->buffer[rdec->pos++];
}
static inline void Rd_load(struct Range_decoder * const rdec)
{
int i;
rdec->code = 0;
rdec->range = 0xFFFFFFFFU;
Rd_get_byte(rdec); /* discard first byte of the LZMA stream */
for (i = 0; i < 4; ++i) rdec->code = (rdec->code << 8) | Rd_get_byte(rdec);
}
static inline void Rd_normalize(struct Range_decoder * const rdec)
{
if (rdec->range <= 0x00FFFFFFU) {
rdec->range <<= 8;
rdec->code = (rdec->code << 8) | Rd_get_byte(rdec);
}
}
static inline unsigned Rd_decode(struct Range_decoder * const rdec,
const int num_bits)
{
unsigned symbol = 0;
int i;
for (i = num_bits; i > 0; --i) {
bool bit;
Rd_normalize(rdec);
rdec->range >>= 1;
/* symbol <<= 1; */
/* if(rdec->code >= rdec->range) { rdec->code -= rdec->range; symbol |= 1; } */
bit = (rdec->code >= rdec->range);
symbol <<= 1; symbol += bit;
rdec->code -= rdec->range & (0U - bit);
}
return symbol;
}
static inline unsigned Rd_decode_bit(struct Range_decoder * const rdec,
Bit_model * const probability)
{
uint32_t bound;
Rd_normalize(rdec);
bound = (rdec->range >> bit_model_total_bits) * *probability;
if (rdec->code < bound) {
rdec->range = bound;
*probability += (bit_model_total - *probability) >> bit_model_move_bits;
return 0;
} else {
rdec->range -= bound;
rdec->code -= bound;
*probability -= *probability >> bit_model_move_bits;
return 1;
}
}
static inline unsigned Rd_decode_tree3(struct Range_decoder * const rdec,
Bit_model bm[])
{
unsigned symbol = 2 | Rd_decode_bit(rdec, &bm[1]);
symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
return symbol & 7;
}
static inline unsigned Rd_decode_tree6(struct Range_decoder * const rdec,
Bit_model bm[])
{
unsigned symbol = 2 | Rd_decode_bit(rdec, &bm[1]);
symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
return symbol & 0x3F;
}
static inline unsigned Rd_decode_tree8(struct Range_decoder * const rdec,
Bit_model bm[])
{
unsigned symbol = 1;
int i;
for (i = 0; i < 8; ++i)
symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
return symbol & 0xFF;
}
static inline unsigned
Rd_decode_tree_reversed(struct Range_decoder * const rdec,
Bit_model bm[], const int num_bits)
{
unsigned model = 1;
unsigned symbol = 0;
int i;
for (i = 0; i < num_bits; ++i) {
const unsigned bit = Rd_decode_bit(rdec, &bm[model]);
model <<= 1; model += bit;
symbol |= (bit << i);
}
return symbol;
}
static inline unsigned
Rd_decode_tree_reversed4(struct Range_decoder * const rdec, Bit_model bm[])
{
unsigned symbol = Rd_decode_bit(rdec, &bm[1]);
symbol += Rd_decode_bit(rdec, &bm[2+symbol]) << 1;
symbol += Rd_decode_bit(rdec, &bm[4+symbol]) << 2;
symbol += Rd_decode_bit(rdec, &bm[8+symbol]) << 3;
return symbol;
}
static inline unsigned Rd_decode_matched(struct Range_decoder * const rdec,
Bit_model bm[], unsigned match_byte)
{
unsigned symbol = 1;
unsigned mask = 0x100;
while (true) {
const unsigned match_bit = (match_byte <<= 1) & mask;
const unsigned bit = Rd_decode_bit(rdec, &bm[symbol+match_bit+mask]);
symbol <<= 1; symbol += bit;
if (symbol > 0xFF)
return symbol & 0xFF;
mask &= ~(match_bit ^ (bit << 8)); /* if( match_bit != bit ) mask = 0; */
}
}
static inline unsigned Rd_decode_len(struct Range_decoder * const rdec,
struct Len_model * const lm,
const int pos_state)
{
if (Rd_decode_bit(rdec, &lm->choice1) == 0)
return min_match_len +
Rd_decode_tree3(rdec, lm->bm_low[pos_state]);
if (Rd_decode_bit(rdec, &lm->choice2) == 0)
return min_match_len + len_low_symbols +
Rd_decode_tree3(rdec, lm->bm_mid[pos_state]);
return min_match_len + len_low_symbols + len_mid_symbols +
Rd_decode_tree8(rdec, lm->bm_high);
}
struct LZ_decoder {
unsigned long long partial_data_pos;
struct Range_decoder *rdec;
/* Don't move bm_* to LZd_decode_member; makes frame too large. */
Bit_model bm_literal[1 << literal_context_bits][0x300];
Bit_model bm_match[states][pos_states];
Bit_model bm_rep[states];
Bit_model bm_rep0[states];
Bit_model bm_rep1[states];
Bit_model bm_rep2[states];
Bit_model bm_len[states][pos_states];
Bit_model bm_dis_slot[len_states][1 << dis_slot_bits];
Bit_model bm_dis[modeled_distances-end_dis_model+1];
Bit_model bm_align[dis_align_size];
struct Len_model match_len_model;
struct Len_model rep_len_model;
unsigned long buffer_size;
unsigned dictionary_size;
uint8_t *buffer; /* output buffer */
unsigned long pos; /* current pos in buffer */
unsigned long stream_pos; /* first byte not yet written to file */
uint32_t crc;
long (*flush)(void*, unsigned long);
bool pos_wrapped;
bool buffer_given;
bool write_error;
};
static void LZd_flush_data(struct LZ_decoder * const d)
{
if (d->pos > d->stream_pos) {
const long size = d->pos - d->stream_pos;
CRC32_update_buf(&d->crc, d->buffer + d->stream_pos, size);
if ((d->flush &&
d->flush(d->buffer + d->stream_pos, size) != size) ||
(!d->flush && d->pos_wrapped))
d->write_error = true;
if (d->pos >= d->buffer_size) {
d->partial_data_pos += d->pos;
d->pos = 0;
d->pos_wrapped = true;
}
d->stream_pos = d->pos;
}
}
static inline uint8_t LZd_peek_prev(const struct LZ_decoder * const d)
{
if (d->pos > 0)
return d->buffer[d->pos-1];
if (d->pos_wrapped)
return d->buffer[d->buffer_size-1];
return 0; /* prev_byte of first byte */
}
static inline uint8_t LZd_peek(const struct LZ_decoder * const d,
const unsigned distance)
{
const unsigned long i = ((d->pos > distance) ? 0 : d->buffer_size) +
d->pos - distance - 1;
return d->buffer[i];
}
static inline void LZd_put_byte(struct LZ_decoder * const d, const uint8_t b)
{
d->buffer[d->pos] = b;
if (++d->pos >= d->buffer_size)
LZd_flush_data(d);
}
static inline void LZd_copy_block(struct LZ_decoder * const d,
const unsigned distance, unsigned len)
{
unsigned long lpos = d->pos, i = lpos - distance - 1;
bool fast, fast2;
if (lpos > distance) {
fast = (len < d->buffer_size - lpos);
fast2 = (fast && len <= lpos - i);
} else {
i += d->buffer_size;
fast = (len < d->buffer_size - i); /* (i == pos) may happen */
fast2 = (fast && len <= i - lpos);
}
if (fast) { /* no wrap */
d->pos += len;
if (fast2) /* no wrap, no overlap */
memcpy(d->buffer + lpos, d->buffer + i, len);
else
for (; len > 0; --len)
d->buffer[lpos++] = d->buffer[i++];
} else
for (; len > 0; --len) {
d->buffer[d->pos] = d->buffer[i];
if (++d->pos >= d->buffer_size)
LZd_flush_data(d);
if (++i >= d->buffer_size)
i = 0;
}
}
static inline bool LZd_init(struct LZ_decoder * const d,
struct Range_decoder * const rde,
const unsigned dict_size, uint8_t * const outbuf,
long out_size, long (*flush)(void*, unsigned long))
{
d->partial_data_pos = 0;
d->rdec = rde;
Bm_array_init(d->bm_literal[0], (1 << literal_context_bits) * 0x300);
Bm_array_init(d->bm_match[0], states * pos_states);
Bm_array_init(d->bm_rep, states);
Bm_array_init(d->bm_rep0, states);
Bm_array_init(d->bm_rep1, states);
Bm_array_init(d->bm_rep2, states);
Bm_array_init(d->bm_len[0], states * pos_states);
Bm_array_init(d->bm_dis_slot[0], len_states * (1 << dis_slot_bits));
Bm_array_init(d->bm_dis, modeled_distances - end_dis_model + 1);
Bm_array_init(d->bm_align, dis_align_size);
Lm_init(&d->match_len_model);
Lm_init(&d->rep_len_model);
d->buffer_given = (outbuf && out_size > 0);
d->buffer_size = d->buffer_given ? (unsigned long)out_size : dict_size;
d->dictionary_size = min_t(unsigned long, d->buffer_size, dict_size);
d->buffer = d->buffer_given ? outbuf : large_malloc(d->buffer_size);
if (!d->buffer)
return false;
d->pos = 0;
d->stream_pos = 0;
d->crc = 0xFFFFFFFFU;
d->flush = flush;
d->pos_wrapped = false;
d->write_error = false;
/* prev_byte of first byte; also for LZd_peek( 0 ) on corrupt file */
if (!d->buffer_given) /* inbuf and outbuf may overlap */
d->buffer[d->buffer_size-1] = 0;
return true;
}
static inline void LZd_free(struct LZ_decoder * const d)
{
if (!d->buffer_given)
large_free(d->buffer);
}
static inline unsigned LZd_crc(const struct LZ_decoder * const d)
{
return d->crc ^ 0xFFFFFFFFU;
}
static inline unsigned long long
LZd_data_position(const struct LZ_decoder * const d)
{
return d->partial_data_pos + d->pos;
}
static bool LZd_check_trailer(struct LZ_decoder * const d)
{
Lzip_trailer trailer;
int i = 0;
while (i < Lt_size)
trailer[i++] = Rd_get_byte(d->rdec);
return Lt_get_data_crc(trailer) == LZd_crc(d) &&
Lt_get_data_size(trailer) == LZd_data_position(d) &&
Lt_get_member_size(trailer) == Rd_member_position(d->rdec);
}
/* Return value: 0 = OK, < 0 = error (see include/linux/lzip.h). */
static int LZd_decode_member(struct LZ_decoder * const d)
{
struct Range_decoder * const rdec = d->rdec;
unsigned rep0 = 0; /* rep[0-3] latest four distances */
unsigned rep1 = 0; /* used for efficient coding of */
unsigned rep2 = 0; /* repeated distances */
unsigned rep3 = 0;
State state = 0;
Rd_load(rdec);
while (!Rd_finished(rdec)) {
int len;
const int pos_state = LZd_data_position(d) & pos_state_mask;
if (Rd_decode_bit(rdec, &d->bm_match[state][pos_state]) == 0) {
/* literal byte */
Bit_model * const bm = d->bm_literal[get_lit_state(LZd_peek_prev(d))];
if (St_is_char(state)) {
state -= (state < 4) ? state : 3;
LZd_put_byte(d, Rd_decode_tree8(rdec, bm));
} else {
state -= (state < 10) ? 3 : 6;
LZd_put_byte(d, Rd_decode_matched(rdec, bm, LZd_peek(d, rep0)));
}
continue;
}
/* match or repeated match */
if (Rd_decode_bit(rdec, &d->bm_rep[state]) != 0) {
if (Rd_decode_bit(rdec, &d->bm_rep0[state]) == 0) {
if (Rd_decode_bit(rdec, &d->bm_len[state][pos_state]) == 0) {
state = St_set_short_rep(state);
LZd_put_byte(d, LZd_peek(d, rep0));
continue;
}
} else {
unsigned distance;
if (Rd_decode_bit(rdec, &d->bm_rep1[state]) == 0)
distance = rep1;
else {
if (Rd_decode_bit(rdec, &d->bm_rep2[state]) == 0)
distance = rep2;
else {
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
state = St_set_rep(state);
len = Rd_decode_len(rdec, &d->rep_len_model, pos_state);
} else { /* match */
unsigned distance;
len = Rd_decode_len(rdec, &d->match_len_model, pos_state);
distance = Rd_decode_tree6(rdec, d->bm_dis_slot[get_len_state(len)]);
if (distance >= start_dis_model) {
const unsigned dis_slot = distance;
const int direct_bits = (dis_slot >> 1) - 1;
distance = (2 | (dis_slot & 1)) << direct_bits;
if (dis_slot < end_dis_model)
distance += Rd_decode_tree_reversed(rdec,
d->bm_dis + (distance - dis_slot), direct_bits);
else {
distance +=
Rd_decode(rdec, direct_bits - dis_align_bits) << dis_align_bits;
distance += Rd_decode_tree_reversed4(rdec, d->bm_align);
if (distance == 0xFFFFFFFFU) { /* marker found */
Rd_normalize(rdec);
LZd_flush_data(d);
if (d->write_error)
return LZIP_WRITE_ERROR;
if (len == min_match_len) { /* End Of Stream marker */
if (LZd_check_trailer(d))
return 0;
else
return LZIP_BAD_CRC;
}
return LZIP_BAD_DATA; /* unknown marker */
}
}
}
rep3 = rep2; rep2 = rep1; rep1 = rep0; rep0 = distance;
state = St_set_match(state);
if (rep0 >= d->dictionary_size ||
(rep0 >= d->pos && !d->pos_wrapped)) {
LZd_flush_data(d);
return LZIP_BAD_DATA;
}
}
LZd_copy_block(d, rep0, len);
}
LZd_flush_data(d);
return LZIP_DATA_EOF;
}
int lzip_decompress(unsigned char *inbuf, long in_len,
long (*fill)(void*, unsigned long),
long (*flush)(void*, unsigned long),
unsigned char *outbuf, long out_size,
long *in_posp, long *out_posp)
{
unsigned char *outptr = outbuf;
struct Range_decoder rdec;
struct LZ_decoder *decoder = 0;
int retval = 0;
bool first_member;
if (in_posp)
*in_posp = 0;
if (out_posp)
*out_posp = 0;
if (!Rd_init(&rdec, inbuf, in_len, fill))
return LZIP_OOM_INBUF;
for (first_member = true;; first_member = false) {
long data_pos;
int size;
unsigned dictionary_size;
Lzip_header header;
Rd_reset_member_position(&rdec);
for (size = 0; size < Lh_size && !Rd_finished(&rdec); ++size)
header[size] = Rd_get_byte(&rdec);
if (Rd_finished(&rdec)) { /* End Of File */
if (first_member)
retval = LZIP_HEADER1_EOF;
else if (Lh_check_prefix(header, size))
retval = LZIP_HEADER2_EOF;
break;
}
if (!Lh_check_magic(header)) {
if (first_member)
retval = LZIP_BAD_MAGIC1;
else if (Lh_check_corrupt(header))
retval = LZIP_BAD_MAGIC2;
break;
}
if (!Lh_check_version(header)) {
retval = LZIP_BAD_VERSION;
break;
}
dictionary_size = Lh_get_dictionary_size(header);
if (dictionary_size < min_dictionary_size ||
dictionary_size > max_dictionary_size) {
retval = LZIP_BAD_DICT_SIZE;
break;
}
if (!decoder)
decoder = malloc(sizeof *decoder);
if (!decoder || !LZd_init(decoder, &rdec, dictionary_size,
outptr, out_size, flush)) {
retval = LZIP_OOM_OUTBUF;
break;
}
retval = LZd_decode_member(decoder);
if (in_posp)
*in_posp += Rd_member_position(&rdec);
data_pos = LZd_data_position(decoder);
if (outptr)
outptr += data_pos;
if (out_posp)
*out_posp += data_pos;
if (out_size > 0)
out_size -= data_pos;
LZd_free(decoder);
if (retval != 0)
break;
}
if (decoder)
free(decoder);
Rd_free(&rdec);
return retval;
}
#ifndef STATIC
EXPORT_SYMBOL_GPL(lzip_decompress);
#endif
MODULE_DESCRIPTION("LZIP Decompressor");
MODULE_AUTHOR("Antonio Diaz Diaz <antonio@gnu.org>");
MODULE_LICENSE("GPL");