1
0
Fork 0

Merging upstream version 1.14.

Signed-off-by: Daniel Baumann <daniel@debian.org>
This commit is contained in:
Daniel Baumann 2025-02-16 11:31:10 +01:00
parent 868b5312e8
commit d6fd2fdea9
Signed by: daniel
GPG key ID: FBB4F0E80A80222F
305 changed files with 20664 additions and 6099 deletions

View file

@ -8,6 +8,8 @@
#include <asm/byteorder.h>
#include <sys/ioctl.h>
#include <sys/sysinfo.h>
#include <sys/stat.h>
#include <unistd.h>
#include "linux/nvme_ioctl.h"
@ -15,7 +17,6 @@
#include "nvme-print.h"
#include "nvme-ioctl.h"
#include "nvme-status.h"
#include "json.h"
#include "plugin.h"
#include "argconfig.h"
@ -28,36 +29,40 @@
#define SECTOR_SHIFT 9
#define SFX_GET_FREESPACE _IOWR('N', 0x240, struct sfx_freespace_ctx)
#define IDEMA_CAP(exp_GB) (((__u64)exp_GB - 50ULL) * 1953504ULL + 97696368ULL)
#define NVME_IOCTL_CLR_CARD _IO('N', 0x47)
#define IDEMA_CAP(exp_GB) (((__u64)exp_GB - 50ULL) * 1953504ULL + 97696368ULL)
#define IDEMA_CAP2GB(exp_sector) (((__u64)exp_sector - 97696368ULL) / 1953504ULL + 50ULL)
enum {
SFX_LOG_LATENCY_READ_STATS = 0xc1,
SFX_LOG_SMART = 0xc2,
SFX_LOG_LATENCY_WRITE_STATS = 0xc3,
SFX_LOG_LATENCY_WRITE_STATS = 0xc3,
SFX_LOG_QUAL = 0xc4,
SFX_LOG_MISMATCHLBA = 0xc5,
SFX_LOG_MEDIA = 0xc6,
SFX_LOG_BBT = 0xc7,
SFX_LOG_IDENTIFY = 0xcc,
SFX_FEAT_ATOMIC = 0x01,
SFX_FEAT_UP_P_CAP = 0xac,
SFX_FEAT_CLR_CARD = 0xdc,
};
enum sfx_nvme_admin_opcode {
nvme_admin_query_cap_info = 0xd3,
nvme_admin_change_cap = 0xd4,
nvme_admin_sfx_set_features = 0xd5,
nvme_admin_sfx_get_features = 0xd6,
nvme_admin_sfx_set_features = 0xd5,
nvme_admin_sfx_get_features = 0xd6,
};
struct sfx_freespace_ctx
{
__u64 free_space;
__u64 phy_cap; /* physical capacity, in unit of sector */
__u64 phy_space; /* physical space considering OP, in unit of sector */
__u64 user_space; /* user required space, in unit of sector*/
__u64 hw_used; /* hw space used in 4K */
__u64 app_written; /* app data written in 4K */
__u64 phy_cap; /* physical capacity, in unit of sector */
__u64 phy_space; /* physical space considering OP, in unit of sector */
__u64 user_space; /* user required space, in unit of sector*/
__u64 hw_used; /* hw space used in 4K */
__u64 app_written; /* app data written in 4K */
};
struct nvme_capacity_info {
@ -66,7 +71,7 @@ struct nvme_capacity_info {
__u64 used_space;
__u64 free_space;
};
struct __attribute__((packed)) nvme_additional_smart_log_item {
struct __attribute__((packed)) nvme_additional_smart_log_item {
uint8_t key;
uint8_t _kp[2];
uint8_t norm;
@ -112,11 +117,10 @@ int nvme_change_cap(int fd, __u32 nsid, __u64 capacity)
struct nvme_admin_cmd cmd = {
.opcode = nvme_admin_change_cap,
.nsid = nsid,
.cdw10 = (capacity & 0xffffffff),
.cdw11 = (capacity >> 32),
.cdw10 = (capacity & 0xffffffff),
.cdw11 = (capacity >> 32),
};
return nvme_submit_passthru(fd, NVME_IOCTL_ADMIN_CMD,&cmd);
}
@ -267,65 +271,65 @@ static void show_sfx_smart_log(struct nvme_additional_smart_log *smart,
unsigned int nsid, const char *devname)
{
printf("Additional Smart Log for ScaleFlux device:%s namespace-id:%x\n",
devname, nsid);
printf("key normalized raw\n");
printf("program_fail_count : %3d%% %"PRIu64"\n",
smart->program_fail_cnt.norm,
int48_to_long(smart->program_fail_cnt.raw));
printf("erase_fail_count : %3d%% %"PRIu64"\n",
smart->erase_fail_cnt.norm,
int48_to_long(smart->erase_fail_cnt.raw));
printf("wear_leveling : %3d%% min: %u, max: %u, avg: %u\n",
smart->wear_leveling_cnt.norm,
le16_to_cpu(smart->wear_leveling_cnt.wear_level.min),
le16_to_cpu(smart->wear_leveling_cnt.wear_level.max),
le16_to_cpu(smart->wear_leveling_cnt.wear_level.avg));
printf("end_to_end_error_detection_count: %3d%% %"PRIu64"\n",
smart->e2e_err_cnt.norm,
int48_to_long(smart->e2e_err_cnt.raw));
printf("crc_error_count : %3d%% %"PRIu64"\n",
smart->crc_err_cnt.norm,
int48_to_long(smart->crc_err_cnt.raw));
printf("timed_workload_media_wear : %3d%% %.3f%%\n",
smart->timed_workload_media_wear.norm,
((float)int48_to_long(smart->timed_workload_media_wear.raw)) / 1024);
printf("timed_workload_host_reads : %3d%% %"PRIu64"%%\n",
smart->timed_workload_host_reads.norm,
int48_to_long(smart->timed_workload_host_reads.raw));
printf("timed_workload_timer : %3d%% %"PRIu64" min\n",
smart->timed_workload_timer.norm,
int48_to_long(smart->timed_workload_timer.raw));
printf("thermal_throttle_status : %3d%% %u%%, cnt: %u\n",
smart->thermal_throttle_status.norm,
smart->thermal_throttle_status.thermal_throttle.pct,
smart->thermal_throttle_status.thermal_throttle.count);
printf("retry_buffer_overflow_count : %3d%% %"PRIu64"\n",
smart->retry_buffer_overflow_cnt.norm,
int48_to_long(smart->retry_buffer_overflow_cnt.raw));
printf("pll_lock_loss_count : %3d%% %"PRIu64"\n",
smart->pll_lock_loss_cnt.norm,
int48_to_long(smart->pll_lock_loss_cnt.raw));
printf("nand_bytes_written : %3d%% sectors: %"PRIu64"\n",
smart->nand_bytes_written.norm,
int48_to_long(smart->nand_bytes_written.raw));
printf("host_bytes_written : %3d%% sectors: %"PRIu64"\n",
smart->host_bytes_written.norm,
int48_to_long(smart->host_bytes_written.raw));
printf("raid_recover_cnt : %3d%% %"PRIu64"\n",
smart->raid_recover_cnt.norm,
int48_to_long(smart->raid_recover_cnt.raw));
printf("read_ecc_cnt : %3d%% %"PRIu64"\n",
smart->read_ecc_cnt.norm,
int48_to_long(smart->read_ecc_cnt.raw));
printf("prog_timeout_cnt : %3d%% %"PRIu64"\n",
smart->prog_timeout_cnt.norm,
int48_to_long(smart->prog_timeout_cnt.raw));
printf("erase_timeout_cnt : %3d%% %"PRIu64"\n",
smart->erase_timeout_cnt.norm,
int48_to_long(smart->erase_timeout_cnt.raw));
printf("read_timeout_cnt : %3d%% %"PRIu64"\n",
smart->read_timeout_cnt.norm,
int48_to_long(smart->read_timeout_cnt.raw));
devname, nsid);
printf("key normalized raw\n");
printf("program_fail_count : %3d%% %"PRIu64"\n",
smart->program_fail_cnt.norm,
int48_to_long(smart->program_fail_cnt.raw));
printf("erase_fail_count : %3d%% %"PRIu64"\n",
smart->erase_fail_cnt.norm,
int48_to_long(smart->erase_fail_cnt.raw));
printf("wear_leveling : %3d%% min: %u, max: %u, avg: %u\n",
smart->wear_leveling_cnt.norm,
le16_to_cpu(smart->wear_leveling_cnt.wear_level.min),
le16_to_cpu(smart->wear_leveling_cnt.wear_level.max),
le16_to_cpu(smart->wear_leveling_cnt.wear_level.avg));
printf("end_to_end_error_detection_count: %3d%% %"PRIu64"\n",
smart->e2e_err_cnt.norm,
int48_to_long(smart->e2e_err_cnt.raw));
printf("crc_error_count : %3d%% %"PRIu64"\n",
smart->crc_err_cnt.norm,
int48_to_long(smart->crc_err_cnt.raw));
printf("timed_workload_media_wear : %3d%% %.3f%%\n",
smart->timed_workload_media_wear.norm,
((float)int48_to_long(smart->timed_workload_media_wear.raw)) / 1024);
printf("timed_workload_host_reads : %3d%% %"PRIu64"%%\n",
smart->timed_workload_host_reads.norm,
int48_to_long(smart->timed_workload_host_reads.raw));
printf("timed_workload_timer : %3d%% %"PRIu64" min\n",
smart->timed_workload_timer.norm,
int48_to_long(smart->timed_workload_timer.raw));
printf("thermal_throttle_status : %3d%% %u%%, cnt: %u\n",
smart->thermal_throttle_status.norm,
smart->thermal_throttle_status.thermal_throttle.pct,
smart->thermal_throttle_status.thermal_throttle.count);
printf("retry_buffer_overflow_count : %3d%% %"PRIu64"\n",
smart->retry_buffer_overflow_cnt.norm,
int48_to_long(smart->retry_buffer_overflow_cnt.raw));
printf("pll_lock_loss_count : %3d%% %"PRIu64"\n",
smart->pll_lock_loss_cnt.norm,
int48_to_long(smart->pll_lock_loss_cnt.raw));
printf("nand_bytes_written : %3d%% sectors: %"PRIu64"\n",
smart->nand_bytes_written.norm,
int48_to_long(smart->nand_bytes_written.raw));
printf("host_bytes_written : %3d%% sectors: %"PRIu64"\n",
smart->host_bytes_written.norm,
int48_to_long(smart->host_bytes_written.raw));
printf("raid_recover_cnt : %3d%% %"PRIu64"\n",
smart->raid_recover_cnt.norm,
int48_to_long(smart->raid_recover_cnt.raw));
printf("read_ecc_cnt : %3d%% %"PRIu64"\n",
smart->read_ecc_cnt.norm,
int48_to_long(smart->read_ecc_cnt.raw));
printf("prog_timeout_cnt : %3d%% %"PRIu64"\n",
smart->prog_timeout_cnt.norm,
int48_to_long(smart->prog_timeout_cnt.raw));
printf("erase_timeout_cnt : %3d%% %"PRIu64"\n",
smart->erase_timeout_cnt.norm,
int48_to_long(smart->erase_timeout_cnt.raw));
printf("read_timeout_cnt : %3d%% %"PRIu64"\n",
smart->read_timeout_cnt.norm,
int48_to_long(smart->read_timeout_cnt.raw));
}
static int get_additional_smart_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
@ -357,8 +361,8 @@ static int get_additional_smart_log(int argc, char **argv, struct command *cmd,
fd = parse_and_open(argc, argv, desc, opts);
err = nvme_get_log(fd, cfg.namespace_id, 0xca, false, sizeof(smart_log),
(void *)&smart_log);
err = nvme_get_log(fd, cfg.namespace_id, 0xca, false, NVME_NO_LOG_LSP,
sizeof(smart_log), (void *)&smart_log);
if (!err) {
if (cfg.json)
show_sfx_smart_log_jsn(&smart_log, cfg.namespace_id, devicename);
@ -373,7 +377,6 @@ static int get_additional_smart_log(int argc, char **argv, struct command *cmd,
return err;
}
struct sfx_lat_stats {
__u16 maj;
__u16 min;
@ -440,7 +443,8 @@ static int get_lat_stats_log(int argc, char **argv, struct command *cmd, struct
fd = parse_and_open(argc, argv, desc, opts);
err = nvme_get_log(fd, 0xffffffff, cfg.write ? 0xc3 : 0xc1, false, sizeof(stats), (void *)&stats);
err = nvme_get_log(fd, 0xffffffff, cfg.write ? 0xc3 : 0xc1, false, NVME_NO_LOG_LSP,
sizeof(stats), (void *)&stats);
if (!err) {
if (!cfg.raw_binary)
show_lat_stats(&stats, cfg.write);
@ -448,7 +452,7 @@ static int get_lat_stats_log(int argc, char **argv, struct command *cmd, struct
d_raw((unsigned char *)&stats, sizeof(stats));
} else if (err > 0)
fprintf(stderr, "NVMe Status:%s(%x)\n",
nvme_status_to_string(err), err);
nvme_status_to_string(err), err);
return err;
}
@ -517,16 +521,16 @@ static void bd_table_show(unsigned char *bd_table, __u64 table_size)
bb_elem = (__u64 *)(bd_table + 5 * sizeof(__u32));
printf("Bad Block Table \n");
printf("MF_BB_COUNT: %u\n", mf_bb_count);
printf("GROWN_BB_COUNT: %u\n", grown_bb_count);
printf("TOTAL_BB_COUNT: %u\n", total_bb_count);
printf("REMAP_MFBB_COUNT: %u\n", remap_mfbb_count);
printf("REMAP_GBB_COUNT: %u\n", remap_gbb_count);
printf("MF_BB_COUNT: %u\n", mf_bb_count);
printf("GROWN_BB_COUNT: %u\n", grown_bb_count);
printf("TOTAL_BB_COUNT: %u\n", total_bb_count);
printf("REMAP_MFBB_COUNT: %u\n", remap_mfbb_count);
printf("REMAP_GBB_COUNT: %u\n", remap_gbb_count);
printf("REMAP_MFBB_TABLE [");
i = 0;
while (bb_elem < elem_end && i < remap_mfbb_count) {
printf(" 0x%llx", *(bb_elem++));
printf(" 0x%"PRIx64"", (uint64_t)*(bb_elem++));
i++;
}
printf(" ]\n");
@ -534,14 +538,14 @@ static void bd_table_show(unsigned char *bd_table, __u64 table_size)
printf("REMAP_GBB_TABLE [");
i = 0;
while (bb_elem < elem_end && i < remap_gbb_count) {
printf(" 0x%llx",*(bb_elem++));
printf(" 0x%"PRIx64"", (uint64_t)*(bb_elem++));
i++;
}
printf(" ]\n");
}
/**
* @brief "hooks of sfx get-bad-block"
* @brief "hooks of sfx get-bad-block"
*
* @param argc
* @param argv
@ -592,10 +596,16 @@ static int sfx_get_bad_block(int argc, char **argv, struct command *cmd, struct
static void show_cap_info(struct sfx_freespace_ctx *ctx)
{
printf("user sectors: %#llx\n", ctx->user_space);
printf("totl physical sectors: %#llx\n", ctx->phy_space);
printf("free physical sectors: %#llx\n", ctx->free_space);
printf("used physical sectors: %#llx\n", ctx->phy_space - ctx->free_space);
printf("logic capacity:%5lluGB(0x%"PRIx64")\n",
IDEMA_CAP2GB(ctx->user_space), (uint64_t)ctx->user_space);
printf("provisioned capacity:%5lluGB(0x%"PRIx64")\n",
IDEMA_CAP2GB(ctx->phy_space), (uint64_t)ctx->phy_space);
printf("free provisioned capacity:%5lluGB(0x%"PRIx64")\n",
IDEMA_CAP2GB(ctx->free_space), (uint64_t)ctx->free_space);
printf("used provisioned capacity:%5lluGB(0x%"PRIx64")\n",
IDEMA_CAP2GB(ctx->phy_space) - IDEMA_CAP2GB(ctx->free_space),
(uint64_t)(ctx->phy_space - ctx->free_space));
}
static int query_cap_info(int argc, char **argv, struct command *cmd, struct plugin *plugin)
@ -631,40 +641,92 @@ static int query_cap_info(int argc, char **argv, struct command *cmd, struct plu
return err;
}
static int change_cap_mem_check(int fd, __u64 trg_in_4k)
static int change_sanity_check(int fd, __u64 trg_in_4k, int *shrink)
{
struct sfx_freespace_ctx freespace_ctx = { 0 };
struct sysinfo s_info;
__u64 mem_need = 0;
__u64 cur_in_4k = 0;
__u64 provisoned_cap_4k = 0;
__u32 cnt_ms = 0;
int extend = 0;
while (ioctl(fd, SFX_GET_FREESPACE, &freespace_ctx)) {
if (cnt_ms++ > 600) {//1min
fprintf(stderr, "vu ioctl fail, errno %d\r\n", errno);
return -1;
}
usleep(100000);
}
/*
* capacity illegal check
*/
provisoned_cap_4k = freespace_ctx.phy_space >>
(SFX_PAGE_SHIFT - SECTOR_SHIFT);
if (trg_in_4k < provisoned_cap_4k ||
trg_in_4k > ((__u64)provisoned_cap_4k * 4)) {
fprintf(stderr,
"WARNING: Only support 1.0~4.0 x provisoned capacity!\n");
if (trg_in_4k < provisoned_cap_4k) {
fprintf(stderr,
"WARNING: The target capacity is less than 1.0 x provisioned capacity!\n");
} else {
fprintf(stderr,
"WARNING: The target capacity is larger than 4.0 x provisioned capacity!\n");
}
return -1;
}
if (trg_in_4k > ((__u64)provisoned_cap_4k*4)) {
fprintf(stderr, "WARNING: the target capacity is too large\n");
return -1;
}
/*
* check whether mem enough if extend
* */
cur_in_4k = freespace_ctx.user_space >> (SFX_PAGE_SHIFT - SECTOR_SHIFT);
if (cur_in_4k > trg_in_4k) {
extend = (cur_in_4k <= trg_in_4k);
if (extend) {
if (sysinfo(&s_info) < 0) {
printf("change-cap query mem info fail\n");
return -1;
}
mem_need = (trg_in_4k - cur_in_4k) * 8;
if (s_info.freeram <= 10 || mem_need > s_info.freeram) {
fprintf(stderr,
"WARNING: Free memory is not enough! "
"Please drop cache or extend more memory and retry\n"
"WARNING: Memory needed is %"PRIu64", free memory is %"PRIu64"\n",
(uint64_t)mem_need, (uint64_t)s_info.freeram);
return -1;
}
}
*shrink = !extend;
return 0;
}
/**
* @brief prompt and get user confirm input
*
* @param str, prompt string
*
* @return 0, cancled; 1 confirmed
*/
static int sfx_confirm_change(const char *str)
{
char confirm;
fprintf(stderr, "WARNING: %s.\n"
"Use the force [--force] option to suppress this warning.\n", str);
fprintf(stderr, "Confirm Y/y, Others cancel:\n");
confirm = fgetc(stdin);
if (confirm != 'y' && confirm != 'Y') {
fprintf(stderr, "Cancled.\n");
return 0;
}
if (sysinfo(&s_info) < 0) {
printf("change-cap query mem info fail\n");
return -1;
}
mem_need = (trg_in_4k - cur_in_4k) * 8;
if (s_info.freeram <= 10 || mem_need > s_info.freeram) {
fprintf(stderr, "WARNING: mem needed is %llu, free mem is %lu\n"
"Insufficient memory, please drop cache or add free memory and retry\n",
mem_need, s_info.freeram);
return -1;
}
return 0;
fprintf(stderr, "Sending operation ... \n");
return 1;
}
static int change_cap(int argc, char **argv, struct command *cmd, struct plugin *plugin)
@ -678,6 +740,8 @@ static int change_cap(int argc, char **argv, struct command *cmd, struct plugin
const char *force = "The \"I know what I'm doing\" flag, skip confirmation before sending command";
__u64 cap_in_4k = 0;
__u64 cap_in_sec = 0;
int shrink = 0;
struct config {
__u64 cap_in_byte;
__u32 capacity_in_gb;
@ -694,7 +758,7 @@ static int change_cap(int argc, char **argv, struct command *cmd, struct plugin
OPT_ARGS(opts) = {
OPT_UINT("cap", 'c', &cfg.capacity_in_gb, cap_gb),
OPT_UINT("cap-byte", 'z', &cfg.cap_in_byte, cap_byte),
OPT_SUFFIX("cap-byte", 'z', &cfg.cap_in_byte, cap_byte),
OPT_FLAG("force", 'f', &cfg.force, force),
OPT_FLAG("raw-binary", 'b', &cfg.raw_binary, raw),
OPT_FLAG("json", 'j', &cfg.json, json),
@ -706,22 +770,21 @@ static int change_cap(int argc, char **argv, struct command *cmd, struct plugin
return fd;
}
if (!cfg.force) {
fprintf(stderr, "WARNING: Changing capacity may irrevocably delete user data.\n"
"You have 10 seconds to press Ctrl-C to cancel this operation.\n\n"
"Use the force [--force|-f] option to suppress this warning.\n");
sleep(10);
fprintf(stderr, "Sending operation ... \n");
}
cap_in_sec = IDEMA_CAP(cfg.capacity_in_gb);
cap_in_4k = cap_in_sec >> 3;
if (cfg.cap_in_byte)
cap_in_4k = cfg.cap_in_byte >> 12;
printf("%dG %lluB %llu 4K\n",
cfg.capacity_in_gb, cfg.cap_in_byte, cap_in_4k);
if (change_cap_mem_check(fd, cap_in_4k))
printf("%dG %"PRIu64"B %"PRIu64" 4K\n",
cfg.capacity_in_gb, (uint64_t)cfg.cap_in_byte, (uint64_t)cap_in_4k);
if (change_sanity_check(fd, cap_in_4k, &shrink)) {
printf("ScaleFlux change-capacity: fail\n");
return err;
}
if (!cfg.force && shrink && !sfx_confirm_change("Changing Cap may irrevocably delete this device's data")) {
return 0;
}
err = nvme_change_cap(fd, 0xffffffff, cap_in_4k);
if (err < 0)
@ -731,20 +794,54 @@ static int change_cap(int argc, char **argv, struct command *cmd, struct plugin
nvme_status_to_string(err), err);
else {
printf("ScaleFlux change-capacity: success\n");
if(ioctl(fd, BLKRRPART) < 0) {
fprintf(stderr, "failed to re-read partition table\n");
err = EFAULT;
}
ioctl(fd, BLKRRPART);
}
return err;
}
static int sfx_verify_chr(int fd)
{
static struct stat nvme_stat;
int err = fstat(fd, &nvme_stat);
if (err < 0) {
perror("fstat");
return errno;
}
if (!S_ISCHR(nvme_stat.st_mode)) {
fprintf(stderr,
"Error: requesting clean card on non-controller handle\n");
return ENOTBLK;
}
return 0;
}
static int sfx_clean_card(int fd)
{
int ret;
ret = sfx_verify_chr(fd);
if (ret)
return ret;
ret = ioctl(fd, NVME_IOCTL_CLR_CARD);
if (ret)
perror("Ioctl Fail.");
else
printf("ScaleFlux clean card success\n");
return ret;
}
char *sfx_feature_to_string(int feature)
{
switch (feature) {
case SFX_FEAT_ATOMIC: return "ATOMIC";
case SFX_FEAT_ATOMIC:
return "ATOMIC";
case SFX_FEAT_UP_P_CAP:
return "UPDATE_PROVISION_CAPACITY";
default: return "Unknown";
default:
return "Unknown";
}
}
@ -752,27 +849,34 @@ static int sfx_set_feature(int argc, char **argv, struct command *cmd, struct pl
{
int err = 0, fd;
char *desc = "ScaleFlux internal set features\n"
"feature id 1: ATOMIC";
"feature id 1: ATOMIC\n"
"value 0: Disable atomic write\n"
" 1: Enable atomic write";
const char *value = "new value of feature (required)";
const char *feature_id = "hex feature name (required)";
const char *namespace_id = "desired namespace";
const char *force = "The \"I know what I'm doing\" flag, skip confirmation before sending command";
struct nvme_id_ns ns;
struct config {
__u32 namespace_id;
__u32 feature_id;
__u32 value;
__u32 force;
};
struct config cfg = {
.namespace_id = 1,
.feature_id = 0,
.value = 0,
.force = 0,
};
OPT_ARGS(opts) = {
OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
OPT_UINT("feature-id", 'f', &cfg.feature_id, feature_id),
OPT_UINT("value", 'v', &cfg.value, value),
OPT_UINT("value", 'v', &cfg.value, value),
OPT_FLAG("force", 's', &cfg.force, force),
OPT_END()
};
@ -786,7 +890,17 @@ static int sfx_set_feature(int argc, char **argv, struct command *cmd, struct pl
return EINVAL;
}
if (cfg.feature_id == SFX_FEAT_ATOMIC) {
if (cfg.feature_id == SFX_FEAT_CLR_CARD) {
/*Warning for clean card*/
if (!cfg.force && !sfx_confirm_change("Going to clean device's data, confirm umount fs and try again")) {
return 0;
} else {
return sfx_clean_card(fd);
}
}
if (cfg.feature_id == SFX_FEAT_ATOMIC && cfg.value != 0) {
if (cfg.namespace_id != 0xffffffff) {
err = nvme_identify_ns(fd, cfg.namespace_id, 0, &ns);
if (err) {
@ -806,14 +920,25 @@ static int sfx_set_feature(int argc, char **argv, struct command *cmd, struct pl
return EFAULT;
}
}
} else if (cfg.feature_id == SFX_FEAT_UP_P_CAP) {
if (cfg.value <= 0) {
fprintf(stderr, "Invalid Param\n");
return EINVAL;
}
/*Warning for change pacp by GB*/
if (!cfg.force && !sfx_confirm_change("Changing physical capacity may irrevocably delete this device's data")) {
return 0;
}
}
err = nvme_sfx_set_features(fd, cfg.namespace_id, cfg.feature_id, cfg.value);
if (err < 0) {
perror("ScaleFlux-set-feature");
return errno;
} else if (!err) {
printf("ScaleFlux set-feature:%02x (%s), value:%#08x\n", cfg.feature_id,
printf("ScaleFlux set-feature:%#02x (%s), value:%d\n", cfg.feature_id,
sfx_feature_to_string(cfg.feature_id), cfg.value);
} else if (err > 0)
fprintf(stderr, "NVMe Status:%s(%x)\n",