// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (c) 2015-2018 Western Digital Corporation or its affiliates.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 * MA  02110-1301, USA.
 *
 *   Author: Chaitanya Kulkarni <chaitanya.kulkarni@hgst.com>,
 *           Dong Ho <dong.ho@hgst.com>,
 *           Jeff Lien <jeff.lien@wdc.com>
 *   	     Brandon Paupore <brandon.paupore@wdc.com>
 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include <errno.h>
#include <limits.h>
#include <fcntl.h>
#include <unistd.h>

#include "common.h"
#include "nvme.h"
#include "libnvme.h"
#include "plugin.h"
#include "linux/types.h"
#include "nvme-print.h"

#define CREATE_CMD
#include "wdc-nvme.h"
#include "wdc-utils.h"

#define WRITE_SIZE	(sizeof(__u8) * 4096)

#define WDC_NVME_SUBCMD_SHIFT				8

#define WDC_NVME_LOG_SIZE_DATA_LEN			0x08
#define WDC_NVME_LOG_SIZE_HDR_LEN			0x08

/* Enclosure */
#define WDC_OPENFLEX_MI_DEVICE_MODEL		"OpenFlex"
#define WDC_RESULT_MORE_DATA				0x80000000
#define WDC_RESULT_NOT_AVAILABLE			0x7FFFFFFF

/* Device Config */
#define WDC_NVME_VID					0x1c58
#define WDC_NVME_VID_2					0x1b96
#define WDC_NVME_SNDK_VID				0x15b7

#define WDC_NVME_SN100_DEV_ID				0x0003
#define WDC_NVME_SN200_DEV_ID				0x0023
#define WDC_NVME_SN630_DEV_ID				0x2200
#define WDC_NVME_SN630_DEV_ID_1				0x2201
#define WDC_NVME_SN840_DEV_ID				0x2300
#define WDC_NVME_SN840_DEV_ID_1				0x2500
#define WDC_NVME_SN640_DEV_ID				0x2400
#define WDC_NVME_SN640_DEV_ID_1				0x2401
#define WDC_NVME_SN640_DEV_ID_2				0x2402
#define WDC_NVME_SN640_DEV_ID_3             0x2404
#define WDC_NVME_ZN540_DEV_ID               0x2600
#define WDC_NVME_SN540_DEV_ID               0x2610
#define WDC_NVME_SN650_DEV_ID				0x2700
#define WDC_NVME_SN650_DEV_ID_1             0x2701
#define WDC_NVME_SN650_DEV_ID_2             0x2702
#define WDC_NVME_SN650_DEV_ID_3             0x2720
#define WDC_NVME_SN650_DEV_ID_4             0x2721
#define WDC_NVME_SN655_DEV_ID               0x2722
#define WDC_NVME_SN560_DEV_ID_1             0x2712
#define WDC_NVME_SN560_DEV_ID_2             0x2713
#define WDC_NVME_SN560_DEV_ID_3             0x2714
#define WDC_NVME_SN860_DEV_ID               0x2730
#define WDC_NVME_SN550_DEV_ID               0x2708
#define WDC_NVME_SXSLCL_DEV_ID				0x2001
#define WDC_NVME_SN520_DEV_ID				0x5003
#define WDC_NVME_SN520_DEV_ID_1				0x5004
#define WDC_NVME_SN520_DEV_ID_2				0x5005
#define WDC_NVME_SN530_DEV_ID				0x5009
#define WDC_NVME_SN720_DEV_ID				0x5002
#define WDC_NVME_SN730A_DEV_ID				0x5006
#define WDC_NVME_SN730B_DEV_ID				0x3714
#define WDC_NVME_SN730B_DEV_ID_1			0x3734
#define WDC_NVME_SN740_DEV_ID				0x5015
#define WDC_NVME_SN740_DEV_ID_1 			0x5016
#define WDC_NVME_SN740_DEV_ID_2 			0x5017
#define WDC_NVME_SN740_DEV_ID_3 			0x5025
#define WDC_NVME_SN340_DEV_ID				0x500d
#define WDC_NVME_ZN350_DEV_ID				0x5010
#define WDC_NVME_ZN350_DEV_ID_1 			0x5018
#define WDC_NVME_SN810_DEV_ID				0x5011
#define WDC_NVME_SN820CL_DEV_ID		        0x5037

#define WDC_DRIVE_CAP_CAP_DIAG				0x0000000000000001
#define WDC_DRIVE_CAP_INTERNAL_LOG			0x0000000000000002
#define WDC_DRIVE_CAP_C1_LOG_PAGE			0x0000000000000004
#define WDC_DRIVE_CAP_CA_LOG_PAGE			0x0000000000000008
#define WDC_DRIVE_CAP_D0_LOG_PAGE			0x0000000000000010
#define WDC_DRIVE_CAP_DRIVE_STATUS			0x0000000000000020
#define WDC_DRIVE_CAP_CLEAR_ASSERT			0x0000000000000040
#define WDC_DRIVE_CAP_CLEAR_PCIE			0x0000000000000080
#define WDC_DRIVE_CAP_RESIZE				0x0000000000000100
#define WDC_DRIVE_CAP_NAND_STATS			0x0000000000000200
#define WDC_DRIVE_CAP_DRIVE_LOG             0x0000000000000400
#define WDC_DRIVE_CAP_CRASH_DUMP            0x0000000000000800
#define WDC_DRIVE_CAP_PFAIL_DUMP            0x0000000000001000
#define WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY   0x0000000000002000
#define WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY  0x0000000000004000
#define WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG 0x0000000000008000
#define WDC_DRIVE_CAP_REASON_ID             0x0000000000010000
#define WDC_DRIVE_CAP_LOG_PAGE_DIR          0x0000000000020000
#define WDC_DRIVE_CAP_NS_RESIZE             0x0000000000040000
#define WDC_DRIVE_CAP_INFO                  0x0000000000080000
#define WDC_DRIVE_CAP_C0_LOG_PAGE           0x0000000000100000
#define WDC_DRIVE_CAP_TEMP_STATS            0x0000000000200000
#define WDC_DRIVE_CAP_VUC_CLEAR_PCIE        0x0000000000400000
#define WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE     0x0000000000800000
#define WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_C2        0x0000000001000000
#define WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY	0x0000000002000000
#define WDC_DRIVE_CAP_CLOUD_SSD_VERSION		0x0000000004000000
#define WDC_DRIVE_CAP_PCIE_STATS			0x0000000008000000
#define WDC_DRIVE_CAP_HW_REV_LOG_PAGE		0x0000000010000000
#define WDC_DRIVE_CAP_C3_LOG_PAGE			0x0000000020000000
#define WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION		0x0000000040000000
#define WDC_DRIVE_CAP_CLOUD_LOG_PAGE		0x0000000080000000

#define WDC_DRIVE_CAP_DRIVE_ESSENTIALS      0x0000000100000000
#define WDC_DRIVE_CAP_DUI_DATA				0x0000000200000000
#define WDC_SN730B_CAP_VUC_LOG				0x0000000400000000
#define WDC_DRIVE_CAP_DUI    				0x0000000800000000
#define WDC_DRIVE_CAP_PURGE  				0x0000001000000000
#define WDC_DRIVE_CAP_OCP_C1_LOG_PAGE		0x0000002000000000
#define WDC_DRIVE_CAP_OCP_C4_LOG_PAGE		0x0000004000000000
#define WDC_DRIVE_CAP_OCP_C5_LOG_PAGE		0x0000008000000000
#define WDC_DRIVE_CAP_DEVICE_WAF            0x0000010000000000
#define WDC_DRIVE_CAP_SMART_LOG_MASK	(WDC_DRIVE_CAP_C0_LOG_PAGE | WDC_DRIVE_CAP_C1_LOG_PAGE | \
                                         WDC_DRIVE_CAP_CA_LOG_PAGE | WDC_DRIVE_CAP_D0_LOG_PAGE)
#define WDC_DRIVE_CAP_CLEAR_PCIE_MASK       (WDC_DRIVE_CAP_CLEAR_PCIE | \
                                             WDC_DRIVE_CAP_VUC_CLEAR_PCIE | \
                                             WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE)
#define WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_MASK		(WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY | \
        											 WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_C2)
#define WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY_MASK		(WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY | \
        											 WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY)
#define WDC_DRIVE_CAP_INTERNAL_LOG_MASK	(WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_DUI | \
        								 WDC_DRIVE_CAP_DUI_DATA | WDC_SN730B_CAP_VUC_LOG)
/* SN730 Get Log Capabilities */
#define SN730_NVME_GET_LOG_OPCODE			0xc2
#define SN730_GET_FULL_LOG_LENGTH			0x00080009
#define SN730_GET_KEY_LOG_LENGTH			0x00090009
#define SN730_GET_COREDUMP_LOG_LENGTH			0x00120009
#define SN730_GET_EXTENDED_LOG_LENGTH			0x00420009

#define SN730_GET_FULL_LOG_SUBOPCODE			0x00010009
#define SN730_GET_KEY_LOG_SUBOPCODE			0x00020009
#define SN730_GET_CORE_LOG_SUBOPCODE			0x00030009
#define SN730_GET_EXTEND_LOG_SUBOPCODE			0x00040009
#define SN730_LOG_CHUNK_SIZE				0x1000

/* Customer ID's */
#define WDC_CUSTOMER_ID_GN					0x0001
#define WDC_CUSTOMER_ID_GD					0x0101
#define WDC_CUSTOMER_ID_BD					0x1009

#define WDC_CUSTOMER_ID_0x1005				0x1005

#define WDC_CUSTOMER_ID_0x1004				0x1004
#define WDC_CUSTOMER_ID_0x1008				0x1008
#define WDC_CUSTOMER_ID_0x1304				0x1304
#define WDC_INVALID_CUSTOMER_ID				-1

#define WDC_ALL_PAGE_MASK                   0xFFFF
#define WDC_C0_PAGE_MASK                    0x0001
#define WDC_C1_PAGE_MASK                    0x0002
#define WDC_CA_PAGE_MASK                    0x0004
#define WDC_D0_PAGE_MASK                    0x0008

/* Drive Resize */
#define WDC_NVME_DRIVE_RESIZE_OPCODE			0xCC
#define WDC_NVME_DRIVE_RESIZE_CMD			0x03
#define WDC_NVME_DRIVE_RESIZE_SUBCMD			0x01

/* Namespace Resize  */
#define WDC_NVME_NAMESPACE_RESIZE_OPCODE    0xFB

/* Drive Info */
#define WDC_NVME_DRIVE_INFO_OPCODE          0xC6
#define WDC_NVME_DRIVE_INFO_CMD             0x22
#define WDC_NVME_DRIVE_INFO_SUBCMD          0x06

/* VS PCIE Stats */
#define WDC_NVME_PCIE_STATS_OPCODE          0xD1

/* Capture Diagnostics */
#define WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE		WDC_NVME_LOG_SIZE_DATA_LEN
#define WDC_NVME_CAP_DIAG_OPCODE			0xE6
#define WDC_NVME_CAP_DIAG_CMD_OPCODE			0xC6
#define WDC_NVME_CAP_DIAG_SUBCMD			0x00
#define WDC_NVME_CAP_DIAG_CMD				0x00

#define WDC_NVME_CRASH_DUMP_TYPE			1
#define WDC_NVME_PFAIL_DUMP_TYPE			2

/* Capture Device Unit Info */
#define WDC_NVME_CAP_DUI_HEADER_SIZE			0x400
#define WDC_NVME_CAP_DUI_OPCODE				0xFA
#define WDC_NVME_CAP_DUI_DISABLE_IO         0x01
#define WDC_NVME_DUI_MAX_SECTION			0x3A
#define WDC_NVME_DUI_MAX_SECTION_V2			0x26
#define WDC_NVME_DUI_MAX_SECTION_V3			0x23
#define WDC_NVME_DUI_MAX_DATA_AREA			0x05
#define WDC_NVME_SN730_SECTOR_SIZE		    512

/* Telemtery types for vs-internal-log command  */
#define WDC_TELEMETRY_TYPE_NONE             0x0
#define WDC_TELEMETRY_TYPE_HOST             0x1
#define WDC_TELEMETRY_TYPE_CONTROLLER       0x2
#define WDC_TELEMETRY_HEADER_LENGTH         512
#define WDC_TELEMETRY_BLOCK_SIZE            512

/* Crash dump */
#define WDC_NVME_CRASH_DUMP_SIZE_DATA_LEN		WDC_NVME_LOG_SIZE_DATA_LEN
#define WDC_NVME_CRASH_DUMP_SIZE_NDT			0x02
#define WDC_NVME_CRASH_DUMP_SIZE_CMD			0x20
#define WDC_NVME_CRASH_DUMP_SIZE_SUBCMD			0x03

#define WDC_NVME_CRASH_DUMP_OPCODE			WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_CRASH_DUMP_CMD				0x20
#define WDC_NVME_CRASH_DUMP_SUBCMD			0x04

/* PFail Crash dump */
#define WDC_NVME_PF_CRASH_DUMP_SIZE_DATA_LEN		WDC_NVME_LOG_SIZE_HDR_LEN
#define WDC_NVME_PF_CRASH_DUMP_SIZE_NDT			0x02
#define WDC_NVME_PF_CRASH_DUMP_SIZE_CMD			0x20
#define WDC_NVME_PF_CRASH_DUMP_SIZE_SUBCMD		0x05

#define WDC_NVME_PF_CRASH_DUMP_OPCODE			WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_PF_CRASH_DUMP_CMD			0x20
#define WDC_NVME_PF_CRASH_DUMP_SUBCMD			0x06

/* Drive Log */
#define WDC_NVME_DRIVE_LOG_SIZE_OPCODE			 WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_DRIVE_LOG_SIZE_DATA_LEN		WDC_NVME_LOG_SIZE_DATA_LEN
#define WDC_NVME_DRIVE_LOG_SIZE_NDT			0x02
#define WDC_NVME_DRIVE_LOG_SIZE_CMD			0x20
#define WDC_NVME_DRIVE_LOG_SIZE_SUBCMD			0x01

#define WDC_NVME_DRIVE_LOG_OPCODE			WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_DRIVE_LOG_CMD				0x20
#define WDC_NVME_DRIVE_LOG_SUBCMD			0x00

/* Purge and Purge Monitor */
#define WDC_NVME_PURGE_CMD_OPCODE			0xDD
#define WDC_NVME_PURGE_MONITOR_OPCODE			0xDE
#define WDC_NVME_PURGE_MONITOR_DATA_LEN			0x2F
#define WDC_NVME_PURGE_MONITOR_CMD_CDW10		0x0000000C
#define WDC_NVME_PURGE_MONITOR_TIMEOUT			0x7530
#define WDC_NVME_PURGE_CMD_SEQ_ERR			0x0C
#define WDC_NVME_PURGE_INT_DEV_ERR			0x06

#define WDC_NVME_PURGE_STATE_IDLE			0x00
#define WDC_NVME_PURGE_STATE_DONE			0x01
#define WDC_NVME_PURGE_STATE_BUSY			0x02
#define WDC_NVME_PURGE_STATE_REQ_PWR_CYC		0x03
#define WDC_NVME_PURGE_STATE_PWR_CYC_PURGE		0x04

/* Clear dumps */
#define WDC_NVME_CLEAR_DUMP_OPCODE			0xFF
#define WDC_NVME_CLEAR_CRASH_DUMP_CMD			0x03
#define WDC_NVME_CLEAR_CRASH_DUMP_SUBCMD		0x05
#define WDC_NVME_CLEAR_PF_CRASH_DUMP_SUBCMD		0x06

/* Clear FW Activate History */
#define WDC_NVME_CLEAR_FW_ACT_HIST_OPCODE       0xC6
#define WDC_NVME_CLEAR_FW_ACT_HIST_CMD			0x23
#define WDC_NVME_CLEAR_FW_ACT_HIST_SUBCMD		0x05
#define WDC_NVME_CLEAR_FW_ACT_HIST_VU_FID		0xC1

/* Additional Smart Log */
#define WDC_ADD_LOG_BUF_LEN				0x4000
#define WDC_NVME_ADD_LOG_OPCODE				0xC1
#define WDC_GET_LOG_PAGE_SSD_PERFORMANCE		0x37
#define WDC_NVME_GET_STAT_PERF_INTERVAL_LIFETIME	0x0F

/* C2 Log Page */
#define WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE		0xC2
#define WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE_C8       0xC8
#define WDC_C2_LOG_BUF_LEN				0x1000
#define WDC_C2_LOG_PAGES_SUPPORTED_ID			0x08
#define WDC_C2_CUSTOMER_ID_ID					0x15
#define WDC_C2_THERMAL_THROTTLE_STATUS_ID		0x18
#define WDC_C2_ASSERT_DUMP_PRESENT_ID			0x19
#define WDC_C2_USER_EOL_STATUS_ID			0x1A
#define WDC_C2_USER_EOL_STATE_ID			0x1C
#define WDC_C2_SYSTEM_EOL_STATE_ID			0x1D
#define WDC_C2_FORMAT_CORRUPT_REASON_ID			0x1E
#define WDC_EOL_STATUS_NORMAL				cpu_to_le32(0x00000000)
#define WDC_EOL_STATUS_END_OF_LIFE			cpu_to_le32(0x00000001)
#define WDC_EOL_STATUS_READ_ONLY			cpu_to_le32(0x00000002)
#define WDC_ASSERT_DUMP_NOT_PRESENT			cpu_to_le32(0x00000000)
#define WDC_ASSERT_DUMP_PRESENT				cpu_to_le32(0x00000001)
#define WDC_THERMAL_THROTTLING_OFF			cpu_to_le32(0x00000000)
#define WDC_THERMAL_THROTTLING_ON			cpu_to_le32(0x00000001)
#define WDC_THERMAL_THROTTLING_UNAVAILABLE		cpu_to_le32(0x00000002)
#define WDC_FORMAT_NOT_CORRUPT				cpu_to_le32(0x00000000)
#define WDC_FORMAT_CORRUPT_FW_ASSERT			cpu_to_le32(0x00000001)
#define WDC_FORMAT_CORRUPT_UNKNOWN			cpu_to_le32(0x000000FF)

/* CA Log Page */
#define WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE		0xCA
#define WDC_FB_CA_LOG_BUF_LEN					0x80
#define WDC_BD_CA_LOG_BUF_LEN					0xA0    /* Added 4 padding bytes to resolve build warning messages */

/* C0 EOL Status Log Page */
#define WDC_NVME_GET_EOL_STATUS_LOG_OPCODE		0xC0
#define WDC_NVME_EOL_STATUS_LOG_LEN				0x200
#define WDC_NVME_SMART_CLOUD_ATTR_LEN			0x200

/* C0 SMART Cloud Attributes Log Page*/
#define WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_OPCODE   0xC0

/* CB - FW Activate History Log Page */
#define WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID      0xCB
#define WDC_FW_ACT_HISTORY_LOG_BUF_LEN          0x3d0

/* C2 - FW Activation History Log Page */
#define WDC_NVME_GET_FW_ACT_HISTORY_C2_LOG_ID   0xC2
#define WDC_FW_ACT_HISTORY_C2_LOG_BUF_LEN       0x1000
#define WDC_MAX_NUM_ACT_HIST_ENTRIES            20
#define WDC_C2_GUID_LENGTH                      16

/* C3 Latency Monitor Log Page */
#define WDC_LATENCY_MON_LOG_BUF_LEN             0x200
#define WDC_LATENCY_MON_OPCODE                  0xC3
#define WDC_LATENCY_MON_VERSION                 0x0001

#define WDC_C3_GUID_LENGTH                      16
static __u8 wdc_lat_mon_guid[WDC_C3_GUID_LENGTH]    = { 0x92, 0x7a, 0xc0, 0x8c, 0xd0, 0x84, 0x6c, 0x9c,
		0x70, 0x43, 0xe6, 0xd4, 0x58, 0x5e, 0xd4, 0x85 };

/* D0 Smart Log Page */
#define WDC_NVME_GET_VU_SMART_LOG_OPCODE		0xD0
#define WDC_NVME_VU_SMART_LOG_LEN				0x200

/* Log Page Directory defines  */
#define NVME_LOG_PERSISTENT_EVENT               0x0D
#define WDC_LOG_ID_C0                           0xC0
#define WDC_LOG_ID_C1                           0xC1
#define WDC_LOG_ID_C2                           WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE
#define WDC_LOG_ID_C3                           0xC3
#define WDC_LOG_ID_C4                           0xC4
#define WDC_LOG_ID_C5                           0xC5
#define WDC_LOG_ID_C6                           0xC6
#define WDC_LOG_ID_C8                           WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE_C8
#define WDC_LOG_ID_CA                           WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE
#define WDC_LOG_ID_CB                           WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID
#define WDC_LOG_ID_D0                           WDC_NVME_GET_VU_SMART_LOG_OPCODE
#define WDC_LOG_ID_D1                           0xD1
#define WDC_LOG_ID_D6                           0xD6
#define WDC_LOG_ID_D7                           0xD7
#define WDC_LOG_ID_D8                           0xD8
#define WDC_LOG_ID_DE                           0xDE
#define WDC_LOG_ID_F0                           0xF0
#define WDC_LOG_ID_F1                           0xF1
#define WDC_LOG_ID_F2                           0xF2
#define WDC_LOG_ID_FA                           0xFA

/* Clear PCIe Correctable Errors */
#define WDC_NVME_CLEAR_PCIE_CORR_OPCODE     WDC_NVME_CAP_DIAG_CMD_OPCODE
#define WDC_NVME_CLEAR_PCIE_CORR_CMD        0x22
#define WDC_NVME_CLEAR_PCIE_CORR_SUBCMD     0x04
#define WDC_NVME_CLEAR_PCIE_CORR_OPCODE_VUC 0xD2
#define WDC_NVME_CLEAR_PCIE_CORR_FEATURE_ID 0xC3
/* Clear Assert Dump Status */
#define WDC_NVME_CLEAR_ASSERT_DUMP_OPCODE		0xD8
#define WDC_NVME_CLEAR_ASSERT_DUMP_CMD			0x03
#define WDC_NVME_CLEAR_ASSERT_DUMP_SUBCMD		0x05

#define WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID   0xD2

/* Drive Essentials */
#define WDC_DE_DEFAULT_NUMBER_OF_ERROR_ENTRIES		64
#define WDC_DE_GENERIC_BUFFER_SIZE			80
#define WDC_DE_GLOBAL_NSID				0xFFFFFFFF
#define WDC_DE_DEFAULT_NAMESPACE_ID			0x01
#define WDC_DE_PATH_SEPARATOR				"/"
#define WDC_DE_TAR_FILES				"*.bin"
#define WDC_DE_TAR_FILE_EXTN				".tar.gz"
#define WDC_DE_TAR_CMD					"tar -czf"

/* VS NAND Stats */
#define WDC_NVME_NAND_STATS_LOG_ID			0xFB
#define WDC_NVME_NAND_STATS_SIZE			0x200

/* VU Opcodes */
#define WDC_DE_VU_READ_SIZE_OPCODE			0xC0
#define WDC_DE_VU_READ_BUFFER_OPCODE			0xC2
#define WDC_NVME_ADMIN_ENC_MGMT_SND			0xC9
#define WDC_NVME_ADMIN_ENC_MGMT_RCV			0xCA

#define WDC_DE_FILE_HEADER_SIZE				4
#define WDC_DE_FILE_OFFSET_SIZE				2
#define WDC_DE_FILE_NAME_SIZE				32
#define WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET		0x8000
#define WDC_DE_READ_MAX_TRANSFER_SIZE			0x8000

#define WDC_DE_MANUFACTURING_INFO_PAGE_FILE_NAME	"manufacturing_info"  /* Unique log entry page name. */
#define WDC_DE_CORE_DUMP_FILE_NAME			"core_dump"
#define WDC_DE_EVENT_LOG_FILE_NAME			"event_log"
#define WDC_DE_DESTN_SPI				1
#define WDC_DE_DUMPTRACE_DESTINATION			6

#define NVME_ID_CTRL_MODEL_NUMBER_SIZE		40
#define NVME_ID_CTRL_SERIAL_NUMBER_SIZE		20

/* Enclosure log */
#define WDC_NVME_ENC_LOG_SIZE_CHUNK         0x1000
#define WDC_NVME_ENC_NIC_LOG_SIZE           0x400000

/* Enclosure nic crash dump get-log id */
#define WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_1    0xD1
#define WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_2    0xD2
#define WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_3    0xD3
#define WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_4    0xD4
#define WDC_ENC_CRASH_DUMP_ID               0xE4
#define WDC_ENC_LOG_DUMP_ID                 0xE2

typedef enum _NVME_FEATURES_SELECT
{
    FS_CURRENT                      = 0,
    FS_DEFAULT                      = 1,
    FS_SAVED                        = 2,
    FS_SUPPORTED_CAPBILITIES        = 3
} NVME_FEATURES_SELECT;

typedef enum _NVME_FEATURE_IDENTIFIERS
{
    FID_ARBITRATION                                 = 0x01,
    FID_POWER_MANAGEMENT                            = 0x02,
    FID_LBA_RANGE_TYPE                              = 0x03,
    FID_TEMPERATURE_THRESHOLD                       = 0x04,
    FID_ERROR_RECOVERY                              = 0x05,
    FID_VOLATILE_WRITE_CACHE                        = 0x06,
    FID_NUMBER_OF_QUEUES                            = 0x07,
    FID_INTERRUPT_COALESCING                        = 0x08,
    FID_INTERRUPT_VECTOR_CONFIGURATION              = 0x09,
    FID_WRITE_ATOMICITY                             = 0x0A,
    FID_ASYNCHRONOUS_EVENT_CONFIGURATION            = 0x0B,
    FID_AUTONOMOUS_POWER_STATE_TRANSITION           = 0x0C,
/*Below FID's are NVM Command Set Specific*/
    FID_SOFTWARE_PROGRESS_MARKER                    = 0x80,
    FID_HOST_IDENTIFIER                             = 0x81,
    FID_RESERVATION_NOTIFICATION_MASK               = 0x82,
    FID_RESERVATION_PERSISTENCE                     = 0x83
} NVME_FEATURE_IDENTIFIERS;

typedef enum
{
	WDC_DE_TYPE_IDENTIFY            = 0x1,
	WDC_DE_TYPE_SMARTATTRIBUTEDUMP  = 0x2,
	WDC_DE_TYPE_EVENTLOG            = 0x4,
	WDC_DE_TYPE_DUMPTRACE           = 0x8,
	WDC_DE_TYPE_DUMPSNAPSHOT        = 0x10,
	WDC_DE_TYPE_ATA_LOGS            = 0x20,
	WDC_DE_TYPE_SMART_LOGS          = 0x40,
	WDC_DE_TYPE_SCSI_LOGS           = 0x80,
	WDC_DE_TYPE_SCSI_MODE_PAGES     = 0x100,
	WDC_DE_TYPE_NVMe_FEATURES       = 0x200,
	WDC_DE_TYPE_DUMPSMARTERRORLOG3  = 0x400,
	WDC_DE_TYPE_DUMPLOG3E           = 0x800,
	WDC_DE_TYPE_DUMPSCRAM           = 0x1000,
	WDC_DE_TYPE_PCU_LOG             = 0x2000,
	WDC_DE_TYPE_DUMP_ERROR_LOGS     = 0x4000,
	WDC_DE_TYPE_FW_SLOT_LOGS        = 0x8000,
	WDC_DE_TYPE_MEDIA_SETTINGS      = 0x10000,
	WDC_DE_TYPE_SMART_DATA          = 0x20000,
	WDC_DE_TYPE_NVME_SETTINGS       = 0x40000,
	WDC_DE_TYPE_NVME_ERROR_LOGS     = 0x80000,
	WDC_DE_TYPE_NVME_LOGS           = 0x100000,
	WDC_DE_TYPE_UART_LOGS           = 0x200000,
	WDC_DE_TYPE_DLOGS_SPI           = 0x400000,
	WDC_DE_TYPE_DLOGS_RAM           = 0x800000,
	WDC_DE_TYPE_NVME_MANF_INFO      = 0x2000000,
	WDC_DE_TYPE_NONE                = 0x1000000,
	WDC_DE_TYPE_ALL                 = 0xFFFFFFF,
} WDC_DRIVE_ESSENTIAL_TYPE;

#define WDC_C0_GUID_LENGTH              16
#define WDC_SCA_V1_NAND_STATS           0x1
#define WDC_SCA_V1_ALL                  0xF
typedef enum
{
	SCAO_V1_PMUWT              =  0,	/* Physical media units written TLC */
	SCAO_V1_PMUWS              = 16,	/* Physical media units written SLC */
	SCAO_V1_BUNBN              = 32,	/* Bad user nand blocks normalized */
	SCAO_V1_BUNBR              = 34,	/* Bad user nand blocks raw */
	SCAO_V1_XRC                = 40,	/* XOR recovery count */
	SCAO_V1_UREC               = 48,	/* Uncorrectable read error count */
	SCAO_V1_EECE               = 56,	/* End to end corrected errors */
	SCAO_V1_EEDE               = 64,	/* End to end detected errors */
	SCAO_V1_EEUE               = 72,	/* End to end uncorrected errors */
	SCAO_V1_SDPU               = 80,	/* System data percent used */
	SCAO_V1_MNUDEC             = 84,	/* Min User data erase counts (TLC) */
	SCAO_V1_MXUDEC             = 92,	/* Max User data erase counts (TLC) */
	SCAO_V1_AVUDEC             = 100,	/* Average User data erase counts (TLC) */
	SCAO_V1_MNEC               = 108,	/* Min Erase counts (SLC) */
	SCAO_V1_MXEC               = 116,	/* Max Erase counts (SLC) */
	SCAO_V1_AVEC               = 124,	/* Average Erase counts (SLC) */
	SCAO_V1_PFCN               = 132,	/* Program fail count normalized */
	SCAO_V1_PFCR               = 134,	/* Program fail count raw */
	SCAO_V1_EFCN               = 140,	/* Erase fail count normalized */
	SCAO_V1_EFCR               = 142,	/* Erase fail count raw */
	SCAO_V1_PCEC               = 148,	/* PCIe correctable error count */
	SCAO_V1_PFBU               = 156,	/* Percent free blocks (User) */
	SCAO_V1_SVN                = 160,	/* Security Version Number */
	SCAO_V1_PFBS               = 168,	/* Percent free blocks (System) */
	SCAO_V1_DCC                = 172,	/* Deallocate Commands Completed */
	SCAO_V1_TNU                = 188,	/* Total Namespace Utilization   */
	SCAO_V1_FCC                = 196,	/* Format NVM Commands Completed */
	SCAO_V1_BBPG               = 198,	/* Background Back-Pressure Gauge */
	SCAO_V1_SEEC               = 202,	/* Soft ECC error count */
	SCAO_V1_RFSC               = 210,	/* Refresh count */
	SCAO_V1_BSNBN              = 218,	/* Bad system nand blocks normalized */
	SCAO_V1_BSNBR              = 220,	/* Bad system nand blocks raw */
	SCAO_V1_EEST               = 226,	/* Endurance estimate */
	SCAO_V1_TTC                = 242,	/* Thermal throttling count */
	SCAO_V1_UIO                = 244,	/* Unaligned I/O */
	SCAO_V1_PMUR               = 252,	/* Physical media units read */
	SCAO_V1_RTOC               = 268,	/* Read command timeout count */
	SCAO_V1_WTOC               = 272,	/* Write command timeout count */
	SCAO_V1_TTOC               = 276,	/* Trim command timeout count */
	SCAO_V1_PLRC               = 284,	/* PCIe Link Retraining Count */
	SCAO_V1_PSCC               = 292,	/* Power State Change Count */
	SCAO_V1_MAVF               = 300,	/* Boot SSD major version field */
	SCAO_V1_MIVF               = 302,	/* Boot SSD minor version field */
	SCAO_V1_PVF                = 304,	/* Boot SSD point version field */
	SCAO_V1_EVF                = 306,	/* Boot SSD errata version field */
	SCAO_V1_FTLUS              = 308,	/* FTL Unit Size  */
	SCAO_V1_TCGOS              = 312,	/* TCG Ownership Status */

	SCAO_V1_LPV                = 494,	/* Log page version - 0x0001 */
	SCAO_V1_LPG                = 496,	/* Log page GUID */
} SMART_CLOUD_ATTRIBUTE_OFFSETS_V1;

static __u8 ext_smart_guid[WDC_C0_GUID_LENGTH]    = { 0x65, 0x43, 0x88, 0x78, 0xAC, 0xD8, 0x78, 0xA1,
		0x66, 0x42, 0x1E, 0x0F, 0x92, 0xD7, 0x6D, 0xC4 };

typedef struct __attribute__((__packed__)) wdc_nvme_ext_smart_log
{
	__u8  ext_smart_pmuwt[16];			/* 000 Physical media units written TLC */
	__u8  ext_smart_pmuws[16];			/* 016 Physical media units written SLC */
	__u8  ext_smart_bunbc[8];			/* 032 Bad user nand block count */
	__u64 ext_smart_xrc;				/* 040 XOR recovery count */
	__u64 ext_smart_urec;				/* 048 Uncorrectable read error count */
	__u64 ext_smart_eece;				/* 056 End to end corrected errors */
	__u64 ext_smart_eede;				/* 064 End to end detected errors */
	__u64 ext_smart_eeue;				/* 072 End to end uncorrected errors */
	__u8  ext_smart_sdpu;				/* 080 System data percent used */
	__u8  ext_smart_rsvd1[3];			/* 081 reserved */
	__u64 ext_smart_mnudec;				/* 084 Min User data erase counts (TLC) */
	__u64 ext_smart_mxudec;				/* 092 Max User data erase counts (TLC) */
	__u64 ext_smart_avudec;				/* 100 Average User data erase counts (TLC) */
	__u64 ext_smart_mnec;				/* 108 Min Erase counts (SLC) */
	__u64 ext_smart_mxec;				/* 116 Max Erase counts (SLC) */
	__u64 ext_smart_avec;				/* 124 Average Erase counts (SLC) */
	__u8  ext_smart_pfc[8];				/* 132 Program fail count  */
	__u8  ext_smart_efc[8];				/* 140 Erase fail count  */
	__u64 ext_smart_pcec;				/* 148 PCIe correctable error count */
	__u8  ext_smart_pfbu;				/* 156 Percent free blocks (User) */
	__u8  ext_smart_rsvd2[3];			/* 157 reserved */
	__u64 ext_smart_svn;				/* 160 Security Version Number */
	__u8  ext_smart_pfbs;				/* 168 Percent free blocks (System) */
	__u8  ext_smart_rsvd3[3];			/* 169 reserved */
	__u8  ext_smart_dcc[16];			/* 172 Deallocate Commands Completed */
	__u64 ext_smart_tnu; 				/* 188 Total Namespace Utilization   */
	__u16 ext_smart_fcc; 				/* 196 Format NVM Commands Completed */
	__u8  ext_smart_bbpg;				/* 198 Background Back-Pressure Gauge */
	__u8  ext_smart_rsvd4[3];			/* 199 reserved */
	__u64 ext_smart_seec;				/* 202 Soft ECC error count */
	__u64 ext_smart_rfsc;				/* 210 Refresh count */
	__u8  ext_smart_bsnbc[8];			/* 218 Bad system nand block count */
	__u8  ext_smart_eest[16];			/* 226 Endurance estimate */
	__u16 ext_smart_ttc; 				/* 242 Thermal throttling count */
	__u64 ext_smart_uio;				/* 244 Unaligned I/O */
	__u8  ext_smart_pmur[16]; 			/* 252 Physical media units read */
	__u32 ext_smart_rtoc;				/* 268 Read command timeout count */
	__u32 ext_smart_wtoc;				/* 272 Write command timeout count */
	__u32 ext_smart_ttoc;				/* 276 Trim command timeout count */
	__u8  ext_smart_rsvd5[4];			/* 280 reserved */
	__u64 ext_smart_plrc;				/* 284 PCIe Link Retraining Count */
	__u64 ext_smart_pscc;				/* 292 Power State Change Count */
	__u16 ext_smart_maj;				/* 300 Boot SSD major version field */
	__u16 ext_smart_min;				/* 302 Boot SSD minor version field */
	__u16 ext_smart_pt; 				/* 304 Boot SSD point version field */
	__u16 ext_smart_err;				/* 306 Boot SSD errata version field */
	__u32 ext_smart_ftlus;				/* 308 FTL Unit Size  */
	__u32 ext_smart_tcgos;				/* 312 TCG Ownership Status */
	__u8  ext_smart_rsvd6[178];			/* 316 reserved */
	__u16 ext_smart_lpv;				/* 494 Log page version - 0x0001 */
	__u8  ext_smart_lpg[16];			/* 496 Log page GUID */
} wdc_nvme_ext_smart_log;

typedef enum
{
    SCAO_PMUW               =  0,	/* Physical media units written */
    SCAO_PMUR               = 16,	/* Physical media units read */
    SCAO_BUNBR              = 32,	/* Bad user nand blocks raw */
    SCAO_BUNBN              = 38,	/* Bad user nand blocks normalized */
    SCAO_BSNBR              = 40,	/* Bad system nand blocks raw */
    SCAO_BSNBN              = 46,	/* Bad system nand blocks normalized */
    SCAO_XRC                = 48,	/* XOR recovery count */
    SCAO_UREC               = 56,	/* Uncorrectable read error count */
    SCAO_SEEC               = 64,	/* Soft ecc error count */
    SCAO_EECE               = 72,	/* End to end corrected errors */
    SCAO_EEDC               = 76,	/* End to end detected errors */
    SCAO_SDPU               = 80,	/* System data percent used */
    SCAO_RFSC               = 81,	/* Refresh counts */
    SCAO_MXUDEC             = 88,	/* Max User data erase counts */
    SCAO_MNUDEC             = 92,	/* Min User data erase counts */
    SCAO_NTTE               = 96,	/* Number of Thermal throttling events */
    SCAO_CTS                = 97,	/* Current throttling status */
    SCAO_EVF                = 98,      /* Errata Version Field */
    SCAO_PVF                = 99,      /* Point Version Field */
    SCAO_MIVF               = 101,     /* Minor Version Field */
    SCAO_MAVF               = 103,     /* Major Version Field */
    SCAO_PCEC               = 104,	/* PCIe correctable error count */
    SCAO_ICS                = 112,	/* Incomplete shutdowns */
    SCAO_PFB                = 120,	/* Percent free blocks */
    SCAO_CPH                = 128,	/* Capacitor health */
    SCAO_NEV                = 130,     /* NVMe Errata Version */
    SCAO_UIO                = 136,	/* Unaligned I/O */
    SCAO_SVN                = 144,	/* Security Version Number */
    SCAO_NUSE               = 152,	/* NUSE - Namespace utilization */
    SCAO_PSC                = 160,	/* PLP start count */
    SCAO_EEST               = 176,	/* Endurance estimate */
    SCAO_PLRC               = 192,     /* PCIe Link Retraining Count */
    SCAO_PSCC               = 200,	/* Power State Change Count */
    SCAO_LPV                = 494,	/* Log page version */
    SCAO_LPG                = 496,	/* Log page GUID */
} SMART_CLOUD_ATTRIBUTE_OFFSETS_V3;

static __u8 scao_guid[WDC_C0_GUID_LENGTH]    = { 0xC5, 0xAF, 0x10, 0x28, 0xEA, 0xBF, 0xF2, 0xA4,
		0x9C, 0x4F, 0x6F, 0x7C, 0xC9, 0x14, 0xD5, 0xAF };

typedef enum
{
    EOL_RBC                 = 76,	/* Realloc Block Count */
    EOL_ECCR                = 80,	/* ECC Rate */
    EOL_WRA                 = 84,	/* Write Amp */
    EOL_PLR                 = 88,	/* Percent Life Remaining */
    EOL_RSVBC               = 92,	/* Reserved Block Count */
    EOL_PFC                 = 96,	/* Program Fail Count */
    EOL_EFC                 = 100,	/* Erase Fail Count */
    EOL_RRER                = 108,	/* Raw Read Error Rate */
} EOL_LOG_PAGE_C0_OFFSETS;

#define WDC_NVME_C6_GUID_LENGTH         16
#define WDC_NVME_GET_HW_REV_LOG_OPCODE  0xc6
#define WDC_NVME_HW_REV_LOG_PAGE_LEN    512

typedef struct __attribute__((__packed__)) wdc_nvme_hw_rev_log
{
	__u8  hw_rev_gdr;           /*   0 Global Device HW Revision      */
	__u8  hw_rev_ar;            /*   1 ASIC HW Revision               */
	__u8  hw_rev_pbc_mc;        /*   2 PCB Manufacturer Code          */
	__u8  hw_rev_dram_mc;       /*   3 DRAM Manufacturer Code         */
	__u8  hw_rev_nand_mc;       /*   4 NAND Manufacturer Code         */
	__u8  hw_rev_pmic1_mc;      /*   5 PMIC 1 Manufacturer Code       */
	__u8  hw_rev_pmic2_mc;      /*   6 PMIC 2 Manufacturer Code       */
	__u8  hw_rev_c1_mc;         /*   7 Other Component 1 Manf Code    */
	__u8  hw_rev_c2_mc;         /*   8 Other Component 2 Manf Code    */
	__u8  hw_rev_c3_mc;         /*   9 Other Component 3 Manf Code    */
	__u8  hw_rev_c4_mc;         /*  10 Other Component 4 Manf Code    */
	__u8  hw_rev_c5_mc;         /*  11 Other Component 5 Manf Code    */
	__u8  hw_rev_c6_mc;         /*  12 Other Component 6 Manf Code    */
	__u8  hw_rev_c7_mc;         /*  13 Other Component 7 Manf Code    */
	__u8  hw_rev_c8_mc;         /*  14 Other Component 8 Manf Code    */
	__u8  hw_rev_c9_mc;         /*  15 Other Component 9 Manf Code    */
	__u8  hw_rev_rsrvd1[48];    /*  16 Reserved 48 bytes              */
	__u8  hw_rev_dev_mdi[16];   /*  64 Device Manf Detailed Info      */
	__u8  hw_rev_asic_di[16];   /*  80 ASIC Detailed Info             */
	__u8  hw_rev_pcb_di[16];    /*  96 PCB Detailed Info              */
	__u8  hw_rev_dram_di[16];   /* 112 DRAM Detailed Info             */
	__u8  hw_rev_nand_di[16];   /* 128 NAND Detailed Info             */
	__u8  hw_rev_pmic1_di[16];  /* 144 PMIC1 Detailed Info            */
	__u8  hw_rev_pmic2_di[16];  /* 160 PMIC2 Detailed Info            */
	__u8  hw_rev_c1_di[16];     /* 176 Component 1 Detailed Info      */
	__u8  hw_rev_c2_di[16];     /* 192 Component 2 Detailed Info      */
	__u8  hw_rev_c3_di[16];     /* 208 Component 3 Detailed Info      */
	__u8  hw_rev_c4_di[16];     /* 224 Component 4 Detailed Info      */
	__u8  hw_rev_c5_di[16];     /* 240 Component 5 Detailed Info      */
	__u8  hw_rev_c6_di[16];     /* 256 Component 6 Detailed Info      */
	__u8  hw_rev_c7_di[16];     /* 272 Component 7 Detailed Info      */
	__u8  hw_rev_c8_di[16];     /* 288 Component 8 Detailed Info      */
	__u8  hw_rev_c9_di[16];     /* 304 Component 9 Detailed Info      */
	__u8  hw_rev_sn[32];        /* 320 Serial Number                  */
	__u8  hw_rev_rsrvd2[142];   /* 352 Reserved 143 bytes             */
	__u16 hw_rev_version;       /* 494 Log Page Version               */
	__u8  hw_rev_guid[16];      /* 496 Log Page GUID                  */
} wdc_nvme_hw_rev_log;

static __u8 hw_rev_log_guid[WDC_NVME_C6_GUID_LENGTH] = { 0xAA, 0xB0, 0x05, 0xF5, 0x13, 0x5E, 0x48, 0x15,
		0xAB, 0x89, 0x05, 0xBA, 0x8B, 0xE2, 0xBF, 0x3C };

typedef struct __attribute__((__packed__)) _WDC_DE_VU_FILE_META_DATA
{
    __u8 fileName[WDC_DE_FILE_NAME_SIZE];
    __u16 fileID;
    __u64 fileSize;
} WDC_DE_VU_FILE_META_DATA, *PWDC_DE_VU_FILE_META_DATA;

typedef struct _WDC_DRIVE_ESSENTIALS
{
    WDC_DE_VU_FILE_META_DATA metaData;
    WDC_DRIVE_ESSENTIAL_TYPE essentialType;
} WDC_DRIVE_ESSENTIALS;

typedef struct _WDC_DE_VU_LOG_DIRECTORY
{
    WDC_DRIVE_ESSENTIALS *logEntry;		/* Caller to allocate memory        */
    __u32 maxNumLogEntries; 			/* Caller to input memory allocated */
    __u32 numOfValidLogEntries;			/* API will output this value       */
} WDC_DE_VU_LOG_DIRECTORY,*PWDC_DE_VU_LOG_DIRECTORY;

typedef struct _WDC_DE_CSA_FEATURE_ID_LIST
{
    NVME_FEATURE_IDENTIFIERS featureId;
    __u8 featureName[WDC_DE_GENERIC_BUFFER_SIZE];
} WDC_DE_CSA_FEATURE_ID_LIST;

typedef struct tarfile_metadata {
	char fileName[MAX_PATH_LEN];
	int8_t bufferFolderPath[MAX_PATH_LEN];
	char bufferFolderName[MAX_PATH_LEN];
	char tarFileName[MAX_PATH_LEN];
	char tarFiles[MAX_PATH_LEN];
	char tarCmd[MAX_PATH_LEN+MAX_PATH_LEN];
	char currDir[MAX_PATH_LEN];
	UtilsTimeInfo timeInfo;
	uint8_t* timeString[MAX_PATH_LEN];
} tarfile_metadata;

static WDC_DE_CSA_FEATURE_ID_LIST deFeatureIdList[] =
{
	{0x00                                   , "Dummy Placeholder"},
	{FID_ARBITRATION                        , "Arbitration"},
	{FID_POWER_MANAGEMENT                   , "PowerMgmnt"},
	{FID_LBA_RANGE_TYPE                     , "LbaRangeType"},
	{FID_TEMPERATURE_THRESHOLD              , "TempThreshold"},
	{FID_ERROR_RECOVERY                     , "ErrorRecovery"},
	{FID_VOLATILE_WRITE_CACHE               , "VolatileWriteCache"},
	{FID_NUMBER_OF_QUEUES                   , "NumOfQueues"},
	{FID_INTERRUPT_COALESCING               , "InterruptCoalesing"},
	{FID_INTERRUPT_VECTOR_CONFIGURATION     , "InterruptVectorConfig"},
	{FID_WRITE_ATOMICITY                    , "WriteAtomicity"},
	{FID_ASYNCHRONOUS_EVENT_CONFIGURATION   , "AsynEventConfig"},
	{FID_AUTONOMOUS_POWER_STATE_TRANSITION  , "AutonomousPowerState"},
};

typedef enum _NVME_VU_DE_LOGPAGE_NAMES
{
    NVME_DE_LOGPAGE_E3 = 0x01,
    NVME_DE_LOGPAGE_C0 = 0x02
} NVME_VU_DE_LOGPAGE_NAMES;
typedef struct _NVME_VU_DE_LOGPAGE_LIST
{
	NVME_VU_DE_LOGPAGE_NAMES logPageName;
	__u32	logPageId;
	__u32	logPageLen;
	char	logPageIdStr[5];
} NVME_VU_DE_LOGPAGE_LIST, *PNVME_VU_DE_LOGPAGE_LIST;

typedef struct _WDC_NVME_DE_VU_LOGPAGES
{
    NVME_VU_DE_LOGPAGE_NAMES vuLogPageReqd;
    __u32 numOfVULogPages;
} WDC_NVME_DE_VU_LOGPAGES, *PWDC_NVME_DE_VU_LOGPAGES;

static NVME_VU_DE_LOGPAGE_LIST deVULogPagesList[] =
{
    { NVME_DE_LOGPAGE_E3, 0xE3, 1072, "0xe3"},
    { NVME_DE_LOGPAGE_C0, 0xC0, 512, "0xc0"}
};

static int wdc_get_serial_name(int fd, char *file, size_t len, const char *suffix);
static int wdc_create_log_file(char *file, __u8 *drive_log_data,
		__u32 drive_log_length);
static int wdc_do_clear_dump(int fd, __u8 opcode, __u32 cdw12);
static int wdc_do_dump(int fd, __u32 opcode,__u32 data_len,
		__u32 cdw12, char *file, __u32 xfer_size);
static int wdc_do_crash_dump(int fd, char *file, int type);
static int wdc_crash_dump(int fd, char *file, int type);
static int wdc_get_crash_dump(int argc, char **argv, struct command *command,
		struct plugin *plugin);
static int wdc_do_drive_log(int fd, char *file);
static int wdc_drive_log(int argc, char **argv, struct command *command,
		struct plugin *plugin);
static const char* wdc_purge_mon_status_to_string(__u32 status);
static int wdc_purge(int argc, char **argv,
		struct command *command, struct plugin *plugin);
static int wdc_purge_monitor(int argc, char **argv,
		struct command *command, struct plugin *plugin);
static bool wdc_nvme_check_supported_log_page(nvme_root_t r, int fd, __u8 log_id);
static int wdc_clear_pcie_correctable_errors(int argc, char **argv, struct command *command,
		struct plugin *plugin);
static int wdc_do_drive_essentials(nvme_root_t r, int fd, char *dir, char *key);
static int wdc_drive_essentials(int argc, char **argv, struct command *command,
		struct plugin *plugin);
static int wdc_drive_status(int argc, char **argv, struct command *command,
		struct plugin *plugin);
static int wdc_clear_assert_dump(int argc, char **argv, struct command *command,
		struct plugin *plugin);
static int wdc_drive_resize(int argc, char **argv,
		struct command *command, struct plugin *plugin);
static int wdc_do_drive_resize(int fd, uint64_t new_size);
static int wdc_namespace_resize(int argc, char **argv,
		struct command *command, struct plugin *plugin);
static int wdc_do_namespace_resize(int fd, __u32 nsid, __u32 op_option);
static int wdc_reason_identifier(int argc, char **argv,
		struct command *command, struct plugin *plugin);
static int wdc_do_get_reason_id(int fd, char *file, int log_id);
static int wdc_save_reason_id(int fd, __u8 *rsn_ident,  int size);
static int wdc_clear_reason_id(int fd);
static int wdc_log_page_directory(int argc, char **argv, struct command *command,
		struct plugin *plugin);
static int wdc_do_drive_info(int fd, __u32 *result);
static int wdc_vs_drive_info(int argc, char **argv, struct command *command,
		struct plugin *plugin);
static int wdc_vs_temperature_stats(int argc, char **argv, struct command *command,
		struct plugin *plugin);
static __u64 wdc_get_enc_drive_capabilities(nvme_root_t r, int fd);
static int wdc_enc_get_nic_log(int fd, __u8 log_id, __u32 xfer_size, __u32 data_len, FILE *out);
static int wdc_enc_submit_move_data(int fd, char *cmd, int len, int xfer_size, FILE *out, int data_id, int cdw14, int cdw15);
static bool get_dev_mgment_cbs_data(nvme_root_t r, int fd, __u8 log_id, void **cbs_data);
static __u32 wdc_get_fw_cust_id(nvme_root_t r, int fd);

/* Drive log data size */
struct wdc_log_size {
	__le32	log_size;
};

/* E6 log header */
struct wdc_e6_log_hdr {
	__le32  eye_catcher;
	__u8	log_size[4];
};

/* DUI log header */
struct wdc_dui_log_section {
	__le16	section_type;
	__le16	data_area_id;
	__le32	section_size;
};

/* DUI log header V2 */
struct __attribute__((__packed__)) wdc_dui_log_section_v2 {
	__le16	section_type;
	__le16	data_area_id;
	__le64	section_size;
};

/* DUI log header V4 */
struct wdc_dui_log_section_v4 {
	__le16	section_type;
	__u8	data_area_id;
	__u8    reserved;
	__le32	section_size_sectors;
};

struct wdc_dui_log_hdr {
	__u8    telemetry_hdr[512];
	__le16	hdr_version;
	__le16	section_count;
	__le32	log_size;
	struct	wdc_dui_log_section log_section[WDC_NVME_DUI_MAX_SECTION];
	__u8    log_data[40];
};

struct __attribute__((__packed__)) wdc_dui_log_hdr_v2 {
	__u8    telemetry_hdr[512];
	__u8	hdr_version;
	__u8    product_id;
	__le16	section_count;
	__le64	log_size;
	struct	wdc_dui_log_section_v2 log_section[WDC_NVME_DUI_MAX_SECTION_V2];
	__u8    log_data[40];
};

struct __attribute__((__packed__)) wdc_dui_log_hdr_v3 {
	__u8    telemetry_hdr[512];
	__u8	hdr_version;
	__u8    product_id;
	__le16	section_count;
	__le64	log_size;
	struct	wdc_dui_log_section_v2 log_section[WDC_NVME_DUI_MAX_SECTION_V3];
	__u8    securityNonce[36];
	__u8    log_data[40];
};

struct __attribute__((__packed__)) wdc_dui_log_hdr_v4 {
	__u8    telemetry_hdr[512];
	__u8	hdr_version;
	__u8    product_id;
	__le16	section_count;
	__le32	log_size_sectors;
	struct	wdc_dui_log_section_v4 log_section[WDC_NVME_DUI_MAX_SECTION];
	__u8    log_data[40];
};

/* Purge monitor response */
struct wdc_nvme_purge_monitor_data {
	__le16 	rsvd1;
	__le16 	rsvd2;
	__le16 	first_erase_failure_cnt;
	__le16 	second_erase_failure_cnt;
	__le16 	rsvd3;
	__le16 	programm_failure_cnt;
	__le32 	rsvd4;
	__le32 	rsvd5;
	__le32 	entire_progress_total;
	__le32 	entire_progress_current;
	__u8   	rsvd6[14];
};

/* Additional Smart Log */
struct wdc_log_page_header {
	uint8_t	num_subpages;
	uint8_t	reserved;
	__le16	total_log_size;
};

struct wdc_log_page_subpage_header {
	uint8_t	spcode;
	uint8_t	pcset;
	__le16	subpage_length;
};

struct wdc_ssd_perf_stats {
	__le64	hr_cmds;		/* Host Read Commands				*/
	__le64	hr_blks;		/* Host Read Blocks					*/
	__le64	hr_ch_cmds;		/* Host Read Cache Hit Commands		*/
	__le64	hr_ch_blks;		/* Host Read Cache Hit Blocks		*/
	__le64	hr_st_cmds;		/* Host Read Stalled Commands		*/
	__le64	hw_cmds;		/* Host Write Commands				*/
	__le64	hw_blks;		/* Host Write Blocks				*/
	__le64	hw_os_cmds;		/* Host Write Odd Start Commands	*/
	__le64	hw_oe_cmds;		/* Host Write Odd End Commands		*/
	__le64	hw_st_cmds;		/* Host Write Commands Stalled		*/
	__le64	nr_cmds;		/* NAND Read Commands				*/
	__le64	nr_blks;		/* NAND Read Blocks					*/
	__le64	nw_cmds;		/* NAND Write Commands				*/
	__le64	nw_blks;		/* NAND Write Blocks				*/
	__le64	nrbw;			/* NAND Read Before Write			*/
};

/* Additional C2 Log Page */
struct wdc_c2_log_page_header {
	__le32	length;
	__le32	version;
};

struct wdc_c2_log_subpage_header {
	__le32	length;
	__le32	entry_id;
	__le32	data;
};

struct wdc_c2_cbs_data {
	__le32	length;
	__u8	data[];
};

struct __attribute__((__packed__)) wdc_bd_ca_log_format {
	__u8	field_id;
	__u8	reserved1[2];
	__u8	normalized_value;
	__u8	raw_value[8];
};

#define READ         0
#define WRITE        1
#define TRIM         2
#define RESERVED     3

struct __attribute__((__packed__)) wdc_ssd_latency_monitor_log {
	__u8    feature_status;                         /* 0x00  */
	__u8    rsvd1;                                  /* 0x01  */
	__le16  active_bucket_timer;                    /* 0x02  */
	__le16  active_bucket_timer_threshold;          /* 0x04  */
	__u8    active_threshold_a;                     /* 0x06  */
	__u8    active_threshold_b;                     /* 0x07  */
	__u8    active_threshold_c;                     /* 0x08  */
	__u8    active_threshold_d;                     /* 0x09  */
	__le16  active_latency_config;                  /* 0x0A  */
	__u8    active_latency_min_window;              /* 0x0C  */
	__u8    rsvd2[0x13];                            /* 0x0D  */

	__le32  active_bucket_counter[4][4] ;           /* 0x20 - 0x5F  */
	__le64  active_latency_timestamp[4][3];         /* 0x60 - 0xBF  */
	__le16  active_measured_latency[4][3];          /* 0xC0 - 0xD7  */
	__le16  active_latency_stamp_units;             /* 0xD8  */
	__u8    rsvd3[0x16];                            /* 0xDA  */

	__le32  static_bucket_counter[4][4] ;           /* 0xF0  - 0x12F  */
	__le64  static_latency_timestamp[4][3];         /* 0x130 - 0x18F */
	__le16  static_measured_latency[4][3];          /* 0x190 - 0x1A7 */
	__le16  static_latency_stamp_units;             /* 0x1A8 */
	__u8    rsvd4[0x16];                            /* 0x1AA */

	__le16  debug_log_trigger_enable;               /* 0x1C0 */
	__le16  debug_log_measured_latency;             /* 0x1C2 */
	__le64  debug_log_latency_stamp;                /* 0x1C4 */
	__le16  debug_log_ptr;                          /* 0x1CC */
	__le16  debug_log_counter_trigger;              /* 0x1CE */
	__u8    debug_log_stamp_units;                  /* 0x1D0 */
	__u8    rsvd5[0x1D];                            /* 0x1D1 */

	__le16  log_page_version;                       /* 0x1EE */
	__u8    log_page_guid[0x10];                    /* 0x1F0 */
};

struct __attribute__((__packed__)) wdc_ssd_ca_perf_stats {
	__le64  nand_bytes_wr_lo;                       /* 0x00 - NAND Bytes Written lo             */
	__le64  nand_bytes_wr_hi;                       /* 0x08 - NAND Bytes Written hi             */
	__le64  nand_bytes_rd_lo;                       /* 0x10 - NAND Bytes Read lo                */
	__le64  nand_bytes_rd_hi;                       /* 0x18 - NAND Bytes Read hi                */
	__le64  nand_bad_block;                         /* 0x20 - NAND Bad Block Count              */
	__le64  uncorr_read_count;                      /* 0x28 - Uncorrectable Read Count          */
	__le64  ecc_error_count;                        /* 0x30 - Soft ECC Error Count              */
	__le32  ssd_detect_count;                       /* 0x38 - SSD End to End Detection Count    */
	__le32  ssd_correct_count;                      /* 0x3C - SSD End to End Correction Count   */
	__u8    data_percent_used;                      /* 0x40 - System Data Percent Used          */
	__le32  data_erase_max;                         /* 0x41 - User Data Erase Counts            */
	__le32  data_erase_min;                         /* 0x45 - User Data Erase Counts            */
	__le64  refresh_count;                          /* 0x49 - Refresh Count                     */
	__le64  program_fail;                           /* 0x51 - Program Fail Count                */
	__le64  user_erase_fail;                        /* 0x59 - User Data Erase Fail Count        */
	__le64  system_erase_fail;                      /* 0x61 - System Area Erase Fail Count      */
	__u8    thermal_throttle_status;                /* 0x69 - Thermal Throttling Status         */
	__u8    thermal_throttle_count;                 /* 0x6A - Thermal Throttling Count          */
	__le64  pcie_corr_error;                        /* 0x6B - pcie Correctable Error Count      */
	__le32  incomplete_shutdown_count;              /* 0x73 - Incomplete Shutdown Count         */
	__u8    percent_free_blocks;                    /* 0x77 - Percent Free Blocks               */
	__u8    rsvd[392];                              /* 0x78 - Reserved bytes 120-511            */
};

struct __attribute__((__packed__)) wdc_ssd_d0_smart_log {
    __le32  smart_log_page_header;                 /* 0x00 - Smart Log Page Header                       */
    __le32  lifetime_realloc_erase_block_count;    /* 0x04 - Lifetime reallocated erase block count      */
    __le32  lifetime_power_on_hours;               /* 0x08 - Lifetime power on hours                     */
    __le32  lifetime_uecc_count;                   /* 0x0C - Lifetime UECC count                         */
    __le32  lifetime_wrt_amp_factor;               /* 0x10 - Lifetime write amplification factor         */
    __le32  trailing_hr_wrt_amp_factor;            /* 0x14 - Trailing hour write amplification factor    */
    __le32  reserve_erase_block_count;             /* 0x18 - Reserve erase block count                   */
    __le32  lifetime_program_fail_count;           /* 0x1C - Lifetime program fail count                 */
    __le32  lifetime_block_erase_fail_count;       /* 0x20 - Lifetime block erase fail count             */
    __le32  lifetime_die_failure_count;            /* 0x24 - Lifetime die failure count                  */
    __le32  lifetime_link_rate_downgrade_count;    /* 0x28 - Lifetime link rate downgrade count          */
    __le32  lifetime_clean_shutdown_count;         /* 0x2C - Lifetime clean shutdown count on power loss */
    __le32  lifetime_unclean_shutdown_count;       /* 0x30 - Lifetime unclean shutdowns on power loss    */
    __le32  current_temp;                          /* 0x34 - Current temperature                         */
    __le32  max_recorded_temp;                     /* 0x38 - Max recorded temperature                    */
    __le32  lifetime_retired_block_count;          /* 0x3C - Lifetime retired block count                */
    __le32  lifetime_read_disturb_realloc_events;  /* 0x40 - Lifetime read disturb reallocation events   */
    __le64  lifetime_nand_writes;                  /* 0x44 - Lifetime NAND write Lpages                  */
    __le32  capacitor_health;                      /* 0x4C - Capacitor health                            */
    __le64  lifetime_user_writes;                  /* 0x50 - Lifetime user writes                        */
    __le64  lifetime_user_reads;                   /* 0x58 - Lifetime user reads                         */
    __le32  lifetime_thermal_throttle_act;         /* 0x60 - Lifetime thermal throttle activations       */
    __le32  percentage_pe_cycles_remaining;        /* 0x64 - Percentage of P/E cycles remaining          */
    __u8    rsvd[408];                             /* 0x68 - 408 Reserved bytes                          */
};

#define WDC_OCP_C1_GUID_LENGTH              16
#define WDC_ERROR_REC_LOG_BUF_LEN          512
#define WDC_ERROR_REC_LOG_ID              0xC1
#define WDC_ERROR_REC_LOG_VERSION         0002

struct __attribute__((__packed__)) wdc_ocp_c1_error_recovery_log {
    __le16  panic_reset_wait_time;                  /* 000 - Panic Reset Wait Time              */
    __u8    panic_reset_action;                     /* 002 - Panic Reset Action                 */
    __u8    dev_recovery_action1;                   /* 003 - Device Recovery Action 1           */
    __le64  panic_id;                               /* 004 - Panic ID                           */
    __le32  dev_capabilities;                       /* 012 - Device Capabilities                */
    __u8    vs_recovery_opc;                        /* 016 - Vendor Specific Recovery Opcode    */
    __u8    rsvd1[3];                               /* 017 - 3 Reserved Bytes                   */
    __le32  vs_cmd_cdw12;                           /* 020 - Vendor Specific Command CDW12      */
    __le32  vs_cmd_cdw13;                           /* 024 - Vendor Specific Command CDW13      */
    __u8    vs_cmd_to;                              /* 028 - Vendor Specific Command Timeout    */
    __u8    dev_recovery_action2;                   /* 029 - Device Recovery Action 2           */
    __u8    dev_recovery_action2_to;                /* 030 - Device Recovery Action 2 Timeout   */
    __u8    rsvd2[463];                             /* 031 - 463 Reserved Bytes                 */
    __le16  log_page_version;                       /* 494 - Log Page Version                   */
    __u8    log_page_guid[WDC_OCP_C1_GUID_LENGTH];  /* 496 - Log Page GUID                      */
};

static __u8 wdc_ocp_c1_guid[WDC_OCP_C1_GUID_LENGTH]    = { 0x44, 0xD9, 0x31, 0x21, 0xFE, 0x30, 0x34, 0xAE,
		0xAB, 0x4D, 0xFD, 0x3D, 0xBA, 0x83, 0x19, 0x5A };

/* NAND Stats */
struct __attribute__((__packed__)) wdc_nand_stats {
	__u8		nand_write_tlc[16];
	__u8		nand_write_slc[16];
	__le32		nand_prog_failure;
	__le32		nand_erase_failure;
	__le32		bad_block_count;
	__le64		nand_rec_trigger_event;
	__le64		e2e_error_counter;
	__le64		successful_ns_resize_event;
	__u8		rsvd[442];
	__u16       log_page_version;
};

struct __attribute__((__packed__)) wdc_nand_stats_V3 {
	__u8		nand_write_tlc[16];
	__u8		nand_write_slc[16];
	__u8		bad_nand_block_count[8];
	__le64		xor_recovery_count;
	__le64		uecc_read_error_count;
	__u8		ssd_correction_counts[16];
	__u8		percent_life_used;
	__le64		user_data_erase_counts[4];
	__u8  		program_fail_count[8];
	__u8  		erase_fail_count[8];
	__le64		correctable_error_count;
	__u8		percent_free_blocks_user;
	__le64		security_version_number;
	__u8		percent_free_blocks_system;
	__u8		trim_completions[25];
	__u8		back_pressure_guage;
	__le64		soft_ecc_error_count;
	__le64		refresh_count;
	__u8		bad_sys_nand_block_count[8];
	__u8		endurance_estimate[16];
	__u8		thermal_throttling_st_ct[2];
	__le64		unaligned_IO;
	__u8		physical_media_units[16];
	__u8		reserved[279];
	__u16       log_page_version;
};

struct wdc_vs_pcie_stats
{
    __le64      unsupportedRequestErrorCount;
    __le64      ecrcErrorStatusCount;
    __le64      malformedTlpStatusCount;
    __le64      receiverOverflowStatusCount;
    __le64      unexpectedCmpltnStatusCount;
    __le64      completeAbortStatusCount;
    __le64      cmpltnTimoutStatusCount;
    __le64      flowControlErrorStatusCount;
    __le64      poisonedTlpStatusCount;
    __le64      dLinkPrtclErrorStatusCount;
    __le64      advsryNFatalErrStatusCount;
    __le64      replayTimerToStatusCount;
    __le64      replayNumRolloverStCount;
    __le64      badDllpStatusCount;
    __le64      badTlpStatusCount;
    __le64      receiverErrStatusCount;
    __u8        reserved1[384];
};

struct wdc_fw_act_history_log_hdr {
	__le32		eye_catcher;
	__u8        version;
	__u8        reserved1;
	__u8        num_entries;
	__u8        reserved2;
	__le32      entry_size;
	__le32      reserved3;
};

struct wdc_fw_act_history_log_entry {
	__le32      entry_num;
	__le32      power_cycle_count;
	__le64      power_on_seconds;
	__le64      previous_fw_version;
	__le64      new_fw_version;
    __u8        slot_number;
    __u8        commit_action_type;
    __le16      result;
	__u8        reserved[12];
};

struct __attribute__((__packed__)) wdc_fw_act_history_log_entry_c2 {
	__u8		entry_version_num;
	__u8		entry_len;
	__le16		reserved;
	__le16		fw_act_hist_entries;
	__le64		timestamp;
	__u8		reserved2[8];
	__le64		power_cycle_count;
	__le64		previous_fw_version;
	__le64		current_fw_version;
	__u8		slot_number;
	__u8		commit_action_type;
	__le16		result;
	__u8		reserved3[14];
};

struct __attribute__((__packed__)) wdc_fw_act_history_log_format_c2 {
	__u8		log_identifier;
	__u8 		reserved[3];
	__le32		num_entries;
	struct 		wdc_fw_act_history_log_entry_c2 entry[WDC_MAX_NUM_ACT_HIST_ENTRIES];
	__u8 		reserved2[2790];
	__le16 		log_page_version;
	__u8 		log_page_guid[WDC_C2_GUID_LENGTH];
};

#define WDC_OCP_C4_GUID_LENGTH              16
#define WDC_DEV_CAP_LOG_BUF_LEN           4096
#define WDC_DEV_CAP_LOG_ID                0xC4
#define WDC_DEV_CAP_LOG_VERSION           0001
#define WDC_OCP_C4_NUM_PS_DESCR            127

struct __attribute__((__packed__)) wdc_ocp_C4_dev_cap_log {
    __le16  num_pcie_ports;                        /* 0000 - Number of PCI Express Ports           */
    __le16  oob_mgmt_support;                      /* 0002 - OOB Management Interfaces Supported   */
    __le16  wrt_zeros_support;                     /* 0004 - Write Zeros Commmand Support          */
    __le16  sanitize_support;                      /* 0006 - Sanitize Command Support              */
    __le16  dsm_support;                           /* 0008 - Dataset Management Command Support    */
    __le16  wrt_uncor_support;                     /* 0010 - Write Uncorrectable Command Support   */
    __le16  fused_support;                         /* 0012 - Fused Operation Support               */
    __le16  min_dssd_ps;                           /* 0014 - Minimum Valid DSSD Power State        */
    __u8    rsvd1;                                 /* 0016 - Reserved must be cleared to zero      */
    __u8    dssd_ps_descr[WDC_OCP_C4_NUM_PS_DESCR];/* 0017 - DSSD Power State Descriptors          */
    __u8    rsvd2[3934];                           /* 0144 - Reserved must be cleared to zero      */
    __le16  log_page_version;                      /* 4078 - Log Page Version                      */
    __u8    log_page_guid[WDC_OCP_C4_GUID_LENGTH]; /* 4080 - Log Page GUID                         */
};

static __u8 wdc_ocp_c4_guid[WDC_OCP_C4_GUID_LENGTH]    = { 0x97, 0x42, 0x05, 0x0D, 0xD1, 0xE1, 0xC9, 0x98,
		0x5D, 0x49, 0x58, 0x4B, 0x91, 0x3C, 0x05, 0xB7 };

#define WDC_OCP_C5_GUID_LENGTH              16
#define WDC_UNSUPPORTED_REQS_LOG_BUF_LEN  4096
#define WDC_UNSUPPORTED_REQS_LOG_ID       0xC5
#define WDC_UNSUPPORTED_REQS_LOG_VERSION  0001
#define WDC_NUM_UNSUPPORTED_REQ_ENTRIES    253

struct __attribute__((__packed__)) wdc_ocp_C5_unsupported_reqs {
    __le16  unsupported_count;                     /* 0000 - Number of Unsupported Requirement IDs */
    __u8    rsvd1[14];                             /* 0002 - Reserved must be cleared to zero      */
    __u8    unsupported_req_list[WDC_NUM_UNSUPPORTED_REQ_ENTRIES][16];  /* 0016 - Unsupported Requirements List */
    __u8    rsvd2[14];                             /* 4064 - Reserved must be cleared to zero      */
    __le16  log_page_version;                      /* 4078 - Log Page Version                      */
    __u8    log_page_guid[WDC_OCP_C5_GUID_LENGTH]; /* 4080 - Log Page GUID                         */
};

static __u8 wdc_ocp_c5_guid[WDC_OCP_C5_GUID_LENGTH]    = { 0x2F, 0x72, 0x9C, 0x0E, 0x99, 0x23, 0x2C, 0xBB,
		0x63, 0x48, 0x32, 0xD0, 0xB7, 0x98, 0xBB, 0xC7 };

#define WDC_REASON_INDEX_MAX                    16
#define WDC_REASON_ID_ENTRY_LEN                128
#define WDC_REASON_ID_PATH_NAME                "/usr/local/nvmecli"


static double safe_div_fp(double numerator, double denominator)
{
	return denominator ? numerator / denominator : 0;
}

static double calc_percent(uint64_t numerator, uint64_t denominator)
{
	return denominator ?
		(uint64_t)(((double)numerator / (double)denominator) * 100) : 0;
}

static long double int128_to_double(__u8 *data)
{
	int i;
	long double result = 0;

	for (i = 0; i < 16; i++) {
		result *= 256;
		result += data[15 - i];
	}
	return result;
}

static int wdc_get_pci_ids(nvme_root_t r, uint32_t *device_id,
			   uint32_t *vendor_id)
{
	char vid[256], did[256], id[32];
	nvme_ctrl_t c = NULL;
	nvme_ns_t n = NULL;
	int fd, ret;

	c = nvme_scan_ctrl(r, devicename);
	if (c) {
		snprintf(vid, sizeof(vid), "%s/device/vendor",
			nvme_ctrl_get_sysfs_dir(c));
		snprintf(did, sizeof(did), "%s/device/device",
			nvme_ctrl_get_sysfs_dir(c));
		nvme_free_ctrl(c);
	} else {
		n = nvme_scan_namespace(devicename);
		if (!n) {
			fprintf(stderr, "Unable to find %s\n", devicename);
			return -1;
		}

		snprintf(vid, sizeof(vid), "%s/device/device/vendor",
			nvme_ns_get_sysfs_dir(n));
		snprintf(did, sizeof(did), "%s/device/device/device",
			nvme_ns_get_sysfs_dir(n));
		nvme_free_ns(n);
	}

	fd = open(vid, O_RDONLY);
	if (fd < 0) {
		fprintf(stderr, "ERROR : WDC : %s : Open vendor file failed\n", __func__);
		return -1;
	}

	ret = read(fd, id, 32);
	close(fd);

	if (ret < 0) {
		fprintf(stderr, "%s: Read of pci vendor id failed\n", __func__);
		return -1;
	}
	id[ret < 32 ? ret : 31] = '\0';
	if (id[strlen(id) - 1] == '\n')
		id[strlen(id) - 1] = '\0';

	*vendor_id = strtol(id, NULL, 0);
	ret = 0;

	fd = open(did, O_RDONLY);
	if (fd < 0) {
		fprintf(stderr, "ERROR : WDC : %s : Open device file failed\n", __func__);
		return -1;
	}

	ret = read(fd, id, 32);
	close(fd);

	if (ret < 0) {
		fprintf(stderr, "%s: Read of pci device id failed\n", __func__);
		return -1;
	}
	id[ret < 32 ? ret : 31] = '\0';
	if (id[strlen(id) - 1] == '\n')
		id[strlen(id) - 1] = '\0';

	*device_id = strtol(id, NULL, 0);
	return 0;
}

static int wdc_get_vendor_id(int fd, uint32_t *vendor_id)
{
	int ret;
	struct nvme_id_ctrl ctrl;

	memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
	ret = nvme_identify_ctrl(fd, &ctrl);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed "
			"0x%x\n", ret);
		return -1;
	}

	*vendor_id = (uint32_t) ctrl.vid;

	return ret;
}

static bool wdc_check_power_of_2(int num)
{
	return (num && ( !(num & (num-1))));
}

static int wdc_get_model_number(int fd, char *model)
{
	int ret,i;
	struct nvme_id_ctrl ctrl;

	memset(&ctrl, 0, sizeof(struct nvme_id_ctrl));
	ret = nvme_identify_ctrl(fd, &ctrl);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed "
			"0x%x\n", ret);
		return -1;
	}

	memcpy(model,ctrl.mn,NVME_ID_CTRL_MODEL_NUMBER_SIZE);
	/* get rid of the padded spaces */
	i = NVME_ID_CTRL_MODEL_NUMBER_SIZE-1;
	while (model[i] == ' ') i--;
		model[i+1]=0;

	return ret;
}

static bool wdc_check_device(nvme_root_t r, int fd)
{
	int ret;
	bool supported;
	uint32_t read_device_id = -1, read_vendor_id = -1;

	ret = wdc_get_pci_ids(r, &read_device_id, &read_vendor_id);
	if (ret < 0) {
		/* Use the identify nvme command to get vendor id due to NVMeOF device. */
		if (wdc_get_vendor_id(fd, &read_vendor_id) < 0)
			return false;
	}

	supported = false;

	if (read_vendor_id == WDC_NVME_VID ||
	    read_vendor_id == WDC_NVME_VID_2 ||
	    read_vendor_id == WDC_NVME_SNDK_VID)
		supported = true;
	else
		fprintf(stderr, "ERROR : WDC: unsupported WDC device, Vendor ID = 0x%x, Device ID = 0x%x\n",
				read_vendor_id, read_device_id);

	return supported;
}

static bool wdc_enc_check_model(int fd)
{
	int ret;
	bool supported;
	char model[NVME_ID_CTRL_MODEL_NUMBER_SIZE+1];

	ret = wdc_get_model_number(fd, model);
	if (ret < 0)
		return false;

	supported = false;
	model[NVME_ID_CTRL_MODEL_NUMBER_SIZE] = 0; /* forced termination */
	if (strstr(model,WDC_OPENFLEX_MI_DEVICE_MODEL) != NULL)
		supported = true;
	else
		fprintf(stderr, "ERROR : WDC: unsupported WDC enclosure, Model = %s\n",model);

	return supported;
}

static __u64 wdc_get_drive_capabilities(nvme_root_t r, int fd) {
	int ret;
	uint32_t read_device_id = -1, read_vendor_id = -1;
	__u64 capabilities = 0;
	__u32 cust_id;

	ret = wdc_get_pci_ids(r, &read_device_id, &read_vendor_id);
	if (ret < 0)
	{
		if (wdc_get_vendor_id(fd, &read_vendor_id) < 0)
			return capabilities;
	}

	/* below check condition is added due in NVMeOF device we dont have device_id so we need to use only vendor_id*/
	if (read_device_id == -1 && read_vendor_id != -1)
	{
		capabilities = wdc_get_enc_drive_capabilities(r, fd);
		return capabilities;
	}

	switch (read_vendor_id) {
	case WDC_NVME_VID:
		switch (read_device_id) {
		case WDC_NVME_SN100_DEV_ID:
			capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_C1_LOG_PAGE |
					WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP |
					WDC_DRIVE_CAP_PURGE);
			break;
		case WDC_NVME_SN200_DEV_ID:
			capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_CLEAR_PCIE |
					WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP |
					WDC_DRIVE_CAP_PURGE);

			/* verify the 0xCA log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;

			/* verify the 0xC1 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_ADD_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_C1_LOG_PAGE;
			break;
		default:
			capabilities = 0;
		}
		break;
	case WDC_NVME_VID_2:
		switch (read_device_id) {
		case WDC_NVME_SN630_DEV_ID:
		/* FALLTHRU */
		case WDC_NVME_SN630_DEV_ID_1:
			capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
					WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
					WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_CLEAR_PCIE);
			/* verify the 0xCA log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;

			/* verify the 0xD0 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;
			break;
		case WDC_NVME_SN640_DEV_ID:
		/* FALLTHRU */
		case WDC_NVME_SN640_DEV_ID_1:
		/* FALLTHRU */
		case WDC_NVME_SN640_DEV_ID_2:
		/* FALLTHRU */
        case WDC_NVME_SN640_DEV_ID_3:
        /* FALLTHRU */
        case WDC_NVME_SN560_DEV_ID_1:
        /* FALLTHRU */
        case WDC_NVME_SN560_DEV_ID_2:
        /* FALLTHRU */
        case WDC_NVME_SN560_DEV_ID_3:
			/* verify the 0xC0 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_EOL_STATUS_LOG_OPCODE) == true) {
				capabilities |= WDC_DRIVE_CAP_C0_LOG_PAGE;
			}

			capabilities |= (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
					WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
					WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY |
					WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG | WDC_DRIVE_CAP_REASON_ID |
					WDC_DRIVE_CAP_LOG_PAGE_DIR);

			/* verify the 0xC1 (OCP Error Recovery) log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_ERROR_REC_LOG_ID) == true)
				capabilities |= WDC_DRIVE_CAP_OCP_C1_LOG_PAGE;

			/* verify the 0xC3 (OCP Latency Monitor) log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_LATENCY_MON_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_C3_LOG_PAGE;

			/* verify the 0xC4 (OCP Device Capabilities) log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_DEV_CAP_LOG_ID) == true)
				capabilities |= WDC_DRIVE_CAP_OCP_C4_LOG_PAGE;

			/* verify the 0xC5 (OCP Unsupported Requirments) log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_UNSUPPORTED_REQS_LOG_ID) == true)
				capabilities |= WDC_DRIVE_CAP_OCP_C5_LOG_PAGE;

			/* verify the 0xCA log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;

			/* verify the 0xD0 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;

			cust_id = wdc_get_fw_cust_id(r, fd);
			if (cust_id == WDC_INVALID_CUSTOMER_ID) {
				fprintf(stderr, "%s: ERROR : WDC : invalid customer id\n", __func__);
				return -1;
			}

			if ((cust_id == WDC_CUSTOMER_ID_0x1004) || (cust_id == WDC_CUSTOMER_ID_0x1008) ||
					(cust_id == WDC_CUSTOMER_ID_0x1005) || (cust_id == WDC_CUSTOMER_ID_0x1304))
				capabilities |= (WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY | WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE |
						WDC_DRIVE_CAP_INFO | WDC_DRIVE_CAP_CLOUD_SSD_VERSION);
			else
				capabilities |= (WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY | WDC_DRIVE_CAP_CLEAR_PCIE);

        	break;
		case WDC_NVME_SN840_DEV_ID:
		/* FALLTHRU */
		case WDC_NVME_SN840_DEV_ID_1:
		/* FALLTHRU */
		case WDC_NVME_SN860_DEV_ID:
			/* verify the 0xC0 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_EOL_STATUS_LOG_OPCODE) == true) {
				capabilities |= WDC_DRIVE_CAP_C0_LOG_PAGE;
			}
		/* FALLTHRU */
		case WDC_NVME_ZN540_DEV_ID:
		/* FALLTHRU */
        case WDC_NVME_SN540_DEV_ID:
        /* FALLTHRU */
			capabilities |= (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
					WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
					WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_CLEAR_PCIE |
					WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY | WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY |
					WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG | WDC_DRIVE_CAP_REASON_ID |
					WDC_DRIVE_CAP_LOG_PAGE_DIR );

			/* verify the 0xCA log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;

			/* verify the 0xD0 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;
			break;
		case WDC_NVME_SN650_DEV_ID:
		case WDC_NVME_SN650_DEV_ID_1:
		case WDC_NVME_SN650_DEV_ID_2:
		case WDC_NVME_SN650_DEV_ID_3:
		case WDC_NVME_SN650_DEV_ID_4:
		case WDC_NVME_SN655_DEV_ID:
		case WDC_NVME_SN550_DEV_ID:
			/* verify the 0xC0 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_EOL_STATUS_LOG_OPCODE) == true) {
				capabilities |= WDC_DRIVE_CAP_C0_LOG_PAGE;
			}

			capabilities |= (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
					WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
					WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_CLEAR_PCIE |
					WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY | WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY |
					WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG | WDC_DRIVE_CAP_REASON_ID |
					WDC_DRIVE_CAP_LOG_PAGE_DIR | WDC_DRIVE_CAP_INFO |
					WDC_DRIVE_CAP_CLOUD_SSD_VERSION);

			break;
		case WDC_NVME_SN730B_DEV_ID:
		/* FALLTHRU */
		case WDC_NVME_SN730B_DEV_ID_1:
			capabilities = WDC_SN730B_CAP_VUC_LOG;
			break;
		default:
			capabilities = 0;
		}
		break;
	case WDC_NVME_SNDK_VID:
		switch (read_device_id) {
		case WDC_NVME_SXSLCL_DEV_ID:
			capabilities = WDC_DRIVE_CAP_DRIVE_ESSENTIALS;
			break;
		case WDC_NVME_SN520_DEV_ID:
		/* FALLTHRU */
		case WDC_NVME_SN520_DEV_ID_1:
		/* FALLTHRU */
		case WDC_NVME_SN520_DEV_ID_2:
		case WDC_NVME_SN530_DEV_ID:
		case WDC_NVME_SN810_DEV_ID:
			capabilities = WDC_DRIVE_CAP_DUI_DATA;
			break;
		case WDC_NVME_SN820CL_DEV_ID:
			capabilities = WDC_DRIVE_CAP_DUI_DATA | WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION |
				WDC_DRIVE_CAP_CLOUD_LOG_PAGE | WDC_DRIVE_CAP_C0_LOG_PAGE |
				WDC_DRIVE_CAP_HW_REV_LOG_PAGE | WDC_DRIVE_CAP_INFO |
				WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE | WDC_DRIVE_CAP_NAND_STATS |
					WDC_DRIVE_CAP_DEVICE_WAF | WDC_DRIVE_CAP_TEMP_STATS;
			break;
		case WDC_NVME_SN720_DEV_ID:
			capabilities = WDC_DRIVE_CAP_DUI_DATA | WDC_DRIVE_CAP_NAND_STATS | WDC_DRIVE_CAP_NS_RESIZE;
			break;
		case WDC_NVME_SN730A_DEV_ID:
			capabilities =  WDC_DRIVE_CAP_DUI | WDC_DRIVE_CAP_NAND_STATS | WDC_DRIVE_CAP_INFO |
			WDC_DRIVE_CAP_TEMP_STATS | WDC_DRIVE_CAP_VUC_CLEAR_PCIE | WDC_DRIVE_CAP_PCIE_STATS;
			break;
                case WDC_NVME_SN740_DEV_ID:
                case WDC_NVME_SN740_DEV_ID_1:
                case WDC_NVME_SN740_DEV_ID_2:
                case WDC_NVME_SN740_DEV_ID_3:
		case WDC_NVME_SN340_DEV_ID:
			capabilities = WDC_DRIVE_CAP_DUI;
			break;
		case WDC_NVME_ZN350_DEV_ID:
		/* FALLTHRU */
		case WDC_NVME_ZN350_DEV_ID_1:
			capabilities = WDC_DRIVE_CAP_DUI_DATA | WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE | WDC_DRIVE_CAP_C0_LOG_PAGE |
			        WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY | WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_C2 |
			        WDC_DRIVE_CAP_INFO | WDC_DRIVE_CAP_CLOUD_SSD_VERSION | WDC_DRIVE_CAP_LOG_PAGE_DIR;
			break;
		default:
			capabilities = 0;
		}
		break;
	default:
		capabilities = 0;
	}

	return capabilities;
}

static __u64 wdc_get_enc_drive_capabilities(nvme_root_t r, int fd) {
	int ret;
	uint32_t read_vendor_id;
	__u64 capabilities = 0;
	__u32 cust_id;

	ret = wdc_get_vendor_id(fd, &read_vendor_id);
	if (ret < 0)
		return capabilities;

	switch (read_vendor_id) {
		case WDC_NVME_VID:
			capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_CLEAR_PCIE |
				WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP);

			/* verify the 0xCA log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;

			/* verify the 0xC1 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_ADD_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_C1_LOG_PAGE;
			break;
		case WDC_NVME_VID_2:
			capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG |
				WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT |
				WDC_DRIVE_CAP_RESIZE);

			/* verify the 0xC3 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_LATENCY_MON_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_C3_LOG_PAGE;

			/* verify the 0xCB log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID) == true)
				capabilities |= WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY;

			/* verify the 0xCA log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE;

			/* verify the 0xD0 log page is supported */
			if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == true)
				capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE;

			cust_id = wdc_get_fw_cust_id(r, fd);
			if (cust_id == WDC_INVALID_CUSTOMER_ID) {
				fprintf(stderr, "%s: ERROR : WDC : invalid customer id\n", __func__);
				return -1;
			}

			if ((cust_id == WDC_CUSTOMER_ID_0x1004) || (cust_id == WDC_CUSTOMER_ID_0x1008) ||
					(cust_id == WDC_CUSTOMER_ID_0x1005) || (cust_id == WDC_CUSTOMER_ID_0x1304))
				capabilities |= (WDC_DRIVE_CAP_VU_FID_CLEAR_FW_ACT_HISTORY | WDC_DRIVE_CAP_VU_FID_CLEAR_PCIE);
			else
				capabilities |= (WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY | WDC_DRIVE_CAP_CLEAR_PCIE);

			break;
		case WDC_NVME_SNDK_VID:
			capabilities = WDC_DRIVE_CAP_DRIVE_ESSENTIALS;
			break;
		default:
			capabilities = 0;
	}

	return capabilities;
}

static int wdc_get_serial_name(int fd, char *file, size_t len, const char *suffix)
{
	int i;
	int ret;
	int res_len = 0;
	char orig[PATH_MAX] = {0};
	struct nvme_id_ctrl ctrl;
	int ctrl_sn_len = sizeof (ctrl.sn);

	i = sizeof (ctrl.sn) - 1;
	strncpy(orig, file, PATH_MAX - 1);
	memset(file, 0, len);
	memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
	ret = nvme_identify_ctrl(fd, &ctrl);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed "
				"0x%x\n", ret);
		return -1;
	}
	/* Remove trailing spaces from the name */
	while (i && ctrl.sn[i] == ' ') {
		ctrl.sn[i] = '\0';
		i--;
	}
	if (ctrl.sn[sizeof (ctrl.sn) - 1] == '\0') {
		ctrl_sn_len = strlen(ctrl.sn);
	}

	res_len = snprintf(file, len, "%s%.*s%s", orig, ctrl_sn_len, ctrl.sn, suffix);
	if (len <= res_len) {
		fprintf(stderr, "ERROR : WDC : cannot format serial number due to data "
				"of unexpected length\n");
		return -1;
	}

	return 0;
}

static int wdc_create_log_file(char *file, __u8 *drive_log_data,
		__u32 drive_log_length)
{
	int fd;
	int ret;

	if (drive_log_length == 0) {
		fprintf(stderr, "ERROR : WDC: invalid log file length\n");
		return -1;
	}

	fd = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
	if (fd < 0) {
		fprintf(stderr, "ERROR : WDC: open : %s\n", strerror(errno));
		return -1;
	}

	while (drive_log_length > WRITE_SIZE) {
		ret = write(fd, drive_log_data, WRITE_SIZE);
		if (ret < 0) {
			fprintf (stderr, "ERROR : WDC: write : %s\n", strerror(errno));
			close(fd);
			return -1;
		}
		drive_log_data += WRITE_SIZE;
		drive_log_length -= WRITE_SIZE;
	}

	ret = write(fd, drive_log_data, drive_log_length);
	if (ret < 0) {
		fprintf(stderr, "ERROR : WDC : write : %s\n", strerror(errno));
		close(fd);
		return -1;
	}

	if (fsync(fd) < 0) {
		fprintf(stderr, "ERROR : WDC : fsync : %s\n", strerror(errno));
		close(fd);
		return -1;
	}
	close(fd);
	return 0;
}

bool wdc_get_dev_mng_log_entry(__u32 log_length,
    __u32 entry_id,
    struct wdc_c2_log_page_header* p_log_hdr,
    struct wdc_c2_log_subpage_header **p_p_found_log_entry)
{
    __u32 remaining_len = 0;
    __u32 log_entry_hdr_size = sizeof(struct wdc_c2_log_subpage_header) - 1;
    __u32 log_entry_size = 0;
    __u32 size = 0;
    bool valid_log;
    __u32 current_data_offset = 0;
    struct wdc_c2_log_subpage_header *p_next_log_entry = NULL;

    if (*p_p_found_log_entry == NULL) {
    	fprintf(stderr, "ERROR : WDC - wdc_get_dev_mng_log_entry: No ppLogEntry pointer.\n");
        return false;
    }

    *p_p_found_log_entry = NULL;

    /* Ensure log data is large enough for common header */
    if (log_length < sizeof(struct wdc_c2_log_page_header)) {
    	fprintf(stderr, "ERROR : WDC - wdc_get_dev_mng_log_entry: \
    			Buffer is not large enough for the common header. BufSize: 0x%x  HdrSize: %"PRIxPTR"\n",
                log_length, sizeof(struct wdc_c2_log_page_header));
        return false;
    }

    /* Get pointer to first log Entry */
    size = sizeof(struct wdc_c2_log_page_header);
    current_data_offset = size;
    p_next_log_entry = (struct wdc_c2_log_subpage_header *)((__u8*)p_log_hdr + current_data_offset);
    remaining_len = log_length - size;
    valid_log = false;

    /* Walk the entire structure. Perform a sanity check to make sure this is a
     standard version of the structure. This means making sure each entry looks
     valid. But allow for the data to overflow the allocated
     buffer (we don't want a false negative because of a FW formatting error) */

    /* Proceed only if there is at least enough data to read an entry header */
    while (remaining_len >= log_entry_hdr_size) {
        /* Get size of the next entry */
        log_entry_size = p_next_log_entry->length;

        /* If log entry size is 0 or the log entry goes past the end
         of the data, we must be at the end of the data */
        if ((log_entry_size == 0) ||
            (log_entry_size > remaining_len)) {
        	fprintf(stderr, "ERROR : WDC: wdc_get_dev_mng_log_entry: \
        			Detected unaligned end of the data. Data Offset: 0x%x  \
        			Entry Size: 0x%x, Remaining Log Length: 0x%x Entry Id: 0x%x\n",
					current_data_offset, log_entry_size, remaining_len, p_next_log_entry->entry_id);

            /* Force the loop to end */
            remaining_len = 0;
        } else if ((p_next_log_entry->entry_id == 0) ||
            (p_next_log_entry->entry_id > 200)) {
            /* Invalid entry - fail the search */
        	fprintf(stderr, "ERROR : WDC: wdc_get_dev_mng_log_entry: \
        			Invalid entry found at offset: 0x%x Entry Size: 0x%x, \
        			Remaining Log Length: 0x%x Entry Id: 0x%x\n",
                current_data_offset, log_entry_size, remaining_len, p_next_log_entry->entry_id);

            /* Force the loop to end */
            remaining_len = 0;
            valid_log = false;

            /* The struture is invalid, so any match that was found is invalid. */
            *p_p_found_log_entry = NULL;
        } else {
            /* Structure must have at least one valid entry to be considered valid */
            valid_log = true;
            if (p_next_log_entry->entry_id == entry_id) {
                /* A potential match. */
                *p_p_found_log_entry = p_next_log_entry;
            }

            remaining_len -= log_entry_size;

            if (remaining_len > 0) {
                /* Increment the offset counter */
                current_data_offset += log_entry_size;

                /* Get the next entry */
                p_next_log_entry = (struct wdc_c2_log_subpage_header *)(((__u8*)p_log_hdr) + current_data_offset);
            }
        }
    }

    return valid_log;
}

static bool get_dev_mgment_cbs_data(nvme_root_t r, int fd, __u8 log_id, void **cbs_data)
{
	int ret = -1;
	void* data;
	struct wdc_c2_log_page_header *hdr_ptr;
	struct wdc_c2_log_subpage_header *sph;
	__u32 length = 0;
	bool found = false;
	__u8 uuid_ix = 1;
	__u8 lid = 0;
	*cbs_data = NULL;
	__u32 device_id, read_vendor_id;

	ret = wdc_get_pci_ids(r, &device_id, &read_vendor_id);
	if(device_id == WDC_NVME_ZN350_DEV_ID || device_id == WDC_NVME_ZN350_DEV_ID_1) {
		lid = WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE_C8;
		uuid_ix = 0;
	} else
		lid = WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE;

	if ((data = (__u8*) malloc(sizeof (__u8) * WDC_C2_LOG_BUF_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return false;
	}
	memset(data, 0, sizeof (__u8) * WDC_C2_LOG_BUF_LEN);

	/* get the log page length */
	struct nvme_get_log_args args_len = {
		.args_size	= sizeof(args_len),
		.fd		= fd,
		.lid		= lid,
		.nsid		= 0xFFFFFFFF,
		.lpo		= 0,
		.lsp		= NVME_LOG_LSP_NONE,
		.lsi		= 0,
		.rae		= false,
		.uuidx		= uuid_ix,
		.csi		= NVME_CSI_NVM,
		.ot		= false,
		.len		= WDC_C2_LOG_BUF_LEN,
		.log		= data,
		.timeout	= NVME_DEFAULT_IOCTL_TIMEOUT,
		.result		= NULL,
	};
	ret = nvme_get_log(&args_len);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : Unable to get 0x%x Log Page length, ret = 0x%x\n", lid, ret);
		goto end;
	}

	hdr_ptr = (struct wdc_c2_log_page_header *)data;
	length = le32_to_cpu(hdr_ptr->length);

	if (length > WDC_C2_LOG_BUF_LEN) {
		/* Log Page buffer too small, free and reallocate the necessary size */
		free(data);
		data = calloc(length, sizeof(__u8));
		if (data == NULL) {
			fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
			return false;
		}
	}

	/* get the log page data */
	struct nvme_get_log_args args_data = {
		.args_size	= sizeof(args_data),
		.fd		= fd,
		.lid		= lid,
		.nsid		= 0xFFFFFFFF,
		.lpo		= 0,
		.lsp		= NVME_LOG_LSP_NONE,
		.lsi		= 0,
		.rae		= false,
		.uuidx		= uuid_ix,
		.csi		= NVME_CSI_NVM,
		.ot		= false,
		.len		= length,
		.log		= data,
		.timeout	= NVME_DEFAULT_IOCTL_TIMEOUT,
		.result		= NULL,
	};
	ret = nvme_get_log(&args_data);

	if (ret) {
		fprintf(stderr, "ERROR : WDC : Unable to read 0x%x Log Page data, ret = 0x%x\n", lid, ret);
		goto end;
	}

	/* Check the log data to see if the WD version of log page ID's is found */

	length = sizeof(struct wdc_c2_log_page_header);
	hdr_ptr = (struct wdc_c2_log_page_header *)data;
	sph = (struct wdc_c2_log_subpage_header *)(data + length);
	found = wdc_get_dev_mng_log_entry(le32_to_cpu(hdr_ptr->length), log_id, hdr_ptr, &sph);
	if (found) {
		*cbs_data = calloc(le32_to_cpu(sph->length), sizeof(__u8));
		if (*cbs_data == NULL) {
			fprintf(stderr, "ERROR : WDC : calloc : %s\n", strerror(errno));
			goto end;
		}
		memcpy((void *)*cbs_data, (void *)&sph->data, le32_to_cpu(sph->length));
	} else {
		/* not found with uuid = 1 try with uuid = 0 */
		uuid_ix = 0;
		/* get the log page data */
		struct nvme_get_log_args args = {
			.args_size	= sizeof(args),
			.fd		= fd,
			.lid		= lid,
			.nsid		= 0xFFFFFFFF,
			.lpo		= 0,
			.lsp		= NVME_LOG_LSP_NONE,
			.lsi		= 0,
			.rae		= false,
			.uuidx		= uuid_ix,
			.csi		= NVME_CSI_NVM,
			.ot		= false,
			.len		= le32_to_cpu(hdr_ptr->length),
			.log		= data,
			.timeout	= NVME_DEFAULT_IOCTL_TIMEOUT,
			.result		= NULL,
		};
		ret = nvme_get_log(&args);

		hdr_ptr = (struct wdc_c2_log_page_header *)data;
		sph = (struct wdc_c2_log_subpage_header *)(data + length);
		found = wdc_get_dev_mng_log_entry(le32_to_cpu(hdr_ptr->length), log_id, hdr_ptr, &sph);
		if (found) {
			*cbs_data = calloc(le32_to_cpu(sph->length), sizeof(__u8));
			if (*cbs_data == NULL) {
				fprintf(stderr, "ERROR : WDC : calloc : %s\n", strerror(errno));
				goto end;
			}
			memcpy((void *)*cbs_data, (void *)&sph->data, le32_to_cpu(sph->length));

		} else {
			/* WD version not found  */
			fprintf(stderr, "ERROR : WDC : Unable to find correct version of page 0x%x, entry id = %d\n", lid, log_id);
		}
	}
end:
	free(data);
	return found;
}

static bool wdc_nvme_check_supported_log_page(nvme_root_t r, int fd, __u8 log_id)
{
	int i;
	bool found = false;
	struct wdc_c2_cbs_data *cbs_data = NULL;

	if (get_dev_mgment_cbs_data(r, fd, WDC_C2_LOG_PAGES_SUPPORTED_ID, (void *)&cbs_data)) {
		if (cbs_data != NULL) {
			for (i = 0; i < le32_to_cpu(cbs_data->length); i++) {
				if (log_id == cbs_data->data[i]) {
					found = true;
					break;
				}
			}

#ifdef WDC_NVME_CLI_DEBUG
			if (!found) {
				fprintf(stderr, "ERROR : WDC : Log Page 0x%x not supported\n", log_id);
				fprintf(stderr, "WDC : Supported Log Pages:\n");
				/* print the supported pages */
				d((__u8 *)cbs_data->data, le32_to_cpu(cbs_data->length), 16, 1);
			}
#endif
			free(cbs_data);
		} else
			fprintf(stderr, "ERROR : WDC : cbs_data ptr = NULL\n");
	} else
		fprintf(stderr, "ERROR : WDC : 0xC2 Log Page entry ID 0x%x not found\n", WDC_C2_LOG_PAGES_SUPPORTED_ID);

	return found;
}

static bool wdc_nvme_get_dev_status_log_data(nvme_root_t r, int fd, __le32 *ret_data,
		__u8 log_id)
{
	__u32 *cbs_data = NULL;

	if (get_dev_mgment_cbs_data(r, fd, log_id, (void *)&cbs_data)) {
		if (cbs_data != NULL) {
			memcpy((void *)ret_data, (void *)cbs_data, 4);
			free(cbs_data);

			return true;
		}
	}

	*ret_data = 0;
	return false;
}

static int wdc_do_clear_dump(int fd, __u8 opcode, __u32 cdw12)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;

	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = opcode;
	admin_cmd.cdw12 = cdw12;
	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	if (ret != 0) {
		fprintf(stdout, "ERROR : WDC : Crash dump erase failed\n");
	}
	nvme_show_status(ret);
	return ret;
}

static __u32 wdc_dump_length(int fd, __u32 opcode, __u32 cdw10, __u32 cdw12, __u32 *dump_length)
{
	int ret;
	__u8 buf[WDC_NVME_LOG_SIZE_DATA_LEN] = {0};
	struct wdc_log_size *l;
	struct nvme_passthru_cmd admin_cmd;

	l = (struct wdc_log_size *) buf;
	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = opcode;
	admin_cmd.addr = (__u64)(uintptr_t)buf;
	admin_cmd.data_len = WDC_NVME_LOG_SIZE_DATA_LEN;
	admin_cmd.cdw10 = cdw10;
	admin_cmd.cdw12 = cdw12;

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	if (ret != 0) {
		l->log_size = 0;
		ret = -1;
		fprintf(stderr, "ERROR : WDC : reading dump length failed\n");
		nvme_show_status(ret);
		return ret;
	}

	if (opcode == WDC_NVME_CAP_DIAG_OPCODE)
		*dump_length = buf[0x04] << 24 | buf[0x05] << 16 | buf[0x06] << 8 | buf[0x07];
	else
		*dump_length = le32_to_cpu(l->log_size);
	return ret;
}

static __u32 wdc_dump_length_e6(int fd, __u32 opcode, __u32 cdw10, __u32 cdw12, struct wdc_e6_log_hdr *dump_hdr)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;

	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = opcode;
	admin_cmd.addr = (__u64)(uintptr_t)dump_hdr;
	admin_cmd.data_len = WDC_NVME_LOG_SIZE_HDR_LEN;
	admin_cmd.cdw10 = cdw10;
	admin_cmd.cdw12 = cdw12;

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	if (ret != 0) {
		fprintf(stderr, "ERROR : WDC : reading dump length failed\n");
		nvme_show_status(ret);
	}

	return ret;
}

static __u32 wdc_dump_dui_data(int fd, __u32 dataLen, __u32 offset, __u8 *dump_data, bool last_xfer)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;

	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = WDC_NVME_CAP_DUI_OPCODE;
	admin_cmd.nsid = 0xFFFFFFFF;
	admin_cmd.addr = (__u64)(uintptr_t)dump_data;
	admin_cmd.data_len = dataLen;
	admin_cmd.cdw10 = ((dataLen >> 2) - 1);
	admin_cmd.cdw12 = offset;
	if (last_xfer)
		admin_cmd.cdw14 = 0;
	else
		admin_cmd.cdw14 = WDC_NVME_CAP_DUI_DISABLE_IO;


	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	if (ret != 0) {
		fprintf(stderr, "ERROR : WDC : reading DUI data failed\n");
		nvme_show_status(ret);
	}

	return ret;
}

static __u32 wdc_dump_dui_data_v2(int fd, __u32 dataLen, __u64 offset, __u8 *dump_data, bool last_xfer)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;
	__u64 offset_lo, offset_hi;

	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = WDC_NVME_CAP_DUI_OPCODE;
	admin_cmd.nsid = 0xFFFFFFFF;
	admin_cmd.addr = (__u64)(uintptr_t)dump_data;
	admin_cmd.data_len = dataLen;
	admin_cmd.cdw10 = ((dataLen >> 2) - 1);
	offset_lo = offset & 0x00000000FFFFFFFF;
	offset_hi = ((offset & 0xFFFFFFFF00000000) >> 32);
	admin_cmd.cdw12 = (__u32)offset_lo;
	admin_cmd.cdw13 = (__u32)offset_hi;

	if (last_xfer)
		admin_cmd.cdw14 = 0;
	else
		admin_cmd.cdw14 = WDC_NVME_CAP_DUI_DISABLE_IO;

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	if (ret != 0) {
		fprintf(stderr, "ERROR : WDC : reading DUI data V2 failed\n");
		nvme_show_status(ret);
	}

	return ret;
}

static int wdc_do_dump(int fd, __u32 opcode,__u32 data_len,
		__u32 cdw12, char *file, __u32 xfer_size)
{
	int ret = 0;
	__u8 *dump_data;
	__u32 curr_data_offset, curr_data_len;
	int i;
	struct nvme_passthru_cmd admin_cmd;
	__u32 dump_length = data_len;

	dump_data = (__u8 *) malloc(sizeof (__u8) * dump_length);
	if (dump_data == NULL) {
		fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno));
		return -1;
	}
	memset(dump_data, 0, sizeof (__u8) * dump_length);
	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	curr_data_offset = 0;
	curr_data_len = xfer_size;
	i = 0;

	admin_cmd.opcode = opcode;
	admin_cmd.addr = (__u64)(uintptr_t)dump_data;
	admin_cmd.data_len = curr_data_len;
	admin_cmd.cdw10 = curr_data_len >> 2;
	admin_cmd.cdw12 = cdw12;
	admin_cmd.cdw13 = curr_data_offset;

	while (curr_data_offset < data_len) {
		ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
		if (ret != 0) {
			nvme_show_status(ret);
			fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n",
				__func__, i, admin_cmd.data_len, curr_data_offset, (long unsigned int)admin_cmd.addr);
			break;
		}

		if ((curr_data_offset + xfer_size) <= data_len)
			curr_data_len = xfer_size;
		else
			curr_data_len = data_len - curr_data_offset;   /* last transfer */

		curr_data_offset += curr_data_len;
		admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset;
		admin_cmd.data_len = curr_data_len;
		admin_cmd.cdw10 = curr_data_len >> 2;
		admin_cmd.cdw13 = curr_data_offset >> 2;
		i++;
	}

	if (ret == 0) {
		nvme_show_status(ret);
		ret = wdc_create_log_file(file, dump_data, dump_length);
	}
	free(dump_data);
	return ret;
}

static int wdc_do_dump_e6(int fd, __u32 opcode,__u32 data_len,
		__u32 cdw12, char *file, __u32 xfer_size, __u8 *log_hdr)
{
	int ret = 0;
	__u8 *dump_data;
	__u32 curr_data_offset, log_size;
	int i;
	struct nvme_passthru_cmd admin_cmd;

	dump_data = (__u8 *) malloc(sizeof (__u8) * data_len);

	if (dump_data == NULL) {
		fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno));
		return -1;
	}
	memset(dump_data, 0, sizeof (__u8) * data_len);
	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	curr_data_offset = WDC_NVME_LOG_SIZE_HDR_LEN;
	i = 0;

	/* copy the 8 byte header into the dump_data buffer */
	memcpy(dump_data, log_hdr, WDC_NVME_LOG_SIZE_HDR_LEN);

	admin_cmd.opcode = opcode;
	admin_cmd.cdw12 = cdw12;

	log_size = data_len;
	while (log_size > 0) {
		xfer_size = min(xfer_size, log_size);

		admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset;
		admin_cmd.data_len = xfer_size;
		admin_cmd.cdw10 = xfer_size >> 2;
		admin_cmd.cdw13 = curr_data_offset >> 2;

		ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
		if (ret != 0) {
			nvme_show_status(ret);
			fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n",
					__func__, i, admin_cmd.data_len, curr_data_offset, (long unsigned int)admin_cmd.addr);
			break;
		}

		log_size         -= xfer_size;
		curr_data_offset += xfer_size;
		i++;
	}

	if (ret == 0) {
		fprintf(stderr, "%s:  ", __func__);
		nvme_show_status(ret);
	} else {
		fprintf(stderr, "%s:  FAILURE: ", __func__);
		nvme_show_status(ret);
		fprintf(stderr, "%s:  Partial data may have been captured\n", __func__);
		snprintf(file + strlen(file), PATH_MAX, "%s", "-PARTIAL");
	}

	ret = wdc_create_log_file(file, dump_data, data_len);

	free(dump_data);
	return ret;
}

static int wdc_do_cap_telemetry_log(int fd, char *file, __u32 bs, int type, int data_area)
{
	struct nvme_telemetry_log *log;
	size_t full_size = 0;
	int err = 0, output;
	__u32 host_gen = 1;
	int ctrl_init = 0;
	__u32 result;
	void *buf = NULL;
	__u8 *data_ptr = NULL;
	int data_written = 0, data_remaining = 0;
	struct nvme_id_ctrl ctrl;
	__u64 capabilities = 0;
	nvme_root_t r;

	memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
	err = nvme_identify_ctrl(fd, &ctrl);
	if (err) {
		fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed "
				"0x%x\n", err);
		return err;
	}

	if (!(ctrl.lpa & 0x8)) {
		fprintf(stderr, "Telemetry Host-Initiated and Telemetry Controller-Initiated log pages not supported\n");
		return -EINVAL;
	}

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);

	if (type == WDC_TELEMETRY_TYPE_HOST) {
		host_gen = 1;
		ctrl_init = 0;
	} else if (type == WDC_TELEMETRY_TYPE_CONTROLLER) {
		if ((capabilities & WDC_DRIVE_CAP_INTERNAL_LOG) == WDC_DRIVE_CAP_INTERNAL_LOG) {
			/* Verify the Controller Initiated Option is enabled */
			err = nvme_get_features_data(fd, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0,
					4, buf, &result);
			if (err == 0) {
				if (result == 0) {
					/* enabled */
					host_gen = 0;
					ctrl_init = 1;
				}
				else {
					fprintf(stderr, "%s: Controller initiated option telemetry log page disabled\n", __func__);
					return -EINVAL;
				}
			}
			else {
				fprintf(stderr, "ERROR : WDC: Get telemetry option feature failed.");
				nvme_show_status(err);
				return -EPERM;
			}
		}
		else {
			host_gen = 0;
			ctrl_init = 1;
		}
	} else {
		fprintf(stderr, "%s: Invalid type parameter; type = %d\n", __func__, type);
		return -EINVAL;
	}

	if (!file) {
		fprintf(stderr, "%s: Please provide an output file!\n", __func__);
		return -EINVAL;
	}

	output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
	if (output < 0) {
		fprintf(stderr, "%s: Failed to open output file %s: %s!\n",
				__func__, file, strerror(errno));
		return output;
	}

	if (ctrl_init)
		err = nvme_get_ctrl_telemetry(fd, true, &log, data_area, &full_size);
	else if (host_gen)
		err = nvme_get_new_host_telemetry(fd, &log, data_area, &full_size);
	else
		err = nvme_get_host_telemetry(fd, &log, data_area, &full_size);

	if (err < 0) {
		perror("get-telemetry-log");
		goto close_output;
	} else if (err > 0) {
		nvme_show_status(err);
		fprintf(stderr, "%s: Failed to acquire telemetry header!\n", __func__);
		goto close_output;
	}

	/*
	 * Continuously pull data until the offset hits the end of the last
	 * block.
	 */
	data_written = 0;
	data_remaining = full_size;
	data_ptr = (__u8 *)log;

	while (data_remaining) {
		data_written = write(output, data_ptr, data_remaining);

		if (data_written < 0) {
			data_remaining = data_written;
			break;
		} else if (data_written <= data_remaining) {
			data_remaining -= data_written;
			data_ptr += data_written;
		} else {
			/* Unexpected overwrite */
			fprintf(stderr, "Failure: Unexpected telemetry log overwrite - data_remaining = 0x%x, data_written = 0x%x\n",
					data_remaining, data_written);
			break;
		}
	}

	if (fsync(output) < 0) {
		fprintf(stderr, "ERROR : %s: fsync : %s\n", __func__, strerror(errno));
		err = -1;
	}

	free(log);
close_output:
	close(output);
	return err;
}

static int wdc_do_cap_diag(nvme_root_t r, int fd, char *file,
			   __u32 xfer_size, int type, int data_area)
{
	int ret = -1;
	__u32 e6_log_hdr_size = WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE;
	struct wdc_e6_log_hdr *log_hdr;
	__u32 cap_diag_length;

	log_hdr = (struct wdc_e6_log_hdr *) malloc(e6_log_hdr_size);
	if (log_hdr == NULL) {
		fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno));
		ret = -1;
		goto out;
	}
	memset(log_hdr, 0, e6_log_hdr_size);

	if (type == WDC_TELEMETRY_TYPE_NONE) {
		ret = wdc_dump_length_e6(fd, WDC_NVME_CAP_DIAG_OPCODE,
							WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE>>2,
							0x00,
							log_hdr);
		if (ret == -1) {
			ret = -1;
			goto out;
		}

		cap_diag_length = (log_hdr->log_size[0] << 24 | log_hdr->log_size[1] << 16 |
				log_hdr->log_size[2] << 8 | log_hdr->log_size[3]);

		if (cap_diag_length == 0) {
			fprintf(stderr, "INFO : WDC : Capture Diagnostics log is empty\n");
		} else {
			ret = wdc_do_dump_e6(fd, WDC_NVME_CAP_DIAG_OPCODE, cap_diag_length,
							(WDC_NVME_CAP_DIAG_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CAP_DIAG_CMD,
							file, xfer_size, (__u8 *)log_hdr);

			fprintf(stderr, "INFO : WDC : Capture Diagnostics log, length = 0x%x\n", cap_diag_length);
		}
	} else if ((type == WDC_TELEMETRY_TYPE_HOST) ||
			(type == WDC_TELEMETRY_TYPE_CONTROLLER)) {
		/* Get the desired telemetry log page */
		ret = wdc_do_cap_telemetry_log(fd, file, xfer_size, type, data_area);
	} else
		fprintf(stderr, "%s: ERROR : Invalid type : %d\n", __func__, type);

out:
	free(log_hdr);
	return ret;
}

static int wdc_do_cap_dui(int fd, char *file, __u32 xfer_size, int data_area, int verbose, __u64 file_size, __u64 offset)
{
	int ret = 0;
	__u32 dui_log_hdr_size = WDC_NVME_CAP_DUI_HEADER_SIZE;
	struct wdc_dui_log_hdr *log_hdr;
	struct wdc_dui_log_hdr_v3 *log_hdr_v3;
	__u32 cap_dui_length;
	__u64 cap_dui_length_v3;
	__u64 cap_dui_length_v4;
	__u8 *dump_data = NULL;
	__u8 *buffer_addr;
	__s64 total_size = 0;
	int i;
	int j;
	bool last_xfer = false;
	int err = 0, output = 0;

	log_hdr = (struct wdc_dui_log_hdr *) malloc(dui_log_hdr_size);
	if (log_hdr == NULL) {
		fprintf(stderr, "%s: ERROR : log header malloc failed : status %s, size 0x%x\n",
				__func__, strerror(errno), dui_log_hdr_size);
		return -1;
	}
	memset(log_hdr, 0, dui_log_hdr_size);

	/* get the dui telemetry and log headers  */
	ret = wdc_dump_dui_data(fd, WDC_NVME_CAP_DUI_HEADER_SIZE, 0x00,	(__u8 *)log_hdr, last_xfer);
	if (ret != 0) {
		fprintf(stderr, "%s: ERROR : WDC : Get DUI headers failed\n", __func__);
		fprintf(stderr, "%s: ERROR : WDC : ", __func__);
		nvme_show_status(ret);
		goto out;
	}

	/* Check the Log Header version  */
	if ((log_hdr->hdr_version & 0xFF) == 0x00 ||
        (log_hdr->hdr_version & 0xFF) == 0x01)	{
		__s32 log_size = 0;
		__u32 curr_data_offset = 0;

		cap_dui_length = le32_to_cpu(log_hdr->log_size);

		if (verbose) {
			fprintf(stderr, "INFO : WDC : Capture V1 Device Unit Info log, data area = %d\n", data_area);
			fprintf(stderr, "INFO : WDC : DUI Header Version = 0x%x\n", log_hdr->hdr_version);
		}

		if (cap_dui_length == 0) {
			fprintf(stderr, "INFO : WDC : Capture V1 Device Unit Info log is empty\n");
		} else {
			/* parse log header for all sections up to specified data area inclusively */
			if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) {
				for(j = 0; j < WDC_NVME_DUI_MAX_SECTION; j++) {
					if (log_hdr->log_section[j].data_area_id <= data_area &&
							log_hdr->log_section[j].data_area_id != 0) {
						log_size += log_hdr->log_section[j].section_size;
						if (verbose)
							fprintf(stderr, "%s: Data area ID %d : section size 0x%x, total size = 0x%x\n",
									__func__, log_hdr->log_section[j].data_area_id, (unsigned int)log_hdr->log_section[j].section_size, (unsigned int)log_size);

					}
					else {
						if (verbose)
							fprintf(stderr, "%s: break, total size = 0x%x\n", 	__func__, (unsigned int)log_size);
						break;
					}
				}
			} else
				log_size = cap_dui_length;

			total_size = log_size;

			dump_data = (__u8 *) malloc(sizeof (__u8) * xfer_size);
			if (dump_data == NULL) {
				fprintf(stderr, "%s: ERROR : dump data V1 malloc failed : status %s, size = 0x%x\n",
						__func__, strerror(errno), (unsigned int)xfer_size);
				ret = -1;
				goto out;
			}
			memset(dump_data, 0, sizeof (__u8) * xfer_size);

			output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
			if (output < 0) {
				fprintf(stderr, "%s: Failed to open output file %s: %s!\n",
						__func__, file, strerror(errno));
				ret = output;
				goto free_mem;
			}

			/* write the telemetry and log headers into the dump_file */
			err = write(output, (void *)log_hdr, WDC_NVME_CAP_DUI_HEADER_SIZE);
			if (err != WDC_NVME_CAP_DUI_HEADER_SIZE) {
				fprintf(stderr, "%s:  Failed to flush header data to file!\n", __func__);
				goto free_mem;
			}

			log_size -= WDC_NVME_CAP_DUI_HEADER_SIZE;
			curr_data_offset = WDC_NVME_CAP_DUI_HEADER_SIZE;
			i = 0;
			buffer_addr = dump_data;

			for(; log_size > 0; log_size -= xfer_size) {
				xfer_size = min(xfer_size, log_size);

				if (log_size <= xfer_size)
					last_xfer = true;

				ret = wdc_dump_dui_data(fd, xfer_size, curr_data_offset, buffer_addr, last_xfer);
				if (ret != 0) {
					fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%"PRIx64", offset = 0x%x, addr = %p\n",
							__func__, i, (uint64_t)log_size, curr_data_offset, buffer_addr);
					fprintf(stderr, "%s: ERROR : WDC : ",
						__func__);
					nvme_show_status(ret);
					break;
				}

				/* write the dump data into the file */
				err = write(output, (void *)buffer_addr, xfer_size);
				if (err != xfer_size) {
					fprintf(stderr, "%s: ERROR : WDC : Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size = 0x%x\n",
							__func__, i, err, xfer_size);
					goto free_mem;
				}

				curr_data_offset += xfer_size;
				i++;
			}
		}
	}
	else if (((log_hdr->hdr_version & 0xFF) == 0x02) ||
		((log_hdr->hdr_version & 0xFF) == 0x03)) {					/* Process Version 2 or 3 header */
		__s64 log_size = 0;
		__u64 curr_data_offset = 0;
		__u64 xfer_size_long = (__u64)xfer_size;

		log_hdr_v3 = (struct wdc_dui_log_hdr_v3 *)log_hdr;

		cap_dui_length_v3 = le64_to_cpu(log_hdr_v3->log_size);

		if (verbose) {
			fprintf(stderr, "INFO : WDC : Capture V2 or V3 Device Unit Info log, data area = %d\n", data_area);

			fprintf(stderr, "INFO : WDC : DUI Header Version = 0x%x\n", log_hdr_v3->hdr_version);
			if ((log_hdr->hdr_version & 0xFF) == 0x03)
			    fprintf(stderr, "INFO : WDC : DUI Product ID = 0x%x/%c\n", log_hdr_v3->product_id, log_hdr_v3->product_id);
		}

		if (cap_dui_length_v3 == 0) {
			fprintf(stderr, "INFO : WDC : Capture V2 or V3 Device Unit Info log is empty\n");
		} else {
			/* parse log header for all sections up to specified data area inclusively */
			if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) {
				for(j = 0; j < WDC_NVME_DUI_MAX_SECTION_V3; j++) {
					if (log_hdr_v3->log_section[j].data_area_id <= data_area &&
							log_hdr_v3->log_section[j].data_area_id != 0) {
						log_size += log_hdr_v3->log_section[j].section_size;
						if (verbose)
							fprintf(stderr, "%s: Data area ID %d : section size 0x%x, total size = 0x%"PRIx64"\n",
								__func__, log_hdr_v3->log_section[j].data_area_id, (unsigned int)log_hdr_v3->log_section[j].section_size, (uint64_t)log_size);
					}
					else {
						if (verbose)
							fprintf(stderr, "%s: break, total size = 0x%"PRIx64"\n", __func__, (uint64_t)log_size);
						break;
					}
				}
			} else
				log_size = cap_dui_length_v3;

			total_size = log_size;

			if (offset >= total_size) {
				fprintf(stderr, "%s: INFO : WDC : Offset 0x%"PRIx64" exceeds total size 0x%"PRIx64", no data retrieved\n",
					__func__, (uint64_t)offset, (uint64_t)total_size);
				goto out;
			}

			dump_data = (__u8 *) malloc(sizeof (__u8) * xfer_size_long);
			if (dump_data == NULL) {
				fprintf(stderr, "%s: ERROR : dump data v3 malloc failed : status %s, size = 0x%"PRIx64"\n",
						__func__, strerror(errno), (uint64_t)xfer_size_long);
				ret = -1;
				goto out;
			}
			memset(dump_data, 0, sizeof (__u8) * xfer_size_long);

			output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
			if (output < 0) {
				fprintf(stderr, "%s: Failed to open output file %s: %s!\n",
						__func__, file, strerror(errno));
				ret = output;
				goto free_mem;
			}

			curr_data_offset = 0;

			if (file_size != 0) {
				/* Write the DUI data based on the passed in file size */
				if ((offset + file_size) > total_size)
					log_size = min((total_size - offset), file_size);
				else
					log_size = min(total_size, file_size);

				if (verbose)
					fprintf(stderr, "%s: INFO : WDC : Offset 0x%"PRIx64", file size 0x%"PRIx64", total size 0x%"PRIx64", log size 0x%"PRIx64"\n",
						__func__, (uint64_t)offset, (uint64_t)file_size, (uint64_t)total_size, (uint64_t)log_size);

				curr_data_offset = offset;

			}

			i = 0;
			buffer_addr = dump_data;

			for(; log_size > 0; log_size -= xfer_size_long) {
				xfer_size_long = min(xfer_size_long, log_size);

				if (log_size <= xfer_size_long)
					last_xfer = true;

				ret = wdc_dump_dui_data_v2(fd, (__u32)xfer_size_long, curr_data_offset, buffer_addr, last_xfer);
				if (ret != 0) {
					fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%"PRIx64", offset = 0x%"PRIx64", addr = %p\n",
							__func__, i, (uint64_t)total_size, (uint64_t)curr_data_offset, buffer_addr);
					fprintf(stderr, "%s: ERROR : WDC : ", __func__);
					nvme_show_status(ret);
					break;
				}

				/* write the dump data into the file */
				err = write(output, (void *)buffer_addr, xfer_size_long);
				if (err != xfer_size_long) {
					fprintf(stderr, "%s: ERROR : WDC : Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size = 0x%"PRIx64"\n",
							__func__, i, err, (uint64_t)xfer_size_long);
					goto free_mem;
				}

				curr_data_offset += xfer_size_long;
				i++;
			}
		}
	}
	else if ((log_hdr->hdr_version & 0xFF) == 0x04)	{
		__s64 log_size = 0;
		__u64 curr_data_offset = 0;
		struct wdc_dui_log_hdr_v4 *log_hdr_v4;
		log_hdr_v4 = (struct wdc_dui_log_hdr_v4 *)log_hdr;
		__s64 xfer_size_long = (__s64)xfer_size;
		__s64 section_size_bytes = 0;

		cap_dui_length_v4 = le64_to_cpu(log_hdr_v4->log_size_sectors) * WDC_NVME_SN730_SECTOR_SIZE;

		if (verbose) {
			fprintf(stderr, "INFO : WDC : Capture V4 Device Unit Info log, data area = %d\n", data_area);
			fprintf(stderr, "INFO : WDC : DUI Header Version = 0x%x\n", log_hdr_v4->hdr_version);
			fprintf(stderr, "INFO : WDC : DUI Product ID = 0x%x/%c\n", log_hdr_v4->product_id, log_hdr_v4->product_id);
			fprintf(stderr, "INFO : WDC : DUI log size sectors = 0x%x\n", log_hdr_v4->log_size_sectors);
			fprintf(stderr, "INFO : WDC : DUI cap_dui_length = 0x%"PRIx64"\n", (uint64_t)cap_dui_length_v4);
		}

		if (cap_dui_length_v4 == 0) {
			fprintf(stderr, "INFO : WDC : Capture V4 Device Unit Info log is empty\n");
		} else {
			/* parse log header for all sections up to specified data area inclusively */
			if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) {
				for(j = 0; j < WDC_NVME_DUI_MAX_SECTION; j++) {
					if (log_hdr_v4->log_section[j].data_area_id <= data_area &&
							log_hdr_v4->log_section[j].data_area_id != 0) {
						section_size_bytes = ((__s64)log_hdr_v4->log_section[j].section_size_sectors * WDC_NVME_SN730_SECTOR_SIZE);
						log_size += section_size_bytes;
						if (verbose)
							fprintf(stderr, "%s: Data area ID %d : section size 0x%x sectors, section size 0x%"PRIx64" bytes, total size = 0x%"PRIx64"\n",
									__func__, log_hdr_v4->log_section[j].data_area_id, log_hdr_v4->log_section[j].section_size_sectors, (uint64_t)section_size_bytes,
									(uint64_t)log_size);
					}
					else {
						if (verbose)
							fprintf(stderr, "%s: break, total size = 0x%"PRIx64"\n", __func__, (uint64_t)log_size);
						break;
					}
				}
			} else
				log_size = cap_dui_length_v4;

			total_size = log_size;

			if (offset >= total_size) {
				fprintf(stderr, "%s: INFO : WDC : Offset 0x%"PRIx64" exceeds total size 0x%"PRIx64", no data retrieved\n",
					__func__, (uint64_t)offset, (uint64_t)total_size);
				goto out;
			}

			dump_data = (__u8 *) malloc(sizeof (__u8) * xfer_size_long);
			if (dump_data == NULL) {
				fprintf(stderr, "%s: ERROR : dump data V4 malloc failed : status %s, size = 0x%x\n",
						__func__, strerror(errno), (unsigned int)xfer_size_long);
				ret = -1;
				goto out;
			}
			memset(dump_data, 0, sizeof (__u8) * xfer_size_long);

			output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
			if (output < 0) {
				fprintf(stderr, "%s: Failed to open output file %s: %s!\n",
						__func__, file, strerror(errno));
				ret = output;
				goto free_mem;
			}

			curr_data_offset = 0;

			if (file_size != 0) {
				/* Write the DUI data based on the passed in file size */
				if ((offset + file_size) > total_size)
					log_size = min((total_size - offset), file_size);
				else
					log_size = min(total_size, file_size);

				if (verbose)
					fprintf(stderr, "%s: INFO : WDC : Offset 0x%"PRIx64", file size 0x%"PRIx64", total size 0x%"PRIx64", log size 0x%"PRIx64"\n",
						__func__, (uint64_t)offset, (uint64_t)file_size, (uint64_t)total_size, (uint64_t)log_size);

				curr_data_offset = offset;

			}

			i = 0;
			buffer_addr = dump_data;

			for(; log_size > 0; log_size -= xfer_size_long) {
				xfer_size_long = min(xfer_size_long, log_size);

				if (log_size <= xfer_size_long)
					last_xfer = true;

				ret = wdc_dump_dui_data_v2(fd, (__u32)xfer_size_long, curr_data_offset, buffer_addr, last_xfer);
				if (ret != 0) {
					fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%"PRIx64", offset = 0x%"PRIx64", addr = %p\n",
							__func__, i, (uint64_t)log_size, (uint64_t)curr_data_offset, buffer_addr);
					fprintf(stderr, "%s: ERROR : WDC :", __func__);
					nvme_show_status(ret);
					break;
				}

				/* write the dump data into the file */
				err = write(output, (void *)buffer_addr, xfer_size_long);
				if (err != xfer_size_long) {
					fprintf(stderr, "%s: ERROR : WDC : Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size_long = 0x%"PRIx64"\n",
							__func__, i, err, (uint64_t)xfer_size_long);
					goto free_mem;
				}

				curr_data_offset += xfer_size_long;
				i++;
			}
		}
	}
	else {
		fprintf(stderr, "INFO : WDC : Unsupported header version = 0x%x\n", log_hdr->hdr_version);
        goto out;
	}

	nvme_show_status(ret);
	if (verbose)
		fprintf(stderr, "INFO : WDC : Capture Device Unit Info log, length = 0x%"PRIx64"\n", (uint64_t)total_size);

 free_mem:
	close(output);
	free(dump_data);

 out:
	free(log_hdr);
	return ret;
}

static int wdc_cap_diag(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	nvme_root_t r;
	char *desc = "Capture Diagnostics Log.";
	char *file = "Output file pathname.";
	char *size = "Data retrieval transfer size.";
	char f[PATH_MAX] = {0};
	__u32 xfer_size = 0;
	int fd, ret = 0;
	__u64 capabilities = 0;

	struct config {
		char *file;
		__u32 xfer_size;
	};

	struct config cfg = {
		.file = NULL,
		.xfer_size = 0x10000
	};

	OPT_ARGS(opts) = {
		OPT_FILE("output-file",   'o', &cfg.file,      file),
		OPT_UINT("transfer-size", 's', &cfg.xfer_size, size),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);

	if (cfg.file != NULL)
		strncpy(f, cfg.file, PATH_MAX - 1);
	if (cfg.xfer_size != 0)
		xfer_size = cfg.xfer_size;
	ret = wdc_get_serial_name(fd, f, PATH_MAX, "cap_diag");
	if (ret) {
		fprintf(stderr, "ERROR : WDC: failed to generate file name\n");
		goto out;
	}
	if (cfg.file == NULL) {
		if (strlen(f) > PATH_MAX - 5) {
			fprintf(stderr, "ERROR : WDC: file name overflow\n");
			ret = -1;
			goto out;
		}
		strcat(f, ".bin");
	}

	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_CAP_DIAG) == WDC_DRIVE_CAP_CAP_DIAG)
		ret = wdc_do_cap_diag(r, fd, f, xfer_size, 0, 0);
	else
		fprintf(stderr,
			"ERROR : WDC: unsupported device for this command\n");
out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_do_get_sn730_log_len(int fd, uint32_t *len_buf, uint32_t subopcode)
{
	int ret;
	uint32_t *output = NULL;
	struct nvme_passthru_cmd admin_cmd;

	if ((output = (uint32_t*)malloc(sizeof(uint32_t))) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}
	memset(output, 0, sizeof (uint32_t));
	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));

	admin_cmd.data_len = 8;
	admin_cmd.opcode = SN730_NVME_GET_LOG_OPCODE;
	admin_cmd.addr = (uintptr_t)output;
	admin_cmd.cdw12 = subopcode;
	admin_cmd.cdw10 = SN730_LOG_CHUNK_SIZE / 4;

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	if (ret == 0)
		*len_buf = *output;
	free(output);
	return ret;
}

static int wdc_do_get_sn730_log(int fd, void * log_buf, uint32_t offset, uint32_t subopcode)
{
	int ret;
	uint8_t *output = NULL;
	struct nvme_passthru_cmd admin_cmd;

	if ((output = (uint8_t*)calloc(SN730_LOG_CHUNK_SIZE, sizeof(uint8_t))) == NULL) {
		fprintf(stderr, "ERROR : WDC : calloc : %s\n", strerror(errno));
		return -1;
	}
	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.data_len = SN730_LOG_CHUNK_SIZE;
	admin_cmd.opcode = SN730_NVME_GET_LOG_OPCODE;
	admin_cmd.addr = (uintptr_t)output;
	admin_cmd.cdw12 = subopcode;
	admin_cmd.cdw13 = offset;
	admin_cmd.cdw10 = SN730_LOG_CHUNK_SIZE / 4;

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	if (!ret)
		memcpy(log_buf, output, SN730_LOG_CHUNK_SIZE);
	return ret;
}

static int get_sn730_log_chunks(int fd, uint8_t* log_buf, uint32_t log_len, uint32_t subopcode)
{
	int ret = 0;
	uint8_t* chunk_buf = NULL;
	int remaining = log_len;
	int curr_offset = 0;

	if ((chunk_buf = (uint8_t*) malloc(sizeof (uint8_t) * SN730_LOG_CHUNK_SIZE)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		ret = -1;
		goto out;
	}

	while (remaining > 0) {
		memset(chunk_buf, 0, SN730_LOG_CHUNK_SIZE);
		ret = wdc_do_get_sn730_log(fd, chunk_buf, curr_offset, subopcode);
		if (!ret) {
			if (remaining >= SN730_LOG_CHUNK_SIZE) {
				memcpy(log_buf + (curr_offset * SN730_LOG_CHUNK_SIZE),
						chunk_buf, SN730_LOG_CHUNK_SIZE);
			} else {
				memcpy(log_buf + (curr_offset * SN730_LOG_CHUNK_SIZE),
						chunk_buf, remaining);
			}
			remaining -= SN730_LOG_CHUNK_SIZE;
			curr_offset += 1;
		} else
			goto out;
	}
out:
	free(chunk_buf);
	return ret;
}

static int wdc_do_sn730_get_and_tar(int fd, char * outputName)
{
	int ret = 0;
	void *retPtr;
	uint8_t* full_log_buf = NULL;
	uint8_t* key_log_buf = NULL;
	uint8_t* core_dump_log_buf = NULL;
	uint8_t* extended_log_buf = NULL;
	uint32_t full_log_len = 0;
	uint32_t key_log_len = 0;
	uint32_t core_dump_log_len = 0;
	uint32_t extended_log_len = 0;
	tarfile_metadata* tarInfo = NULL;

	tarInfo = (struct tarfile_metadata*) malloc(sizeof(tarfile_metadata));
	if (tarInfo == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		ret = -1;
		goto free_buf;
	}
	memset(tarInfo, 0, sizeof(tarfile_metadata));

	/* Create Logs directory  */
	wdc_UtilsGetTime(&tarInfo->timeInfo);
	memset(tarInfo->timeString, 0, sizeof(tarInfo->timeString));
	wdc_UtilsSnprintf((char*)tarInfo->timeString, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
			tarInfo->timeInfo.year, tarInfo->timeInfo.month, tarInfo->timeInfo.dayOfMonth,
			tarInfo->timeInfo.hour, tarInfo->timeInfo.minute, tarInfo->timeInfo.second);

	wdc_UtilsSnprintf((char*)tarInfo->bufferFolderName, MAX_PATH_LEN, "%s",
			(char*)outputName);

	retPtr = getcwd((char*)tarInfo->currDir, MAX_PATH_LEN);
	if (retPtr != NULL)
		wdc_UtilsSnprintf((char*)tarInfo->bufferFolderPath, MAX_PATH_LEN, "%s%s%s",
				(char *)tarInfo->currDir, WDC_DE_PATH_SEPARATOR, (char *)tarInfo->bufferFolderName);
	else {
		fprintf(stderr, "ERROR : WDC : get current working directory failed\n");
		goto free_buf;
	}

	ret = wdc_UtilsCreateDir((char*)tarInfo->bufferFolderPath);
	if (ret)
	{
		fprintf(stderr, "ERROR : WDC : create directory failed, ret = %d, dir = %s\n", ret, tarInfo->bufferFolderPath);
		goto free_buf;
	} else {
		fprintf(stderr, "Stored log files in directory: %s\n", tarInfo->bufferFolderPath);
	}

	ret = wdc_do_get_sn730_log_len(fd, &full_log_len, SN730_GET_FULL_LOG_LENGTH);
	if (ret) {
		nvme_show_status(ret);
		goto free_buf;
	}
	ret = wdc_do_get_sn730_log_len(fd, &key_log_len, SN730_GET_KEY_LOG_LENGTH);
	if (ret) {
		nvme_show_status(ret);
		goto free_buf;
	}
	ret = wdc_do_get_sn730_log_len(fd, &core_dump_log_len, SN730_GET_COREDUMP_LOG_LENGTH);
	if (ret) {
		nvme_show_status(ret);
		goto free_buf;
	}
	ret = wdc_do_get_sn730_log_len(fd, &extended_log_len, SN730_GET_EXTENDED_LOG_LENGTH);
	if (ret) {
		nvme_show_status(ret);
		goto free_buf;
	}

	full_log_buf = (uint8_t*) calloc(full_log_len, sizeof (uint8_t));
	key_log_buf = (uint8_t*) calloc(key_log_len, sizeof (uint8_t));
	core_dump_log_buf = (uint8_t*) calloc(core_dump_log_len, sizeof (uint8_t));
	extended_log_buf = (uint8_t*) calloc(extended_log_len, sizeof (uint8_t));

	if (!full_log_buf || !key_log_buf || !core_dump_log_buf || !extended_log_buf) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		ret = -1;
		goto free_buf;
	}

	/* Get the full log */
	ret = get_sn730_log_chunks(fd, full_log_buf, full_log_len, SN730_GET_FULL_LOG_SUBOPCODE);
	if (ret) {
		nvme_show_status(ret);
		goto free_buf;
	}

	/* Get the key log */
	ret = get_sn730_log_chunks(fd, key_log_buf, key_log_len, SN730_GET_KEY_LOG_SUBOPCODE);
	if (ret) {
		nvme_show_status(ret);
		goto free_buf;
	}

	/* Get the core dump log */
	ret = get_sn730_log_chunks(fd, core_dump_log_buf, core_dump_log_len, SN730_GET_CORE_LOG_SUBOPCODE);
	if (ret) {
		nvme_show_status(ret);
		goto free_buf;
	}

	/* Get the extended log */
	ret = get_sn730_log_chunks(fd, extended_log_buf, extended_log_len, SN730_GET_EXTEND_LOG_SUBOPCODE);
	if (ret) {
		nvme_show_status(ret);
		goto free_buf;
	}

	/* Write log files */
	wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
			"full_log", (char*)tarInfo->timeString);
	wdc_WriteToFile(tarInfo->fileName, (char*)full_log_buf, full_log_len);

	wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
			"key_log", (char*)tarInfo->timeString);
	wdc_WriteToFile(tarInfo->fileName, (char*)key_log_buf, key_log_len);

	wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
			"core_dump_log", (char*)tarInfo->timeString);
	wdc_WriteToFile(tarInfo->fileName, (char*)core_dump_log_buf, core_dump_log_len);

	wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR,
			"extended_log", (char*)tarInfo->timeString);
	wdc_WriteToFile(tarInfo->fileName, (char*)extended_log_buf, extended_log_len);

	/* Tar the log directory */
	wdc_UtilsSnprintf(tarInfo->tarFileName, sizeof(tarInfo->tarFileName), "%s%s", (char*)tarInfo->bufferFolderPath, WDC_DE_TAR_FILE_EXTN);
	wdc_UtilsSnprintf(tarInfo->tarFiles, sizeof(tarInfo->tarFiles), "%s%s%s", (char*)tarInfo->bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES);
	wdc_UtilsSnprintf(tarInfo->tarCmd, sizeof(tarInfo->tarCmd), "%s %s %s", WDC_DE_TAR_CMD, (char*)tarInfo->tarFileName, (char*)tarInfo->tarFiles);

	ret = system(tarInfo->tarCmd);

	if (ret)
		fprintf(stderr, "ERROR : WDC : Tar of log data failed, ret = %d\n", ret);

free_buf:
	free(tarInfo);
	free(full_log_buf);
	free(core_dump_log_buf);
	free(key_log_buf);
	free(extended_log_buf);
	return ret;
}

static int wdc_vs_internal_fw_log(int argc, char **argv, struct command *command,
               struct plugin *plugin)
{
	char *desc = "Internal Firmware Log.";
	char *file = "Output file pathname.";
	char *size = "Data retrieval transfer size.";
	char *data_area = "Data area to retrieve up to. Currently only supported on the SN340, SN640, SN730, and SN840 devices.";
	char *file_size = "Output file size.  Currently only supported on the SN340 device.";
	char *offset = "Output file data offset. Currently only supported on the SN340 device.";
	char *type = "Telemetry type - NONE, HOST, or CONTROLLER. Currently only supported on the SN530, SN640, SN730, SN740, SN810, SN840 and ZN350 devices.";
	char *verbose = "Display more debug messages.";
	char f[PATH_MAX] = {0};
	char fileSuffix[PATH_MAX] = {0};
	nvme_root_t r;
	__u32 xfer_size = 0;
	int fd, ret = -1;
	int telemetry_type = 0, telemetry_data_area = 0;
	UtilsTimeInfo             timeInfo;
	__u8                      timeStamp[MAX_PATH_LEN];
	__u64 capabilities = 0;

	struct config {
		char *file;
		__u32 xfer_size;
		int data_area;
		__u64 file_size;
		__u64 offset;
		char *type;
		bool verbose;
	};

	struct config cfg = {
		.file = NULL,
		.xfer_size = 0x10000,
		.data_area = 0,
		.file_size = 0,
		.offset = 0,
		.type = NULL,
		.verbose = false,
	};

	OPT_ARGS(opts) = {
		OPT_FILE("output-file",   'o', &cfg.file,      file),
		OPT_UINT("transfer-size", 's', &cfg.xfer_size, size),
		OPT_UINT("data-area",     'd', &cfg.data_area, data_area),
		OPT_LONG("file-size",     'f', &cfg.file_size, file_size),
		OPT_LONG("offset",        'e', &cfg.offset,    offset),
		OPT_FILE("type",          't', &cfg.type,      type),
		OPT_FLAG("verbose",       'v', &cfg.verbose,   verbose),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	if (!wdc_check_device(r, fd))
		goto out;

	if (cfg.xfer_size != 0)
		xfer_size = cfg.xfer_size;
	else {
		fprintf(stderr, "ERROR : WDC : Invalid length\n");
		goto out;
	}

	if (cfg.file != NULL) {
		int verify_file;

		/* verify the passed in file name and path is valid before getting the dump data */
		verify_file = open(cfg.file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
		if (verify_file < 0) {
			fprintf(stderr, "ERROR : WDC: open : %s\n", strerror(errno));
			goto out;
		}
		close(verify_file);
		strncpy(f, cfg.file, PATH_MAX - 1);
	} else {
		wdc_UtilsGetTime(&timeInfo);
		memset(timeStamp, 0, sizeof(timeStamp));
		wdc_UtilsSnprintf((char*)timeStamp, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
			timeInfo.year, timeInfo.month, timeInfo.dayOfMonth,
			timeInfo.hour, timeInfo.minute, timeInfo.second);
		snprintf(fileSuffix, PATH_MAX, "_internal_fw_log_%s", (char*)timeStamp);

		ret = wdc_get_serial_name(fd, f, PATH_MAX, fileSuffix);
		if (ret) {
			fprintf(stderr, "ERROR : WDC: failed to generate file name\n");
			goto out;
		}
	}

	if (cfg.file == NULL) {
		if (strlen(f) > PATH_MAX - 5) {
			fprintf(stderr, "ERROR : WDC: file name overflow\n");
			ret = -1;
			goto out;
		}
		strcat(f, ".bin");
	}
	fprintf(stderr, "%s: filename = %s\n", __func__, f);

	if (cfg.data_area) {
		if (cfg.data_area > 5 || cfg.data_area < 1) {
			fprintf(stderr, "ERROR : WDC: Data area must be 1-5\n");
			ret = -1;
			goto out;
		}
	}

	if ((cfg.type == NULL) ||
		(!strcmp(cfg.type, "NONE")) ||
		(!strcmp(cfg.type, "none"))) {
		telemetry_type = WDC_TELEMETRY_TYPE_NONE;
		data_area = 0;
	} else if ((!strcmp(cfg.type, "HOST")) ||
			(!strcmp(cfg.type, "host"))) {
		telemetry_type = WDC_TELEMETRY_TYPE_HOST;
		telemetry_data_area = cfg.data_area;
	} else if ((!strcmp(cfg.type, "CONTROLLER")) ||
			(!strcmp(cfg.type, "controller"))) {
		telemetry_type = WDC_TELEMETRY_TYPE_CONTROLLER;
		telemetry_data_area = cfg.data_area;
	} else {
		fprintf(stderr, "ERROR : WDC: Invalid type - Must be NONE, HOST or CONTROLLER\n");
		ret = -1;
		goto out;
	}

	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_INTERNAL_LOG) == WDC_DRIVE_CAP_INTERNAL_LOG) {
		if (telemetry_data_area == 0)
			telemetry_data_area = 3;       /* Set the default DA to 3 if not specified */

		ret = wdc_do_cap_diag(r, fd, f, xfer_size,
				      telemetry_type, telemetry_data_area);
		goto out;
	}
	if ((capabilities & WDC_DRIVE_CAP_DUI) == WDC_DRIVE_CAP_DUI) {
		if ((telemetry_type == WDC_TELEMETRY_TYPE_HOST) ||
			(telemetry_type == WDC_TELEMETRY_TYPE_CONTROLLER)) {
			if (telemetry_data_area == 0)
				telemetry_data_area = 3;       /* Set the default DA to 3 if not specified */
			/* Get the desired telemetry log page */
			ret = wdc_do_cap_telemetry_log(fd, f, xfer_size,
					telemetry_type, telemetry_data_area);
			goto out;
		} else {
			if (cfg.data_area == 0)
				cfg.data_area = 1;

			/* FW requirement - xfer size must be 256k for data area 4 */
			if (cfg.data_area >= 4)
				xfer_size = 0x40000;
			ret = wdc_do_cap_dui(fd, f, xfer_size, cfg.data_area,
					     cfg.verbose, cfg.file_size,
					     cfg.offset);
			goto out;
		}
	}
	if ((capabilities & WDC_DRIVE_CAP_DUI_DATA) == WDC_DRIVE_CAP_DUI_DATA){
		if ((telemetry_type == WDC_TELEMETRY_TYPE_HOST) ||
			(telemetry_type == WDC_TELEMETRY_TYPE_CONTROLLER)) {
			if (telemetry_data_area == 0)
				telemetry_data_area = 3;       /* Set the default DA to 3 if not specified */
			/* Get the desired telemetry log page */
			ret = wdc_do_cap_telemetry_log(fd, f, xfer_size,
					telemetry_type, telemetry_data_area);
			goto out;
		} else {
			ret = wdc_do_cap_dui(fd, f, xfer_size,
					     WDC_NVME_DUI_MAX_DATA_AREA,
					     cfg.verbose, 0, 0);
			goto out;
		}
	}
	if ((capabilities & WDC_SN730B_CAP_VUC_LOG) == WDC_SN730B_CAP_VUC_LOG)
		ret = wdc_do_sn730_get_and_tar(fd, f);
	else {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	}
out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_do_crash_dump(int fd, char *file, int type)
{
	int ret;
	__u32 crash_dump_length;
	__u32 opcode;
	__u32 cdw12;
	__u32 cdw10_size;
	__u32 cdw12_size;
	__u32 cdw12_clear;

	if (type == WDC_NVME_PFAIL_DUMP_TYPE) {
		/* set parms to get the PFAIL Crash Dump */
		opcode = WDC_NVME_PF_CRASH_DUMP_OPCODE;
		cdw10_size = WDC_NVME_PF_CRASH_DUMP_SIZE_NDT;
		cdw12_size = ((WDC_NVME_PF_CRASH_DUMP_SIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			WDC_NVME_PF_CRASH_DUMP_SIZE_CMD);

		cdw12 = (WDC_NVME_PF_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			WDC_NVME_PF_CRASH_DUMP_CMD;

		cdw12_clear = ((WDC_NVME_CLEAR_PF_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			WDC_NVME_CLEAR_CRASH_DUMP_CMD);

	} else {
		/* set parms to get the Crash Dump */
		opcode = WDC_NVME_CRASH_DUMP_OPCODE;
		cdw10_size = WDC_NVME_CRASH_DUMP_SIZE_NDT;
		cdw12_size = ((WDC_NVME_CRASH_DUMP_SIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			WDC_NVME_CRASH_DUMP_SIZE_CMD);

		cdw12 = (WDC_NVME_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			WDC_NVME_CRASH_DUMP_CMD;

		cdw12_clear = ((WDC_NVME_CLEAR_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			WDC_NVME_CLEAR_CRASH_DUMP_CMD);
	}

	ret = wdc_dump_length(fd,
		opcode,
		cdw10_size,
		cdw12_size,
		&crash_dump_length);

	if (ret == -1) {
		if (type == WDC_NVME_PFAIL_DUMP_TYPE)
		    fprintf(stderr, "INFO : WDC: Pfail dump get size failed\n");
		else
		    fprintf(stderr, "INFO : WDC: Crash dump get size failed\n");

		return -1;
	}

	if (crash_dump_length == 0) {
		if (type == WDC_NVME_PFAIL_DUMP_TYPE)
		    fprintf(stderr, "INFO : WDC: Pfail dump is empty\n");
		else
		    fprintf(stderr, "INFO : WDC: Crash dump is empty\n");
	} else {
		ret = wdc_do_dump(fd,
			opcode,
			crash_dump_length,
			cdw12,
			file,
			crash_dump_length);

		if (ret == 0)
			ret = wdc_do_clear_dump(fd, WDC_NVME_CLEAR_DUMP_OPCODE, cdw12_clear);
	}
	return ret;
}

static int wdc_crash_dump(int fd, char *file, int type)
{
	char f[PATH_MAX] = {0};
	const char *dump_type;
	int ret;

	if (file != NULL) {
		strncpy(f, file, PATH_MAX - 1);
	}

	if (type == WDC_NVME_PFAIL_DUMP_TYPE)
		dump_type = "_pfail_dump";
	else
		dump_type = "_crash_dump";

	ret = wdc_get_serial_name(fd, f, PATH_MAX, dump_type);
	if (ret)
		fprintf(stderr, "ERROR : WDC : failed to generate file name\n");
	else
		ret = wdc_do_crash_dump(fd, f, type);
	return ret;
}

static int wdc_do_drive_log(int fd, char *file)
{
	int ret;
	__u8 *drive_log_data;
	__u32 drive_log_length;
	struct nvme_passthru_cmd admin_cmd;

	ret = wdc_dump_length(fd, WDC_NVME_DRIVE_LOG_SIZE_OPCODE,
			WDC_NVME_DRIVE_LOG_SIZE_NDT,
			(WDC_NVME_DRIVE_LOG_SIZE_SUBCMD <<
			WDC_NVME_SUBCMD_SHIFT | WDC_NVME_DRIVE_LOG_SIZE_CMD),
			&drive_log_length);
	if (ret == -1) {
		return -1;
	}

	drive_log_data = (__u8 *) malloc(sizeof (__u8) * drive_log_length);
	if (drive_log_data == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}

	memset(drive_log_data, 0, sizeof (__u8) * drive_log_length);
	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = WDC_NVME_DRIVE_LOG_OPCODE;
	admin_cmd.addr = (__u64)(uintptr_t)drive_log_data;
	admin_cmd.data_len = drive_log_length;
	admin_cmd.cdw10 = drive_log_length;
	admin_cmd.cdw12 = ((WDC_NVME_DRIVE_LOG_SUBCMD <<
				WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_DRIVE_LOG_SIZE_CMD);

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	nvme_show_status(ret);
	if (ret == 0) {
		ret = wdc_create_log_file(file, drive_log_data, drive_log_length);
	}
	free(drive_log_data);
	return ret;
}

static int wdc_drive_log(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Capture Drive Log.";
	const char *file = "Output file pathname.";
	char f[PATH_MAX] = {0};
	int fd;
	int ret;
	nvme_root_t r;
	__u64 capabilities = 0;
	struct config {
		char *file;
	};

	struct config cfg = {
		.file = NULL
	};

	OPT_ARGS(opts) = {
		OPT_FILE("output-file", 'o', &cfg.file, file),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);

	if (!wdc_check_device(r, fd)) {
		nvme_free_tree(r);
		close(fd);
		return -1;
	}
	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_DRIVE_LOG) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	} else {
		if (cfg.file != NULL) {
			strncpy(f, cfg.file, PATH_MAX - 1);
		}
		ret = wdc_get_serial_name(fd, f, PATH_MAX, "drive_log");
		if (ret)
			fprintf(stderr, "ERROR : WDC : failed to generate file name\n");
		else
			ret = wdc_do_drive_log(fd, f);
	}
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_get_crash_dump(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Get Crash Dump.";
	const char *file = "Output file pathname.";
	int fd, ret;
	nvme_root_t r;
	__u64 capabilities = 0;

	struct config {
		char *file;
	};

	struct config cfg = {
		.file = NULL,
	};

	OPT_ARGS(opts) = {
		OPT_FILE("output-file", 'o', &cfg.file, file),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);

	if (!wdc_check_device(r, fd)) {
		nvme_free_tree(r);
		close(fd);
		return -1;

	}

	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_CRASH_DUMP) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	} else {
		ret = wdc_crash_dump(fd, cfg.file, WDC_NVME_CRASH_DUMP_TYPE);
		if (ret != 0) {
			fprintf(stderr, "ERROR : WDC : failed to read crash dump\n");
		}
	}
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_get_pfail_dump(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	char *desc = "Get Pfail Crash Dump.";
	char *file = "Output file pathname.";
	int fd;
	int ret;
	nvme_root_t r;
	__u64 capabilities = 0;
	struct config {
		char *file;
	};

	struct config cfg = {
		.file = NULL,
	};

	OPT_ARGS(opts) = {
		OPT_FILE("output-file", 'o', &cfg.file, file),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);

	if (!wdc_check_device(r, fd)) {
		nvme_free_tree(r);
		close(fd);
		return -1;
	}

	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_PFAIL_DUMP) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	} else {
		ret = wdc_crash_dump(fd, cfg.file, WDC_NVME_PFAIL_DUMP_TYPE);
		if (ret != 0) {
			fprintf(stderr, "ERROR : WDC : failed to read pfail crash dump\n");
		}
	}
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static void wdc_do_id_ctrl(__u8 *vs, struct json_object *root)
{
	char vsn[24] = {0};
	int base = 3072;
	int vsn_start = 3081;

	memcpy(vsn, &vs[vsn_start - base], sizeof(vsn));
	if (root)
		json_object_add_value_string(root, "wdc vsn", strlen(vsn) > 1 ? vsn : "NULL");
	else
		printf("wdc vsn : %s\n", strlen(vsn) > 1 ? vsn : "NULL");
}

static int wdc_id_ctrl(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
	return __id_ctrl(argc, argv, cmd, plugin, wdc_do_id_ctrl);
}

static const char* wdc_purge_mon_status_to_string(__u32 status)
{
	const char *str;

	switch (status) {
	case WDC_NVME_PURGE_STATE_IDLE:
		str = "Purge State Idle.";
		break;
	case WDC_NVME_PURGE_STATE_DONE:
		str = "Purge State Done.";
		break;
	case WDC_NVME_PURGE_STATE_BUSY:
		str = "Purge State Busy.";
		break;
	case WDC_NVME_PURGE_STATE_REQ_PWR_CYC:
		str = "Purge Operation resulted in an error that requires "
			"power cycle.";
		break;
	case WDC_NVME_PURGE_STATE_PWR_CYC_PURGE:
		str = "The previous purge operation was interrupted by a power "
			"cycle\nor reset interruption. Other commands may be "
			"rejected until\nPurge Execute is issued and "
			"completed.";
		break;
	default:
		str = "Unknown.";
	}
	return str;
}

static int wdc_purge(int argc, char **argv,
		struct command *command, struct plugin *plugin)
{
	const char *desc = "Send a Purge command.";
	char *err_str;
	int fd, ret;
	nvme_root_t r;
	struct nvme_passthru_cmd admin_cmd;
	__u64 capabilities = 0;

	OPT_ARGS(opts) = {
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);

	if (!wdc_check_device(r, fd)) {
		nvme_free_tree(r);
		close(fd);
		return -1;
	}

	capabilities = wdc_get_drive_capabilities(r, fd);
	if((capabilities & WDC_DRIVE_CAP_PURGE) == 0) {
		ret = -1;
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
	} else {
		err_str = "";
		memset(&admin_cmd, 0, sizeof (admin_cmd));
		admin_cmd.opcode = WDC_NVME_PURGE_CMD_OPCODE;

		ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
		if (ret > 0) {
			switch (ret) {
			case WDC_NVME_PURGE_CMD_SEQ_ERR:
				err_str = "ERROR : WDC : Cannot execute purge, "
						"Purge operation is in progress.\n";
				break;
			case WDC_NVME_PURGE_INT_DEV_ERR:
				err_str = "ERROR : WDC : Internal Device Error.\n";
				break;
			default:
				err_str = "ERROR : WDC\n";
			}
		}

		fprintf(stderr, "%s", err_str);
		nvme_show_status(ret);
	}
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_purge_monitor(int argc, char **argv,
		struct command *command, struct plugin *plugin)
{
	const char *desc = "Send a Purge Monitor command.";
	int fd, ret;
	nvme_root_t r;
	__u8 output[WDC_NVME_PURGE_MONITOR_DATA_LEN];
	double progress_percent;
	struct nvme_passthru_cmd admin_cmd;
	struct wdc_nvme_purge_monitor_data *mon;
	__u64 capabilities;

	OPT_ARGS(opts) = {
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	if (!wdc_check_device(r, fd)) {
		nvme_free_tree(r);
		close(fd);
		return -1;
	}

	capabilities = wdc_get_drive_capabilities(r, fd);
	if((capabilities & WDC_DRIVE_CAP_PURGE) == 0) {
		ret = -1;
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
	} else {
		memset(output, 0, sizeof (output));
		memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
		admin_cmd.opcode = WDC_NVME_PURGE_MONITOR_OPCODE;
		admin_cmd.addr = (__u64)(uintptr_t)output;
		admin_cmd.data_len = WDC_NVME_PURGE_MONITOR_DATA_LEN;
		admin_cmd.cdw10 = WDC_NVME_PURGE_MONITOR_CMD_CDW10;
		admin_cmd.timeout_ms = WDC_NVME_PURGE_MONITOR_TIMEOUT;

		ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
		if (ret == 0) {
			mon = (struct wdc_nvme_purge_monitor_data *) output;
			printf("Purge state = 0x%0x\n", admin_cmd.result);
			printf("%s\n", wdc_purge_mon_status_to_string(admin_cmd.result));
			if (admin_cmd.result == WDC_NVME_PURGE_STATE_BUSY) {
				progress_percent =
					((double)le32_to_cpu(mon->entire_progress_current) * 100) /
					le32_to_cpu(mon->entire_progress_total);
				printf("Purge Progress = %f%%\n", progress_percent);
			}
		}

		nvme_show_status(ret);
	}
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static void wdc_print_log_normal(struct wdc_ssd_perf_stats *perf)
{
	printf("  C1 Log Page Performance Statistics :- \n");
	printf("  Host Read Commands                             %20"PRIu64"\n",
			le64_to_cpu(perf->hr_cmds));
	printf("  Host Read Blocks                               %20"PRIu64"\n",
			le64_to_cpu(perf->hr_blks));
	printf("  Average Read Size                              %20lf\n",
			safe_div_fp((le64_to_cpu(perf->hr_blks)), (le64_to_cpu(perf->hr_cmds))));
	printf("  Host Read Cache Hit Commands                   %20"PRIu64"\n",
			le64_to_cpu(perf->hr_ch_cmds));
	printf("  Host Read Cache Hit_Percentage                 %20"PRIu64"%%\n",
			(uint64_t) calc_percent(le64_to_cpu(perf->hr_ch_cmds), le64_to_cpu(perf->hr_cmds)));
	printf("  Host Read Cache Hit Blocks                     %20"PRIu64"\n",
			le64_to_cpu(perf->hr_ch_blks));
	printf("  Average Read Cache Hit Size                    %20f\n",
			safe_div_fp((le64_to_cpu(perf->hr_ch_blks)), (le64_to_cpu(perf->hr_ch_cmds))));
	printf("  Host Read Commands Stalled                     %20"PRIu64"\n",
			le64_to_cpu(perf->hr_st_cmds));
	printf("  Host Read Commands Stalled Percentage          %20"PRIu64"%%\n",
			(uint64_t)calc_percent((le64_to_cpu(perf->hr_st_cmds)), le64_to_cpu(perf->hr_cmds)));
	printf("  Host Write Commands                            %20"PRIu64"\n",
			le64_to_cpu(perf->hw_cmds));
	printf("  Host Write Blocks                              %20"PRIu64"\n",
			le64_to_cpu(perf->hw_blks));
	printf("  Average Write Size                             %20f\n",
			safe_div_fp((le64_to_cpu(perf->hw_blks)), (le64_to_cpu(perf->hw_cmds))));
	printf("  Host Write Odd Start Commands                  %20"PRIu64"\n",
			le64_to_cpu(perf->hw_os_cmds));
	printf("  Host Write Odd Start Commands Percentage       %20"PRIu64"%%\n",
			(uint64_t)calc_percent((le64_to_cpu(perf->hw_os_cmds)), (le64_to_cpu(perf->hw_cmds))));
	printf("  Host Write Odd End Commands                    %20"PRIu64"\n",
			le64_to_cpu(perf->hw_oe_cmds));
	printf("  Host Write Odd End Commands Percentage         %20"PRIu64"%%\n",
			(uint64_t)calc_percent((le64_to_cpu(perf->hw_oe_cmds)), (le64_to_cpu((perf->hw_cmds)))));
	printf("  Host Write Commands Stalled                    %20"PRIu64"\n",
		le64_to_cpu(perf->hw_st_cmds));
	printf("  Host Write Commands Stalled Percentage         %20"PRIu64"%%\n",
		(uint64_t)calc_percent((le64_to_cpu(perf->hw_st_cmds)), (le64_to_cpu(perf->hw_cmds))));
	printf("  NAND Read Commands                             %20"PRIu64"\n",
		le64_to_cpu(perf->nr_cmds));
	printf("  NAND Read Blocks Commands                      %20"PRIu64"\n",
		le64_to_cpu(perf->nr_blks));
	printf("  Average NAND Read Size                         %20f\n",
		safe_div_fp((le64_to_cpu(perf->nr_blks)), (le64_to_cpu((perf->nr_cmds)))));
	printf("  Nand Write Commands                            %20"PRIu64"\n",
			le64_to_cpu(perf->nw_cmds));
	printf("  NAND Write Blocks                              %20"PRIu64"\n",
			le64_to_cpu(perf->nw_blks));
	printf("  Average NAND Write Size                        %20f\n",
			safe_div_fp((le64_to_cpu(perf->nw_blks)), (le64_to_cpu(perf->nw_cmds))));
	printf("  NAND Read Before Write                         %20"PRIu64"\n",
			le64_to_cpu(perf->nrbw));
}

static void wdc_print_log_json(struct wdc_ssd_perf_stats *perf)
{
	struct json_object *root;

	root = json_create_object();
	json_object_add_value_int(root, "Host Read Commands", le64_to_cpu(perf->hr_cmds));
	json_object_add_value_int(root, "Host Read Blocks", le64_to_cpu(perf->hr_blks));
	json_object_add_value_int(root, "Average Read Size",
			safe_div_fp((le64_to_cpu(perf->hr_blks)), (le64_to_cpu(perf->hr_cmds))));
	json_object_add_value_int(root, "Host Read Cache Hit Commands",
			le64_to_cpu(perf->hr_ch_cmds));
	json_object_add_value_int(root, "Host Read Cache Hit Percentage",
			(uint64_t) calc_percent(le64_to_cpu(perf->hr_ch_cmds), le64_to_cpu(perf->hr_cmds)));
	json_object_add_value_int(root, "Host Read Cache Hit Blocks",
			le64_to_cpu(perf->hr_ch_blks));
	json_object_add_value_int(root, "Average Read Cache Hit Size",
			safe_div_fp((le64_to_cpu(perf->hr_ch_blks)), (le64_to_cpu(perf->hr_ch_cmds))));
	json_object_add_value_int(root, "Host Read Commands Stalled",
			le64_to_cpu(perf->hr_st_cmds));
	json_object_add_value_int(root, "Host Read Commands Stalled Percentage",
			(uint64_t)calc_percent((le64_to_cpu(perf->hr_st_cmds)), le64_to_cpu(perf->hr_cmds)));
	json_object_add_value_int(root, "Host Write Commands",
			le64_to_cpu(perf->hw_cmds));
	json_object_add_value_int(root, "Host Write Blocks",
			le64_to_cpu(perf->hw_blks));
	json_object_add_value_int(root, "Average Write Size",
			safe_div_fp((le64_to_cpu(perf->hw_blks)), (le64_to_cpu(perf->hw_cmds))));
	json_object_add_value_int(root, "Host Write Odd Start Commands",
			le64_to_cpu(perf->hw_os_cmds));
	json_object_add_value_int(root, "Host Write Odd Start Commands Percentage",
			(uint64_t)calc_percent((le64_to_cpu(perf->hw_os_cmds)), (le64_to_cpu(perf->hw_cmds))));
	json_object_add_value_int(root, "Host Write Odd End Commands",
			le64_to_cpu(perf->hw_oe_cmds));
	json_object_add_value_int(root, "Host Write Odd End Commands Percentage",
			(uint64_t)calc_percent((le64_to_cpu(perf->hw_oe_cmds)), (le64_to_cpu((perf->hw_cmds)))));
	json_object_add_value_int(root, "Host Write Commands Stalled",
		le64_to_cpu(perf->hw_st_cmds));
	json_object_add_value_int(root, "Host Write Commands Stalled Percentage",
		(uint64_t)calc_percent((le64_to_cpu(perf->hw_st_cmds)), (le64_to_cpu(perf->hw_cmds))));
	json_object_add_value_int(root, "NAND Read Commands",
		le64_to_cpu(perf->nr_cmds));
	json_object_add_value_int(root, "NAND Read Blocks Commands",
		le64_to_cpu(perf->nr_blks));
	json_object_add_value_int(root, "Average NAND Read Size",
		safe_div_fp((le64_to_cpu(perf->nr_blks)), (le64_to_cpu((perf->nr_cmds)))));
	json_object_add_value_int(root, "Nand Write Commands",
			le64_to_cpu(perf->nw_cmds));
	json_object_add_value_int(root, "NAND Write Blocks",
			le64_to_cpu(perf->nw_blks));
	json_object_add_value_int(root, "Average NAND Write Size",
			safe_div_fp((le64_to_cpu(perf->nw_blks)), (le64_to_cpu(perf->nw_cmds))));
	json_object_add_value_int(root, "NAND Read Before Written",
			le64_to_cpu(perf->nrbw));
	json_print_object(root, NULL);
	printf("\n");
	json_free_object(root);
}

static int wdc_print_log(struct wdc_ssd_perf_stats *perf, int fmt)
{
	if (!perf) {
		fprintf(stderr, "ERROR : WDC : Invalid buffer to read perf stats\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_log_normal(perf);
		break;
	case JSON:
		wdc_print_log_json(perf);
		break;
	}
	return 0;
}

static int wdc_convert_ts(time_t time, char *ts_buf)
{
	struct tm  gmTimeInfo;
	time_t     time_Human, time_ms;
	char       buf[80];

	time_Human = time/1000;
	time_ms = time % 1000;

	gmtime_r((const time_t *)&time_Human, &gmTimeInfo);

	strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &gmTimeInfo);
	sprintf(ts_buf, "%s.%03ld GMT", buf, time_ms);

	return 0;
}

static int wdc_print_latency_monitor_log_normal(int fd, struct wdc_ssd_latency_monitor_log *log_data)
{
	printf("Latency Monitor/C3 Log Page Data \n");
	printf("  Controller   :  %s\n", devicename);
	int err = -1, i, j;
	struct nvme_id_ctrl ctrl;
	char       ts_buf[128];

	err = nvme_identify_ctrl(fd, &ctrl);
	if (!err)
		printf("  Serial Number:  %-.*s\n", (int)sizeof(ctrl.sn), ctrl.sn);
	else {
		fprintf(stderr, "ERROR : WDC : latency monitor read id ctrl failure, err = %d\n", err);
		return err;
	}

	printf("  Feature Status                     0x%x \n", log_data->feature_status);
	printf("  Active Bucket Timer                %d min \n", 5*le16_to_cpu(log_data->active_bucket_timer));
	printf("  Active Bucket Timer Threshold      %d min \n", 5*le16_to_cpu(log_data->active_bucket_timer_threshold));
	printf("  Active Threshold A                 %d ms \n", 5*(le16_to_cpu(log_data->active_threshold_a+1)));
	printf("  Active Threshold B                 %d ms \n", 5*(le16_to_cpu(log_data->active_threshold_b+1)));
	printf("  Active Threshold C                 %d ms \n", 5*(le16_to_cpu(log_data->active_threshold_c+1)));
	printf("  Active Threshold D                 %d ms \n", 5*(le16_to_cpu(log_data->active_threshold_d+1)));
	printf("  Active Latency Config              0x%x \n", le16_to_cpu(log_data->active_latency_config));
	printf("  Active Latency Minimum Window      %d ms \n", 100*log_data->active_latency_min_window);
	printf("  Active Latency Stamp Units         %d \n", le16_to_cpu(log_data->active_latency_stamp_units));
	printf("  Static Latency Stamp Units         %d \n", le16_to_cpu(log_data->static_latency_stamp_units));
	printf("  Debug Log Trigger Enable           %d \n", le16_to_cpu(log_data->debug_log_trigger_enable));

	printf("                                                            Read                           Write                 Deallocate/Trim \n");
	for (i = 0; i <= 3; i++) {
	    printf("  Active Bucket Counter: Bucket %d    %27d     %27d     %27d \n",
			i, le32_to_cpu(log_data->active_bucket_counter[i][READ]), le32_to_cpu(log_data->active_bucket_counter[i][WRITE]),
			le32_to_cpu(log_data->active_bucket_counter[i][TRIM]));
	}

	for (i = 0; i <= 3; i++) {
	    printf("  Active Measured Latency: Bucket %d  %27d ms  %27d ms  %27d ms \n",
			i, le16_to_cpu(log_data->active_measured_latency[i][READ]), le16_to_cpu(log_data->active_measured_latency[i][WRITE]),
			le16_to_cpu(log_data->active_measured_latency[i][TRIM]));
	}

	for (i = 0; i <= 3; i++) {
		printf("  Active Latency Time Stamp: Bucket %d    ", i);
		for (j = 0; j <= 2; j++) {
		    if (le64_to_cpu(log_data->active_latency_timestamp[i][j]) == -1)
		    	printf("                    N/A         ");
		    else {
		    	wdc_convert_ts(le64_to_cpu(log_data->active_latency_timestamp[i][j]), ts_buf);
		    	printf("%s     ",	ts_buf);
		    }
		}
		printf("\n");
	}

	for (i = 0; i <= 3; i++) {
	    printf("  Static Bucket Counter: Bucket %d    %27d     %27d     %27d \n",
			i, le32_to_cpu(log_data->static_bucket_counter[i][READ]), le32_to_cpu(log_data->static_bucket_counter[i][WRITE]),
			le32_to_cpu(log_data->static_bucket_counter[i][TRIM]));
	}

	for (i = 0; i <= 3; i++) {
	    printf("  Static Measured Latency: Bucket %d  %27d ms  %27d ms  %27d ms \n",
			i, le16_to_cpu(log_data->static_measured_latency[i][READ]), le16_to_cpu(log_data->static_measured_latency[i][WRITE]),
			le16_to_cpu(log_data->static_measured_latency[i][TRIM]));
	}

	for (i = 0; i <= 3; i++) {
		printf("  Static Latency Time Stamp: Bucket %d    ", i);
		for (j = 0; j <= 2; j++) {
		    if (le64_to_cpu(log_data->static_latency_timestamp[i][j]) == -1)
		    	printf("                    N/A         ");
		    else {
		    	wdc_convert_ts(le64_to_cpu(log_data->static_latency_timestamp[i][j]), ts_buf);
		    	printf("%s     ",	ts_buf);
		    }
		}
		printf("\n");
	}

	return 0;
}

static void wdc_print_latency_monitor_log_json(struct wdc_ssd_latency_monitor_log *log_data)
{
	int i, j;
	char	buf[128];
	char	*operation[3] = {"Read", "Write", "Trim"};
	struct json_object *root;
	root = json_create_object();

	json_object_add_value_int(root, "Feature Status", log_data->feature_status);
	json_object_add_value_int(root, "Active Bucket Timer", 5*le16_to_cpu(log_data->active_bucket_timer));
	json_object_add_value_int(root, "Active Bucket Timer Threshold", 5*le16_to_cpu(log_data->active_bucket_timer_threshold));
	json_object_add_value_int(root, "Active Threshold A", 5*le16_to_cpu(log_data->active_threshold_a+1));
	json_object_add_value_int(root, "Active Threshold B", 5*le16_to_cpu(log_data->active_threshold_b+1));
	json_object_add_value_int(root, "Active Threshold C", 5*le16_to_cpu(log_data->active_threshold_c+1));
	json_object_add_value_int(root, "Active Threshold D", 5*le16_to_cpu(log_data->active_threshold_d+1));
	json_object_add_value_int(root, "Active Latency Config", le16_to_cpu(log_data->active_latency_config));
	json_object_add_value_int(root, "Active Lantency Minimum Window", 100*log_data->active_latency_min_window);
	json_object_add_value_int(root, "Active Latency Stamp Units", le16_to_cpu(log_data->active_latency_stamp_units));
	json_object_add_value_int(root, "Static Latency Stamp Units", le16_to_cpu(log_data->static_latency_stamp_units));
	json_object_add_value_int(root, "Debug Log Trigger Enable", le16_to_cpu(log_data->debug_log_trigger_enable));

	for (i = 0; i <= 3; i++) {
		for (j = 0; j <= 2; j++) {
			sprintf(buf, "Active Bucket Counter: Bucket %d %s", i, operation[j]);
			json_object_add_value_int(root, buf, le32_to_cpu(log_data->active_bucket_counter[i][j]));
		}
	}
	for (i = 0; i <= 3; i++) {
		for (j = 0; j <= 2; j++) {
			sprintf(buf, "Active Measured Latency: Bucket %d %s", i, operation[j]);
			json_object_add_value_int(root, buf, le16_to_cpu(log_data->active_measured_latency[i][j]));
		}
	}
	for (i = 0; i <= 3; i++) {
		for (j = 0; j <= 2; j++) {
			sprintf(buf, "Active Latency Time Stamp: Bucket %d %s", i, operation[j]);
			json_object_add_value_int(root, buf, le64_to_cpu(log_data->active_latency_timestamp[i][j]));
		}
	}
	for (i = 0; i <= 3; i++) {
		for (j = 0; j <= 2; j++) {
			sprintf(buf, "Static Bucket Counter: Bucket %d %s", i, operation[j]);
			json_object_add_value_int(root, buf, le32_to_cpu(log_data->static_bucket_counter[i][j]));
		}
	}
	for (i = 0; i <= 3; i++) {
		for (j = 0; j <= 2; j++) {
			sprintf(buf, "Static Measured Latency: Bucket %d %s", i, operation[j]);
			json_object_add_value_int(root, buf, le16_to_cpu(log_data->static_measured_latency[i][j]));
		}
	}
	for (i = 0; i <= 3; i++) {
		for (j = 0; j <= 2; j++) {
			sprintf(buf, "Static Latency Time Stamp: Bucket %d %s", i, operation[j]);
			json_object_add_value_int(root, buf, le64_to_cpu(log_data->static_latency_timestamp[i][j]));
		}
	}

	json_print_object(root, NULL);
	printf("\n");

	json_free_object(root);
}

static void wdc_print_error_rec_log_normal(struct wdc_ocp_c1_error_recovery_log *log_data)
{
	int j;
	printf("Error Recovery/C1 Log Page Data \n");

	printf("  Panic Reset Wait Time             : 0x%x \n", le16_to_cpu(log_data->panic_reset_wait_time));
	printf("  Panic Reset Action                : 0x%x \n", log_data->panic_reset_action);
	printf("  Device Recovery Action 1          : 0x%x \n", log_data->dev_recovery_action1);
	printf("  Panic ID                          : 0x%lx \n", le64_to_cpu(log_data->panic_id));
	printf("  Device Capabilities               : 0x%x \n", le32_to_cpu(log_data->dev_capabilities));
	printf("  Vendor Specific Recovery Opcode   : 0x%x \n", log_data->vs_recovery_opc);
	printf("  Vendor Specific Command CDW12     : 0x%x \n", le32_to_cpu(log_data->vs_cmd_cdw12));
	printf("  Vendor Specific Command CDW13     : 0x%x \n", le32_to_cpu(log_data->vs_cmd_cdw13));
	printf("  Vendor Specific Command Timeout   : 0x%x \n", log_data->vs_cmd_to);
	printf("  Device Recovery Action 2          : 0x%x \n", log_data->dev_recovery_action2);
	printf("  Device Recovery Action 2 Timeout  : 0x%x \n", log_data->dev_recovery_action2_to);
	printf("  Log Page Version                  : 0x%x \n", le16_to_cpu(log_data->log_page_version));
	printf("  Log page GUID			    : 0x");
	for (j = 0; j < WDC_OCP_C1_GUID_LENGTH; j++) {
		printf("%x", log_data->log_page_guid[j]);
	}
	printf("\n");
}

static void wdc_print_error_rec_log_json(struct wdc_ocp_c1_error_recovery_log *log_data)
{
	struct json_object *root;
	root = json_create_object();

	json_object_add_value_int(root, "Panic Reset Wait Time", le16_to_cpu(log_data->panic_reset_wait_time));
	json_object_add_value_int(root, "Panic Reset Action", log_data->panic_reset_wait_time);
	json_object_add_value_int(root, "Device Recovery Action 1", log_data->dev_recovery_action1);
	json_object_add_value_int(root, "Panic ID", le64_to_cpu(log_data->panic_id));
	json_object_add_value_int(root, "Device Capabilities", le32_to_cpu(log_data->dev_capabilities));
	json_object_add_value_int(root, "Vendor Specific Recovery Opcode", log_data->vs_recovery_opc);
	json_object_add_value_int(root, "Vendor Specific Command CDW12", le32_to_cpu(log_data->vs_cmd_cdw12));
	json_object_add_value_int(root, "Vendor Specific Command CDW13", le32_to_cpu(log_data->vs_cmd_cdw13));
	json_object_add_value_int(root, "Vendor Specific Command Timeout", log_data->vs_cmd_to);
	json_object_add_value_int(root, "Device Recovery Action 2", log_data->dev_recovery_action2);
	json_object_add_value_int(root, "Device Recovery Action 2 Timeout", log_data->dev_recovery_action2_to);
	json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));

	char guid[40];
	memset((void*)guid, 0, 40);
	sprintf((char*)guid, "0x%"PRIx64"%"PRIx64"",(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[8]),
		(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[0]));
	json_object_add_value_string(root, "Log page GUID", guid);

	json_print_object(root, NULL);
	printf("\n");

	json_free_object(root);
}

static void wdc_print_dev_cap_log_normal(struct wdc_ocp_C4_dev_cap_log *log_data)
{
	int j;
	printf("Device Capabilities/C4 Log Page Data \n");

	printf("  Number PCIE Ports                 	: 0x%x \n", le16_to_cpu(log_data->num_pcie_ports));
	printf("  Number OOB Management Interfaces  	: 0x%x \n", le16_to_cpu(log_data->oob_mgmt_support));
	printf("  Write Zeros Command Support       	: 0x%x \n", le16_to_cpu(log_data->wrt_zeros_support));
	printf("  Sanitize Command Support          	: 0x%x \n", le16_to_cpu(log_data->sanitize_support));
	printf("  DSM Command Support               	: 0x%x \n", le16_to_cpu(log_data->dsm_support));
	printf("  Write Uncorr Command Support      	: 0x%x \n", le16_to_cpu(log_data->wrt_uncor_support));
	printf("  Fused Command Support             	: 0x%x \n", le16_to_cpu(log_data->fused_support));
	printf("  Minimum DSSD Power State          	: 0x%x \n", le16_to_cpu(log_data->min_dssd_ps));

	for (j = 0; j < WDC_OCP_C4_NUM_PS_DESCR; j++) {
		printf("  DSSD Power State %d Desriptor  	: 0x%x \n", j, log_data->dssd_ps_descr[j]);
	}

	printf("  Log Page Version			: 0x%x \n", le16_to_cpu(log_data->log_page_version));
	printf("  Log page GUID				: 0x");
	for (j = 0; j < WDC_OCP_C4_GUID_LENGTH; j++) {
		printf("%x", log_data->log_page_guid[j]);
	}
	printf("\n");
}

static void wdc_print_dev_cap_log_json(struct wdc_ocp_C4_dev_cap_log *log_data)
{
	int j;
	struct json_object *root;
	root = json_create_object();

	json_object_add_value_int(root, "Number PCIE Ports", le16_to_cpu(log_data->num_pcie_ports));
	json_object_add_value_int(root, "Number OOB Management Interfaces", le16_to_cpu(log_data->num_pcie_ports));
	json_object_add_value_int(root, "Write Zeros Command Support", le16_to_cpu(log_data->num_pcie_ports));
	json_object_add_value_int(root, "Sanitize Command Support", le16_to_cpu(log_data->num_pcie_ports));
	json_object_add_value_int(root, "DSM Command Support", le16_to_cpu(log_data->num_pcie_ports));
	json_object_add_value_int(root, "Write Uncorr Command Support", le16_to_cpu(log_data->num_pcie_ports));
	json_object_add_value_int(root, "Fused Command Support", le16_to_cpu(log_data->num_pcie_ports));
	json_object_add_value_int(root, "Minimum DSSD Power State", le16_to_cpu(log_data->num_pcie_ports));

	char dssd_descr_str[40];
	memset((void *)dssd_descr_str, 0, 40);
	for (j = 0; j < WDC_OCP_C4_NUM_PS_DESCR; j++) {
		sprintf((char *)dssd_descr_str, "DSSD Power State %d Descriptor", j);
		json_object_add_value_int(root, dssd_descr_str, log_data->dssd_ps_descr[j]);
	}

	json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));
	char guid[40];
	memset((void*)guid, 0, 40);
	sprintf((char*)guid, "0x%"PRIx64"%"PRIx64"",(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[8]),
		(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[0]));
	json_object_add_value_string(root, "Log page GUID", guid);

	json_print_object(root, NULL);
	printf("\n");

	json_free_object(root);
}

static void wdc_print_unsupported_reqs_log_normal(struct wdc_ocp_C5_unsupported_reqs *log_data)
{
	int j;
	printf("Unsupported Requirements/C5 Log Page Data \n");

	printf("  Number Unsupported Req IDs		: 0x%x \n", le16_to_cpu(log_data->unsupported_count));

	for (j = 0; j < le16_to_cpu(log_data->unsupported_count); j++) {
		printf("  Unsupported Requirement List %d	: %s \n", j, log_data->unsupported_req_list[j]);
	}

	printf("  Log Page Version			: 0x%x \n", le16_to_cpu(log_data->log_page_version));
	printf("  Log page GUID				: 0x");
	for (j = 0; j < WDC_OCP_C5_GUID_LENGTH; j++) {
		printf("%x", log_data->log_page_guid[j]);
	}
	printf("\n");
}

static void wdc_print_unsupported_reqs_log_json(struct wdc_ocp_C5_unsupported_reqs *log_data)
{
	int j;
	struct json_object *root;
	root = json_create_object();

	json_object_add_value_int(root, "Number Unsupported Req IDs", le16_to_cpu(log_data->unsupported_count));

	char unsup_req_list_str[40];
	memset((void *)unsup_req_list_str, 0, 40);
	for (j = 0; j < le16_to_cpu(log_data->unsupported_count); j++) {
		sprintf((char *)unsup_req_list_str, "Unsupported Requirement List %d", j);
		json_object_add_value_string(root, unsup_req_list_str, (char *)log_data->unsupported_req_list[j]);
	}

	json_object_add_value_int(root, "Log Page Version", le16_to_cpu(log_data->log_page_version));
	char guid[40];
	memset((void*)guid, 0, 40);
	sprintf((char*)guid, "0x%"PRIx64"%"PRIx64"",(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[8]),
		(uint64_t)le64_to_cpu(*(uint64_t *)&log_data->log_page_guid[0]));
	json_object_add_value_string(root, "Log page GUID", guid);

	json_print_object(root, NULL);
	printf("\n");

	json_free_object(root);
}

static void wdc_print_fb_ca_log_normal(struct wdc_ssd_ca_perf_stats *perf)
{
	uint64_t converted = 0;

	printf("  CA Log Page Performance Statistics :- \n");
	printf("  NAND Bytes Written                             %20"PRIu64 "%20"PRIu64"\n",
			le64_to_cpu(perf->nand_bytes_wr_hi), le64_to_cpu(perf->nand_bytes_wr_lo));
	printf("  NAND Bytes Read                                %20"PRIu64 "%20"PRIu64"\n",
			le64_to_cpu(perf->nand_bytes_rd_hi), le64_to_cpu(perf->nand_bytes_rd_lo));

	converted = le64_to_cpu(perf->nand_bad_block);
	printf("  NAND Bad Block Count (Normalized)              %20"PRIu64"\n",
			converted & 0xFFFF);
	printf("  NAND Bad Block Count (Raw)                     %20"PRIu64"\n",
			converted >> 16);

	printf("  Uncorrectable Read Count                       %20"PRIu64"\n",
			le64_to_cpu(perf->uncorr_read_count));
	printf("  Soft ECC Error Count                           %20"PRIu64"\n",
			le64_to_cpu(perf->ecc_error_count));
	printf("  SSD End to End Detected Correction Count       %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->ssd_detect_count));
	printf("  SSD End to End Corrected Correction Count      %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->ssd_correct_count));
	printf("  System Data Percent Used                       %20"PRIu32"%%\n",
			perf->data_percent_used);
	printf("  User Data Erase Counts Max                     %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->data_erase_max));
	printf("  User Data Erase Counts Min                     %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->data_erase_min));
	printf("  Refresh Count                                  %20"PRIu64"\n",
			le64_to_cpu(perf->refresh_count));

	converted = le64_to_cpu(perf->program_fail);
	printf("  Program Fail Count (Normalized)                %20"PRIu64"\n",
			converted & 0xFFFF);
	printf("  Program Fail Count (Raw)                       %20"PRIu64"\n",
			converted >> 16);

	converted = le64_to_cpu(perf->user_erase_fail);
	printf("  User Data Erase Fail Count (Normalized)        %20"PRIu64"\n",
			converted & 0xFFFF);
	printf("  User Data Erase Fail Count (Raw)               %20"PRIu64"\n",
			converted >> 16);

	converted = le64_to_cpu(perf->system_erase_fail);
	printf("  System Area Erase Fail Count (Normalized)      %20"PRIu64"\n",
			converted & 0xFFFF);
	printf("  System Area Erase Fail Count (Raw)             %20"PRIu64"\n",
			converted >> 16);

	printf("  Thermal Throttling Status                      %20"PRIu8"\n",
			perf->thermal_throttle_status);
	printf("  Thermal Throttling Count                       %20"PRIu8"\n",
			perf->thermal_throttle_count);
	printf("  PCIe Correctable Error Count                   %20"PRIu64"\n",
			le64_to_cpu(perf->pcie_corr_error));
	printf("  Incomplete Shutdown Count                      %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->incomplete_shutdown_count));
	printf("  Percent Free Blocks                            %20"PRIu32"%%\n",
			perf->percent_free_blocks);
}

static void wdc_print_fb_ca_log_json(struct wdc_ssd_ca_perf_stats *perf)
{
	struct json_object *root;
	uint64_t converted = 0;

	root = json_create_object();
	json_object_add_value_int(root, "NAND Bytes Written Hi", le64_to_cpu(perf->nand_bytes_wr_hi));
	json_object_add_value_int(root, "NAND Bytes Written Lo", le64_to_cpu(perf->nand_bytes_wr_lo));
	json_object_add_value_int(root, "NAND Bytes Read Hi", le64_to_cpu(perf->nand_bytes_rd_hi));
	json_object_add_value_int(root, "NAND Bytes Read Lo", le64_to_cpu(perf->nand_bytes_rd_lo));

	converted = le64_to_cpu(perf->nand_bad_block);
	json_object_add_value_int(root, "NAND Bad Block Count (Normalized)",
			converted & 0xFFFF);
	json_object_add_value_int(root, "NAND Bad Block Count (Raw)",
			converted >> 16);

	json_object_add_value_int(root, "Uncorrectable Read Count", le64_to_cpu(perf->uncorr_read_count));
	json_object_add_value_int(root, "Soft ECC Error Count",	le64_to_cpu(perf->ecc_error_count));
	json_object_add_value_int(root, "SSD End to End Detected Correction Count",
			le32_to_cpu(perf->ssd_detect_count));
	json_object_add_value_int(root, "SSD End to End Corrected Correction Count",
			le32_to_cpu(perf->ssd_correct_count));
	json_object_add_value_int(root, "System Data Percent Used",
			perf->data_percent_used);
	json_object_add_value_int(root, "User Data Erase Counts Max",
			le32_to_cpu(perf->data_erase_max));
	json_object_add_value_int(root, "User Data Erase Counts Min",
			le32_to_cpu(perf->data_erase_min));
	json_object_add_value_int(root, "Refresh Count", le64_to_cpu(perf->refresh_count));

	converted = le64_to_cpu(perf->program_fail);
	json_object_add_value_int(root, "Program Fail Count (Normalized)",
			converted & 0xFFFF);
	json_object_add_value_int(root, "Program Fail Count (Raw)",
			converted >> 16);

	converted = le64_to_cpu(perf->user_erase_fail);
	json_object_add_value_int(root, "User Data Erase Fail Count (Normalized)",
			converted & 0xFFFF);
	json_object_add_value_int(root, "User Data Erase Fail Count (Raw)",
			converted >> 16);

	converted = le64_to_cpu(perf->system_erase_fail);
	json_object_add_value_int(root, "System Area Erase Fail Count (Normalized)",
			converted & 0xFFFF);
	json_object_add_value_int(root, "System Area Erase Fail Count (Raw)",
			converted >> 16);

	json_object_add_value_int(root, "Thermal Throttling Status",
			perf->thermal_throttle_status);
	json_object_add_value_int(root, "Thermal Throttling Count",
			perf->thermal_throttle_count);
	json_object_add_value_int(root, "PCIe Correctable Error", le64_to_cpu(perf->pcie_corr_error));
	json_object_add_value_int(root, "Incomplete Shutdown Counte", le32_to_cpu(perf->incomplete_shutdown_count));
	json_object_add_value_int(root, "Percent Free Blocks", perf->percent_free_blocks);
	json_print_object(root, NULL);
	printf("\n");
	json_free_object(root);
}

static void wdc_print_bd_ca_log_normal(void *data)
{
	struct wdc_bd_ca_log_format *bd_data = (struct wdc_bd_ca_log_format *)data;
	__u64 *raw;
	__u16 *word_raw1, *word_raw2, *word_raw3;
	__u32  *dword_raw;
	__u8  *byte_raw;

	if (bd_data->field_id == 0x00) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("Additional Smart Log for NVME device:%s namespace-id:%x\n",
			devicename, WDC_DE_GLOBAL_NSID);
		printf("key                               normalized raw\n");
        printf("program_fail_count              : %3"PRIu8"%%       %"PRIu64"\n",
				bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x01) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("erase_fail_count                : %3"PRIu8"%%       %"PRIu64"\n",
				bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x02) {
		word_raw1 = (__u16*)&bd_data->raw_value[1];
		word_raw2 = (__u16*)&bd_data->raw_value[3];
		word_raw3 = (__u16*)&bd_data->raw_value[5];
		printf("wear_leveling                   : %3"PRIu8"%%       min: %"PRIu16", max: %"PRIu16", avg: %"PRIu16"\n",
				bd_data->normalized_value,
				le16_to_cpu(*word_raw1),
				le16_to_cpu(*word_raw2),
				le16_to_cpu(*word_raw3));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x03) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("end_to_end_error_detection_count: %3"PRIu8"%%       %"PRIu64"\n",
				bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x04) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("crc_error_count                 : %3"PRIu8"%%       %"PRIu64"\n",
			   bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x05) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("timed_workload_media_wear       : %3"PRIu8"%%       %-.3f%%\n",
			   bd_data->normalized_value, 
			   safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 1024.0));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x06) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("timed_workload_host_reads       : %3"PRIu8"%%       %"PRIu64"%%\n",
			   bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x07) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("timed_workload_timer            : %3"PRIu8"%%       %"PRIu64"\n",
			   bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x08) {
		byte_raw = (__u8*)&bd_data->raw_value[1];
		dword_raw = (__u32*)&bd_data->raw_value[2];
		printf("thermal_throttle_status         : %3"PRIu8"%%       %"PRIu16"%%, cnt: %"PRIu16"\n",
				bd_data->normalized_value, *byte_raw, le32_to_cpu(*dword_raw));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x09) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("retry_buffer_overflow_count     : %3"PRIu8"%%       %"PRIu64"\n",
			   bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x0A) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("pll_lock_loss_count             : %3"PRIu8"%%       %"PRIu64"\n",
			   bd_data->normalized_value, le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x0B) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("nand_bytes_written              : %3"PRIu8"%%       sectors: %.f\n",
			   bd_data->normalized_value, safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x0C) {
		raw = (__u64*)&bd_data->raw_value[0];
		printf("host_bytes_written              : %3"PRIu8"%%       sectors: %.f\n",
			   bd_data->normalized_value, safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
	} else {
		goto invalid_id;
	}

	goto done;

	invalid_id:
		printf("  Invalid Field ID = %d\n", bd_data->field_id);

	done:
		return;

}

static void wdc_print_bd_ca_log_json(void *data)
{
	struct wdc_bd_ca_log_format *bd_data = (struct wdc_bd_ca_log_format *)data;
	__u64 *raw;
	__u16 *word_raw;
	__u32  *dword_raw;
	__u8  *byte_raw;
	struct json_object *root;

	root = json_create_object();
	if (bd_data->field_id == 0x00) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "program_fail_count normalized",
				bd_data->normalized_value);
		json_object_add_value_int(root, "program_fail_count raw",
				le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x01) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "erase_fail_count normalized",
				bd_data->normalized_value);
		json_object_add_value_int(root, "erase_fail_count raw",
				le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x02) {
		word_raw = (__u16*)&bd_data->raw_value[1];
		json_object_add_value_int(root, "wear_leveling normalized",	bd_data->normalized_value);
		json_object_add_value_int(root, "wear_leveling min", le16_to_cpu(*word_raw));
		word_raw = (__u16*)&bd_data->raw_value[3];
		json_object_add_value_int(root, "wear_leveling max", le16_to_cpu(*word_raw));
		word_raw = (__u16*)&bd_data->raw_value[5];
		json_object_add_value_int(root, "wear_leveling avg", le16_to_cpu(*word_raw));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x03) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "end_to_end_error_detection_count normalized",
				bd_data->normalized_value);
		json_object_add_value_int(root, "end_to_end_error_detection_count raw",
				le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x04) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "crc_error_count normalized",
				bd_data->normalized_value);
		json_object_add_value_int(root, "crc_error_count raw",
				le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x05) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "timed_workload_media_wear normalized",
				bd_data->normalized_value);
		json_object_add_value_double(root, "timed_workload_media_wear raw",
				safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 1024.0));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x06) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "timed_workload_host_reads normalized",
				bd_data->normalized_value);
		json_object_add_value_int(root, "timed_workload_host_reads raw",
				le64_to_cpu(*raw & 0x00000000000000FF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x07) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "timed_workload_timer normalized",
				bd_data->normalized_value);
		json_object_add_value_int(root, "timed_workload_timer",
				le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x08) {
		byte_raw = (__u8*)&bd_data->raw_value[1];
		json_object_add_value_int(root, "thermal_throttle_status normalized",
				bd_data->normalized_value);
		json_object_add_value_int(root, "thermal_throttle_status", *byte_raw);
		dword_raw = (__u32*)&bd_data->raw_value[2];
		json_object_add_value_int(root, "thermal_throttle_cnt",	le32_to_cpu(*dword_raw));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x09) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "retry_buffer_overflow_count normalized",
				bd_data->normalized_value);
		json_object_add_value_int(root, "retry_buffer_overflow_count raw",
				le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x0A) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "pll_lock_loss_count normalized",
				bd_data->normalized_value);
		json_object_add_value_int(root, "pll_lock_loss_count raw",
				le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x0B) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "nand_bytes_written normalized",
				bd_data->normalized_value);
		json_object_add_value_double(root, "nand_bytes_written raw",
				safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
	} else {
		goto invalid_id;
	}
	bd_data++;
	if (bd_data->field_id == 0x0C) {
		raw = (__u64*)&bd_data->raw_value[0];
		json_object_add_value_int(root, "host_bytes_written normalized",
				bd_data->normalized_value);
		json_object_add_value_double(root, "host_bytes_written raw",
				safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF));
	} else {
		goto invalid_id;
	}

	goto done;

 invalid_id:
	printf("  Invalid Field ID = %d\n", bd_data->field_id);

 done:
	json_print_object(root, NULL);
	printf("\n");
	json_free_object(root);

	return;

}

static void wdc_print_d0_log_normal(struct wdc_ssd_d0_smart_log *perf)
{
	printf("  D0 Smart Log Page Statistics :- \n");
	printf("  Lifetime Reallocated Erase Block Count	 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_realloc_erase_block_count));
	printf("  Lifetime Power on Hours			 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_power_on_hours));
	printf("  Lifetime UECC Count	                         %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_uecc_count));
	printf("  Lifetime Write Amplification Factor	         %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_wrt_amp_factor));
	printf("  Trailing Hour Write Amplification Factor  	 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->trailing_hr_wrt_amp_factor));
	printf("  Reserve Erase Block Count	                 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->reserve_erase_block_count));
	printf("  Lifetime Program Fail Count	     	         %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_program_fail_count));
	printf("  Lifetime Block Erase Fail Count		 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_block_erase_fail_count));
	printf("  Lifetime Die Failure Count	                 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_die_failure_count));
	printf("  Lifetime Link Rate Downgrade Count	         %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_link_rate_downgrade_count));
	printf("  Lifetime Clean Shutdown Count on Power Loss	 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_clean_shutdown_count));
	printf("  Lifetime Unclean Shutdowns on Power Loss	 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_unclean_shutdown_count));
	printf("  Current Temperature 	                         %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->current_temp));
	printf("  Max Recorded Temperature			 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->max_recorded_temp));
	printf("  Lifetime Retired Block Count	                 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_retired_block_count));
	printf("  Lifetime Read Disturb Reallocation Events	 %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_read_disturb_realloc_events));
	printf("  Lifetime NAND Writes	                         %20"PRIu64"\n",
			le64_to_cpu(perf->lifetime_nand_writes));
	printf("  Capacitor Health			 	 %20"PRIu32"%%\n",
			(uint32_t)le32_to_cpu(perf->capacitor_health));
	printf("  Lifetime User Writes	                         %20"PRIu64"\n",
			le64_to_cpu(perf->lifetime_user_writes));
	printf("  Lifetime User Reads	                         %20"PRIu64"\n",
			le64_to_cpu(perf->lifetime_user_reads));
	printf("  Lifetime Thermal Throttle Activations	         %20"PRIu32"\n",
			(uint32_t)le32_to_cpu(perf->lifetime_thermal_throttle_act));
	printf("  Percentage of P/E Cycles Remaining             %20"PRIu32"%%\n",
			(uint32_t)le32_to_cpu(perf->percentage_pe_cycles_remaining));
}

static void wdc_print_d0_log_json(struct wdc_ssd_d0_smart_log *perf)
{
	struct json_object *root;

	root = json_create_object();
	json_object_add_value_int(root, "Lifetime Reallocated Erase Block Count",
			le32_to_cpu(perf->lifetime_realloc_erase_block_count));
	json_object_add_value_int(root, "Lifetime Power on Hours",
			le32_to_cpu(perf->lifetime_power_on_hours));
	json_object_add_value_int(root, "Lifetime UECC Count",
			le32_to_cpu(perf->lifetime_uecc_count));
	json_object_add_value_int(root, "Lifetime Write Amplification Factor",
			le32_to_cpu(perf->lifetime_wrt_amp_factor));
	json_object_add_value_int(root, "Trailing Hour Write Amplification Factor",
			le32_to_cpu(perf->trailing_hr_wrt_amp_factor));
	json_object_add_value_int(root, "Reserve Erase Block Count",
			le32_to_cpu(perf->reserve_erase_block_count));
	json_object_add_value_int(root, "Lifetime Program Fail Count",
			le32_to_cpu(perf->lifetime_program_fail_count));
	json_object_add_value_int(root, "Lifetime Block Erase Fail Count",
			le32_to_cpu(perf->lifetime_block_erase_fail_count));
	json_object_add_value_int(root, "Lifetime Die Failure Count",
			le32_to_cpu(perf->lifetime_die_failure_count));
	json_object_add_value_int(root, "Lifetime Link Rate Downgrade Count",
			le32_to_cpu(perf->lifetime_link_rate_downgrade_count));
	json_object_add_value_int(root, "Lifetime Clean Shutdown Count on Power Loss",
			le32_to_cpu(perf->lifetime_clean_shutdown_count));
	json_object_add_value_int(root, "Lifetime Unclean Shutdowns on Power Loss",
			le32_to_cpu(perf->lifetime_unclean_shutdown_count));
	json_object_add_value_int(root, "Current Temperature",
			le32_to_cpu(perf->current_temp));
	json_object_add_value_int(root, "Max Recorded Temperature",
			le32_to_cpu(perf->max_recorded_temp));
	json_object_add_value_int(root, "Lifetime Retired Block Count",
			le32_to_cpu(perf->lifetime_retired_block_count));
	json_object_add_value_int(root, "Lifetime Read Disturb Reallocation Events",
			le32_to_cpu(perf->lifetime_read_disturb_realloc_events));
	json_object_add_value_int(root, "Lifetime NAND Writes",
			le64_to_cpu(perf->lifetime_nand_writes));
	json_object_add_value_int(root, "Capacitor Health",
			le32_to_cpu(perf->capacitor_health));
	json_object_add_value_int(root, "Lifetime User Writes",
			le64_to_cpu(perf->lifetime_user_writes));
	json_object_add_value_int(root, "Lifetime User Reads",
			le64_to_cpu(perf->lifetime_user_reads));
	json_object_add_value_int(root, "Lifetime Thermal Throttle Activations",
			le32_to_cpu(perf->lifetime_thermal_throttle_act));
	json_object_add_value_int(root, "Percentage of P/E Cycles Remaining",
			le32_to_cpu(perf->percentage_pe_cycles_remaining));

	json_print_object(root, NULL);
	printf("\n");
	json_free_object(root);
}

static void wdc_get_commit_action_bin(__u8 commit_action_type, char *action_bin)
{

	switch (commit_action_type)
	{
	case(0):
		strcpy(action_bin, "000b");
		break;
	case(1):
		strcpy(action_bin, "001b");
        break;
	case(2):
		strcpy(action_bin, "010b");
    	break;
	case(3):
		strcpy(action_bin, "011b");
    	break;
	case(4):
		strcpy(action_bin, "100b");
	    break;
	case(5):
		strcpy(action_bin, "101b");
	    break;
	case(6):
		strcpy(action_bin, "110b");
	    break;
	case(7):
        strcpy(action_bin, "111b");
    	break;
	default:
		strcpy(action_bin, "INVALID");
	}

}

static void wdc_print_fw_act_history_log_normal(__u8 *data, int num_entries, __u32 cust_id, __u32 vendor_id)
{
	int i, j;
	char previous_fw[9];
	char new_fw[9];
	char commit_action_bin[8];
	char time_str[11];
	__u16 oldestEntryIdx = 0, entryIdx = 0;
	char *null_fw = "--------";
	memset((void *)time_str, 0, 11);

	if (data[0] == WDC_NVME_GET_FW_ACT_HISTORY_C2_LOG_ID) {
		printf("  Firmware Activate History Log \n");
		if (cust_id == WDC_CUSTOMER_ID_0x1005 || vendor_id == WDC_NVME_SNDK_VID) {
			printf("           Power on Hour       Power Cycle     Previous    New                               \n");
			printf("  Entry      hh:mm:ss             Count        Firmware    Firmware    Slot   Action  Result \n");
			printf("  -----  -----------------  -----------------  ---------   ---------   -----  ------  -------\n");
		} else {
			printf("                               Power Cycle     Previous    New                               \n");
			printf("  Entry      Timestamp            Count        Firmware    Firmware    Slot   Action  Result \n");
			printf("  -----  -----------------  -----------------  ---------   ---------   -----  ------  -------\n");
		}

		struct wdc_fw_act_history_log_format_c2 *fw_act_history_entry = (struct wdc_fw_act_history_log_format_c2 *)(data);

		oldestEntryIdx = WDC_MAX_NUM_ACT_HIST_ENTRIES;
		if (num_entries == WDC_MAX_NUM_ACT_HIST_ENTRIES) {
			/* find lowest/oldest entry */
			for (i = 0; i < num_entries; i++) {
				j = (i+1 == WDC_MAX_NUM_ACT_HIST_ENTRIES) ? 0 : i+1;
				if (le16_to_cpu(fw_act_history_entry->entry[i].fw_act_hist_entries) >
						le16_to_cpu(fw_act_history_entry->entry[j].fw_act_hist_entries)) {
					oldestEntryIdx = j;
					break;
				}
			}
		}
		if (oldestEntryIdx == WDC_MAX_NUM_ACT_HIST_ENTRIES)
			entryIdx = 0;
		else
			entryIdx = oldestEntryIdx;

		for (i = 0; i < num_entries; i++) {
			memset((void *)previous_fw, 0, 9);
			memset((void *)new_fw, 0, 9);
			memset((void *)commit_action_bin, 0, 8);

			memcpy(previous_fw, (char *)&(fw_act_history_entry->entry[entryIdx].previous_fw_version), 8);
			if (strlen((char *)&(fw_act_history_entry->entry[entryIdx].current_fw_version)) > 1)
				memcpy(new_fw, (char *)&(fw_act_history_entry->entry[entryIdx].current_fw_version), 8);
			else
				memcpy(new_fw, null_fw, 8);

			printf("%5"PRIu16"", (uint16_t)le16_to_cpu(fw_act_history_entry->entry[entryIdx].fw_act_hist_entries));
			if (cust_id == WDC_CUSTOMER_ID_0x1005) {
				printf("       ");
				memset((void *)time_str, 0, 9);
				sprintf((char *)time_str, "%04d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp)/3600),
						(int)((le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp%3600)/60)),
						(int)(le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp%60)));

				printf("%s", time_str);
				printf("     ");
			} else if(vendor_id == WDC_NVME_SNDK_VID) {
				printf("       ");
				uint64_t timestamp = (0x0000FFFFFFFFFFFF & le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp));
				memset((void *)time_str, 0, 9);
				sprintf((char *)time_str, "%04d:%02d:%02d", (int)((timestamp/(3600*1000))%24), (int)((timestamp/(1000*60))%60),
						(int)((timestamp/1000)%60));
				printf("%s", time_str);
				printf("     ");
			} else {
				printf("   ");
				uint64_t timestamp = (0x0000FFFFFFFFFFFF & le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp));
				printf("%16"PRIu64"", timestamp);
				printf("   ");
			}

			printf("%16"PRIu64"", (uint64_t)le64_to_cpu(fw_act_history_entry->entry[entryIdx].power_cycle_count));
			printf("     ");
			printf("%s", (char *)previous_fw);
			printf("    ");
			printf("%s", (char *)new_fw);
			printf("     ");
			printf("%2"PRIu8"", (uint8_t)fw_act_history_entry->entry[entryIdx].slot_number);
			printf("   ");
			wdc_get_commit_action_bin(fw_act_history_entry->entry[entryIdx].commit_action_type,(char *)&commit_action_bin);
			printf("  %s", (char *)commit_action_bin);
			printf("  ");
			if (le16_to_cpu(fw_act_history_entry->entry[entryIdx].result) == 0)
				printf("pass");
			else
				printf("fail #%d", (uint16_t)le16_to_cpu(fw_act_history_entry->entry[entryIdx].result));
			printf("\n");

			entryIdx++;
			if (entryIdx >= WDC_MAX_NUM_ACT_HIST_ENTRIES)
				entryIdx = 0;
		}
	}
	else
	{
		printf("  Firmware Activate History Log \n");
		printf("         Power on Hour   Power Cycle           Previous    New                               \n");
		printf("  Entry    hh:mm:ss      Count                 Firmware    Firmware    Slot   Action  Result \n");
		printf("  -----  --------------  --------------------  ----------  ----------  -----  ------  -------\n");

		struct wdc_fw_act_history_log_entry *fw_act_history_entry = (struct wdc_fw_act_history_log_entry *)(data + sizeof(struct wdc_fw_act_history_log_hdr));

		oldestEntryIdx = WDC_MAX_NUM_ACT_HIST_ENTRIES;
		if (num_entries == WDC_MAX_NUM_ACT_HIST_ENTRIES) {
			/* find lowest/oldest entry */
			for (i = 0; i < num_entries; i++) {
				if (le32_to_cpu(fw_act_history_entry[i].entry_num) > le32_to_cpu(fw_act_history_entry[i+1].entry_num)) {
					oldestEntryIdx = i+1;
					break;
				}
			}
		}

		if (oldestEntryIdx == WDC_MAX_NUM_ACT_HIST_ENTRIES)
			entryIdx = 0;
		else
			entryIdx = oldestEntryIdx;

		for (i = 0; i < num_entries; i++) {
			memset((void *)previous_fw, 0, 9);
			memset((void *)new_fw, 0, 9);
			memset((void *)commit_action_bin, 0, 8);

			memcpy(previous_fw, (char *)&(fw_act_history_entry[entryIdx].previous_fw_version), 8);
			if (strlen((char *)&(fw_act_history_entry[entryIdx].new_fw_version)) > 1)
				memcpy(new_fw, (char *)&(fw_act_history_entry[entryIdx].new_fw_version), 8);
			else
				memcpy(new_fw, null_fw, 8);

			printf("%5"PRIu32"", (uint32_t)le32_to_cpu(fw_act_history_entry[entryIdx].entry_num));
			printf("      ");
			printf("%04d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)/3600),
					(int)((le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)%3600)/60),
					(int)(le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)%60));
			printf("      ");
			printf("%16"PRIu32"", (uint32_t)le32_to_cpu(fw_act_history_entry[entryIdx].power_cycle_count));
			printf("     ");
			printf("%s", (char *)previous_fw);
			printf("    ");
			printf("%s", (char *)new_fw);
			printf("     ");
			printf("%2"PRIu8"", (uint8_t)fw_act_history_entry[entryIdx].slot_number);
			printf("  ");
			wdc_get_commit_action_bin(fw_act_history_entry[entryIdx].commit_action_type,(char *)&commit_action_bin);
			printf("  %s", (char *)commit_action_bin);
			printf("   ");
			if (le16_to_cpu(fw_act_history_entry[entryIdx].result) == 0)
				printf("pass");
			else
				printf("fail #%d", (uint16_t)le16_to_cpu(fw_act_history_entry[entryIdx].result));

			printf("\n");

			entryIdx++;
			if (entryIdx >= WDC_MAX_NUM_ACT_HIST_ENTRIES)
				entryIdx = 0;
		}
	}
}

static void wdc_print_fw_act_history_log_json(__u8 *data, int num_entries, __u32 cust_id, __u32 vendor_id)
{
	struct json_object *root;
	int i, j;
	char previous_fw[9];
	char new_fw[9];
	char commit_action_bin[8];
	char fail_str[32];
	char time_str[11];
	memset((void *)previous_fw, 0, 9);
	memset((void *)new_fw, 0, 9);
	memset((void *)commit_action_bin, 0, 8);
	memset((void *)time_str, 0, 11);
	memset((void *)fail_str, 0, 11);
	char *null_fw = "--------";
	__u16 oldestEntryIdx = 0, entryIdx = 0;

	root = json_create_object();

	if(data[0] == WDC_NVME_GET_FW_ACT_HISTORY_C2_LOG_ID) {
		struct wdc_fw_act_history_log_format_c2 *fw_act_history_entry = (struct wdc_fw_act_history_log_format_c2 *)(data);

		oldestEntryIdx = WDC_MAX_NUM_ACT_HIST_ENTRIES;
		if (num_entries == WDC_MAX_NUM_ACT_HIST_ENTRIES) {
			/* find lowest/oldest entry */
			for (i = 0; i < num_entries; i++) {
				j = (i+1 == WDC_MAX_NUM_ACT_HIST_ENTRIES) ? 0 : i+1;
				if (le16_to_cpu(fw_act_history_entry->entry[i].fw_act_hist_entries) >
						le16_to_cpu(fw_act_history_entry->entry[j].fw_act_hist_entries)) {
					oldestEntryIdx = j;
					break;
				}
			}
		}
		if (oldestEntryIdx == WDC_MAX_NUM_ACT_HIST_ENTRIES)
			entryIdx = 0;
		else
			entryIdx = oldestEntryIdx;

		for (i = 0; i < num_entries; i++) {
			memcpy(previous_fw, (char *)&(fw_act_history_entry->entry[entryIdx].previous_fw_version), 8);
			if (strlen((char *)&(fw_act_history_entry->entry[entryIdx].current_fw_version)) > 1)
			    memcpy(new_fw, (char *)&(fw_act_history_entry->entry[entryIdx].current_fw_version), 8);
			else
				memcpy(new_fw, null_fw, 8);

			json_object_add_value_int(root, "Entry",
				le16_to_cpu(fw_act_history_entry->entry[entryIdx].fw_act_hist_entries));

			if (cust_id == WDC_CUSTOMER_ID_0x1005) {
				sprintf((char *)time_str, "%04d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp)/3600),
						(int)((le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp%3600)/60)),
						(int)(le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp%60)));

				json_object_add_value_string(root, "Power on Hour", time_str);

			} else if (vendor_id == WDC_NVME_SNDK_VID) {
				uint64_t timestamp = (0x0000FFFFFFFFFFFF & le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp));
				sprintf((char *)time_str, "%04d:%02d:%02d", (int)((timestamp/(3600*1000))%24), (int)((timestamp/(1000*60))%60),
						(int)((timestamp/1000)%60));
				json_object_add_value_string(root, "Power on Hour", time_str);
			} else {
				uint64_t timestamp = (0x0000FFFFFFFFFFFF & le64_to_cpu(fw_act_history_entry->entry[entryIdx].timestamp));
				json_object_add_value_int(root, "Timestamp", timestamp);
			}

			json_object_add_value_int(root, "Power Cycle Count",
				le64_to_cpu(fw_act_history_entry->entry[entryIdx].power_cycle_count));
			json_object_add_value_string(root, "Previous Firmware",
					previous_fw);
			json_object_add_value_string(root, "New Firmware",
					new_fw);
			json_object_add_value_int(root, "Slot",
				fw_act_history_entry->entry[entryIdx].slot_number);

			wdc_get_commit_action_bin(fw_act_history_entry->entry[entryIdx].commit_action_type,(char *)&commit_action_bin);
			json_object_add_value_string(root, "Action", commit_action_bin);

			if (le16_to_cpu(fw_act_history_entry->entry[entryIdx].result) == 0)
				json_object_add_value_string(root, "Result", "pass");
			else {
				sprintf((char *)fail_str, "fail #%d", (int)(le16_to_cpu(fw_act_history_entry->entry[entryIdx].result)));
				json_object_add_value_string(root, "Result", fail_str);
			}

			entryIdx++;
			if (entryIdx >= WDC_MAX_NUM_ACT_HIST_ENTRIES)
				entryIdx = 0;
		}
	}
	else {
		struct wdc_fw_act_history_log_entry *fw_act_history_entry = (struct wdc_fw_act_history_log_entry *)(data + sizeof(struct wdc_fw_act_history_log_hdr));

		oldestEntryIdx = WDC_MAX_NUM_ACT_HIST_ENTRIES;
		if (num_entries == WDC_MAX_NUM_ACT_HIST_ENTRIES) {
			/* find lowest/oldest entry */
			for (i = 0; i < num_entries; i++) {
				if (le32_to_cpu(fw_act_history_entry[i].entry_num) > le32_to_cpu(fw_act_history_entry[i+1].entry_num)) {
					oldestEntryIdx = i+1;
					break;
				}
			}
		}
		if (oldestEntryIdx == WDC_MAX_NUM_ACT_HIST_ENTRIES)
			entryIdx = 0;
		else
			entryIdx = oldestEntryIdx;

		for (i = 0; i < num_entries; i++) {
			memcpy(previous_fw, (char *)&(fw_act_history_entry[entryIdx].previous_fw_version), 8);
			if (strlen((char *)&(fw_act_history_entry[entryIdx].new_fw_version)) > 1)
			    memcpy(new_fw, (char *)&(fw_act_history_entry[entryIdx].new_fw_version), 8);
			else
				memcpy(new_fw, null_fw, 8);

			json_object_add_value_int(root, "Entry",
				le32_to_cpu(fw_act_history_entry[entryIdx].entry_num));

			sprintf((char *)time_str, "%04d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)/3600),
					(int)((le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)%3600)/60),
					(int)(le64_to_cpu(fw_act_history_entry[entryIdx].power_on_seconds)%60));
			json_object_add_value_string(root, "Power on Hour", time_str);

			json_object_add_value_int(root, "Power Cycle Count",
				le32_to_cpu(fw_act_history_entry[entryIdx].power_cycle_count));
			json_object_add_value_string(root, "Previous Firmware",
					previous_fw);
			json_object_add_value_string(root, "New Firmware",
					new_fw);
			json_object_add_value_int(root, "Slot",
				fw_act_history_entry[entryIdx].slot_number);

			wdc_get_commit_action_bin(fw_act_history_entry[entryIdx].commit_action_type,(char *)&commit_action_bin);
			json_object_add_value_string(root, "Action", commit_action_bin);

			if (le16_to_cpu(fw_act_history_entry[entryIdx].result) == 0)
				json_object_add_value_string(root, "Result", "pass");
			else {
				sprintf((char *)fail_str, "fail #%d", (int)(le16_to_cpu(fw_act_history_entry[entryIdx].result)));
				json_object_add_value_string(root, "Result", fail_str);
			}

			entryIdx++;
			if (entryIdx >= WDC_MAX_NUM_ACT_HIST_ENTRIES)
				entryIdx = 0;
		}
	}

	json_print_object(root, NULL);
	printf("\n");

	json_free_object(root);
}

static int nvme_get_ext_smart_cloud_log(int fd, __u8 **data, int uuid_index, __u32 namespace_id)
{
	int ret, i;
	__u8 *log_ptr = NULL;

	if ((log_ptr = (__u8*) malloc(sizeof (__u8) * WDC_NVME_SMART_CLOUD_ATTR_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}

	/* Get the 0xC0 log data */
	struct nvme_get_log_args args = {
		.args_size	= sizeof(args),
		.fd			= fd,
		.lid		= WDC_NVME_GET_EOL_STATUS_LOG_OPCODE,
		.nsid		= namespace_id,
		.lpo		= 0,
		.lsp		= NVME_LOG_LSP_NONE,
		.lsi		= 0,
		.rae		= false,
		.uuidx		= uuid_index,
		.csi		= NVME_CSI_NVM,
		.ot			= false,
		.len		= WDC_NVME_SMART_CLOUD_ATTR_LEN,
		.log		= log_ptr,
		.timeout	= NVME_DEFAULT_IOCTL_TIMEOUT,
		.result		= NULL,
	};
	ret = nvme_get_log(&args);

	if (ret == 0) {

		/* Verify GUID matches */
		for (i = 0; i < WDC_C0_GUID_LENGTH; i++) {
			if (ext_smart_guid[i] != *&log_ptr[SCAO_V1_LPG + i])	{
				fprintf(stderr, "ERROR : WDC : Unknown GUID in C0 Log Page V1 data\n");
				int j;
				fprintf(stderr, "ERROR : WDC : Expected GUID:  0x");
				for (j = 0; j < WDC_C0_GUID_LENGTH; j++) {
					fprintf(stderr, "%x", ext_smart_guid[j]);
				}
				fprintf(stderr, "\nERROR : WDC : Actual GUID:    0x");
				for (j = 0; j < WDC_C0_GUID_LENGTH; j++) {
					fprintf(stderr, "%x", *&log_ptr[SCAO_V1_LPG + j]);
				}
				fprintf(stderr, "\n");

				ret = -1;
				break;
			}
		}
	}

	*data = log_ptr;

	return ret;
}


static int nvme_get_hw_rev_log(int fd, __u8 **data, int uuid_index, __u32 namespace_id)
{
	int ret, i;
	wdc_nvme_hw_rev_log *log_ptr = NULL;

	if ((log_ptr = (wdc_nvme_hw_rev_log *)malloc(sizeof (__u8) * WDC_NVME_HW_REV_LOG_PAGE_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}

	/* Get the 0xC0 log data */
	struct nvme_get_log_args args = {
		.args_size	= sizeof(args),
		.fd			= fd,
		.lid		= WDC_NVME_GET_HW_REV_LOG_OPCODE,
		.nsid		= namespace_id,
		.lpo		= 0,
		.lsp		= NVME_LOG_LSP_NONE,
		.lsi		= 0,
		.rae		= false,
		.uuidx		= uuid_index,
		.csi		= NVME_CSI_NVM,
		.ot			= false,
		.len		= WDC_NVME_HW_REV_LOG_PAGE_LEN,
		.log		= log_ptr,
		.timeout	= NVME_DEFAULT_IOCTL_TIMEOUT,
		.result		= NULL,
	};
	ret = nvme_get_log(&args);

	if (ret == 0) {

		/* Verify GUID matches */
		for (i = 0; i < WDC_NVME_C6_GUID_LENGTH; i++) {
			if (hw_rev_log_guid[i] != log_ptr->hw_rev_guid[i])	{
				fprintf(stderr, "ERROR : WDC : Unknown GUID in HW Revision Log Page data\n");
				int j;
				fprintf(stderr, "ERROR : WDC : Expected GUID:  0x");
				for (j = 0; j < WDC_NVME_C6_GUID_LENGTH; j++) {
					fprintf(stderr, "%x", hw_rev_log_guid[j]);
				}
				fprintf(stderr, "\nERROR : WDC : Actual GUID:    0x");
				for (j = 0; j < WDC_NVME_C6_GUID_LENGTH; j++) {
					fprintf(stderr, "%x", log_ptr->hw_rev_guid[j]);
				}
				fprintf(stderr, "\n");

				ret = -1;
				break;
			}
		}
	}

	*data = (__u8 *)log_ptr;

	return ret;
}


static void wdc_print_hw_rev_log_normal(void *data)
{
	int i;
	wdc_nvme_hw_rev_log *log_data = (wdc_nvme_hw_rev_log *)data;

	printf("  Hardware Revision Log:- \n");

	printf("  Global Device HW Revision		: %d\n",
			log_data->hw_rev_gdr);
	printf("  ASIC HW Revision			: %d\n",
			log_data->hw_rev_ar);
	printf("  PCB Manufacturer Code			: %d\n",
			log_data->hw_rev_pbc_mc);
	printf("  DRAM Manufacturer Code		: %d\n",
			log_data->hw_rev_dram_mc);
	printf("  NAND Manufacturer Code		: %d\n",
			log_data->hw_rev_nand_mc);
	printf("  PMIC 1 Manufacturer Code		: %d\n",
			log_data->hw_rev_pmic1_mc);
	printf("  PMIC 2 Manufacturer Code		: %d\n",
			log_data->hw_rev_pmic2_mc);
	printf("  Other Component 1 Manf Code		: %d\n",
			log_data->hw_rev_c1_mc);
	printf("  Other Component 2 Manf Code		: %d\n",
			log_data->hw_rev_c2_mc);
	printf("  Other Component 3 Manf Code		: %d\n",
			log_data->hw_rev_c3_mc);
	printf("  Other Component 4 Manf Code		: %d\n",
			log_data->hw_rev_c4_mc);
	printf("  Other Component 5 Manf Code		: %d\n",
			log_data->hw_rev_c5_mc);
	printf("  Other Component 6 Manf Code		: %d\n",
			log_data->hw_rev_c6_mc);
	printf("  Other Component 7 Manf Code		: %d\n",
			log_data->hw_rev_c7_mc);
	printf("  Other Component 8 Manf Code		: %d\n",
			log_data->hw_rev_c8_mc);
	printf("  Other Component 9 Manf Code		: %d\n",
			log_data->hw_rev_c9_mc);

	printf("  Device Manf Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_dev_mdi[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  ASIC Detailed Info			: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_asic_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  PCB Detailed Info			: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_pcb_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  DRAM Detailed Info			: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_dram_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  NAND Detailed Info			: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_nand_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  PMIC 1 Detailed Info			: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_pmic1_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  PMIC 2 Detailed Info			: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_pmic2_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Component 1 Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_c1_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Component 2 Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_c2_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Component 3 Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_c3_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Component 4 Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_c4_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Component 5 Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_c5_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Component 6 Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_c6_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Component 7 Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_c7_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Component 8 Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_c8_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Component 9 Detailed Info		: 0x");
	for (i = 0; i < 16; i++) {
		printf("%02x", log_data->hw_rev_c9_di[i]);
		if (i == 7)
			printf(" 0x");
	}
	printf("\n");
	printf("  Serial Number  	           	: 0x");
	for (i = 0; i < 32; i++) {
		if ((i > 1) & !(i % 8))
			printf(" 0x");
		printf("%02x", log_data->hw_rev_sn[i]);
	}
	printf("\n");

	printf("  Log Page Version           		: %d\n",
			log_data->hw_rev_version);
	printf("  Log page GUID				: 0x");
	printf("%"PRIx64"%"PRIx64"\n",le64_to_cpu(*(uint64_t *)&log_data->hw_rev_guid[8]),
			le64_to_cpu(*(uint64_t *)&log_data->hw_rev_guid[0]));
	printf("\n");
}

static void wdc_print_hw_rev_log_json(void *data)
{
	wdc_nvme_hw_rev_log *log_data = (wdc_nvme_hw_rev_log *)data;
	struct json_object *root;
	char json_data[80];

	root = json_create_object();
	json_object_add_value_uint(root, "Global Device HW Revision",
			log_data->hw_rev_gdr);
	json_object_add_value_uint(root, "ASIC HW Revision",
			log_data->hw_rev_ar);
	json_object_add_value_uint(root, "PCB Manufacturer Code",
			log_data->hw_rev_pbc_mc);
	json_object_add_value_uint(root, "DRAM Manufacturer Code",
			log_data->hw_rev_dram_mc);
	json_object_add_value_uint(root, "NAND Manufacturer Code",
			log_data->hw_rev_nand_mc);
	json_object_add_value_uint(root, "PMIC 1 Manufacturer Code",
			log_data->hw_rev_pmic1_mc);
	json_object_add_value_uint(root, "PMIC 2 Manufacturer Code",
			log_data->hw_rev_pmic2_mc);
	json_object_add_value_uint(root, "Other Component 1 Manf Code",
			log_data->hw_rev_c1_mc);
	json_object_add_value_uint(root, "Other Component 2 Manf Code",
			log_data->hw_rev_c2_mc);
	json_object_add_value_uint(root, "Other Component 3 Manf Code",
			log_data->hw_rev_c3_mc);
	json_object_add_value_uint(root, "Other Component 4 Manf Code",
			log_data->hw_rev_c4_mc);
	json_object_add_value_uint(root, "Other Component 5 Manf Code",
			log_data->hw_rev_c5_mc);
	json_object_add_value_uint(root, "Other Component 6 Manf Code",
			log_data->hw_rev_c6_mc);
	json_object_add_value_uint(root, "Other Component 7 Manf Code",
			log_data->hw_rev_c7_mc);
	json_object_add_value_uint(root, "Other Component 8 Manf Code",
			log_data->hw_rev_c8_mc);
	json_object_add_value_uint(root, "Other Component 9 Manf Code",
			log_data->hw_rev_c9_mc);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_dev_mdi[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_dev_mdi[0]));
	json_object_add_value_string(root, "Device Manf Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_asic_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_asic_di[0]));
	json_object_add_value_string(root, "ASIC Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pcb_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pcb_di[0]));
	json_object_add_value_string(root, "PCB Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_dram_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_dram_di[0]));
	json_object_add_value_string(root, "DRAM Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_nand_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_nand_di[0]));
	json_object_add_value_string(root, "NAND Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pmic1_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pmic1_di[0]));
	json_object_add_value_string(root, "PMIC 1 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pmic2_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_pmic2_di[0]));
	json_object_add_value_string(root, "PMIC 2 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c1_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c1_di[0]));
	json_object_add_value_string(root, "Component 1 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c2_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c2_di[0]));
	json_object_add_value_string(root, "Component 2 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c3_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c3_di[0]));
	json_object_add_value_string(root, "Component 3 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c4_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c4_di[0]));
	json_object_add_value_string(root, "Component 4 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c5_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c5_di[0]));
	json_object_add_value_string(root, "Component 5 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c6_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c6_di[0]));
	json_object_add_value_string(root, "Component 6 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c7_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c7_di[0]));
	json_object_add_value_string(root, "Component 7 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c8_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c8_di[0]));
	json_object_add_value_string(root, "Component 8 Detailed Info", json_data);

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c9_di[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_c9_di[0]));
	json_object_add_value_string(root, "Component 9 Detailed Info", json_data);

	memset((void*)json_data, 0, 80);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"%"PRIx64"%"PRIx64"",
			le64_to_cpu(*(uint64_t *)&log_data->hw_rev_sn[0]), le64_to_cpu(*(uint64_t *)&log_data->hw_rev_sn[8]),
			le64_to_cpu(*(uint64_t *)&log_data->hw_rev_sn[16]), le64_to_cpu(*(uint64_t *)&log_data->hw_rev_sn[24]));
	json_object_add_value_string(root, "Serial Number", json_data);

	json_object_add_value_uint(root, "Log Page Version",
			le16_to_cpu(log_data->hw_rev_version));

	memset((void*)json_data, 0, 40);
	sprintf((char*)json_data, "0x%"PRIx64"%"PRIx64"", le64_to_cpu(*(uint64_t *)&log_data->hw_rev_guid[8]),
		le64_to_cpu(*(uint64_t *)&log_data->hw_rev_guid[0]));
	json_object_add_value_string(root, "Log Page GUID", json_data);

	json_print_object(root, NULL);
	printf("\n");
	json_free_object(root);
}

static void wdc_print_ext_smart_cloud_log_normal(void *data, int mask)
{
	int i;
	wdc_nvme_ext_smart_log *ext_smart_log_ptr = (wdc_nvme_ext_smart_log *)data;

	if (mask == WDC_SCA_V1_NAND_STATS)
		printf("  NAND Statistics :- \n");
	else
		printf("  SMART Cloud Attributes :- \n");

	printf("  Physical Media Units Written TLC (Bytes) : %'.0Lf\n",
		int128_to_double(ext_smart_log_ptr->ext_smart_pmuwt));
	printf("  Physical Media Units Written SLC (Bytes) : %'.0Lf\n",
		int128_to_double(ext_smart_log_ptr->ext_smart_pmuws));
	printf("  Bad User NAND Block Count (Normalized) (Int) : %d\n",
			le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_bunbc));
	printf("  Bad User NAND Block Count (Raw) (Int)	: %"PRIu64"\n",
			le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_bunbc & 0xFFFFFFFFFFFF0000));
	printf("  XOR Recovery Count (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_xrc));
	printf("  Uncorrectable Read Error Count (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_urec));
	if (mask == WDC_SCA_V1_ALL) {
		printf("  SSD End to End correction counts (Corrected Errors) (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_eece));
		printf("  SSD End to End correction counts (Detected Errors) (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_eede));
		printf("  SSD End to End correction counts (Uncorrected E2E Errors) (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_eeue));
		printf("  System Data %% life-used : %d %%\n",
			ext_smart_log_ptr->ext_smart_sdpu);
	}
	printf("  User data erase counts (Minimum TLC) (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_mnudec));
	printf("  User data erase counts (Maximum TLC) (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_mxudec));
	printf("  User data erase counts (Minimum SLC) (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_mnec));
	printf("  User data erase counts (Maximum SLC) (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_mxec));
	printf("  User data erase counts (Average SLC) (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_avec));
	printf("  User data erase counts (Average TLC) (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_avudec));
	printf("  Program Fail Count (Normalized) (Int) : %d\n",
			le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_pfc));
	printf("  Program Fail Count (Raw) (Int) : %"PRIu64"\n",
			le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_pfc & 0xFFFFFFFFFFFF0000));
	printf("  Erase Fail Count (Normalized) (Int) : %d\n",
			le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_efc));
	printf("  Erase Fail Count (Raw) (Int) : %"PRIu64"\n",
			le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_efc & 0xFFFFFFFFFFFF0000));
	if (mask == WDC_SCA_V1_ALL) {
		printf("  PCIe Correctable Error Count (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_pcec));
		printf("  %% Free Blocks (User) (Int) : %d %%\n",
			ext_smart_log_ptr->ext_smart_pfbu);
		printf("  Security Version Number (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_svn));
		printf("  %% Free Blocks (System) (Int)	: %d %%\n",
			ext_smart_log_ptr->ext_smart_pfbs);
		printf("  NVMe Stats (# Data Set Management/TRIM Commands Completed) (Int) : %'.0Lf\n",
				int128_to_double(ext_smart_log_ptr->ext_smart_dcc));
		printf("  Total Namespace Utilization (nvme0n1 NUSE) (Bytes) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_tnu));
		printf("  NVMe Stats (# NVMe Format Commands Completed) (Int) : %d\n",
			le16_to_cpu(ext_smart_log_ptr->ext_smart_fcc));
		printf("  Background Back-Pressure Gauge(%%) (Int) : %d\n",
			ext_smart_log_ptr->ext_smart_bbpg);
	}
	printf("  Total # of Soft ECC Error Count (Int)	: %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_seec));
	if (mask == WDC_SCA_V1_ALL) {
		printf("  Total # of Read Refresh Count (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_rfsc));
	}
	printf("  Bad System NAND Block Count (Normalized) (Int) : %d\n",
			le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_bsnbc));
	printf("  Bad System NAND Block Count (Raw) (Int) : %"PRIu64"\n",
			le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_bsnbc & 0xFFFFFFFFFFFF0000));
	printf("  Endurance Estimate (Total Writable Lifetime Bytes) (Bytes) :  %'.0Lf\n",
			int128_to_double(ext_smart_log_ptr->ext_smart_eest));
	if (mask == WDC_SCA_V1_ALL) {
		printf("  Thermal Throttling Status & Count (Number of thermal throttling events) (Int)	: %d\n",
			le16_to_cpu(ext_smart_log_ptr->ext_smart_ttc));
		printf("  Total # Unaligned I/O (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_uio));
	}
	printf("  Total Physical Media Units Read (Bytes) (Int)	:  %'.0Lf\n",
			int128_to_double(ext_smart_log_ptr->ext_smart_pmur));
	if (mask == WDC_SCA_V1_ALL) {
		printf("  Command Timeout (# of READ Commands > 5 Seconds) (Int) : %"PRIu32"\n",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_rtoc));
		printf("  Command Timeout (# of WRITE Commands > 5 Seconds) (Int) : %"PRIu32"\n",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_wtoc));
		printf("  Command Timeout (# of TRIM Commands > 5 Seconds) (Int) : %"PRIu32"\n",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_ttoc));
		printf("  Total PCIe Link Retraining Count (Int) : %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_plrc));
		printf("  Active Power State Change Count (Int)	: %"PRIu64"\n",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_pscc));
	}
	printf("  Cloud Boot SSD Spec Version (Int) : %d.%d.%d.%d\n",
			le16_to_cpu(ext_smart_log_ptr->ext_smart_maj),
			le16_to_cpu(ext_smart_log_ptr->ext_smart_min),
			le16_to_cpu(ext_smart_log_ptr->ext_smart_pt),
			le16_to_cpu(ext_smart_log_ptr->ext_smart_err));
	printf("  Cloud Boot SSD HW Revision (Int) : %d.%d.%d.%d\n",
			0, 0, 0, 0);
	if (mask == WDC_SCA_V1_ALL) {
		printf("  FTL Unit Size	: %"PRIu32"\n",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_ftlus));
		printf("  TCG Ownership Status : %"PRIu32"\n",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_tcgos));
		printf("  Log Page Version (Int) : %d\n",
			le16_to_cpu(ext_smart_log_ptr->ext_smart_lpv));
		printf("  Log page GUID	(Hex) : 0x");
		for (i = WDC_C0_GUID_LENGTH; i > 0; i--)
			printf("%02x", ext_smart_log_ptr->ext_smart_lpg[i-1]);
		printf("\n");
	}
	printf("\n");
}

static void wdc_print_ext_smart_cloud_log_json(void *data, int mask)
{
	wdc_nvme_ext_smart_log *ext_smart_log_ptr = (wdc_nvme_ext_smart_log *)data;
	struct json_object *root;

	root = json_create_object();
	json_object_add_value_double(root, "physical_media_units_bytes_tlc",
		int128_to_double(ext_smart_log_ptr->ext_smart_pmuwt));
	json_object_add_value_double(root, "physical_media_units_bytes_slc",
		int128_to_double(ext_smart_log_ptr->ext_smart_pmuws));
	json_object_add_value_uint(root, "bad_user_blocks_normalized",
		le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_bunbc));
	json_object_add_value_uint64(root, "bad_user_blocks_raw",
		le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_bunbc & 0xFFFFFFFFFFFF0000));
	json_object_add_value_uint64(root, "xor_recovery_count",
		le64_to_cpu(ext_smart_log_ptr->ext_smart_xrc));
	json_object_add_value_uint64(root, "uncorrectable_read_errors",
		le64_to_cpu(ext_smart_log_ptr->ext_smart_urec));
	if (mask == WDC_SCA_V1_ALL) {
		json_object_add_value_uint64(root, "corrected_e2e_errors",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_eece));
		json_object_add_value_uint64(root, "detected_e2e_errors",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_eede));
		json_object_add_value_uint64(root, "uncorrected_e2e_errors",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_eeue));
		json_object_add_value_uint(root, "system_data_life_used_pct",
			(__u8)ext_smart_log_ptr->ext_smart_sdpu);
	}
	json_object_add_value_uint64(root, "min_slc_user_data_erase_count",
		le64_to_cpu(ext_smart_log_ptr->ext_smart_mnec));
	json_object_add_value_uint64(root, "min_tlc_user_data_erase_count",
		le64_to_cpu(ext_smart_log_ptr->ext_smart_mnudec));
	json_object_add_value_uint64(root, "max_slc_user_data_erase_count",
		le64_to_cpu(ext_smart_log_ptr->ext_smart_mxec));
	json_object_add_value_uint64(root, "max_tlc_user_data_erase_count",
		le64_to_cpu(ext_smart_log_ptr->ext_smart_mxudec));
	json_object_add_value_uint64(root, "avg_slc_user_data_erase_count",
		le64_to_cpu(ext_smart_log_ptr->ext_smart_avec));
	json_object_add_value_uint64(root, "avg_tlc_user_data_erase_count",
		le64_to_cpu(ext_smart_log_ptr->ext_smart_avudec));
	json_object_add_value_uint(root, "program_fail_count_normalized",
		le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_pfc));
	json_object_add_value_uint64(root, "program_fail_count_raw",
		le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_pfc & 0xFFFFFFFFFFFF0000));
	json_object_add_value_uint(root, "erase_fail_count_normalized",
		le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_efc));
	json_object_add_value_uint64(root, "erase_fail_count_raw",
		le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_efc & 0xFFFFFFFFFFFF0000));
	if (mask == WDC_SCA_V1_ALL) {
		json_object_add_value_uint64(root, "pcie_correctable_errors",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_pcec));
		json_object_add_value_uint(root, "pct_free_blocks_user",
			(__u8)ext_smart_log_ptr->ext_smart_pfbu);
		json_object_add_value_uint64(root, "security_version",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_svn));
		json_object_add_value_uint(root, "pct_free_blocks_system",
			(__u8)ext_smart_log_ptr->ext_smart_pfbs);
		json_object_add_value_double(root, "num_of_trim_commands",
			int128_to_double(ext_smart_log_ptr->ext_smart_dcc));
		json_object_add_value_uint64(root, "total_nuse_bytes",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_tnu));
		json_object_add_value_uint(root, "num_of_format_commands",
			le16_to_cpu(ext_smart_log_ptr->ext_smart_fcc));
		json_object_add_value_uint(root, "background_pressure_gauge",
			(__u8)ext_smart_log_ptr->ext_smart_bbpg);
	}
	json_object_add_value_uint64(root, "soft_ecc_error_count",
		le64_to_cpu(ext_smart_log_ptr->ext_smart_seec));
	if (mask == WDC_SCA_V1_ALL) {
		json_object_add_value_uint64(root, "read_refresh_count",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_rfsc));
	}
	json_object_add_value_uint(root, "bad_system_block_normalized",
		le16_to_cpu(*(uint16_t *)ext_smart_log_ptr->ext_smart_bsnbc));
	json_object_add_value_uint64(root, "bad_system_block_raw",
		le64_to_cpu(*(uint64_t *)ext_smart_log_ptr->ext_smart_bsnbc & 0xFFFFFFFFFFFF0000));
	json_object_add_value_double(root, "endurance_est_bytes",
		int128_to_double(ext_smart_log_ptr->ext_smart_eest));
	if (mask == WDC_SCA_V1_ALL) {
		json_object_add_value_uint(root, "num_throttling_events",
			le16_to_cpu(ext_smart_log_ptr->ext_smart_ttc));
		json_object_add_value_uint64(root, "total_unaligned_io",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_uio));
	}
	json_object_add_value_double(root, "physical_media_units_read_bytes",
			int128_to_double(ext_smart_log_ptr->ext_smart_pmur));
	if (mask == WDC_SCA_V1_ALL) {
		json_object_add_value_uint(root, "num_read_timeouts",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_rtoc));
		json_object_add_value_uint(root, "num_write_timeouts",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_wtoc));
		json_object_add_value_uint(root, "num_trim_timeouts",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_ttoc));
		json_object_add_value_uint64(root, "pcie_link_retrain_count",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_plrc));
		json_object_add_value_uint64(root, "active_power_state_change_count",
			le64_to_cpu(ext_smart_log_ptr->ext_smart_pscc));
	}
	char vers_str[40];
	memset((void*)vers_str, 0, 40);
	sprintf((char*)vers_str, "%d.%d.%d.%d",
			le16_to_cpu(ext_smart_log_ptr->ext_smart_maj), le16_to_cpu(ext_smart_log_ptr->ext_smart_min),
			le16_to_cpu(ext_smart_log_ptr->ext_smart_pt), le16_to_cpu(ext_smart_log_ptr->ext_smart_err));
	json_object_add_value_string(root, "cloud_boot_ssd_spec_ver", vers_str);
	memset((void*)vers_str, 0, 40);
	sprintf((char*)vers_str, "%d.%d.%d.%d", 0, 0, 0, 0);
	json_object_add_value_string(root, "cloud_boot_ssd_hw_ver", vers_str);

	if (mask == WDC_SCA_V1_ALL) {
		json_object_add_value_uint(root, "ftl_unit_size",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_ftlus));
		json_object_add_value_uint(root, "tcg_ownership_status",
			le32_to_cpu(ext_smart_log_ptr->ext_smart_tcgos));
		json_object_add_value_uint(root, "log_page_ver",
			le16_to_cpu(ext_smart_log_ptr->ext_smart_lpv));
		char guid[40];
		memset((void*)guid, 0, 40);
		sprintf((char*)guid, "0x%"PRIx64"%"PRIx64"",le64_to_cpu(*(uint64_t *)&ext_smart_log_ptr->ext_smart_lpg[8]),
				le64_to_cpu(*(uint64_t *)&ext_smart_log_ptr->ext_smart_lpg[0]));
		json_object_add_value_string(root, "log_page_guid", guid);
	}

	json_print_object(root, NULL);
	printf("\n");
	json_free_object(root);
}

static void wdc_print_smart_cloud_attr_C0_normal(void *data)
{
	__u8 *log_data = (__u8*)data;
	uint16_t smart_log_ver = 0;

	printf("  SMART Cloud Attributes :- \n");

	printf("  Physical media units written     	      	: %'.0Lf\n", int128_to_double(&log_data[SCAO_PMUW]));
	printf("  Physical media units read      	      	: %'.0Lf\n", int128_to_double(&log_data[SCAO_PMUR]));
	printf("  Bad user nand blocks Raw			: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BUNBR] & 0x0000FFFFFFFFFFFF));
	printf("  Bad user nand blocks Normalized		: %d\n",
			(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BUNBN]));
	printf("  Bad system nand blocks Raw			: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BSNBR] & 0x0000FFFFFFFFFFFF));
	printf("  Bad system nand blocks Normalized		: %d\n",
			(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BSNBN]));
	printf("  XOR recovery count			  	: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_XRC]));
	printf("  Uncorrectable read error count		: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UREC]));
	printf("  Soft ecc error count				: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SEEC]));
	printf("  End to end corrected errors			: %"PRIu32"\n",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EECE]));
	printf("  End to end detected errors			: %"PRIu32"\n",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EEDC]));
	printf("  System data percent used			: %d\n", (__u8)log_data[SCAO_SDPU]);
	printf("  Refresh counts				: %"PRIu64"\n",
			(uint64_t)(le64_to_cpu(*(uint64_t *)&log_data[SCAO_RFSC])& 0x00FFFFFFFFFFFFFF));
	printf("  Max User data erase counts			: %"PRIu32"\n",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MXUDEC]));
	printf("  Min User data erase counts			: %"PRIu32"\n",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MNUDEC]));
	printf("  Number of Thermal throttling events		: %d\n", (__u8)log_data[SCAO_NTTE]);
	printf("  Current throttling status			: 0x%x\n", (__u8)log_data[SCAO_CTS]);
	printf("  PCIe correctable error count			: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PCEC]));
	printf("  Incomplete shutdowns				: %"PRIu32"\n",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_ICS]));
	printf("  Percent free blocks				: %d\n", (__u8)log_data[SCAO_PFB]);
	printf("  Capacitor health				: %"PRIu16"\n",
			(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_CPH]));
	printf("  Unaligned I/O					: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UIO]));
	printf("  Security Version Number			: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SVN]));
	printf("  NUSE Namespace utilization			: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_NUSE]));
	printf("  PLP start count				: %'.0Lf\n", int128_to_double(&log_data[SCAO_PSC]));
	printf("  Endurance estimate				: %'.0Lf\n", int128_to_double(&log_data[SCAO_EEST]));
	smart_log_ver = (uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_LPV]);
	printf("  Log page version				: %"PRIu16"\n",smart_log_ver);
	printf("  Log page GUID					: 0x");
	printf("%"PRIx64"%"PRIx64"\n",(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG + 8]),
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG]));
	if(smart_log_ver > 2) {
		printf("  Errata Version Field				: %d\n",
				(__u8)log_data[SCAO_EVF]);
		printf("  Point Version Field				: %"PRIu16"\n",
				(uint16_t)log_data[SCAO_PVF]);
		printf("  Minor Version Field				: %"PRIu16"\n",
				(uint16_t)log_data[SCAO_MIVF]);
		printf("  Major Version Field				: %d\n",
				(__u8)log_data[SCAO_MAVF]);
		printf("  NVMe Errata Version				: %d\n",
				(__u8)log_data[SCAO_NEV]);
		printf("  PCIe Link Retraining Count			: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PLRC]));
	}
	if (smart_log_ver > 3) {
		printf("  Power State Change Count				: %"PRIu64"\n",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PSCC]));
	}
	printf("\n");
}

static void wdc_print_smart_cloud_attr_C0_json(void *data)
{
	__u8 *log_data = (__u8*)data;
	struct json_object *root;
	uint16_t smart_log_ver = 0;

	root = json_create_object();
	json_object_add_value_double(root, "Physical media units written",
			int128_to_double(&log_data[SCAO_PMUW]));
	json_object_add_value_double(root, "Physical media units read",
			int128_to_double(&log_data[SCAO_PMUR]));
	json_object_add_value_uint64(root, "Bad user nand blocks - Raw",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BUNBR] & 0x0000FFFFFFFFFFFF));
	json_object_add_value_uint(root, "Bad user nand blocks - Normalized",
			(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BUNBN]));
	json_object_add_value_uint64(root, "Bad system nand blocks - Raw",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_BSNBR] & 0x0000FFFFFFFFFFFF));
	json_object_add_value_uint(root, "Bad system nand blocks - Normalized",
			(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_BSNBN]));
	json_object_add_value_uint64(root, "XOR recovery count",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_XRC]));
	json_object_add_value_uint64(root, "Uncorrectable read error count",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UREC]));
	json_object_add_value_uint64(root, "Soft ecc error count",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SEEC]));
	json_object_add_value_uint(root, "End to end corrected errors",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EECE]));
	json_object_add_value_uint(root, "End to end detected errors",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_EEDC]));
	json_object_add_value_uint(root, "System data percent used",
			(__u8)log_data[SCAO_SDPU]);
	json_object_add_value_uint64(root, "Refresh counts",
			(uint64_t)(le64_to_cpu(*(uint64_t *)&log_data[SCAO_RFSC])& 0x00FFFFFFFFFFFFFF));
	json_object_add_value_uint(root, "Max User data erase counts",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MXUDEC]));
	json_object_add_value_uint(root, "Min User data erase counts",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_MNUDEC]));
	json_object_add_value_uint(root, "Number of Thermal throttling events",
			(__u8)log_data[SCAO_NTTE]);
	json_object_add_value_uint(root, "Current throttling status",
			(__u8)log_data[SCAO_CTS]);
	json_object_add_value_uint64(root, "PCIe correctable error count",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PCEC]));
	json_object_add_value_uint(root, "Incomplete shutdowns",
			(uint32_t)le32_to_cpu(*(uint32_t *)&log_data[SCAO_ICS]));
	json_object_add_value_uint(root, "Percent free blocks",
			(__u8)log_data[SCAO_PFB]);
	json_object_add_value_uint(root, "Capacitor health",
			(uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_CPH]));
	json_object_add_value_uint64(root, "Unaligned I/O",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_UIO]));
	json_object_add_value_uint64(root, "Security Version Number",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_SVN]));
	json_object_add_value_uint64(root, "NUSE - Namespace utilization",
			(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_NUSE]));
	json_object_add_value_double(root, "PLP start count",
			int128_to_double(&log_data[SCAO_PSC]));
	json_object_add_value_double(root, "Endurance estimate",
			int128_to_double(&log_data[SCAO_EEST]));
	smart_log_ver = (uint16_t)le16_to_cpu(*(uint16_t *)&log_data[SCAO_LPV]);
	json_object_add_value_uint(root, "Log page version", smart_log_ver);
	char guid[40];
	memset((void*)guid, 0, 40);
	sprintf((char*)guid, "0x%"PRIx64"%"PRIx64"",(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG + 8]),
		(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_LPG]));
	json_object_add_value_string(root, "Log page GUID", guid);
	if(smart_log_ver > 2){
		json_object_add_value_uint(root, "Errata Version Field",
				(__u8)log_data[SCAO_EVF]);
		json_object_add_value_uint(root, "Point Version Field",
				(uint16_t)log_data[SCAO_PVF]);
		json_object_add_value_uint(root, "Minor Version Field",
				(uint16_t)log_data[SCAO_MIVF]);
		json_object_add_value_uint(root, "Major Version Field",
				(__u8)log_data[SCAO_MAVF]);
		json_object_add_value_uint(root, "NVMe Errata Version",
				(__u8)log_data[SCAO_NEV]);
		json_object_add_value_uint64(root, "PCIe Link Retraining Count",
				(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PLRC]));
	}
	if(smart_log_ver > 3) {
		json_object_add_value_uint64(root, "Power State Change Count",
				(uint64_t)le64_to_cpu(*(uint64_t *)&log_data[SCAO_PSCC]));
	}
	json_print_object(root, NULL);
	printf("\n");
	json_free_object(root);
}

static void wdc_print_eol_c0_normal(void *data)
{

	__u8 *log_data = (__u8*)data;

	printf("  End of Life Log Page 0xC0 :- \n");

	printf("  Realloc Block Count			%"PRIu32"\n",
			(uint32_t)le32_to_cpu(log_data[EOL_RBC]));
	printf("  ECC Rate				%"PRIu32"\n",
			(uint32_t)le32_to_cpu(log_data[EOL_ECCR]));
	printf("  Write Amp				%"PRIu32"\n",
			(uint32_t)le32_to_cpu(log_data[EOL_WRA]));
	printf("  Percent Life Remaining		%"PRIu32"\n",
			(uint32_t)le32_to_cpu(log_data[EOL_PLR]));
	printf("  Program Fail Count			%"PRIu32"\n",
			(uint32_t)le32_to_cpu(log_data[EOL_PFC]));
	printf("  Erase Fail Count			%"PRIu32"\n",
			(uint32_t)le32_to_cpu(log_data[EOL_EFC]));
	printf("  Raw Read Error Rate			%"PRIu32"\n",
			(uint32_t)le32_to_cpu(log_data[EOL_RRER]));

}

static void wdc_print_eol_c0_json(void *data)
{
	__u8 *log_data = (__u8*)data;
	struct json_object *root;

	root = json_create_object();

	json_object_add_value_uint(root, "Realloc Block Count",
			(uint32_t)le32_to_cpu(log_data[EOL_RBC]));
	json_object_add_value_uint(root, "ECC Rate",
			(uint32_t)le32_to_cpu(log_data[EOL_ECCR]));
	json_object_add_value_uint(root, "Write Amp",
			(uint32_t)le32_to_cpu(log_data[EOL_WRA]));
	json_object_add_value_uint(root, "Percent Life Remaining",
			(uint32_t)le32_to_cpu(log_data[EOL_PLR]));
	json_object_add_value_uint(root, "Program Fail Count",
			(uint32_t)le32_to_cpu(log_data[EOL_PFC]));
	json_object_add_value_uint(root, "Erase Fail Count",
			(uint32_t)le32_to_cpu(log_data[EOL_EFC]));
	json_object_add_value_uint(root, "Raw Read Error Rate",
			(uint32_t)le32_to_cpu(log_data[EOL_RRER]));

	json_print_object(root, NULL);
	printf("\n");
	json_free_object(root);
}

static int wdc_print_ext_smart_cloud_log(void *data, int fmt)
{
	if (!data) {
		fprintf(stderr, "ERROR : WDC : Invalid buffer to read 0xC0 V1 log\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_ext_smart_cloud_log_normal(data, WDC_SCA_V1_ALL);
		break;
	case JSON:
		wdc_print_ext_smart_cloud_log_json(data, WDC_SCA_V1_ALL);
		break;
	}
	return 0;
}

static int wdc_print_c0_cloud_attr_log(void *data, int fmt)
{
	if (!data) {
		fprintf(stderr, "ERROR : WDC : Invalid buffer to read 0xC0 log\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_smart_cloud_attr_C0_normal(data);
		break;
	case JSON:
		wdc_print_smart_cloud_attr_C0_json(data);
		break;
	}
	return 0;
}

static int wdc_print_c0_eol_log(void *data, int fmt)
{
	if (!data) {
		fprintf(stderr, "ERROR : WDC : Invalid buffer to read 0xC0 log\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_eol_c0_normal(data);
		break;
	case JSON:
		wdc_print_eol_c0_json(data);
		break;
	}
	return 0;
}

static int wdc_get_c0_log_page(nvme_root_t r, int fd, char *format,
			int uuid_index, __u32 namespace_id)
{
	int ret = 0;
	int fmt = -1;
	int i = 0;
	__u8 *data;
	__u32 cust_id;
	uint32_t device_id, read_vendor_id;

	if (!wdc_check_device(r, fd))
		return -1;
	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	ret = wdc_get_pci_ids(r, &device_id, &read_vendor_id);

	switch (device_id) {

	case WDC_NVME_SN640_DEV_ID:
	case WDC_NVME_SN640_DEV_ID_1:
	case WDC_NVME_SN640_DEV_ID_2:
	case WDC_NVME_SN640_DEV_ID_3:
	case WDC_NVME_SN840_DEV_ID:
	case WDC_NVME_SN840_DEV_ID_1:
	case WDC_NVME_SN860_DEV_ID:
	case WDC_NVME_SN650_DEV_ID:
	case WDC_NVME_SN650_DEV_ID_1:
	case WDC_NVME_SN650_DEV_ID_2:
	case WDC_NVME_SN650_DEV_ID_3:
	case WDC_NVME_SN650_DEV_ID_4:
	case WDC_NVME_SN655_DEV_ID:
	case WDC_NVME_SN560_DEV_ID_1:
	case WDC_NVME_SN560_DEV_ID_2:
	case WDC_NVME_SN560_DEV_ID_3:
		cust_id = wdc_get_fw_cust_id(r, fd);
		if (cust_id == WDC_INVALID_CUSTOMER_ID) {
			fprintf(stderr, "%s: ERROR : WDC : invalid customer id\n", __func__);
			return -1;
		}

		if ((cust_id == WDC_CUSTOMER_ID_0x1004) || (cust_id == WDC_CUSTOMER_ID_0x1008) || (cust_id == WDC_CUSTOMER_ID_0x1005))
		{
			if (uuid_index == 0)
			{
				if ((data = (__u8*) malloc(sizeof (__u8) * WDC_NVME_SMART_CLOUD_ATTR_LEN)) == NULL) {
					fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
					return -1;
				}

				if (namespace_id == NVME_NSID_ALL) {
					ret = nvme_get_nsid(fd, &namespace_id);
					if (ret < 0) {
						namespace_id = NVME_NSID_ALL;
					}
				}

				/* Get the 0xC0 log data */
				struct nvme_get_log_args args = {
					.args_size	= sizeof(args),
					.fd		= fd,
					.lid		= WDC_NVME_GET_EOL_STATUS_LOG_OPCODE,
					.nsid		= namespace_id,
					.lpo		= 0,
					.lsp		= NVME_LOG_LSP_NONE,
					.lsi		= 0,
					.rae		= false,
					.uuidx		= uuid_index,
					.csi		= NVME_CSI_NVM,
					.ot		= false,
					.len		= WDC_NVME_SMART_CLOUD_ATTR_LEN,
					.log		= data,
					.timeout	= NVME_DEFAULT_IOCTL_TIMEOUT,
					.result		= NULL,
				};
				ret = nvme_get_log(&args);

				if (strcmp(format, "json"))
					nvme_show_status(ret);

				if (ret == 0) {

					/* Verify GUID matches */
					for (i=0; i<16; i++) {
						if (scao_guid[i] != data[SCAO_LPG + i])	{
							fprintf(stderr, "ERROR : WDC : Unknown GUID in C0 Log Page data\n");
							int j;
							fprintf(stderr, "ERROR : WDC : Expected GUID:  0x");
							for (j = 0; j<16; j++) {
								fprintf(stderr, "%x", scao_guid[j]);
							}
							fprintf(stderr, "\nERROR : WDC : Actual GUID:    0x");
							for (j = 0; j<16; j++) {
								fprintf(stderr, "%x", data[SCAO_LPG + j]);
							}
							fprintf(stderr, "\n");

							ret = -1;
							break;
						}
					}

					if (ret == 0) {

						/* parse the data */
						wdc_print_c0_cloud_attr_log(data, fmt);
					}
				} else {
					fprintf(stderr, "ERROR : WDC : Unable to read C0 Log Page data\n");
					ret = -1;
				}

				free(data);
			} else if (uuid_index == 1) {

				if ((data = (__u8*) malloc(sizeof (__u8) * WDC_NVME_EOL_STATUS_LOG_LEN)) == NULL) {
					fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
					return -1;
				}

				/* Get the 0xC0 log data */
				struct nvme_get_log_args args = {
					.args_size	= sizeof(args),
					.fd		= fd,
					.lid		= WDC_NVME_GET_EOL_STATUS_LOG_OPCODE,
					.nsid		= NVME_NSID_ALL,
					.lpo		= 0,
					.lsp		= NVME_LOG_LSP_NONE,
					.lsi		= 0,
					.rae		= false,
					.uuidx		= uuid_index,
					.csi		= NVME_CSI_NVM,
					.ot		= false,
					.len		= WDC_NVME_EOL_STATUS_LOG_LEN,
					.log		= data,
					.timeout	= NVME_DEFAULT_IOCTL_TIMEOUT,
					.result		= NULL,
				};
				ret = nvme_get_log(&args);

				if (strcmp(format, "json"))
					nvme_show_status(ret);

				if (ret == 0) {
					/* parse the data */
					wdc_print_c0_eol_log(data, fmt);
				} else {
					fprintf(stderr, "ERROR : WDC : Unable to read C0 Log Page data\n");
					ret = -1;
				}

				free(data);
			} else {
				fprintf(stderr, "ERROR : WDC : Unknown uuid index\n");
				ret = -1;
			}
		}
		else {
			if ((data = (__u8*) malloc(sizeof (__u8) * WDC_NVME_EOL_STATUS_LOG_LEN)) == NULL) {
				fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
				return -1;
			}

			/* Get the 0xC0 log data */
			ret = nvme_get_log_simple(fd, WDC_NVME_GET_EOL_STATUS_LOG_OPCODE,
					   WDC_NVME_EOL_STATUS_LOG_LEN, data);

			if (strcmp(format, "json"))
				nvme_show_status(ret);

			if (ret == 0) {
				/* parse the data */
				wdc_print_c0_eol_log(data, fmt);
			} else {
				fprintf(stderr, "ERROR : WDC : Unable to read C0 Log Page data\n");
				ret = -1;
			}

			free(data);
		}
		break;

	case WDC_NVME_ZN350_DEV_ID:
	case WDC_NVME_ZN350_DEV_ID_1:
		if ((data = (__u8*) malloc(sizeof (__u8) * WDC_NVME_SMART_CLOUD_ATTR_LEN)) == NULL) {
			fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
			return -1;
		}

		/* Get the 0xC0 log data */
		ret = nvme_get_log_simple(fd, WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_OPCODE,
					WDC_NVME_SMART_CLOUD_ATTR_LEN, data);

		if (strcmp(format, "json"))
			nvme_show_status(ret);

		if (ret == 0) {
			/* parse the data */
			wdc_print_c0_cloud_attr_log(data, fmt);
		} else {
			fprintf(stderr, "ERROR : WDC : Unable to read C0 Log Page data\n");
			ret = -1;
		}

		free(data);
		break;

	case WDC_NVME_SN820CL_DEV_ID:
		/* Get the 0xC0 Extended Smart Cloud Attribute log data */
		data = NULL;
		ret = nvme_get_ext_smart_cloud_log(fd, &data, uuid_index, namespace_id);

		if (strcmp(format, "json"))
			nvme_show_status(ret);

		if (ret == 0) {
			/* parse the data */
			wdc_print_ext_smart_cloud_log(data, fmt);
		} else {
			fprintf(stderr, "ERROR : WDC : Unable to read C0 Log Page V1 data\n");
			ret = -1;
		}

		if (data)
			free(data);
		break;

	default:
		fprintf(stderr, "ERROR : WDC : Unknown device id - 0x%x\n", device_id);
		ret = -1;
		break;

	}

	return ret;
}

static int wdc_print_latency_monitor_log(int fd, struct wdc_ssd_latency_monitor_log *log_data, int fmt)
{
	if (!log_data) {
		fprintf(stderr, "ERROR : WDC : Invalid C3 log data buffer\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_latency_monitor_log_normal(fd, log_data);
		break;
	case JSON:
		wdc_print_latency_monitor_log_json(log_data);
		break;
	}
	return 0;
}

static int wdc_print_error_rec_log(struct wdc_ocp_c1_error_recovery_log *log_data, int fmt)
{
	if (!log_data) {
		fprintf(stderr, "ERROR : WDC : Invalid C1 log data buffer\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_error_rec_log_normal(log_data);
		break;
	case JSON:
		wdc_print_error_rec_log_json(log_data);
		break;
	}
	return 0;
}

static int wdc_print_dev_cap_log(struct wdc_ocp_C4_dev_cap_log *log_data, int fmt)
{
	if (!log_data) {
		fprintf(stderr, "ERROR : WDC : Invalid C4 log data buffer\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_dev_cap_log_normal(log_data);
		break;
	case JSON:
		wdc_print_dev_cap_log_json(log_data);
		break;
	}
	return 0;
}

static int wdc_print_unsupported_reqs_log(struct wdc_ocp_C5_unsupported_reqs *log_data, int fmt)
{
	if (!log_data) {
		fprintf(stderr, "ERROR : WDC : Invalid C5 log data buffer\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_unsupported_reqs_log_normal(log_data);
		break;
	case JSON:
		wdc_print_unsupported_reqs_log_json(log_data);
		break;
	}
	return 0;
}

static int wdc_print_fb_ca_log(struct wdc_ssd_ca_perf_stats *perf, int fmt)
{
	if (!perf) {
		fprintf(stderr, "ERROR : WDC : Invalid buffer to read perf stats\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_fb_ca_log_normal(perf);
		break;
	case JSON:
		wdc_print_fb_ca_log_json(perf);
		break;
	}
	return 0;
}

static int wdc_print_bd_ca_log(void *bd_data, int fmt)
{
	if (!bd_data) {
		fprintf(stderr, "ERROR : WDC : Invalid buffer to read data\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_bd_ca_log_normal(bd_data);
		break;
	case JSON:
		wdc_print_bd_ca_log_json(bd_data);
		break;
	default:
		fprintf(stderr, "ERROR : WDC : Unknown format - %d\n", fmt);
		return -1;
	}
	return 0;
}

static int wdc_print_d0_log(struct wdc_ssd_d0_smart_log *perf, int fmt)
{
	if (!perf) {
		fprintf(stderr, "ERROR : WDC : Invalid buffer to read perf stats\n");
		return -1;
	}
	switch (fmt) {
	case NORMAL:
		wdc_print_d0_log_normal(perf);
		break;
	case JSON:
		wdc_print_d0_log_json(perf);
		break;
	}
	return 0;
}

static int wdc_print_fw_act_history_log(__u8 *data, int num_entries, int fmt, __u32 cust_id, __u32 vendor_id)
{
	if (!data) {
		fprintf(stderr, "ERROR : WDC : Invalid buffer to read fw activate history entries\n");
		return -1;
	}

	switch (fmt) {
	case NORMAL:
		wdc_print_fw_act_history_log_normal(data, num_entries, cust_id, vendor_id);
		break;
	case JSON:
		wdc_print_fw_act_history_log_json(data, num_entries, cust_id, vendor_id);
		break;
	}
	return 0;
}

static int wdc_get_ca_log_page(nvme_root_t r, int fd, char *format)
{
	int ret = 0;
	int fmt = -1;
	__u8 *data;
	struct wdc_ssd_ca_perf_stats *perf;
	uint32_t read_device_id, read_vendor_id;
	__u32 cust_id;

	if (!wdc_check_device(r, fd))
		return -1;
	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	/* verify the 0xCA log page is supported */
	if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == false) {
		fprintf(stderr, "ERROR : WDC : 0xCA Log Page not supported\n");
		return -1;
	}

	/* get the FW customer id */
	cust_id = wdc_get_fw_cust_id(r, fd);
	if (cust_id == WDC_INVALID_CUSTOMER_ID) {
		fprintf(stderr, "%s: ERROR : WDC : invalid customer id\n", __func__);
		return -1;
	}

	ret = wdc_get_pci_ids(r, &read_device_id, &read_vendor_id);

	switch (read_device_id) {

	case WDC_NVME_SN200_DEV_ID:

		if (cust_id == WDC_CUSTOMER_ID_0x1005) {

			if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN)) == NULL) {
				fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
				return -1;
			}

			memset(data, 0, sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN);

			ret = nvme_get_log_simple(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE,
					   WDC_FB_CA_LOG_BUF_LEN, data);
			if (strcmp(format, "json"))
				nvme_show_status(ret);

			if (ret == 0) {
				/* parse the data */
				perf = (struct wdc_ssd_ca_perf_stats *)(data);
				ret = wdc_print_fb_ca_log(perf, fmt);
			} else {
				fprintf(stderr, "ERROR : WDC : Unable to read CA Log Page data\n");
				ret = -1;
			}
		} else {

			fprintf(stderr, "ERROR : WDC : Unsupported Customer id, id = 0x%x\n", cust_id);
			return -1;
		}
		break;

	case WDC_NVME_SN640_DEV_ID:
	case WDC_NVME_SN640_DEV_ID_1:
	case WDC_NVME_SN640_DEV_ID_2:
	case WDC_NVME_SN640_DEV_ID_3:
	case WDC_NVME_SN840_DEV_ID:
	case WDC_NVME_SN840_DEV_ID_1:
	case WDC_NVME_SN860_DEV_ID:
		if (cust_id == WDC_CUSTOMER_ID_0x1005) {

			if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN)) == NULL) {
				fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
				return -1;
			}

			memset(data, 0, sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN);

			ret = nvme_get_log_simple(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE,
					   WDC_FB_CA_LOG_BUF_LEN, data);
			if (strcmp(format, "json"))
				nvme_show_status(ret);

			if (ret == 0) {
				/* parse the data */
				perf = (struct wdc_ssd_ca_perf_stats *)(data);
				ret = wdc_print_fb_ca_log(perf, fmt);
			} else {
				fprintf(stderr, "ERROR : WDC : Unable to read CA Log Page data\n");
				ret = -1;
			}
		} else if ((cust_id == WDC_CUSTOMER_ID_GN) || (cust_id == WDC_CUSTOMER_ID_GD) ||
				(cust_id == WDC_CUSTOMER_ID_BD)) {
			if ((data = (__u8*) malloc(sizeof (__u8) * WDC_BD_CA_LOG_BUF_LEN)) == NULL) {
				fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
				return -1;
			}

			memset(data, 0, sizeof (__u8) * WDC_BD_CA_LOG_BUF_LEN);
			ret = nvme_get_log_simple(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE,
					   WDC_BD_CA_LOG_BUF_LEN, data);
			if (strcmp(format, "json"))
				nvme_show_status(ret);

			if (ret == 0) {
				/* parse the data */
				ret = wdc_print_bd_ca_log(data, fmt);
			} else {
				fprintf(stderr, "ERROR : WDC : Unable to read CA Log Page data\n");
				ret = -1;
			}

			break;
		} else {

			fprintf(stderr, "ERROR : WDC : Unsupported Customer id, id = 0x%x\n", cust_id);
			return -1;
		}
		break;

	default:

		fprintf(stderr, "ERROR : WDC : Log page 0xCA not supported for this device\n");
		return -1;
		break;
	}

	free(data);
	return ret;
}

static int wdc_get_c1_log_page(nvme_root_t r, int fd,
			       char *format, uint8_t interval)
{
	int ret = 0;
	int fmt = -1;
	__u8 *data;
	__u8 *p;
	int i;
	int skip_cnt = 4;
	int total_subpages;
	struct wdc_log_page_header *l;
	struct wdc_log_page_subpage_header *sph;
	struct wdc_ssd_perf_stats *perf;

	if (!wdc_check_device(r, fd))
		return -1;
	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	if (interval < 1 || interval > 15) {
		fprintf(stderr, "ERROR : WDC : interval out of range [1-15]\n");
		return -1;
	}

	if ((data = (__u8*) malloc(sizeof (__u8) * WDC_ADD_LOG_BUF_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}
	memset(data, 0, sizeof (__u8) * WDC_ADD_LOG_BUF_LEN);

	ret = nvme_get_log_simple(fd, WDC_NVME_ADD_LOG_OPCODE,
			   WDC_ADD_LOG_BUF_LEN, data);
	if (strcmp(format, "json"))
		nvme_show_status(ret);
	if (ret == 0) {
		l = (struct wdc_log_page_header*)data;
		total_subpages = l->num_subpages + WDC_NVME_GET_STAT_PERF_INTERVAL_LIFETIME - 1;
		for (i = 0, p = data + skip_cnt; i < total_subpages; i++, p += skip_cnt) {
			sph = (struct wdc_log_page_subpage_header *) p;
			if (sph->spcode == WDC_GET_LOG_PAGE_SSD_PERFORMANCE) {
				if (sph->pcset == interval) {
					perf = (struct wdc_ssd_perf_stats *) (p + 4);
					ret = wdc_print_log(perf, fmt);
					break;
				}
			}
			skip_cnt = le16_to_cpu(sph->subpage_length) + 4;
		}
		if (ret) {
			fprintf(stderr, "ERROR : WDC : Unable to read data from buffer\n");
		}
	}
	free(data);
	return ret;
}

static int wdc_get_c3_log_page(nvme_root_t r, int fd, char *format)
{
	int ret = 0;
	int fmt = -1;
	__u8 *data;
	int i;
	struct wdc_ssd_latency_monitor_log *log_data;

	if (!wdc_check_device(r, fd))
		return -1;
	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	if ((data = (__u8 *) malloc(sizeof(__u8) * WDC_LATENCY_MON_LOG_BUF_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}
	memset(data, 0, sizeof (__u8) * WDC_LATENCY_MON_LOG_BUF_LEN);

	ret = nvme_get_log_simple(fd, WDC_LATENCY_MON_OPCODE,
				  WDC_LATENCY_MON_LOG_BUF_LEN, data);

	if (strcmp(format, "json"))
		fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret, false), ret);

	if (ret == 0) {
		log_data = (struct wdc_ssd_latency_monitor_log*)data;

		/* check log page version */
		if (log_data->log_page_version != WDC_LATENCY_MON_VERSION) {
			fprintf(stderr, "ERROR : WDC : invalid latency monitor version\n");
			ret = -1;
            goto out;
		}

		/* check log page guid */
		/* Verify GUID matches */
		for (i=0; i<16; i++) {
			if (wdc_lat_mon_guid[i] != log_data->log_page_guid[i])	{
				fprintf(stderr, "ERROR : WDC : Unknown GUID in C3 Log Page data\n");
				int j;
				fprintf(stderr, "ERROR : WDC : Expected GUID:  0x");
				for (j = 0; j<16; j++) {
					fprintf(stderr, "%x", wdc_lat_mon_guid[j]);
				}
				fprintf(stderr, "\nERROR : WDC : Actual GUID:    0x");
				for (j = 0; j<16; j++) {
					fprintf(stderr, "%x", log_data->log_page_guid[j]);
				}
				fprintf(stderr, "\n");

				ret = -1;
				goto out;
			}
		}

		/* parse the data */
		wdc_print_latency_monitor_log(fd, log_data, fmt);
	} else {
		fprintf(stderr, "ERROR : WDC : Unable to read C3 data from buffer\n");
	}

out:
	free(data);
	return ret;

}

static int wdc_get_ocp_c1_log_page(nvme_root_t r, int fd, char *format)
{
	int ret = 0;
	int fmt = -1;
	__u8 *data;
	int i;
	struct wdc_ocp_c1_error_recovery_log *log_data;

	if (!wdc_check_device(r, fd))
		return -1;
	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	if ((data = (__u8 *) malloc(sizeof(__u8) * WDC_ERROR_REC_LOG_BUF_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}
	memset(data, 0, sizeof (__u8) * WDC_ERROR_REC_LOG_BUF_LEN);

	ret = nvme_get_log_simple(fd, WDC_ERROR_REC_LOG_ID,
			WDC_ERROR_REC_LOG_BUF_LEN, data);

	if (strcmp(format, "json"))
		fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret, false), ret);

	if (ret == 0) {
		log_data = (struct wdc_ocp_c1_error_recovery_log *)data;

		/* check log page version */
		if (log_data->log_page_version != WDC_ERROR_REC_LOG_VERSION) {
			fprintf(stderr, "ERROR : WDC : invalid error recovery log version - %d\n", log_data->log_page_version);
			ret = -1;
			goto out;
		}

		/* Verify GUID matches */
		for (i=0; i < WDC_OCP_C1_GUID_LENGTH; i++) {
			if (wdc_ocp_c1_guid[i] != log_data->log_page_guid[i])	{
				fprintf(stderr, "ERROR : WDC : Unknown GUID in C1 Log Page data\n");
				int j;
				fprintf(stderr, "ERROR : WDC : Expected GUID:  0x");
				for (j = 0; j<16; j++) {
					fprintf(stderr, "%x", wdc_ocp_c1_guid[j]);
				}
				fprintf(stderr, "\nERROR : WDC : Actual GUID:    0x");
				for (j = 0; j<16; j++) {
					fprintf(stderr, "%x", log_data->log_page_guid[j]);
				}
				fprintf(stderr, "\n");

				ret = -1;
				goto out;
			}
		}

		/* parse the data */
		wdc_print_error_rec_log(log_data, fmt);
	} else {
		fprintf(stderr, "ERROR : WDC : Unable to read error recovery (C1) data from buffer\n");
	}

out:
	free(data);
	return ret;
}

static int wdc_get_ocp_c4_log_page(nvme_root_t r, int fd, char *format)
{
	int ret = 0;
	int fmt = -1;
	__u8 *data;
	int i;
	struct wdc_ocp_C4_dev_cap_log *log_data;

	if (!wdc_check_device(r, fd))
		return -1;
	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	if ((data = (__u8 *) malloc(sizeof(__u8) * WDC_DEV_CAP_LOG_BUF_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}
	memset(data, 0, sizeof (__u8) * WDC_DEV_CAP_LOG_BUF_LEN);

	ret = nvme_get_log_simple(fd, WDC_DEV_CAP_LOG_ID,
		WDC_DEV_CAP_LOG_BUF_LEN, data);

	if (strcmp(format, "json"))
		fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret, false), ret);

	if (ret == 0) {
		log_data = (struct wdc_ocp_C4_dev_cap_log *)data;

		/* check log page version */
		if (log_data->log_page_version != WDC_DEV_CAP_LOG_VERSION) {
			fprintf(stderr, "ERROR : WDC : invalid device capabilities log version - %d\n", log_data->log_page_version);
			ret = -1;
			goto out;
		}

		/* Verify GUID matches */
		for (i=0; i < WDC_OCP_C4_GUID_LENGTH; i++) {
			if (wdc_ocp_c4_guid[i] != log_data->log_page_guid[i])	{
				fprintf(stderr, "ERROR : WDC : Unknown GUID in C4 Log Page data\n");
				int j;
				fprintf(stderr, "ERROR : WDC : Expected GUID:  0x");
				for (j = 0; j<16; j++) {
					fprintf(stderr, "%x", wdc_ocp_c1_guid[j]);
				}
				fprintf(stderr, "\nERROR : WDC : Actual GUID:    0x");
				for (j = 0; j<16; j++) {
					fprintf(stderr, "%x", log_data->log_page_guid[j]);
				}
				fprintf(stderr, "\n");

				ret = -1;
				goto out;
			}
		}

		/* parse the data */
		wdc_print_dev_cap_log(log_data, fmt);
	} else {
		fprintf(stderr, "ERROR : WDC : Unable to read device capabilities (C4) data from buffer\n");
	}

out:
	free(data);
	return ret;
}

static int wdc_get_ocp_c5_log_page(nvme_root_t r, int fd, char *format)
{
	int ret = 0;
	int fmt = -1;
	__u8 *data;
	int i;
	struct wdc_ocp_C5_unsupported_reqs *log_data;

	if (!wdc_check_device(r, fd))
		return -1;
	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	if ((data = (__u8 *) malloc(sizeof(__u8) * WDC_UNSUPPORTED_REQS_LOG_BUF_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}
	memset(data, 0, sizeof (__u8) * WDC_UNSUPPORTED_REQS_LOG_BUF_LEN);

	ret = nvme_get_log_simple(fd, WDC_UNSUPPORTED_REQS_LOG_ID,
		WDC_UNSUPPORTED_REQS_LOG_BUF_LEN, data);

	if (strcmp(format, "json"))
		fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret, false), ret);

	if (ret == 0) {
		log_data = (struct wdc_ocp_C5_unsupported_reqs *)data;

		/* check log page version */
		if (log_data->log_page_version != WDC_UNSUPPORTED_REQS_LOG_VERSION) {
			fprintf(stderr, "ERROR : WDC : invalid unsupported requirements log version - %d\n", log_data->log_page_version);
			ret = -1;
			goto out;
		}

		/* Verify GUID matches */
		for (i=0; i < WDC_OCP_C5_GUID_LENGTH; i++) {
			if (wdc_ocp_c5_guid[i] != log_data->log_page_guid[i])	{
				fprintf(stderr, "ERROR : WDC : Unknown GUID in C5 Log Page data\n");
				int j;
				fprintf(stderr, "ERROR : WDC : Expected GUID:  0x");
				for (j = 0; j<16; j++) {
					fprintf(stderr, "%x", wdc_ocp_c1_guid[j]);
				}
				fprintf(stderr, "\nERROR : WDC : Actual GUID:    0x");
				for (j = 0; j<16; j++) {
					fprintf(stderr, "%x", log_data->log_page_guid[j]);
				}
				fprintf(stderr, "\n");

				ret = -1;
				goto out;
			}
		}

		/* parse the data */
		wdc_print_unsupported_reqs_log(log_data, fmt);
	} else {
		fprintf(stderr, "ERROR : WDC : Unable to read unsupported requirements (C5) data from buffer\n");
	}

out:
	free(data);
	return ret;
}

static int wdc_get_d0_log_page(nvme_root_t r, int fd, char *format)
{
	int ret = 0;
	int fmt = -1;
	__u8 *data;
	struct wdc_ssd_d0_smart_log *perf;

	if (!wdc_check_device(r, fd))
		return -1;
	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	/* verify the 0xD0 log page is supported */
	if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == false) {
		fprintf(stderr, "ERROR : WDC : 0xD0 Log Page not supported\n");
		return -1;
	}

	if ((data = (__u8*) malloc(sizeof (__u8) * WDC_NVME_VU_SMART_LOG_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}
	memset(data, 0, sizeof (__u8) * WDC_NVME_VU_SMART_LOG_LEN);

	ret = nvme_get_log_simple(fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE,
			   WDC_NVME_VU_SMART_LOG_LEN, data);
	if (strcmp(format, "json"))
		nvme_show_status(ret);

	if (ret == 0) {
		/* parse the data */
		perf = (struct wdc_ssd_d0_smart_log *)(data);
		ret = wdc_print_d0_log(perf, fmt);
	} else {
		fprintf(stderr, "ERROR : WDC : Unable to read D0 Log Page data\n");
		ret = -1;
	}

	free(data);
	return ret;
}

static int wdc_vs_smart_add_log(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve additional performance statistics.";
	const char *interval = "Interval to read the statistics from [1, 15].";
	int fd;
	const char *log_page_version = "Log Page Version: 0 = vendor, 1 = WDC";
	const char *log_page_mask = "Log Page Mask, comma separated list: 0xC0, 0xC1, 0xCA, 0xD0";
	const char *namespace_id = "desired namespace id";
	nvme_root_t r;
	int ret = 0;
	int uuid_index = 0;
	int page_mask = 0, num, i;
	int log_page_list[16];
	__u64 capabilities = 0;

	struct config {
		uint8_t interval;
		char *output_format;
		__u8  log_page_version;
		char *log_page_mask;
		__u32 namespace_id;
	};

	struct config cfg = {
		.interval = 14,
		.output_format = "normal",
		.log_page_version   = 0,
		.log_page_mask   = "",
		.namespace_id = NVME_NSID_ALL,
	};

	OPT_ARGS(opts) = {
		OPT_UINT("interval",          'i', &cfg.interval,         interval),
		OPT_FMT("output-format",      'o', &cfg.output_format,    "Output Format: normal|json"),
		OPT_BYTE("log-page-version",  'l', &cfg.log_page_version, log_page_version),
		OPT_LIST("log-page-mask",     'p', &cfg.log_page_mask,    log_page_mask),
		OPT_UINT("namespace-id",      'n', &cfg.namespace_id,     namespace_id),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	if (cfg.log_page_version == 0) {
		uuid_index = 0;
	} else if (cfg.log_page_version == 1) {
		uuid_index = 1;
	} else {
		fprintf(stderr, "ERROR : WDC: unsupported log page version for this command\n");
		ret = -1;
		goto out;
	}

	num = argconfig_parse_comma_sep_array(cfg.log_page_mask, log_page_list, 16);

	if (num == -1) {
		fprintf(stderr, "ERROR: WDC: log page list is malformed\n");
		ret = -1;
		goto out;
	}

	if (num == 0)
	{
		page_mask |= WDC_ALL_PAGE_MASK;
	}
	else
	{
		for (i = 0; i < num; i++)
		{
			if (log_page_list[i] == 0xc0)  {
				page_mask |= WDC_C0_PAGE_MASK;
			}
			if (log_page_list[i] == 0xc1)  {
				page_mask |= WDC_C1_PAGE_MASK;
			}
			if (log_page_list[i] == 0xca)  {
				page_mask |= WDC_CA_PAGE_MASK;
			}
			if (log_page_list[i] == 0xd0)  {
				page_mask |= WDC_D0_PAGE_MASK;
			}
		}
	}
	if (page_mask == 0)
		fprintf(stderr, "ERROR : WDC: Unknown log page mask - %s\n", cfg.log_page_mask);


	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_SMART_LOG_MASK) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	if (((capabilities & WDC_DRIVE_CAP_C0_LOG_PAGE) == WDC_DRIVE_CAP_C0_LOG_PAGE) &&
		(page_mask & WDC_C0_PAGE_MASK))	{
		/* Get 0xC0 log page if possible. */
		ret = wdc_get_c0_log_page(r, fd, cfg.output_format, uuid_index, cfg.namespace_id);
		if (ret)
			fprintf(stderr, "ERROR : WDC : Failure reading the C0 Log Page, ret = %d\n", ret);
	}
	if (((capabilities & (WDC_DRIVE_CAP_CA_LOG_PAGE)) == (WDC_DRIVE_CAP_CA_LOG_PAGE))  &&
		(page_mask & WDC_CA_PAGE_MASK)) {
		/* Get the CA Log Page */
		ret = wdc_get_ca_log_page(r, fd, cfg.output_format);
		if (ret)
			fprintf(stderr, "ERROR : WDC : Failure reading the CA Log Page, ret = %d\n", ret);
	}
	if (((capabilities & WDC_DRIVE_CAP_C1_LOG_PAGE) == WDC_DRIVE_CAP_C1_LOG_PAGE) &&
		(page_mask & WDC_C1_PAGE_MASK)) {
		/* Get the C1 Log Page */
		ret = wdc_get_c1_log_page(r, fd, cfg.output_format, cfg.interval);
		if (ret)
			fprintf(stderr, "ERROR : WDC : Failure reading the C1 Log Page, ret = %d\n", ret);
	}
	if (((capabilities & WDC_DRIVE_CAP_D0_LOG_PAGE) == WDC_DRIVE_CAP_D0_LOG_PAGE) &&
		(page_mask & WDC_D0_PAGE_MASK)) {
		/* Get the D0 Log Page */
		ret = wdc_get_d0_log_page(r, fd, cfg.output_format);
		if (ret)
			fprintf(stderr, "ERROR : WDC : Failure reading the D0 Log Page, ret = %d\n", ret);
	}

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_vs_cloud_log(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve Cloud Log Smart/Health Information";
	const char *namespace_id = "desired namespace id";
	int fd;
	nvme_root_t r;
	int ret = 0;
	__u64 capabilities = 0;
	__u8 *data;
	int fmt = -1;

	struct config {
		char *output_format;
		__u32 namespace_id;
	};

	struct config cfg = {
		.output_format = "normal",
		.namespace_id = NVME_NSID_ALL,
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format",      'o', &cfg.output_format,    "Output Format: normal|json"),
		OPT_UINT("namespace-id",      'n', &cfg.namespace_id,     namespace_id),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);

	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_CLOUD_LOG_PAGE) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	data = NULL;
	ret = nvme_get_ext_smart_cloud_log(fd, &data, 0, cfg.namespace_id);

	if (strcmp(cfg.output_format, "json"))
		nvme_show_status(ret);

	if (ret == 0) {
		fmt = validate_output_format(cfg.output_format);
		if (fmt < 0) {
			fprintf(stderr, "ERROR : WDC %s: invalid output format\n", __func__);
			ret = fmt;
		}

		/* parse the data */
		wdc_print_ext_smart_cloud_log(data, fmt);
	} else {
		fprintf(stderr, "ERROR : WDC : Unable to read C0 Log Page V1 data\n");
		ret = -1;
	}

	if (data)
		free(data);

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_vs_hw_rev_log(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve Hardware Revision Log Information";
	const char *namespace_id = "desired namespace id";
	int fd;
	nvme_root_t r;
	int ret = 0;
	__u64 capabilities = 0;
	__u8 *data = NULL;
	int fmt = -1;

	struct config {
		char *output_format;
		__u32 namespace_id;
	};

	struct config cfg = {
		.output_format = "normal",
		.namespace_id = NVME_NSID_ALL,
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format",      'o', &cfg.output_format,    "Output Format: normal|json"),
		OPT_UINT("namespace-id",      'n', &cfg.namespace_id,     namespace_id),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);

	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_HW_REV_LOG_PAGE) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	ret = nvme_get_hw_rev_log(fd, &data, 0, cfg.namespace_id);

	if (strcmp(cfg.output_format, "json"))
		nvme_show_status(ret);

	if (ret == 0) {
		fmt = validate_output_format(cfg.output_format);
		if (fmt < 0) {
			fprintf(stderr, "ERROR : WDC %s: invalid output format\n", __func__);
			ret = fmt;
			goto free_buf;
		}

		if (!data) {
			fprintf(stderr, "ERROR : WDC : Invalid buffer to read Hardware Revision log\n");
			ret = -1;
			goto out;
		}
		switch (fmt) {
		case NORMAL:
			wdc_print_hw_rev_log_normal(data);
			break;
		case JSON:
			wdc_print_hw_rev_log_json(data);
			break;
		}
	} else {
		fprintf(stderr, "ERROR : WDC : Unable to read Hardware Revision Log Page data\n");
		ret = -1;
	}

free_buf:
	if (data)
		free(data);

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_vs_device_waf(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve Device Write Amplication Factor";
	const char *namespace_id = "desired namespace id";
	struct nvme_smart_log smart_log;
	__u8 *data;
	int fd;
	nvme_root_t r;
	int ret = 0;
	int fmt = -1;
	__u64 capabilities = 0;
	wdc_nvme_ext_smart_log *ext_smart_log_ptr;
	long double  data_units_written = 0,
			phys_media_units_written_tlc = 0,
			phys_media_units_written_slc = 0;
	struct json_object *root = NULL;
	char tlc_waf_str[32] = { 0 },
			slc_waf_str[32] = { 0 };

	struct config {
		char *output_format;
		__u32 namespace_id;
	};

	struct config cfg = {
		.output_format = "normal",
		.namespace_id = NVME_NSID_ALL,
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format",      'o', &cfg.output_format,    "Output Format: normal|json"),
		OPT_UINT("namespace-id",      'n', &cfg.namespace_id,     namespace_id),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);

	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_DEVICE_WAF) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	/* get data units written from the smart log page */
	ret = nvme_get_log_smart(fd, cfg.namespace_id, false, &smart_log);
	if (!ret) {
		data_units_written = int128_to_double(smart_log.data_units_written);
	}
	else if (ret > 0) {
		nvme_show_status(ret);
		ret = -1;
		goto out;
	} else {
		fprintf(stderr, "smart log: %s\n", nvme_strerror(errno));
		ret = -1;
		goto out;
	}

	/* get Physical Media Units Written from extended smart/C0 log page */
	data = NULL;
	ret = nvme_get_ext_smart_cloud_log(fd, &data, 0, cfg.namespace_id);

	if (ret == 0) {
		ext_smart_log_ptr = (wdc_nvme_ext_smart_log *)data;
		phys_media_units_written_tlc = int128_to_double(ext_smart_log_ptr->ext_smart_pmuwt);
		phys_media_units_written_slc = int128_to_double(ext_smart_log_ptr->ext_smart_pmuws);

		if (data)
			free(data);
	} else {
		fprintf(stderr, "ERROR : WDC %s: get smart cloud log failure\n", __func__);
		ret = -1;
		goto out;
	}

	if (strcmp(cfg.output_format, "json"))
		nvme_show_status(ret);

	fmt = validate_output_format(cfg.output_format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC %s: invalid output format\n", __func__);
		ret = fmt;
		goto out;
	}

	if (data_units_written == 0) {
		fprintf(stderr, "ERROR : WDC %s: 0 data units written\n", __func__);
		ret = -1;
		goto out;
	}

	if (fmt == NORMAL) {
		printf("Device Write Amplification Factor TLC : %4.2Lf\n",
				(phys_media_units_written_tlc/data_units_written));
		printf("Device Write Amplification Factor SLC : %4.2Lf\n",
				(phys_media_units_written_slc/data_units_written));
	}
	else if (fmt == JSON) {
   		root = json_create_object();
   		sprintf(tlc_waf_str, "%4.2Lf", (phys_media_units_written_tlc/data_units_written));
   		sprintf(slc_waf_str, "%4.2Lf", (phys_media_units_written_slc/data_units_written));

		json_object_add_value_string(root, "Device Write Amplification Factor TLC", tlc_waf_str);
		json_object_add_value_string(root, "Device Write Amplification Factor SLC", slc_waf_str);

		json_print_object(root, NULL);
		printf("\n");

		json_free_object(root);
	}

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_get_latency_monitor_log(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve latency monitor log data.";
	nvme_root_t r;
	int fd;
	int ret = 0;
	__u64 capabilities = 0;

	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format",      'o', &cfg.output_format,    "Output Format: normal|json"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_C3_LOG_PAGE) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	ret = wdc_get_c3_log_page(r, fd, cfg.output_format);
	if (ret)
		fprintf(stderr, "ERROR : WDC : Failure reading the Latency Monitor (C3) Log Page, ret = %d\n", ret);

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_get_error_recovery_log(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve error recovery log data.";
	nvme_root_t r;
	int fd;
	int ret = 0;
	__u64 capabilities = 0;

	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format",      'o', &cfg.output_format,    "Output Format: normal|json"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_OCP_C1_LOG_PAGE) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	ret = wdc_get_ocp_c1_log_page(r, fd, cfg.output_format);
	if (ret)
		fprintf(stderr, "ERROR : WDC : Failure reading the Error Recovery (C1) Log Page, ret = 0x%x\n", ret);

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_get_dev_capabilities_log(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve device capabilities log data.";
	nvme_root_t r;
	int fd;
	int ret = 0;
	__u64 capabilities = 0;

	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format",      'o', &cfg.output_format,    "Output Format: normal|json"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_OCP_C4_LOG_PAGE) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	ret = wdc_get_ocp_c4_log_page(r, fd, cfg.output_format);
	if (ret)
		fprintf(stderr, "ERROR : WDC : Failure reading the Device Capabilities (C4) Log Page, ret = 0x%x\n", ret);

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_get_unsupported_reqs_log(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve unsupported requirements log data.";
	nvme_root_t r;
	int fd;
	int ret = 0;
	__u64 capabilities = 0;

	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format",      'o', &cfg.output_format,    "Output Format: normal|json"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_OCP_C5_LOG_PAGE) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	ret = wdc_get_ocp_c5_log_page(r, fd, cfg.output_format);
	if (ret)
		fprintf(stderr, "ERROR : WDC : Failure reading the Unsupported Requirements (C5) Log Page, ret = 0x%x\n", ret);

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_do_clear_pcie_correctable_errors(int fd)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;

	memset(&admin_cmd, 0, sizeof (admin_cmd));
	admin_cmd.opcode = WDC_NVME_CLEAR_PCIE_CORR_OPCODE;
	admin_cmd.cdw12 = ((WDC_NVME_CLEAR_PCIE_CORR_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			WDC_NVME_CLEAR_PCIE_CORR_CMD);

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	nvme_show_status(ret);
	return ret;
}

static int wdc_do_clear_pcie_correctable_errors_vuc(int fd)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;

	memset(&admin_cmd, 0, sizeof (admin_cmd));
	admin_cmd.opcode = WDC_NVME_CLEAR_PCIE_CORR_OPCODE_VUC;

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	nvme_show_status(ret);
	return ret;
}

static int wdc_do_clear_pcie_correctable_errors_fid(int fd)
{
	int ret;
	__u32 result;
	__u32 value = 1 << 31; /* Bit 31 - clear PCIe correctable count */

	ret = nvme_set_features_simple(fd, WDC_NVME_CLEAR_PCIE_CORR_FEATURE_ID, 0, value,
				false, &result);

	nvme_show_status(ret);
	return ret;
}

static int wdc_clear_pcie_correctable_errors(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	char *desc = "Clear PCIE Correctable Errors.";
	int fd, ret;
	nvme_root_t r;
	__u64 capabilities = 0;

	OPT_ARGS(opts) = {
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	if (!wdc_check_device(r, fd)) {
		ret = -1;
		goto out;
	}

	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_CLEAR_PCIE_MASK) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}
        
	if (capabilities & WDC_DRIVE_CAP_CLEAR_PCIE) {
		ret = wdc_do_clear_pcie_correctable_errors(fd);
	}
	else if (capabilities & WDC_DRIVE_CAP_VUC_CLEAR_PCIE) {
		ret = wdc_do_clear_pcie_correctable_errors_vuc(fd);
	}
	else {
		ret = wdc_do_clear_pcie_correctable_errors_fid(fd);
	}

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_drive_status(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	char *desc = "Get Drive Status.";
	int fd;
	int ret = 0;
	nvme_root_t r;
	__le32 system_eol_state;
	__le32 user_eol_state;
	__le32 format_corrupt_reason = cpu_to_le32(0xFFFFFFFF);
	__le32 eol_status;
	__le32 assert_status = cpu_to_le32(0xFFFFFFFF);
	__le32 thermal_status = cpu_to_le32(0xFFFFFFFF);
	__u64 capabilities = 0;

	OPT_ARGS(opts) = {
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_DRIVE_STATUS) != WDC_DRIVE_CAP_DRIVE_STATUS) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	/* verify the 0xC2 Device Manageability log page is supported */
	if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE) == false) {
		fprintf(stderr, "ERROR : WDC : 0xC2 Log Page not supported\n");
		ret = -1;
		goto out;
	}

	/* Get the assert dump present status */
	if (!wdc_nvme_get_dev_status_log_data(r, fd, &assert_status,
			WDC_C2_ASSERT_DUMP_PRESENT_ID))
		fprintf(stderr, "ERROR : WDC : Get Assert Status Failed\n");

	/* Get the thermal throttling status */
	if (!wdc_nvme_get_dev_status_log_data(r, fd, &thermal_status,
			WDC_C2_THERMAL_THROTTLE_STATUS_ID))
		fprintf(stderr, "ERROR : WDC : Get Thermal Throttling Status Failed\n");

	/* Get EOL status */
	if (!wdc_nvme_get_dev_status_log_data(r, fd, &eol_status,
			WDC_C2_USER_EOL_STATUS_ID)) {
		fprintf(stderr, "ERROR : WDC : Get User EOL Status Failed\n");
		eol_status = cpu_to_le32(-1);
	}

	/* Get Customer EOL state */
	if (!wdc_nvme_get_dev_status_log_data(r, fd, &user_eol_state,
			WDC_C2_USER_EOL_STATE_ID))
		fprintf(stderr, "ERROR : WDC : Get User EOL State Failed\n");

	/* Get System EOL state*/
	if (!wdc_nvme_get_dev_status_log_data(r, fd, &system_eol_state,
			WDC_C2_SYSTEM_EOL_STATE_ID))
		fprintf(stderr, "ERROR : WDC : Get System EOL State Failed\n");

	/* Get format corrupt reason*/
	if (!wdc_nvme_get_dev_status_log_data(r, fd, &format_corrupt_reason,
			WDC_C2_FORMAT_CORRUPT_REASON_ID))
		fprintf(stderr, "ERROR : WDC : Get Format Corrupt Reason Failed\n");

	printf("  Drive Status :- \n");
	if ((int)le32_to_cpu(eol_status) >= 0) {
		printf("  Percent Used:				%"PRIu32"%%\n",
				le32_to_cpu(eol_status));
	}
	else
		printf("  Percent Used:				Unknown\n");
	if (system_eol_state == WDC_EOL_STATUS_NORMAL && user_eol_state == WDC_EOL_STATUS_NORMAL)
		printf("  Drive Life Status:			Normal\n");
	else if (system_eol_state == WDC_EOL_STATUS_END_OF_LIFE || user_eol_state == WDC_EOL_STATUS_END_OF_LIFE)
		printf("  Drive Life Status:	  		End Of Life\n");
	else if (system_eol_state == WDC_EOL_STATUS_READ_ONLY || user_eol_state == WDC_EOL_STATUS_READ_ONLY)
		printf("  Drive Life Status:	  		Read Only\n");
	else
		printf("  Drive Life Status:			Unknown : 0x%08x/0x%08x\n",
				le32_to_cpu(user_eol_state), le32_to_cpu(system_eol_state));

	if (assert_status == WDC_ASSERT_DUMP_PRESENT)
		printf("  Assert Dump Status:			Present\n");
	else if (assert_status == WDC_ASSERT_DUMP_NOT_PRESENT)
		printf("  Assert Dump Status:			Not Present\n");
	else
		printf("  Assert Dump Status:			Unknown : 0x%08x\n", le32_to_cpu(assert_status));

	if (thermal_status == WDC_THERMAL_THROTTLING_OFF)
		printf("  Thermal Throttling Status:		Off\n");
	else if (thermal_status == WDC_THERMAL_THROTTLING_ON)
		printf("  Thermal Throttling Status:		On\n");
	else if (thermal_status == WDC_THERMAL_THROTTLING_UNAVAILABLE)
		printf("  Thermal Throttling Status:		Unavailable\n");
	else
		printf("  Thermal Throttling Status:		Unknown : 0x%08x\n", le32_to_cpu(thermal_status));

	if (format_corrupt_reason == WDC_FORMAT_NOT_CORRUPT)
		printf("  Format Corrupt Reason:		Format Not Corrupted\n");
	else if (format_corrupt_reason == WDC_FORMAT_CORRUPT_FW_ASSERT)
		printf("  Format Corrupt Reason:	        Format Corrupt due to FW Assert\n");
	else if (format_corrupt_reason == WDC_FORMAT_CORRUPT_UNKNOWN)
		printf("  Format Corrupt Reason:	        Format Corrupt for Unknown Reason\n");
	else
		printf("  Format Corrupt Reason:	        Unknown : 0x%08x\n", le32_to_cpu(format_corrupt_reason));

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_clear_assert_dump(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	char *desc = "Clear Assert Dump Present Status.";
	int fd;
	int ret = -1;
	nvme_root_t r;
	__le32 assert_status = cpu_to_le32(0xFFFFFFFF);
	__u64 capabilities = 0;
	struct nvme_passthru_cmd admin_cmd;

	OPT_ARGS(opts) = {
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_CLEAR_ASSERT) != WDC_DRIVE_CAP_CLEAR_ASSERT) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}
	if (!wdc_nvme_get_dev_status_log_data(r, fd, &assert_status,
			WDC_C2_ASSERT_DUMP_PRESENT_ID)) {
		fprintf(stderr, "ERROR : WDC : Get Assert Status Failed\n");
		ret = -1;
		goto out;
	}

	/* Get the assert dump present status */
	if (assert_status == WDC_ASSERT_DUMP_PRESENT) {
		memset(&admin_cmd, 0, sizeof (admin_cmd));
		admin_cmd.opcode = WDC_NVME_CLEAR_ASSERT_DUMP_OPCODE;
		admin_cmd.cdw12 = ((WDC_NVME_CLEAR_ASSERT_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
				WDC_NVME_CLEAR_ASSERT_DUMP_CMD);

		ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
		nvme_show_status(ret);
	} else
		fprintf(stderr, "INFO : WDC : No Assert Dump Present\n");

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_get_fw_act_history(nvme_root_t r, int fd, char *format)
{
	int ret = 0;
	int fmt = -1;
	__u8 *data;
	struct wdc_fw_act_history_log_hdr *fw_act_history_hdr;

	if (!wdc_check_device(r, fd))
		return -1;

	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	/* verify the FW Activate History log page is supported */
	if (wdc_nvme_check_supported_log_page(r, fd, WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID) == false) {
		fprintf(stderr, "ERROR : WDC : %d Log Page not supported\n", WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID);
		return -1;
	}

	if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FW_ACT_HISTORY_LOG_BUF_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}

	memset(data, 0, sizeof (__u8) * WDC_FW_ACT_HISTORY_LOG_BUF_LEN);

	ret = nvme_get_log_simple(fd, WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID,
			   WDC_FW_ACT_HISTORY_LOG_BUF_LEN, data);

	if (strcmp(format, "json"))
		nvme_show_status(ret);

	if (ret == 0) {
		/* parse the data */
		fw_act_history_hdr = (struct wdc_fw_act_history_log_hdr *)(data);

		if ((fw_act_history_hdr->num_entries > 0) && (fw_act_history_hdr->num_entries <= WDC_MAX_NUM_ACT_HIST_ENTRIES))
			ret = wdc_print_fw_act_history_log(data, fw_act_history_hdr->num_entries, fmt, 0, 0);
		else if (fw_act_history_hdr->num_entries == 0) {
			fprintf(stderr, "INFO : WDC : No FW Activate History entries found.\n");
			ret = 0;
		}
		else {
			fprintf(stderr, "ERROR : WDC : Invalid number entries found in FW Activate History Log Page - %d\n", fw_act_history_hdr->num_entries);
			ret = -1;
		}
	} else {
		fprintf(stderr, "ERROR : WDC : Unable to read FW Activate History Log Page data\n");
		ret = -1;
	}

	free(data);
	return ret;
}

static __u32 wdc_get_fw_cust_id(nvme_root_t r, int fd)
{

	__u32 cust_id = WDC_INVALID_CUSTOMER_ID;
	__u32 *cust_id_ptr = NULL;

	if (!(get_dev_mgment_cbs_data(r, fd, WDC_C2_CUSTOMER_ID_ID, (void*)&cust_id_ptr))) {
		fprintf(stderr, "%s: ERROR : WDC : 0xC2 Log Page entry ID 0x%x not found\n", __func__, WDC_C2_CUSTOMER_ID_ID);
	} else {
		cust_id = *cust_id_ptr;
	}

	free(cust_id_ptr);
	return cust_id;
}

static int wdc_get_fw_act_history_C2(nvme_root_t r, int fd, char *format)
{
	int ret = 0;
	int fmt = -1;
	__u8 *data;
	__u32 cust_id;
	struct wdc_fw_act_history_log_format_c2 *fw_act_history_log;
	__u32 tot_entries = 0, num_entries = 0;
	__u32 vendor_id = 0, device_id = 0;

	if (!wdc_check_device(r, fd))
		return -1;

	fmt = validate_output_format(format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		return fmt;
	}

	ret = wdc_get_pci_ids(r, &device_id, &vendor_id);

	if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FW_ACT_HISTORY_C2_LOG_BUF_LEN)) == NULL) {
		fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
		return -1;
	}

	memset(data, 0, sizeof (__u8) * WDC_FW_ACT_HISTORY_C2_LOG_BUF_LEN);

	ret = nvme_get_log_simple(fd, WDC_NVME_GET_FW_ACT_HISTORY_C2_LOG_ID,
			   WDC_FW_ACT_HISTORY_C2_LOG_BUF_LEN, data);

	if (strcmp(format, "json"))
		nvme_show_status(ret);

	if (ret == 0) {
		/* parse the data */
		fw_act_history_log = (struct wdc_fw_act_history_log_format_c2*)(data);
		tot_entries = le32_to_cpu(fw_act_history_log->num_entries);

		if (tot_entries > 0) {
			/* get the FW customer id */
			cust_id = wdc_get_fw_cust_id(r, fd);
			if (cust_id == WDC_INVALID_CUSTOMER_ID) {
				fprintf(stderr, "%s: ERROR : WDC : invalid customer id\n", __func__);
				ret = -1;
				goto freeData;
			}
			num_entries = (tot_entries < WDC_MAX_NUM_ACT_HIST_ENTRIES) ? tot_entries :
				WDC_MAX_NUM_ACT_HIST_ENTRIES;
			ret = wdc_print_fw_act_history_log(data, num_entries, fmt, cust_id, vendor_id);
		} else  {
			fprintf(stderr, "INFO : WDC : No FW Activate History entries found.\n");
			ret = 0;
		}
	} else {
		fprintf(stderr, "ERROR : WDC : Unable to read FW Activate History Log Page data\n");
		ret = -1;
	}

freeData:
	free(data);
	return ret;
}

static int wdc_vs_fw_activate_history(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	int fd;
	int ret = 0;
	nvme_root_t r;
	__u64 capabilities = 0;
	const char *desc = "Retrieve FW activate history table.";


	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);

	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_MASK) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	if (capabilities & WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY) {
		int uuid_index = 0;
		bool c0GuidMatch = false;
		__u8 *data;
		int i;

		/* check for the GUID in the 0xC0 log page to determine which log page to use to */
		/* to retrieve fw activate history data                                          */
		if ((data = (__u8*) malloc(sizeof (__u8) * WDC_NVME_SMART_CLOUD_ATTR_LEN)) == NULL) {
			fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno));
			ret = -1;
			goto out;
		}

		/* Get the 0xC0 log data */
		struct nvme_get_log_args args = {
			.args_size	= sizeof(args),
			.fd		= fd,
			.lid		= WDC_NVME_GET_SMART_CLOUD_ATTR_LOG_OPCODE,
			.nsid		= 0xFFFFFFFF,
			.lpo		= 0,
			.lsp		= NVME_LOG_LSP_NONE,
			.lsi		= 0,
			.rae		= false,
			.uuidx		= uuid_index,
			.csi		= NVME_CSI_NVM,
			.ot		= false,
			.len		= WDC_NVME_SMART_CLOUD_ATTR_LEN,
			.log		= data,
			.timeout	= NVME_DEFAULT_IOCTL_TIMEOUT,
			.result		= NULL,
		};
		ret = nvme_get_log(&args);

		if (ret == 0) {
			/* Verify GUID matches */
			for (i=0; i<16; i++) {
				if (scao_guid[i] != data[SCAO_LPG + i])	{
					c0GuidMatch = false;
					break;
				}
			}

			if (i == 16) {
				c0GuidMatch = true;
			}
		}

		free(data);
		if (c0GuidMatch) {
			ret = wdc_get_fw_act_history_C2(r, fd,
							cfg.output_format);
		}
		else {
			ret = wdc_get_fw_act_history(r, fd, cfg.output_format);
		}
	} else {
		ret = wdc_get_fw_act_history_C2(r, fd, cfg.output_format);
	}

	if (ret)
		fprintf(stderr, "ERROR : WDC : Failure reading the FW Activate History, ret = %d\n", ret);
out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_do_clear_fw_activate_history_vuc(int fd)
{
	int ret = -1;
	struct nvme_passthru_cmd admin_cmd;

	memset(&admin_cmd, 0, sizeof (admin_cmd));
	admin_cmd.opcode = WDC_NVME_CLEAR_FW_ACT_HIST_OPCODE;
	admin_cmd.cdw12 = ((WDC_NVME_CLEAR_FW_ACT_HIST_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			WDC_NVME_CLEAR_FW_ACT_HIST_CMD);

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	nvme_show_status(ret);

	return ret;
}

static int wdc_do_clear_fw_activate_history_fid(int fd)
{
	int ret = -1;
	__u32 result;
	__u32 value = 1 << 31; /* Bit 31 - Clear Firmware Update History Log */

	ret = nvme_set_features_simple(fd, WDC_NVME_CLEAR_FW_ACT_HIST_VU_FID, 0, value,
				false, &result);

	nvme_show_status(ret);
	return ret;
}

static int wdc_clear_fw_activate_history(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	char *desc = "Clear FW activate history table.";
	int fd;
	int ret = -1;
	nvme_root_t r;
	__u64 capabilities = 0;

	OPT_ARGS(opts) = {
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY_MASK) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	if (capabilities & WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY)
		ret = wdc_do_clear_fw_activate_history_vuc(fd);
	else
		ret = wdc_do_clear_fw_activate_history_fid(fd);

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_vs_telemetry_controller_option(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	char *desc = "Disable/Enable Controller Option of the Telemetry Log Page.";
	char *disable = "Disable controller option of the telemetry log page.";
	char *enable = "Enable controller option of the telemetry log page.";
	char *status = "Displays the current state of the controller initiated log page.";
	int fd;
	int ret = -1;
	nvme_root_t r;
	__u64 capabilities = 0;
	__u32 result;


	struct config {
		bool disable;
		bool enable;
		bool status;
	};

	struct config cfg = {
		.disable = false,
		.enable = false,
		.status = false,
	};

	OPT_ARGS(opts) = {
		OPT_FLAG("disable",       'd', &cfg.disable,   disable),
		OPT_FLAG("enable",        'e', &cfg.enable,    enable),
		OPT_FLAG("status",        's', &cfg.status,    status),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG) != WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	/* allow only one option at a time */
	if ((cfg.disable + cfg.enable + cfg.status) > 1) {

		fprintf(stderr, "ERROR : WDC : Invalid option\n");
		ret = -1;
		goto out;
	}

	if (cfg.disable) {
		ret = nvme_set_features_simple(fd, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0, 1,
				       false, &result);

		wdc_clear_reason_id(fd);
	}
	else {
	   if (cfg.enable) {
			ret = nvme_set_features_simple(fd, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0, 0,
					       false, &result);
	   }
	   else if (cfg.status) {
			ret = nvme_get_features_simple(fd, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0,
					&result);
			if (ret == 0) {
				if (result)
					fprintf(stderr, "Controller Option Telemetry Log Page State: Disabled\n");
				else
					fprintf(stderr, "Controller Option Telemetry Log Page State: Enabled\n");
			} else {
				nvme_show_status(ret);
			}
	   }
	   else {
			fprintf(stderr, "ERROR : WDC: unsupported option for this command\n");
			fprintf(stderr, "Please provide an option, -d, -e or -s\n");
			ret = -1;
			goto out;
	   }

	}

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}


static int wdc_get_serial_and_fw_rev(int fd, char *sn, char *fw_rev)
{
	int i;
	int ret;
	struct nvme_id_ctrl ctrl;

	i = sizeof (ctrl.sn) - 1;
	memset(sn, 0, WDC_SERIAL_NO_LEN);
	memset(fw_rev, 0, WDC_NVME_FIRMWARE_REV_LEN);
	memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
	ret = nvme_identify_ctrl(fd, &ctrl);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed "
				"0x%x\n", ret);
		return -1;
	}
	/* Remove trailing spaces from the name */
	while (i && ctrl.sn[i] == ' ') {
		ctrl.sn[i] = '\0';
		i--;
	}
	snprintf(sn, WDC_SERIAL_NO_LEN, "%s", ctrl.sn);
	snprintf(fw_rev, WDC_NVME_FIRMWARE_REV_LEN, "%s", ctrl.fr);

	return 0;
}

static int wdc_get_max_transfer_len(int fd, __u32 *maxTransferLen)
{
	int ret = 0;
	struct nvme_id_ctrl ctrl;

	__u32 maxTransferLenDevice = 0;

	memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
	ret = nvme_identify_ctrl(fd, &ctrl);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed 0x%x\n", ret);
		return -1;
	}

	maxTransferLenDevice = (1 << ctrl.mdts) * getpagesize();
	*maxTransferLen = maxTransferLenDevice;

	return ret;
}

static int wdc_de_VU_read_size(int fd, __u32 fileId, __u16 spiDestn, __u32* logSize)
{
	int ret = WDC_STATUS_FAILURE;
	struct nvme_passthru_cmd cmd;

	if(!fd || !logSize )
	{
		ret = WDC_STATUS_INVALID_PARAMETER;
		goto end;
	}

	memset(&cmd,0,sizeof(struct nvme_passthru_cmd));
	cmd.opcode = WDC_DE_VU_READ_SIZE_OPCODE;
	cmd.nsid = WDC_DE_DEFAULT_NAMESPACE_ID;
	cmd.cdw13 = fileId<<16;
	cmd.cdw14 = spiDestn;

	ret = nvme_submit_admin_passthru(fd, &cmd, NULL);

	if (!ret && logSize)
		*logSize = cmd.result;
	if( ret != WDC_STATUS_SUCCESS) {
		fprintf(stderr, "ERROR : WDC : VUReadSize() failed, ");
		nvme_show_status(ret);
	}

	end:
	return ret;
}

static int wdc_de_VU_read_buffer(int fd, __u32 fileId, __u16 spiDestn, __u32 offsetInDwords, __u8* dataBuffer, __u32* bufferSize)
{
	int ret = WDC_STATUS_FAILURE;
	struct nvme_passthru_cmd cmd;
	__u32 noOfDwordExpected = 0;

	if(!fd || !dataBuffer || !bufferSize)
	{
		ret = WDC_STATUS_INVALID_PARAMETER;
		goto end;
	}

	memset(&cmd,0,sizeof(struct nvme_passthru_cmd));
	noOfDwordExpected = *bufferSize/sizeof(__u32);
	cmd.opcode = WDC_DE_VU_READ_BUFFER_OPCODE;
	cmd.nsid = WDC_DE_DEFAULT_NAMESPACE_ID;
	cmd.cdw10 = noOfDwordExpected;
	cmd.cdw13 = fileId<<16;
	cmd.cdw14 = spiDestn;
	cmd.cdw15 = offsetInDwords;

	cmd.addr = (__u64)(__u64)(uintptr_t)dataBuffer;
	cmd.data_len = *bufferSize;

	ret = nvme_submit_admin_passthru(fd, &cmd, NULL);

	if( ret != WDC_STATUS_SUCCESS) {
		fprintf(stderr, "ERROR : WDC : VUReadBuffer() failed, ");
		nvme_show_status(ret);
	}

	end:
	return ret;
}

static int wdc_get_log_dir_max_entries(int fd, __u32* maxNumOfEntries)
{
	int     		ret = WDC_STATUS_FAILURE;
	__u32           headerPayloadSize = 0;
	__u8*           fileIdOffsetsBuffer = NULL;
	__u32           fileIdOffsetsBufferSize = 0;
	__u32           fileNum = 0;
	__u16           fileOffset = 0;


	if (!fd || !maxNumOfEntries)
	{
		ret = WDC_STATUS_INVALID_PARAMETER;
		return ret;
	}
	/* 1.Get log directory first four bytes */
	if (WDC_STATUS_SUCCESS != (ret = wdc_de_VU_read_size(fd, 0, 5, (__u32*)&headerPayloadSize)))
	{
		fprintf(stderr, "ERROR : WDC : %s: Failed to get headerPayloadSize from file directory 0x%x\n",
				__func__, ret);
		return ret;
	}

	fileIdOffsetsBufferSize = WDC_DE_FILE_HEADER_SIZE + (headerPayloadSize * WDC_DE_FILE_OFFSET_SIZE);
	fileIdOffsetsBuffer = (__u8*)calloc(1, fileIdOffsetsBufferSize);

	/* 2.Read to get file offsets */
	if (WDC_STATUS_SUCCESS != (ret = wdc_de_VU_read_buffer(fd, 0, 5, 0, fileIdOffsetsBuffer, &fileIdOffsetsBufferSize)))
	{
		fprintf(stderr, "ERROR : WDC : %s: Failed to get fileIdOffsets from file directory 0x%x\n",
				__func__, ret);
		goto end;
	}
	/* 3.Determine valid entries */
	for (fileNum = 0; fileNum < (headerPayloadSize - WDC_DE_FILE_HEADER_SIZE) / WDC_DE_FILE_OFFSET_SIZE; fileNum++)
	{
		fileOffset = (fileIdOffsetsBuffer[WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE)] << 8) +
				fileIdOffsetsBuffer[WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE) + 1];
		if (!fileOffset)
			continue;
		(*maxNumOfEntries)++;
	}
end:
	free(fileIdOffsetsBuffer);
	return ret;
}

static WDC_DRIVE_ESSENTIAL_TYPE wdc_get_essential_type(__u8 fileName[])
{
	WDC_DRIVE_ESSENTIAL_TYPE essentialType = WDC_DE_TYPE_NONE;

	if (wdc_UtilsStrCompare((char*)fileName, WDC_DE_CORE_DUMP_FILE_NAME) == 0)
	{
		essentialType = WDC_DE_TYPE_DUMPSNAPSHOT;
	}
	else if (wdc_UtilsStrCompare((char*)fileName, WDC_DE_EVENT_LOG_FILE_NAME) == 0)
	{
		essentialType = WDC_DE_TYPE_EVENTLOG;
	}
	else if (wdc_UtilsStrCompare((char*)fileName, WDC_DE_MANUFACTURING_INFO_PAGE_FILE_NAME) == 0)
	{
		essentialType = WDC_DE_TYPE_NVME_MANF_INFO;
	}

	return essentialType;
}

static int wdc_fetch_log_directory(int fd, PWDC_DE_VU_LOG_DIRECTORY directory)
{
	int             ret = WDC_STATUS_FAILURE;
	__u8            *fileOffset = NULL;
	__u8            *fileDirectory = NULL;
	__u32           headerSize = 0;
	__u32           fileNum = 0, startIdx = 0;
	__u16           fileOffsetTemp = 0;
	__u32           entryId = 0;
	__u32           fileDirectorySize = 0;

	if (!fd || !directory) {
		ret = WDC_STATUS_INVALID_PARAMETER;
		goto end;
	}

	ret = wdc_de_VU_read_size(fd, 0, 5, &fileDirectorySize);
	if (WDC_STATUS_SUCCESS != ret) {
		fprintf(stderr,
			"ERROR : WDC : %s: Failed to get filesystem directory size, ret = %d\n",
			__func__, ret);
		goto end;
	}

	fileDirectory = (__u8*)calloc(1, fileDirectorySize);
	ret = wdc_de_VU_read_buffer(fd, 0, 5, 0, fileDirectory, &fileDirectorySize);
	if (WDC_STATUS_SUCCESS != ret) {
		fprintf(stderr,
			"ERROR : WDC : %s: Failed to get filesystem directory, ret = %d\n",
			__func__, ret);
		goto end;
	}

	/* First four bytes of header directory is headerSize */
	memcpy(&headerSize, fileDirectory, WDC_DE_FILE_HEADER_SIZE);

	/* minimum buffer for 1 entry is required */
	if (directory->maxNumLogEntries == 0) {
		ret = WDC_STATUS_INVALID_PARAMETER;
		goto end;
	}

	for (fileNum = 0;
	     fileNum < (headerSize - WDC_DE_FILE_HEADER_SIZE) / WDC_DE_FILE_OFFSET_SIZE;
	     fileNum++) {
		if (entryId >= directory->maxNumLogEntries)
			break;

		startIdx = WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE);
		memcpy(&fileOffsetTemp, fileDirectory + startIdx, sizeof(fileOffsetTemp));
		fileOffset = fileDirectory + fileOffsetTemp;

		if (0 == fileOffsetTemp)
			continue;

		memset(&directory->logEntry[entryId], 0, sizeof(WDC_DRIVE_ESSENTIALS));
		memcpy(&directory->logEntry[entryId].metaData, fileOffset, sizeof(WDC_DE_VU_FILE_META_DATA));
		directory->logEntry[entryId].metaData.fileName[WDC_DE_FILE_NAME_SIZE - 1] = '\0';
		wdc_UtilsDeleteCharFromString((char*)directory->logEntry[entryId].metaData.fileName,
				WDC_DE_FILE_NAME_SIZE, ' ');
		if (0 == directory->logEntry[entryId].metaData.fileID)
			continue;

		directory->logEntry[entryId].essentialType = wdc_get_essential_type(directory->logEntry[entryId].metaData.fileName);
		/*fprintf(stderr, "WDC : %s: NVMe VU Log Entry %d, fileName = %s, fileSize = 0x%lx, fileId = 0x%x\n",
			__func__, entryId, directory->logEntry[entryId].metaData.fileName,
			(long unsigned int)directory->logEntry[entryId].metaData.fileSize, directory->logEntry[entryId].metaData.fileID);
		 */
		entryId++;
	}

	directory->numOfValidLogEntries = entryId;
end:
	if (fileDirectory != NULL)
		free(fileDirectory);
	return ret;
}

static int wdc_fetch_log_file_from_device(int fd, __u32 fileId, __u16 spiDestn, __u64 fileSize, __u8* dataBuffer)
{
	int ret = WDC_STATUS_FAILURE;
	__u32                     chunckSize = WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET;
	__u32                     maximumTransferLength = 0;
	__u32                     buffSize = 0;
	__u64                     offsetIdx = 0;

	if (!fd || !dataBuffer || !fileSize)
	{
		ret = WDC_STATUS_INVALID_PARAMETER;
		goto end;
	}

	if (wdc_get_max_transfer_len(fd, &maximumTransferLength) < 0) {
		ret = WDC_STATUS_FAILURE;
		goto end;
	}

	/* Fetch Log File Data */
	if ((fileSize >= maximumTransferLength) || (fileSize > 0xFFFFFFFF))
	{
		chunckSize = WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET;
		if (maximumTransferLength < WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET)
			chunckSize = maximumTransferLength;

		buffSize = chunckSize;
		for (offsetIdx = 0; (offsetIdx * chunckSize) < fileSize; offsetIdx++)
		{
			if (((offsetIdx * chunckSize) + buffSize) > fileSize)
				buffSize = (__u32)(fileSize - (offsetIdx * chunckSize));
			/* Limitation in VU read buffer - offsetIdx and bufferSize are not greater than u32 */
			ret = wdc_de_VU_read_buffer(fd, fileId, spiDestn,
					(__u32)((offsetIdx * chunckSize) / sizeof(__u32)), dataBuffer + (offsetIdx * chunckSize), &buffSize);
			if (ret != WDC_STATUS_SUCCESS)
			{
				fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_buffer failed with ret = %d, fileId = 0x%x, fileSize = 0x%lx\n",
						__func__, ret, fileId, (long unsigned int)fileSize);
				break;
			}
		}
	} else {
		buffSize = (__u32)fileSize;
		ret = wdc_de_VU_read_buffer(fd, fileId, spiDestn,
				(__u32)((offsetIdx * chunckSize) / sizeof(__u32)), dataBuffer, &buffSize);
		if (ret != WDC_STATUS_SUCCESS)
		{
			fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_buffer failed with ret = %d, fileId = 0x%x, fileSize = 0x%lx\n",
					__func__, ret, fileId, (long unsigned int)fileSize);
		}
	}

	end:
	return ret;
}

static int wdc_de_get_dump_trace(int fd, char * filePath, __u16 binFileNameLen, char *binFileName)
{
	int                     ret = WDC_STATUS_FAILURE;
	__u8                    *readBuffer = NULL;
	__u32                   readBufferLen = 0;
	__u32                   lastPktReadBufferLen = 0;
	__u32                   maxTransferLen = 0;
	__u32                   dumptraceSize = 0;
	__u32                   chunkSize = 0;
	__u32                   chunks = 0;
	__u32                   offset = 0;
	__u8                    loop = 0;
	__u16					i = 0;
	__u32                   maximumTransferLength = 0;

	if (!fd || !binFileName || !filePath)
	{
		ret = WDC_STATUS_INVALID_PARAMETER;
		return ret;
	}

	if (wdc_get_max_transfer_len(fd, &maximumTransferLength) < 0)
		return WDC_STATUS_FAILURE;

	do
	{
		/* Get dumptrace size */
		ret = wdc_de_VU_read_size(fd, 0, WDC_DE_DUMPTRACE_DESTINATION, &dumptraceSize);
		if (ret != WDC_STATUS_SUCCESS)
		{
			fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_size failed with ret = %d\n",
					__func__, ret);
			break;
		}

		/* Make sure the size requested is greater than dword */
		if (dumptraceSize < 4)
		{
			ret = WDC_STATUS_FAILURE;
			fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_size failed, read size is less than 4 bytes, dumptraceSize = 0x%x\n",
					__func__, dumptraceSize);
			break;
		}

		/* Choose the least max transfer length */
		maxTransferLen = maximumTransferLength < WDC_DE_READ_MAX_TRANSFER_SIZE ? maximumTransferLength : WDC_DE_READ_MAX_TRANSFER_SIZE;

		/* Comment from  FW Team:
		 * The max non - block transfer size is 0xFFFF (16 bits allowed as the block size).Use 0x8000
		 * to keep it on a word - boundary.
		 * max_xfer = int(pow(2, id_data['MDTS'])) * 4096 # 4k page size as reported in pcie capabiltiies
		 */
		chunkSize = dumptraceSize < maxTransferLen ? dumptraceSize : maxTransferLen;
		chunks = (dumptraceSize / maxTransferLen) + ((dumptraceSize % maxTransferLen) ? 1 : 0);

		readBuffer = (unsigned char *)calloc(dumptraceSize, sizeof(unsigned char));
		readBufferLen = chunkSize;
		lastPktReadBufferLen = (dumptraceSize % maxTransferLen) ? (dumptraceSize % maxTransferLen) : chunkSize;

		if (readBuffer == NULL)
		{
			fprintf(stderr, "ERROR : WDC : %s: readBuffer calloc failed\n", __func__);
			ret = WDC_STATUS_INSUFFICIENT_MEMORY;
			break;
		}

		for (i = 0; i < chunks; i++)
		{
			offset = ((i*chunkSize) / 4);

			/* Last loop call, Assign readBufferLen to read only left over bytes */
			if (i == (chunks - 1))
			{
				readBufferLen = lastPktReadBufferLen;
			}

			ret = wdc_de_VU_read_buffer(fd, 0, WDC_DE_DUMPTRACE_DESTINATION, 0, readBuffer + offset, &readBufferLen);
			if (ret != WDC_STATUS_SUCCESS)
			{
				fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_buffer failed, ret = %d on offset 0x%x\n",
						__func__, ret, offset);
				break;
			}
		}
	} while (loop);

	if (ret == WDC_STATUS_SUCCESS)
	{
		ret = wdc_WriteToFile(binFileName, (char*)readBuffer, dumptraceSize);
		if (ret != WDC_STATUS_SUCCESS)
			fprintf(stderr, "ERROR : WDC : %s: wdc_WriteToFile failed, ret = %d\n", __func__, ret);
	} else {
		fprintf(stderr, "ERROR : WDC : %s: Read Buffer Loop failed, ret = %d\n", __func__, ret);
	}

	if (readBuffer)
	{
		free(readBuffer);
	}

	return ret;
}

static int wdc_do_drive_essentials(nvme_root_t r, int fd, char *dir, char *key)
{
	int ret = 0;
	void *retPtr;
	char                      fileName[MAX_PATH_LEN];
	__s8                      bufferFolderPath[MAX_PATH_LEN];
	char                      bufferFolderName[MAX_PATH_LEN];
	char                      tarFileName[MAX_PATH_LEN];
	char                      tarFiles[MAX_PATH_LEN];
	char                      tarCmd[MAX_PATH_LEN+MAX_PATH_LEN];
	UtilsTimeInfo             timeInfo;
	__u8                      timeString[MAX_PATH_LEN];
	__u8                      serialNo[WDC_SERIAL_NO_LEN];
	__u8                      firmwareRevision[WDC_NVME_FIRMWARE_REV_LEN];
	__u8                      idSerialNo[WDC_SERIAL_NO_LEN];
	__u8                      idFwRev[WDC_NVME_FIRMWARE_REV_LEN];
	__u8                      featureIdBuff[4];
	char                      currDir[MAX_PATH_LEN];
	char                      *dataBuffer     = NULL;
	__u32 					  elogNumEntries, elogBufferSize;
	__u32 					  dataBufferSize;
	__u32                     listIdx = 0;
	__u32                     vuLogIdx = 0;
	__u32 					  result;
	__u32                     maxNumOfVUFiles = 0;
	struct nvme_id_ctrl ctrl;
	struct nvme_id_ns ns;
	struct nvme_error_log_page *elogBuffer;
	struct nvme_smart_log smart_log;
	struct nvme_firmware_slot fw_log;
	PWDC_NVME_DE_VU_LOGPAGES vuLogInput = NULL;
	WDC_DE_VU_LOG_DIRECTORY deEssentialsList;

	memset(bufferFolderPath,0,sizeof(bufferFolderPath));
	memset(bufferFolderName,0,sizeof(bufferFolderName));
	memset(tarFileName,0,sizeof(tarFileName));
	memset(tarFiles,0,sizeof(tarFiles));
	memset(tarCmd,0,sizeof(tarCmd));
	memset(&timeInfo,0,sizeof(timeInfo));

	if (wdc_get_serial_and_fw_rev(fd, (char *)idSerialNo, (char *)idFwRev))
	{
		fprintf(stderr, "ERROR : WDC : get serial # and fw revision failed\n");
		return -1;
	} else {
		fprintf(stderr, "Get Drive Essentials Data for device serial #: %s and fw revision: %s\n",
				idSerialNo, idFwRev);
	}

	/* Create Drive Essentials directory  */
	wdc_UtilsGetTime(&timeInfo);
	memset(timeString, 0, sizeof(timeString));
	wdc_UtilsSnprintf((char*)timeString, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
			timeInfo.year, timeInfo.month, timeInfo.dayOfMonth,
			timeInfo.hour, timeInfo.minute, timeInfo.second);

	wdc_UtilsSnprintf((char*)serialNo,WDC_SERIAL_NO_LEN,(char*)idSerialNo);
	/* Remove any space form serialNo */
	wdc_UtilsDeleteCharFromString((char*)serialNo, WDC_SERIAL_NO_LEN, ' ');

	memset(firmwareRevision, 0, sizeof(firmwareRevision));
	wdc_UtilsSnprintf((char*)firmwareRevision, WDC_NVME_FIRMWARE_REV_LEN, (char*)idFwRev);
	/* Remove any space form FirmwareRevision */
	wdc_UtilsDeleteCharFromString((char*)firmwareRevision, WDC_NVME_FIRMWARE_REV_LEN, ' ');

	wdc_UtilsSnprintf((char*)bufferFolderName, MAX_PATH_LEN, "%s_%s_%s_%s",
			"DRIVE_ESSENTIALS", (char*)serialNo, (char*)firmwareRevision, (char*)timeString);

	if (dir != NULL) {
		wdc_UtilsSnprintf((char*)bufferFolderPath, MAX_PATH_LEN, "%s%s%s",
				(char *)dir, WDC_DE_PATH_SEPARATOR, (char *)bufferFolderName);
	} else {
		retPtr = getcwd((char*)currDir, MAX_PATH_LEN);
		if (retPtr != NULL)
			wdc_UtilsSnprintf((char*)bufferFolderPath, MAX_PATH_LEN, "%s%s%s",
					(char *)currDir, WDC_DE_PATH_SEPARATOR, (char *)bufferFolderName);
		else {
			fprintf(stderr, "ERROR : WDC : get current working directory failed\n");
			return -1;
		}
	}

	ret = wdc_UtilsCreateDir((char*)bufferFolderPath);
	if (ret != 0)
	{
		fprintf(stderr, "ERROR : WDC : create directory failed, ret = %d, dir = %s\n", ret, bufferFolderPath);
		return -1;
	} else {
		fprintf(stderr, "Store Drive Essentials bin files in directory: %s\n", bufferFolderPath);
	}

	/* Get Identify Controller Data */
	memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
	ret = nvme_identify_ctrl(fd, &ctrl);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed, ret = %d\n", ret);
		return -1;
	} else {
		wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
				"IdentifyController", (char*)serialNo, (char*)timeString);
		wdc_WriteToFile(fileName, (char*)&ctrl, sizeof (struct nvme_id_ctrl));
	}

	memset(&ns, 0, sizeof (struct nvme_id_ns));
	ret = nvme_identify_ns(fd, 1, &ns);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_identify_ns() failed, ret = %d\n", ret);
	} else {
		wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
				"IdentifyNamespace", (char*)serialNo, (char*)timeString);
		wdc_WriteToFile(fileName, (char*)&ns, sizeof (struct nvme_id_ns));
	}

	/* Get Log Pages (0x01, 0x02, 0x03, 0xC0 and 0xE3) */
	elogNumEntries = WDC_DE_DEFAULT_NUMBER_OF_ERROR_ENTRIES;
	elogBufferSize = elogNumEntries*sizeof(struct nvme_error_log_page);
	dataBuffer = calloc(1, elogBufferSize);
	elogBuffer = (struct nvme_error_log_page *)dataBuffer;

	ret = nvme_get_log_error(fd, elogNumEntries, false, elogBuffer);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_error_log() failed, ret = %d\n", ret);
	} else {
		wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
				"ErrorLog", (char*)serialNo, (char*)timeString);
		wdc_WriteToFile(fileName, (char*)elogBuffer, elogBufferSize);
	}

	free(dataBuffer);
	dataBuffer = NULL;

	/* Get Smart log page  */
	memset(&smart_log, 0, sizeof (struct nvme_smart_log));
	ret = nvme_get_log_smart(fd, NVME_NSID_ALL, false, &smart_log);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_smart_log() failed, ret = %d\n", ret);
	} else {
		wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
				"SmartLog", (char*)serialNo, (char*)timeString);
		wdc_WriteToFile(fileName, (char*)&smart_log, sizeof(struct nvme_smart_log));
	}

	/* Get FW Slot log page  */
	memset(&fw_log, 0, sizeof (struct nvme_firmware_slot));
	ret = nvme_get_log_fw_slot(fd, false, &fw_log);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_fw_log() failed, ret = %d\n", ret);
	} else {
		wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
				"FwSLotLog", (char*)serialNo, (char*)timeString);
		wdc_WriteToFile(fileName, (char*)&fw_log, sizeof(struct nvme_firmware_slot));
	}

	/* Get VU log pages  */
	/* define inputs for vendor unique log pages */
	vuLogInput = (PWDC_NVME_DE_VU_LOGPAGES)calloc(1, sizeof(WDC_NVME_DE_VU_LOGPAGES));
	vuLogInput->numOfVULogPages = sizeof(deVULogPagesList) / sizeof(deVULogPagesList[0]);

	for (vuLogIdx = 0; vuLogIdx < vuLogInput->numOfVULogPages; vuLogIdx++)
	{
		dataBufferSize = deVULogPagesList[vuLogIdx].logPageLen;
		dataBuffer = calloc(1, dataBufferSize);
		memset(dataBuffer, 0, dataBufferSize);

		ret = nvme_get_log_simple(fd, deVULogPagesList[vuLogIdx].logPageId,
				   dataBufferSize, dataBuffer);
		if (ret) {
			fprintf(stderr, "ERROR : WDC : nvme_get_log() for log page 0x%x failed, ret = %d\n",
					deVULogPagesList[vuLogIdx].logPageId, ret);
		} else {
			wdc_UtilsDeleteCharFromString((char*)deVULogPagesList[vuLogIdx].logPageIdStr, 4, ' ');
			wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
					"LogPage", (char*)&deVULogPagesList[vuLogIdx].logPageIdStr, (char*)serialNo, (char*)timeString);
			wdc_WriteToFile(fileName, (char*)dataBuffer, dataBufferSize);
		}

		free(dataBuffer);
		dataBuffer = NULL;
	}

	free(vuLogInput);

	/* Get NVMe Features (0x01, 0x02, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C) */
	for (listIdx = 1; listIdx < (sizeof(deFeatureIdList) / sizeof(deFeatureIdList[0])); listIdx++)
	{
		memset(featureIdBuff, 0, sizeof(featureIdBuff));
		/* skipping  LbaRangeType as it is an optional nvme command and not supported */
		if (deFeatureIdList[listIdx].featureId == FID_LBA_RANGE_TYPE)
			continue;
		ret = nvme_get_features_data(fd, deFeatureIdList[listIdx].featureId, WDC_DE_GLOBAL_NSID,
				sizeof(featureIdBuff), &featureIdBuff, &result);

		if (ret) {
			fprintf(stderr, "ERROR : WDC : nvme_get_feature id 0x%x failed, ret = %d\n",
					deFeatureIdList[listIdx].featureId, ret);
		} else {
			wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s0x%x_%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR,
					"FEATURE_ID_", deFeatureIdList[listIdx].featureId,
					deFeatureIdList[listIdx].featureName, serialNo, timeString);
			wdc_WriteToFile(fileName, (char*)featureIdBuff, sizeof(featureIdBuff));
		}
	}

	/* Read Debug Directory */
	ret = wdc_get_log_dir_max_entries(fd, &maxNumOfVUFiles);
	if (ret == WDC_STATUS_SUCCESS)
	{
		memset(&deEssentialsList, 0, sizeof(deEssentialsList));
		deEssentialsList.logEntry = (WDC_DRIVE_ESSENTIALS*)calloc(1, sizeof(WDC_DRIVE_ESSENTIALS)*maxNumOfVUFiles);
		deEssentialsList.maxNumLogEntries = maxNumOfVUFiles;

		/* Fetch VU File Directory */
		ret = wdc_fetch_log_directory(fd, &deEssentialsList);
		if (ret == WDC_STATUS_SUCCESS)
		{
			/* Get Debug Data Files */
			for (listIdx = 0; listIdx < deEssentialsList.numOfValidLogEntries; listIdx++)
			{
				if (0 == deEssentialsList.logEntry[listIdx].metaData.fileSize)
				{
					fprintf(stderr, "ERROR : WDC : File Size for %s is 0\n",
							deEssentialsList.logEntry[listIdx].metaData.fileName);
					ret = WDC_STATUS_FILE_SIZE_ZERO;
				} else {
					/* Fetch Log File Data */
					dataBuffer = (char *)calloc(1, (size_t)deEssentialsList.logEntry[listIdx].metaData.fileSize);
					ret = wdc_fetch_log_file_from_device(fd, deEssentialsList.logEntry[listIdx].metaData.fileID, WDC_DE_DESTN_SPI, deEssentialsList.logEntry[listIdx].metaData.fileSize,
							(__u8 *)dataBuffer);

					/* Write databuffer to file */
					if (ret == WDC_STATUS_SUCCESS)
					{
						memset(fileName, 0, sizeof(fileName));
						wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", bufferFolderPath, WDC_DE_PATH_SEPARATOR,
								deEssentialsList.logEntry[listIdx].metaData.fileName, serialNo, timeString);
						if (deEssentialsList.logEntry[listIdx].metaData.fileSize > 0xFFFFFFFF)
						{
							wdc_WriteToFile(fileName, dataBuffer, 0xFFFFFFFF);
							wdc_WriteToFile(fileName, dataBuffer + 0xFFFFFFFF, (__u32)(deEssentialsList.logEntry[listIdx].metaData.fileSize - 0xFFFFFFFF));
						} else {
							wdc_WriteToFile(fileName, dataBuffer, (__u32)deEssentialsList.logEntry[listIdx].metaData.fileSize);
						}
					} else {
						fprintf(stderr, "ERROR : WDC : wdc_fetch_log_file_from_device: %s failed, ret = %d\n",
								deEssentialsList.logEntry[listIdx].metaData.fileName, ret);
					}
					free(dataBuffer);
					dataBuffer = NULL;
				}
			}
		} else {
			fprintf(stderr, "WDC : wdc_fetch_log_directory failed, ret = %d\n", ret);
		}

		free(deEssentialsList.logEntry);
		deEssentialsList.logEntry = NULL;
	} else {
		fprintf(stderr, "WDC : wdc_get_log_dir_max_entries failed, ret = %d\n", ret);
	}

	/* Get Dump Trace Data */
	wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "dumptrace", serialNo, timeString);
	if (WDC_STATUS_SUCCESS != (ret = wdc_de_get_dump_trace(fd, (char*)bufferFolderPath, 0, fileName)))
	{
		fprintf(stderr, "ERROR : WDC : wdc_de_get_dump_trace failed, ret = %d\n", ret);
	}

	/* Tar the Drive Essentials directory */
	wdc_UtilsSnprintf(tarFileName, sizeof(tarFileName), "%s%s", (char*)bufferFolderPath, WDC_DE_TAR_FILE_EXTN);
	if (dir != NULL) {
		wdc_UtilsSnprintf(tarFiles, sizeof(tarFiles), "%s%s%s%s%s",
				(char*)dir, WDC_DE_PATH_SEPARATOR, (char*)bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES);
	} else {
		wdc_UtilsSnprintf(tarFiles, sizeof(tarFiles), "%s%s%s", (char*)bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES);
	}
	wdc_UtilsSnprintf(tarCmd, sizeof(tarCmd), "%s %s %s", WDC_DE_TAR_CMD, (char*)tarFileName, (char*)tarFiles);

	ret = system(tarCmd);

	if (ret) {
		fprintf(stderr, "ERROR : WDC : Tar of Drive Essentials data failed, ret = %d\n", ret);
	}

	fprintf(stderr, "Get of Drive Essentials data successful\n");
	nvme_free_tree(r);
	return 0;
}

static int wdc_drive_essentials(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	char *desc = "Capture Drive Essentials.";
	char *dirName = "Output directory pathname.";
	char d[PATH_MAX] = {0};
	char k[PATH_MAX] = {0};
	char *d_ptr;
	int fd, ret;
	nvme_root_t r;
	__u64 capabilities = 0;

	struct config {
		char *dirName;
	};

	struct config cfg = {
			.dirName = NULL,
	};

	OPT_ARGS(opts) = {
		OPT_STRING("dir-name", 'd', "DIRECTORY", &cfg.dirName, dirName),
		OPT_END()
	};


	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_DRIVE_ESSENTIALS) != WDC_DRIVE_CAP_DRIVE_ESSENTIALS) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	}

	if (cfg.dirName != NULL) {
		strncpy(d, cfg.dirName, PATH_MAX - 1);
		d_ptr = d;
	} else {
		d_ptr = NULL;
	}

	ret = wdc_do_drive_essentials(r, fd, d_ptr, k);
out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_do_drive_resize(int fd, uint64_t new_size)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;

	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = WDC_NVME_DRIVE_RESIZE_OPCODE;
	admin_cmd.cdw12 = ((WDC_NVME_DRIVE_RESIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			    WDC_NVME_DRIVE_RESIZE_CMD);
	admin_cmd.cdw13 = new_size;

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	return ret;
}

static int wdc_do_namespace_resize(int fd, __u32 nsid, __u32 op_option)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;

	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = WDC_NVME_NAMESPACE_RESIZE_OPCODE;
	admin_cmd.nsid = nsid;
	admin_cmd.cdw10 = op_option;

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
	return ret;
}

static int wdc_do_drive_info(int fd, __u32 *result)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;

	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = WDC_NVME_DRIVE_INFO_OPCODE;
	admin_cmd.cdw12 = ((WDC_NVME_DRIVE_INFO_SUBCMD << WDC_NVME_SUBCMD_SHIFT) |
			    WDC_NVME_DRIVE_INFO_CMD);

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);

	if (!ret && result)
		*result = admin_cmd.result;

	return ret;
}

static int wdc_drive_resize(int argc, char **argv,
		struct command *command, struct plugin *plugin)
{
	const char *desc = "Send a Resize command.";
	const char *size = "The new size (in GB) to resize the drive to.";
	nvme_root_t r;
	uint64_t capabilities = 0;
	int fd, ret;

	struct config {
		uint64_t size;
	};

	struct config cfg = {
		.size = 0,
	};

	OPT_ARGS(opts) = {
		OPT_UINT("size", 's', &cfg.size, size),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	wdc_check_device(r, fd);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_RESIZE) == WDC_DRIVE_CAP_RESIZE) {
		ret = wdc_do_drive_resize(fd, cfg.size);
	} else {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	}

	if (!ret)
		printf("New size: %" PRIu64 " GB\n", cfg.size);

	nvme_show_status(ret);
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_namespace_resize(int argc, char **argv,
		struct command *command, struct plugin *plugin)
{
	const char *desc = "Send a Namespace Resize command.";
	const char *namespace_id = "The namespace id to resize.";
	const char *op_option = "The over provisioning option to set for namespace.";
	nvme_root_t r;
	uint64_t capabilities = 0;
	int fd, ret;

	struct config {
		__u32 namespace_id;
		__u32 op_option;
	};

	struct config cfg = {
		.namespace_id = 0x1,
		.op_option = 0xF,
	};

	OPT_ARGS(opts) = {
		OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id),
		OPT_UINT("op-option", 'o', &cfg.op_option, op_option),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	if ((cfg.op_option != 0x1) &&
		(cfg.op_option != 0x2) &&
		(cfg.op_option != 0x3) &&
		(cfg.op_option != 0xF))
	{
		fprintf(stderr, "ERROR : WDC: unsupported OP option parameter\n");
		close(fd);
		return -1;
	}

	r = nvme_scan(NULL);
	wdc_check_device(r, fd);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_NS_RESIZE) == WDC_DRIVE_CAP_NS_RESIZE) {
		ret = wdc_do_namespace_resize(fd, cfg.namespace_id, cfg.op_option);

		if (ret != 0)
			printf("ERROR : WDC: Namespace Resize of namespace id 0x%x, op option 0x%x failed\n", cfg.namespace_id, cfg.op_option);
	} else {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	}

	nvme_show_status(ret);
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_reason_identifier(int argc, char **argv,
		struct command *command, struct plugin *plugin)
{
	const char *desc = "Retrieve telemetry log reason identifier.";
	const char *log_id = "Log ID to retrieve - host - 7 or controller - 8";
	const char *fname = "File name to save raw binary identifier";
	nvme_root_t r;
	int fd;
	int ret;
	uint64_t capabilities = 0;
	char f[PATH_MAX] = {0};
	char fileSuffix[PATH_MAX] = {0};
	UtilsTimeInfo             timeInfo;
	__u8                      timeStamp[MAX_PATH_LEN];


	struct config {
		int log_id;
		char *file;
	};
	struct config cfg = {
		.log_id = 7,
		.file = NULL,
	};

	OPT_ARGS(opts) = {
		OPT_UINT("log-id", 'i', &cfg.log_id, log_id),
		OPT_FILE("file",   'o', &cfg.file,   fname),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);

	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);

	if (cfg.log_id != NVME_LOG_LID_TELEMETRY_HOST&& cfg.log_id != NVME_LOG_LID_TELEMETRY_CTRL) {
		fprintf(stderr, "ERROR : WDC: Invalid Log ID. It must be 7 (Host) or 8 (Controller)\n");
		ret = -1;
		goto close_fd;
	}

	if (cfg.file != NULL) {
		int verify_file;

		/* verify the passed in file name and path is valid before getting the dump data */
		verify_file = open(cfg.file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
		if (verify_file < 0) {
			fprintf(stderr, "ERROR : WDC: open : %s\n", strerror(errno));
			ret = -1;
			goto close_fd;
		}
		close(verify_file);
		strncpy(f, cfg.file, PATH_MAX - 1);
	} else {
		wdc_UtilsGetTime(&timeInfo);
		memset(timeStamp, 0, sizeof(timeStamp));
		wdc_UtilsSnprintf((char*)timeStamp, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u",
			timeInfo.year, timeInfo.month, timeInfo.dayOfMonth,
			timeInfo.hour, timeInfo.minute, timeInfo.second);
		if (cfg.log_id == NVME_LOG_LID_TELEMETRY_CTRL)
			snprintf(fileSuffix, PATH_MAX, "_error_reason_identifier_ctlr_%s", (char*)timeStamp);
		else
			snprintf(fileSuffix, PATH_MAX, "_error_reason_identifier_host_%s", (char*)timeStamp);

		if (wdc_get_serial_name(fd, f, PATH_MAX, fileSuffix) == -1) {
			fprintf(stderr, "ERROR : WDC: failed to generate file name\n");
			ret = -1;
			goto close_fd;
		}
		if (strlen(f) > PATH_MAX - 5) {
			fprintf(stderr, "ERROR : WDC: file name overflow\n");
			ret = -1;
			goto close_fd;
		}
		strcat(f, ".bin");
	}

	fprintf(stderr, "%s: filename = %s\n", __func__, f);

	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_REASON_ID) == WDC_DRIVE_CAP_REASON_ID) {
		ret = wdc_do_get_reason_id(fd, f, cfg.log_id);
	} else {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	}

	nvme_show_status(ret);

 close_fd:
	close(fd);
	nvme_free_tree(r);
	return ret;
}

static const char *nvme_log_id_to_string(__u8 log_id)
{
	switch (log_id) {
		case NVME_LOG_LID_ERROR:	    return "Error Information Log ID";
		case NVME_LOG_LID_SMART:	    return "Smart/Health Information Log ID";
		case NVME_LOG_LID_FW_SLOT:	    return "Firmware Slot Information Log ID";
		case NVME_LOG_LID_CHANGED_NS:       return "Namespace Changed Log ID";
		case NVME_LOG_LID_CMD_EFFECTS:      return "Commamds Supported and Effects Log ID";
		case NVME_LOG_LID_DEVICE_SELF_TEST: return "Device Self Test Log ID";
		case NVME_LOG_LID_TELEMETRY_HOST:   return "Telemetry Host Initiated Log ID";
		case NVME_LOG_LID_TELEMETRY_CTRL:   return "Telemetry Controller Generated Log ID";
		case NVME_LOG_LID_ENDURANCE_GROUP:  return "Endurance Group Log ID";
		case NVME_LOG_LID_ANA:              return "ANA Log ID";
		case NVME_LOG_LID_PERSISTENT_EVENT: return "Persistent Event Log ID";
		case NVME_LOG_LID_DISCOVER:         return "Discovery Log ID";
		case NVME_LOG_LID_RESERVATION:      return "Reservation Notification Log ID";
		case NVME_LOG_LID_SANITIZE:	    return "Sanitize Status Log ID";

		case WDC_LOG_ID_C0:             return "WDC Vendor Unique Log ID C0";
		case WDC_LOG_ID_C1:             return "WDC Vendor Unique Log ID C1";
		case WDC_LOG_ID_C2:             return "WDC Vendor Unique Log ID C2";
		case WDC_LOG_ID_C3:             return "WDC Vendor Unique Log ID C3";
		case WDC_LOG_ID_C4:             return "WDC Vendor Unique Log ID C4";
		case WDC_LOG_ID_C5:             return "WDC Vendor Unique Log ID C5";
		case WDC_LOG_ID_C6:             return "WDC Vendor Unique Log ID C6";
		case WDC_LOG_ID_C8:             return "WDC Vendor Unique Log ID C8";
		case WDC_LOG_ID_CA:             return "WDC Vendor Unique Log ID CA";
		case WDC_LOG_ID_CB:             return "WDC Vendor Unique Log ID CB";
		case WDC_LOG_ID_D0:             return "WDC Vendor Unique Log ID D0";
		case WDC_LOG_ID_D1:             return "WDC Vendor Unique Log ID D1";
		case WDC_LOG_ID_D6:             return "WDC Vendor Unique Log ID D6";
		case WDC_LOG_ID_D7:             return "WDC Vendor Unique Log ID D7";
		case WDC_LOG_ID_D8:             return "WDC Vendor Unique Log ID D8";
		case WDC_LOG_ID_DE:             return "WDC Vendor Unique Log ID DE";
		case WDC_LOG_ID_F0:             return "WDC Vendor Unique Log ID F0";
		case WDC_LOG_ID_F1:             return "WDC Vendor Unique Log ID F1";
		case WDC_LOG_ID_F2:             return "WDC Vendor Unique Log ID F2";
		case WDC_LOG_ID_FA:             return "WDC Vendor Unique Log ID FA";

		default:                        return "Unknown Log ID";
	}
}

static int wdc_log_page_directory(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve Log Page Directory.";
	int fd;
	int ret = 0;
	nvme_root_t r;
	__u64 capabilities = 0;
	struct wdc_c2_cbs_data *cbs_data = NULL;
    int i;
	__u8 log_id = 0;
	__u32 device_id, read_vendor_id;

	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json|binary"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	ret = validate_output_format(cfg.output_format);
	if (ret < 0) {
		fprintf(stderr, "%s: ERROR : WDC : invalid output format\n", __func__);
		close(fd);
		return ret;
	}
	ret = 0;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_LOG_PAGE_DIR) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	} else {
		ret = wdc_get_pci_ids(r, &device_id, &read_vendor_id);
		log_id = (device_id == WDC_NVME_ZN350_DEV_ID || device_id == WDC_NVME_ZN350_DEV_ID_1) ?
			WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE_C8 : WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE;
		/* verify the 0xC2 Device Manageability log page is supported */
		if (wdc_nvme_check_supported_log_page(r, fd, log_id) == false) {
			fprintf(stderr, "%s: ERROR : WDC : 0x%x Log Page not supported\n", __func__, log_id);
			ret = -1;
			goto out;
		}

		if (get_dev_mgment_cbs_data(r, fd, WDC_C2_LOG_PAGES_SUPPORTED_ID, (void *)&cbs_data)) {
			if (cbs_data != NULL) {
				printf("Log Page Directory\n");
				/* print the supported pages */
				if (!strcmp(cfg.output_format, "normal")) {
					for (i = 0; i < le32_to_cpu(cbs_data->length); i++) {
						printf("0x%x  - %s\n", cbs_data->data[i],
								nvme_log_id_to_string(cbs_data->data[i]));
					}
				} else if (!strcmp(cfg.output_format, "binary")) {
					d((__u8 *)cbs_data->data, le32_to_cpu(cbs_data->length), 16, 1);
				} else if (!strcmp(cfg.output_format, "json")) {
					struct json_object *root;
					root = json_create_object();

					for (i = 0; i < le32_to_cpu(cbs_data->length); i++) {
						json_object_add_value_int(root, nvme_log_id_to_string(cbs_data->data[i]),
								cbs_data->data[i]);
					}

					json_print_object(root, NULL);
					printf("\n");
					json_free_object(root);
				} else
					fprintf(stderr, "%s: ERROR : WDC : Invalid format, format = %s\n", __func__, cfg.output_format);

				free(cbs_data);
			} else
				fprintf(stderr, "%s: ERROR : WDC : NULL_data ptr\n", __func__);
		} else
			fprintf(stderr, "%s: ERROR : WDC : 0xC2 Log Page entry ID 0x%x not found\n", __func__, WDC_C2_LOG_PAGES_SUPPORTED_ID);


	}

 out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_get_drive_reason_id(int fd, char *drive_reason_id, size_t len)
{
	int i, j;
	int ret;
	int res_len = 0;
	struct nvme_id_ctrl ctrl;
	char *reason_id_str = "reason_id";

	i = sizeof (ctrl.sn) - 1;
	j = sizeof (ctrl.mn) - 1;
	memset(drive_reason_id, 0, len);
	memset(&ctrl, 0, sizeof (struct nvme_id_ctrl));
	ret = nvme_identify_ctrl(fd, &ctrl);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed "
				"0x%x\n", ret);
		return -1;
	}
	/* Remove trailing spaces from the sn and mn */
	while (i && ctrl.sn[i] == ' ') {
		ctrl.sn[i] = '\0';
		i--;
	}

	while (j && ctrl.mn[j] == ' ') {
		ctrl.mn[j] = '\0';
		j--;
	}

	res_len = snprintf(drive_reason_id, len, "%s_%s_%s", ctrl.sn, ctrl.mn, reason_id_str);
	if (len <= res_len) {
		fprintf(stderr, "ERROR : WDC : cannot format serial number due to data "
				"of unexpected length\n");
		return -1;
	}

	return 0;
}

static int wdc_save_reason_id(int fd, __u8 *rsn_ident,  int size)
{
	int ret = 0;
	char *reason_id_file;
	char drive_reason_id[PATH_MAX] = {0};
	char reason_id_path[PATH_MAX] = WDC_REASON_ID_PATH_NAME;
	struct stat st = {0};

	if (wdc_get_drive_reason_id(fd, drive_reason_id, PATH_MAX) == -1) {
		fprintf(stderr, "%s: ERROR : failed to get drive reason id\n", __func__);
		return -1;
	}

	/* make the nvmecli dir in /usr/local if it doesn't already exist */
	if (stat(reason_id_path, &st) == -1) {
		if (mkdir(reason_id_path, 0700) < 0) {
			fprintf(stderr, "%s: ERROR : failed to mkdir %s : %s\n",
				__func__, reason_id_path, strerror(errno));
			return -1;
		}
	}

	if (asprintf(&reason_id_file, "%s/%s%s", reason_id_path,
		    drive_reason_id, ".bin") < 0)
		return -ENOMEM;

	fprintf(stderr, "%s: reason id file = %s\n", __func__, reason_id_file);

	/* save off the error reason identifier to a file in /usr/local/nvmecli  */
	ret = wdc_create_log_file(reason_id_file, rsn_ident, WDC_REASON_ID_ENTRY_LEN);
	free(reason_id_file);

	return ret;
}

static int wdc_clear_reason_id(int fd)
{
	int ret = -1;
	int verify_file;
	char *reason_id_file;
	char drive_reason_id[PATH_MAX] = {0};

	if (wdc_get_drive_reason_id(fd, drive_reason_id, PATH_MAX) == -1) {
		fprintf(stderr, "%s: ERROR : failed to get drive reason id\n", __func__);
		return -1;
	}

	if (asprintf(&reason_id_file, "%s/%s%s", WDC_REASON_ID_PATH_NAME,
		     drive_reason_id, ".bin") < 0)
		return -ENOMEM;

	/* verify the drive reason id file name and path is valid */
	verify_file = open(reason_id_file, O_WRONLY | O_CREAT | O_TRUNC, 0666);
	if (verify_file < 0) {
		ret = -1;
		goto free;
	}
	close(verify_file);

	/* remove the reason id file */
	ret = remove(reason_id_file);

 free:
	free(reason_id_file);

	return ret;
}

static int wdc_dump_telemetry_hdr(int fd, int log_id, struct nvme_telemetry_log *log_hdr)
{
	int ret = 0;

	if (log_id == NVME_LOG_LID_TELEMETRY_HOST)
		ret = nvme_get_log_create_telemetry_host(fd, log_hdr);
	else
		ret = nvme_get_log_telemetry_ctrl(fd, false, 0, 512, (void *)log_hdr);

	if (ret < 0)
		perror("get-telemetry-log");
	else if (ret > 0) {
		nvme_show_status(ret);
		fprintf(stderr, "%s: ERROR : Failed to acquire telemetry header, ret = %d!\n", __func__, ret);
	}

	return ret;
}

static int wdc_do_get_reason_id(int fd, char *file, int log_id)
{
	int ret;
	struct nvme_telemetry_log *log_hdr;
	__u32 log_hdr_size = sizeof(struct nvme_telemetry_log);
	__u32 reason_id_size = 0;

	log_hdr = (struct nvme_telemetry_log *) malloc(log_hdr_size);
	if (log_hdr == NULL) {
		fprintf(stderr, "%s: ERROR : malloc failed, size : 0x%x, status : %s\n", __func__, log_hdr_size, strerror(errno));
		ret = -1;
		goto out;
	}
	memset(log_hdr, 0, log_hdr_size);

	ret = wdc_dump_telemetry_hdr(fd, log_id, log_hdr);
	if (ret != 0) {
		fprintf(stderr, "%s: ERROR : get telemetry header failed, ret  : %d\n", __func__, ret);
		ret = -1;
		goto out;
	}

	reason_id_size = sizeof(log_hdr->rsnident);

	if (log_id == NVME_LOG_LID_TELEMETRY_CTRL)
		wdc_save_reason_id(fd, log_hdr->rsnident, reason_id_size);

	ret = wdc_create_log_file(file, (__u8 *)log_hdr->rsnident, reason_id_size);

out:
	free(log_hdr);
	return ret;
}

static void wdc_print_nand_stats_normal(__u16 version, void *data)
{
	struct wdc_nand_stats *nand_stats = (struct wdc_nand_stats *)(data);
	struct wdc_nand_stats_V3 *nand_stats_v3 = (struct wdc_nand_stats_V3 *)(data);
	__u64 temp_raw;
	__u16 temp_norm;
	__u64 *temp_ptr = NULL;

	switch (version)
	{
	case 0:
		printf("  NAND Statistics :- \n");
		printf("  NAND Writes TLC (Bytes)		         %.0Lf\n",
				int128_to_double(nand_stats->nand_write_tlc));
		printf("  NAND Writes SLC (Bytes)				%.0Lf\n",
				int128_to_double(nand_stats->nand_write_slc));
		printf("  NAND Program Failures			  	 %"PRIu32"\n",
				(uint32_t)le32_to_cpu(nand_stats->nand_prog_failure));
		printf("  NAND Erase Failures				 %"PRIu32"\n",
				(uint32_t)le32_to_cpu(nand_stats->nand_erase_failure));
		printf("  Bad Block Count			         %"PRIu32"\n",
				(uint32_t)le32_to_cpu(nand_stats->bad_block_count));
		printf("  NAND XOR/RAID Recovery Trigger Events		 %"PRIu64"\n",
				le64_to_cpu(nand_stats->nand_rec_trigger_event));
		printf("  E2E Error Counter                    		 %"PRIu64"\n",
				le64_to_cpu(nand_stats->e2e_error_counter));
		printf("  Number Successful NS Resizing Events		 %"PRIu64"\n",
				le64_to_cpu(nand_stats->successful_ns_resize_event));
		printf("  log page version				 %"PRIu16"\n",
				le16_to_cpu(nand_stats->log_page_version));
		break;
	case 3:
		printf("  NAND Statistics V3:- \n");
		printf("  TLC Units Written				 %.0Lf\n",
				int128_to_double(nand_stats_v3->nand_write_tlc));
		printf("  SLC Units Written 				 %.0Lf\n",
				int128_to_double(nand_stats_v3->nand_write_slc));
		temp_ptr = (__u64 *)nand_stats_v3->bad_nand_block_count;
		temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
		temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
		printf("  Bad NAND Blocks Count - Normalized 		 %"PRIu16"\n",
				le16_to_cpu(temp_norm));
		printf("  Bad NAND Blocks Count - Raw	        	 %"PRIu64"\n",
				le64_to_cpu(temp_raw));
		printf("  NAND XOR Recovery count			 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->xor_recovery_count));
		printf("  UECC Read Error count				 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->uecc_read_error_count));
		printf("  SSD End to End corrected errors		 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->ssd_correction_counts[0]));
		printf("  SSD End to End detected errors		 %"PRIu32"\n",
				le32_to_cpu(nand_stats_v3->ssd_correction_counts[8]));
		printf("  SSD End to End uncorrected E2E errors		 %"PRIu32"\n",
				le32_to_cpu(nand_stats_v3->ssd_correction_counts[12]));
		printf("  System data %% life-used			 %u\n",
				nand_stats_v3->percent_life_used);
		printf("  User Data Erase Counts - TLC Min		 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->user_data_erase_counts[0]));
		printf("  User Data Erase Counts - TLC Max		 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->user_data_erase_counts[1]));
		printf("  User Data Erase Counts - SLC Min		 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->user_data_erase_counts[2]));
		printf("  User Data Erase Counts - SLC Max		 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->user_data_erase_counts[3]));
		temp_ptr = (__u64 *)nand_stats_v3->program_fail_count;
		temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
		temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
		printf("  Program Fail Count - Normalized	 	 %"PRIu16"\n",
				le16_to_cpu(temp_norm));
		printf("  Program Fail Count - Raw		     	 %"PRIu64"\n",
				le64_to_cpu(temp_raw));
		temp_ptr = (__u64 *)nand_stats_v3->erase_fail_count;
		temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
		temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
		printf("  Erase Fail Count - Normalized	     		 %"PRIu16"\n",
				le16_to_cpu(temp_norm));
		printf("  Erase Fail Count - Raw		         %"PRIu64"\n",
				le64_to_cpu(temp_raw));
		printf("  PCIe Correctable Error Count			 %"PRIu16"\n",
				le16_to_cpu(nand_stats_v3->correctable_error_count));
		printf("  %% Free Blocks (User)				 %u\n",
				nand_stats_v3->percent_free_blocks_user);
		printf("  Security Version Number			 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->security_version_number));
		printf("  %% Free Blocks (System)			 %u\n",
				nand_stats_v3->percent_free_blocks_system);
		printf("  Data Set Management Commands			 %.0Lf\n",
				int128_to_double(nand_stats_v3->trim_completions));
		printf("  Estimate of Incomplete Trim Data		 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->trim_completions[16]));
		printf("  %% of completed trim				 %u\n",
				nand_stats_v3->trim_completions[24]);
		printf("  Background Back-Pressure-Guage		 %u\n",
				nand_stats_v3->back_pressure_guage);
		printf("  Soft ECC Error Count				 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->soft_ecc_error_count));
		printf("  Refresh Count					 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->refresh_count));
		temp_ptr = (__u64 *)nand_stats_v3->bad_sys_nand_block_count;
		temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
		temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
		printf("  Bad System Nand Block Count - Normalized	 %"PRIu16"\n",
				le16_to_cpu(temp_norm));
		printf("  Bad System Nand Block Count - Raw	         %"PRIu64"\n",
				le64_to_cpu(temp_raw));
		printf("  Endurance Estimate				 %.0Lf\n",
				int128_to_double(nand_stats_v3->endurance_estimate));
		printf("  Thermal Throttling Count			 %u\n",
				nand_stats_v3->thermal_throttling_st_ct[0]);
		printf("  Thermal Throttling Status			 %u\n",
				nand_stats_v3->thermal_throttling_st_ct[1]);
		printf("  Unaligned I/O					 %"PRIu64"\n",
				le64_to_cpu(nand_stats_v3->unaligned_IO));
		printf("  Physical Media Units Read			 %.0Lf\n",
				int128_to_double(nand_stats_v3->physical_media_units));
		printf("  log page version				 %"PRIu16"\n",
				le16_to_cpu(nand_stats_v3->log_page_version));
		break;

	default:
		fprintf(stderr, "WDC: Nand Stats ERROR : Invalid version\n");
		break;

	}
}

static void wdc_print_nand_stats_json(__u16 version, void *data)
{
	struct wdc_nand_stats *nand_stats = (struct wdc_nand_stats *)(data);
	struct wdc_nand_stats_V3 *nand_stats_v3 = (struct wdc_nand_stats_V3 *)(data);
	struct json_object *root;
	root = json_create_object();
	__u64 temp_raw;
	__u16 temp_norm;
	__u64 *temp_ptr = NULL;

	switch (version)
	{

	case 0:

		json_object_add_value_double(root, "NAND Writes TLC (Bytes)",
				int128_to_double(nand_stats->nand_write_tlc));
		json_object_add_value_double(root, "NAND Writes SLC (Bytes)",
				int128_to_double(nand_stats->nand_write_slc));
		json_object_add_value_uint(root, "NAND Program Failures",
				le32_to_cpu(nand_stats->nand_prog_failure));
		json_object_add_value_uint(root, "NAND Erase Failures",
				le32_to_cpu(nand_stats->nand_erase_failure));
		json_object_add_value_uint(root, "Bad Block Count",
				le32_to_cpu(nand_stats->bad_block_count));
		json_object_add_value_uint64(root, "NAND XOR/RAID Recovery Trigger Events",
				le64_to_cpu(nand_stats->nand_rec_trigger_event));
		json_object_add_value_uint64(root, "E2E Error Counter",
				le64_to_cpu(nand_stats->e2e_error_counter));
		json_object_add_value_uint64(root, "Number Successful NS Resizing Events",
				le64_to_cpu(nand_stats->successful_ns_resize_event));

		json_print_object(root, NULL);
		printf("\n");
		break;

	case 3:

		json_object_add_value_double(root, "NAND Writes TLC (Bytes)",
				int128_to_double(nand_stats_v3->nand_write_tlc));
		json_object_add_value_double(root, "NAND Writes SLC (Bytes)",
				int128_to_double(nand_stats_v3->nand_write_slc));
		temp_ptr = (__u64 *)nand_stats_v3->bad_nand_block_count;
		temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
		temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
		json_object_add_value_uint(root, "Bad NAND Blocks Count - Normalized",
				le16_to_cpu(temp_norm));
		json_object_add_value_uint64(root, "Bad NAND Blocks Count - Raw",
				le64_to_cpu(temp_raw));
		json_object_add_value_uint64(root, "NAND XOR Recovery count",
				le64_to_cpu(nand_stats_v3->xor_recovery_count));
		json_object_add_value_uint64(root, "UECC Read Error count",
				le64_to_cpu(nand_stats_v3->uecc_read_error_count));
		json_object_add_value_uint64(root, "SSD End to End corrected errors",
				le64_to_cpu(nand_stats_v3->ssd_correction_counts[0]));
		json_object_add_value_uint(root, "SSD End to End detected errors",
				le32_to_cpu(nand_stats_v3->ssd_correction_counts[8]));
		json_object_add_value_uint(root, "SSD End to End uncorrected E2E errors",
				le32_to_cpu(nand_stats_v3->ssd_correction_counts[12]));
		json_object_add_value_uint(root, "System data % life-used",
				nand_stats_v3->percent_life_used);
		json_object_add_value_uint64(root, "User Data Erase Counts - SLC Min",
				le64_to_cpu(nand_stats_v3->user_data_erase_counts[0]));
		json_object_add_value_uint64(root, "User Data Erase Counts - SLC Max",
				le64_to_cpu(nand_stats_v3->user_data_erase_counts[1]));
		json_object_add_value_uint64(root, "User Data Erase Counts - TLC Min",
				le64_to_cpu(nand_stats_v3->user_data_erase_counts[2]));
		json_object_add_value_uint64(root, "User Data Erase Counts - TLC Max",
				le64_to_cpu(nand_stats_v3->user_data_erase_counts[3]));
		temp_ptr = (__u64 *)nand_stats_v3->program_fail_count;
		temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
		temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
		json_object_add_value_uint(root, "Program Fail Count - Normalized",
				le16_to_cpu(temp_norm));
		json_object_add_value_uint64(root, "Program Fail Count - Raw",
				le64_to_cpu(temp_raw));
		temp_ptr = (__u64 *)nand_stats_v3->erase_fail_count;
		temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
		temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
		json_object_add_value_uint(root, "Erase Fail Count - Normalized",
				le16_to_cpu(temp_norm));
		json_object_add_value_uint64(root, "Erase Fail Count - Raw",
				le64_to_cpu(temp_raw));
		json_object_add_value_uint(root, "PCIe Correctable Error Count",
				le16_to_cpu(nand_stats_v3->correctable_error_count));
		json_object_add_value_uint(root, "% Free Blocks (User)",
				nand_stats_v3->percent_free_blocks_user);
		json_object_add_value_uint64(root, "Security Version Number",
				le64_to_cpu(nand_stats_v3->security_version_number));
		json_object_add_value_uint(root, "% Free Blocks (System)",
				nand_stats_v3->percent_free_blocks_system);
		json_object_add_value_double(root, "Data Set Management Commands",
				int128_to_double(nand_stats_v3->trim_completions));
		json_object_add_value_uint64(root, "Estimate of Incomplete Trim Data",
				le64_to_cpu(nand_stats_v3->trim_completions[16]));
		json_object_add_value_uint(root, "%% of completed trim",
				nand_stats_v3->trim_completions[24]);
		json_object_add_value_uint(root, "Background Back-Pressure-Guage",
				nand_stats_v3->back_pressure_guage);
		json_object_add_value_uint64(root, "Soft ECC Error Count",
				le64_to_cpu(nand_stats_v3->soft_ecc_error_count));
		json_object_add_value_uint64(root, "Refresh Count",
				le64_to_cpu(nand_stats_v3->refresh_count));
		temp_ptr = (__u64 *)nand_stats_v3->bad_sys_nand_block_count;
		temp_norm = (__u16)(*temp_ptr & 0x000000000000FFFF);
		temp_raw = ((*temp_ptr & 0xFFFFFFFFFFFF0000) >> 16);
		json_object_add_value_uint(root, "Bad System Nand Block Count - Normalized",
				le16_to_cpu(temp_norm));
		json_object_add_value_uint64(root, "Bad System Nand Block Count - Raw",
				le64_to_cpu(temp_raw));
		json_object_add_value_double(root, "Endurance Estimate",
				int128_to_double(nand_stats_v3->endurance_estimate));
		json_object_add_value_uint(root, "Thermal Throttling Status",
				nand_stats_v3->thermal_throttling_st_ct[0]);
		json_object_add_value_uint(root, "Thermal Throttling Count",
				nand_stats_v3->thermal_throttling_st_ct[1]);
		json_object_add_value_uint64(root, "Unaligned I/O",
				le64_to_cpu(nand_stats_v3->unaligned_IO));
		json_object_add_value_double(root, "Physical Media Units Read",
				int128_to_double(nand_stats_v3->physical_media_units));
		json_object_add_value_uint(root, "log page version",
				le16_to_cpu(nand_stats_v3->log_page_version));

		json_print_object(root, NULL);
		printf("\n");
		break;

	default:
		printf("%s: Invalid Stats Version = %d\n", __func__, version);
		break;

	}

	json_free_object(root);

}

static void wdc_print_pcie_stats_normal(struct wdc_vs_pcie_stats *pcie_stats)
{
	printf("  PCIE Statistics :- \n");
	printf("  Unsupported Request Error Counter             %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->unsupportedRequestErrorCount));
	printf("  ECRC Error Status Counter                     %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->ecrcErrorStatusCount));
	printf("  Malformed TLP Status Counter                  %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->malformedTlpStatusCount));
	printf("  Receiver Overflow Status Counter              %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->receiverOverflowStatusCount));
	printf("  Unexpected Completion Status Counter          %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->unexpectedCmpltnStatusCount));
	printf("  Complete Abort Status Counter                 %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->completeAbortStatusCount));
	printf("  Completion Timeout Status Counter             %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->cmpltnTimoutStatusCount));
	printf("  Flow Control Error Status Counter             %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->flowControlErrorStatusCount));
	printf("  Poisoned TLP Status Counter                   %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->poisonedTlpStatusCount));
	printf("  Dlink Protocol Error Status Counter           %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->dLinkPrtclErrorStatusCount));
	printf("  Advisory Non Fatal Error Status Counter       %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->advsryNFatalErrStatusCount));
	printf("  Replay Timer TO Status Counter                %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->replayTimerToStatusCount));
	printf("  Replay Number Rollover Status Counter         %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->replayNumRolloverStCount));
	printf("  Bad DLLP Status Counter                       %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->badDllpStatusCount));
	printf("  Bad TLP Status Counter                        %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->badTlpStatusCount));
	printf("  Receiver Error Status Counter                 %20"PRIu64"\n",
			le64_to_cpu(pcie_stats->receiverErrStatusCount));

}

static void wdc_print_pcie_stats_json(struct wdc_vs_pcie_stats *pcie_stats)
{
	struct json_object *root;
	root = json_create_object();

	json_object_add_value_uint64(root, "Unsupported Request Error Counter",
			le64_to_cpu(pcie_stats->unsupportedRequestErrorCount));
	json_object_add_value_uint64(root, "ECRC Error Status Counter",
			le64_to_cpu(pcie_stats->ecrcErrorStatusCount));
	json_object_add_value_uint64(root, "Malformed TLP Status Counter",
			le64_to_cpu(pcie_stats->malformedTlpStatusCount));

	json_object_add_value_uint64(root, "Receiver Overflow Status Counter",
			le64_to_cpu(pcie_stats->receiverOverflowStatusCount));
	json_object_add_value_uint64(root, "Unexpected Completion Status Counter",
			le64_to_cpu(pcie_stats->unexpectedCmpltnStatusCount));
	json_object_add_value_uint64(root, "Complete Abort Status Counter",
			le64_to_cpu(pcie_stats->completeAbortStatusCount));
	json_object_add_value_uint64(root, "Completion Timeout Status Counter",
			le64_to_cpu(pcie_stats->cmpltnTimoutStatusCount));
	json_object_add_value_uint64(root, "Flow Control Error Status Counter",
			le64_to_cpu(pcie_stats->flowControlErrorStatusCount));
	json_object_add_value_uint64(root, "Poisoned TLP Status Counter",
			le64_to_cpu(pcie_stats->poisonedTlpStatusCount));
	json_object_add_value_uint64(root, "Dlink Protocol Error Status Counter",
			le64_to_cpu(pcie_stats->dLinkPrtclErrorStatusCount));
	json_object_add_value_uint64(root, "Advisory Non Fatal Error Status Counter",
			le64_to_cpu(pcie_stats->advsryNFatalErrStatusCount));
	json_object_add_value_uint64(root, "Replay Timer TO Status Counter",
			le64_to_cpu(pcie_stats->replayTimerToStatusCount));
	json_object_add_value_uint64(root, "Replay Number Rollover Status Counter",
			le64_to_cpu(pcie_stats->replayNumRolloverStCount));
	json_object_add_value_uint64(root, "Bad DLLP Status Counter",
			le64_to_cpu(pcie_stats->badDllpStatusCount));
	json_object_add_value_uint64(root, "Bad TLP Status Counter",
			le64_to_cpu(pcie_stats->badTlpStatusCount));
	json_object_add_value_uint64(root, "Receiver Error Status Counter",
			le64_to_cpu(pcie_stats->receiverErrStatusCount));

	json_print_object(root, NULL);
	printf("\n");

	json_free_object(root);
}

static int wdc_do_vs_nand_stats_sn810_2(int fd, char *format)
{
	int ret;
	int fmt = -1;
	uint8_t *data = NULL;

	data = NULL;
	ret = nvme_get_ext_smart_cloud_log(fd, &data, 0, NVME_NSID_ALL);

	if (ret) {
		fprintf(stderr, "ERROR : WDC : %s : Failed to retreive NAND stats\n", __func__);
		goto out;
	} else {
		fmt = validate_output_format(format);
		if (fmt < 0) {
			fprintf(stderr, "ERROR : WDC : %s : invalid output format\n", __func__);
			ret = fmt;
			goto out;
		}

		/* parse the data */
		switch (fmt) {
		case NORMAL:
			wdc_print_ext_smart_cloud_log_normal(data, WDC_SCA_V1_NAND_STATS);
			break;
		case JSON:
			wdc_print_ext_smart_cloud_log_json(data, WDC_SCA_V1_NAND_STATS);
			break;
		}
	}

out:
	if (data)
		free(data);
	return ret;
}

static int wdc_do_vs_nand_stats(int fd, char *format)
{
	int ret;
	int fmt = -1;
	uint8_t *output = NULL;
	__u16 version = 0;

	if ((output = (uint8_t*)calloc(WDC_NVME_NAND_STATS_SIZE, sizeof(uint8_t))) == NULL) {
		fprintf(stderr, "ERROR : WDC : calloc : %s\n", strerror(errno));
		ret = -1;
		goto out;
	}

	ret = nvme_get_log_simple(fd, WDC_NVME_NAND_STATS_LOG_ID,
			   WDC_NVME_NAND_STATS_SIZE, (void*)output);
	if (ret) {
		fprintf(stderr, "ERROR : WDC : %s : Failed to retreive NAND stats\n", __func__);
		goto out;
	} else {
		fmt = validate_output_format(format);
		if (fmt < 0) {
			fprintf(stderr, "ERROR : WDC : invalid output format\n");
			ret = fmt;
			goto out;
		}

		version = output[WDC_NVME_NAND_STATS_SIZE - 2];

		/* parse the data */
		switch (fmt) {
		case NORMAL:
			wdc_print_nand_stats_normal(version, output);
			break;
		case JSON:
			wdc_print_nand_stats_json(version, output);
			break;
		}
	}

out:
	free(output);
	return ret;
}

static int wdc_vs_nand_stats(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve NAND statistics.";

	int fd;
	int ret = 0;
	nvme_root_t r;
	__u64 capabilities = 0;
	uint32_t read_device_id = 0, read_vendor_id = 0;

	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_NAND_STATS) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	} else {
		ret = wdc_get_pci_ids(r, &read_device_id, &read_vendor_id);
		if (ret < 0)
		{
			fprintf(stderr, "ERROR : WDC: %s: failure to get pci ids, ret = %d\n", __func__, ret);
			return -1;
		}

		switch (read_device_id) {
		case WDC_NVME_SN820CL_DEV_ID:
			ret = wdc_do_vs_nand_stats_sn810_2(fd, cfg.output_format);
			break;
		default:
			ret = wdc_do_vs_nand_stats(fd, cfg.output_format);
			break;
		}
	}

	if (ret)
		fprintf(stderr, "ERROR : WDC : Failure reading NAND statistics, ret = %d\n", ret);

	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_do_vs_pcie_stats(int fd,
		struct wdc_vs_pcie_stats *pcieStatsPtr)
{
	int ret;
	struct nvme_passthru_cmd admin_cmd;
	int pcie_stats_size = sizeof(struct wdc_vs_pcie_stats);

	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	admin_cmd.opcode = WDC_NVME_PCIE_STATS_OPCODE;
	admin_cmd.addr = (__u64)(uintptr_t)pcieStatsPtr;
	admin_cmd.data_len = pcie_stats_size;

	ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);

	return ret;
}

static int wdc_vs_pcie_stats(int argc, char **argv, struct command *command,
		struct plugin *plugin)
{
	const char *desc = "Retrieve PCIE statistics.";

	int fd;
	int ret = 0;
	nvme_root_t r;
	__u64 capabilities = 0;
	int fmt = -1;
	struct wdc_vs_pcie_stats *pcieStatsPtr = NULL;
	int pcie_stats_size = sizeof(struct wdc_vs_pcie_stats);
	bool huge;

	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;


	r = nvme_scan(NULL);
	fmt = validate_output_format(cfg.output_format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		ret = fmt;
		goto out;
	}

	pcieStatsPtr = nvme_alloc(pcie_stats_size, &huge);
	if (pcieStatsPtr == NULL) {
		fprintf(stderr, "ERROR : WDC : PCIE Stats alloc : %s\n", strerror(errno));
		ret = -1;
		goto out;
	}

	memset((void *)pcieStatsPtr, 0, pcie_stats_size);

	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_PCIE_STATS) == 0) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
	} else {
		ret = wdc_do_vs_pcie_stats(fd, pcieStatsPtr);
		if (ret)
			fprintf(stderr, "ERROR : WDC : Failure reading PCIE statistics, ret = 0x%x\n", ret);
		else {
			/* parse the data */
			switch (fmt) {
			case NORMAL:
				wdc_print_pcie_stats_normal(pcieStatsPtr);
				break;
			case JSON:
				wdc_print_pcie_stats_json(pcieStatsPtr);
				break;
			}
		}
	}

	nvme_free(pcieStatsPtr, huge);

out:
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_vs_drive_info(int argc, char **argv,
		struct command *command, struct plugin *plugin)
{
	const char *desc = "Send a vs-drive-info command.";
	nvme_root_t r;
	uint64_t capabilities = 0;
	int fd, ret;
	__le32 result;
	__u16 size;
	double rev;
	struct nvme_id_ctrl ctrl;
	char vsData[32] = {0};
	char major_rev = 0, minor_rev = 0;
	__u8 *data = NULL;
	__u32 ftl_unit_size = 0, tcg_dev_ownership = 0;
	__u16 boot_spec_major = 0, boot_spec_minor = 0;
	int fmt = -1;
	struct json_object *root = NULL;
	char formatter[41] = { 0 };
	char rev_str[16] = { 0 };
	uint32_t read_device_id = -1, read_vendor_id = -1;
	wdc_nvme_ext_smart_log *ext_smart_log_ptr = NULL;

	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	fmt = validate_output_format(cfg.output_format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC %s invalid output format\n", __func__);
		close(fd);
		return fmt;
	}

	/* get the id ctrl data used to fill in drive info below */
	ret = nvme_identify_ctrl(fd, &ctrl);

	if (ret) {
		fprintf(stderr, "ERROR : WDC %s: Identify Controller failed\n", __func__);
		close(fd);
		return ret;
	}

	r = nvme_scan(NULL);
	wdc_check_device(r, fd);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_INFO) == WDC_DRIVE_CAP_INFO) {
		ret = wdc_get_pci_ids(r, &read_device_id, &read_vendor_id);
		if (ret < 0)
		{
			fprintf(stderr, "ERROR : WDC: %s: failure to get pci ids, ret = %d\n", __func__, ret);
			goto out;
		}

		switch (read_device_id) {
		case WDC_NVME_SN640_DEV_ID:
		case WDC_NVME_SN640_DEV_ID_1:
		case WDC_NVME_SN640_DEV_ID_2:
		case WDC_NVME_SN640_DEV_ID_3:
		case WDC_NVME_SN650_DEV_ID:
		case WDC_NVME_SN650_DEV_ID_1:
		case WDC_NVME_SN650_DEV_ID_2:
		case WDC_NVME_SN650_DEV_ID_3:
		case WDC_NVME_SN650_DEV_ID_4:
		case WDC_NVME_SN655_DEV_ID:
		case WDC_NVME_SN560_DEV_ID_1:
		case WDC_NVME_SN560_DEV_ID_2:
		case WDC_NVME_SN560_DEV_ID_3:
		case WDC_NVME_SN550_DEV_ID:
		case WDC_NVME_ZN350_DEV_ID:
		case WDC_NVME_ZN350_DEV_ID_1:
			ret = wdc_do_drive_info(fd, &result);

			if (!ret) {
				size = (__u16)((cpu_to_le32(result) & 0xffff0000) >> 16);
				rev = (double)(cpu_to_le32(result) & 0x0000ffff);

				if (fmt == NORMAL) {
					printf("Drive HW Revison: %4.1f\n", (.1 * rev));
					printf("FTL Unit Size:     0x%x KB\n", size);
					printf("Customer SN:        %-.*s\n", (int)sizeof(ctrl.sn), &ctrl.sn[0]);
				}
				else if (fmt == JSON) {
			   		root = json_create_object();
			   		sprintf(rev_str, "%4.1f", (.1 * rev));
					json_object_add_value_string(root, "Drive HW Revison", rev_str);

					json_object_add_value_int(root, "FTL Unit Size", le16_to_cpu(size));
					wdc_StrFormat(formatter, sizeof(formatter), &ctrl.sn[0], sizeof(ctrl.sn));
					json_object_add_value_string(root, "Customer SN", formatter);

					json_print_object(root, NULL);
					printf("\n");

					json_free_object(root);
				}
			}
			break;
		case WDC_NVME_SN730A_DEV_ID:
			memcpy(vsData, &ctrl.vs[0], 32);

			major_rev = ctrl.sn[12];
			minor_rev = ctrl.sn[13];

			if (fmt == NORMAL) {
				printf("Drive HW Revision:   %c.%c \n", major_rev, minor_rev);
				printf("Customer SN:         %-.*s\n", 14, &ctrl.sn[0]);
			}
			else if (fmt == JSON) {
		   		root = json_create_object();
		   		sprintf(rev_str, "%c.%c", major_rev, minor_rev);
				json_object_add_value_string(root, "Drive HW Revison", rev_str);
				wdc_StrFormat(formatter, sizeof(formatter), &ctrl.sn[0], 14);
				json_object_add_value_string(root, "Customer SN", formatter);

				json_print_object(root, NULL);
				printf("\n");

				json_free_object(root);
			}
			break;
		case WDC_NVME_SN820CL_DEV_ID:
			/* Get the Drive HW Rev from the C6 Log page */
			ret = nvme_get_hw_rev_log(fd, &data, 0, NVME_NSID_ALL);
			if (ret == 0) {
				wdc_nvme_hw_rev_log *log_data = (wdc_nvme_hw_rev_log *)data;
				major_rev = log_data->hw_rev_gdr;

				free(data);
				data = NULL;
			} else {
				fprintf(stderr, "ERROR : WDC: %s: failure to get hw revision log\n", __func__);
				ret = -1;
				goto out;
			}

			/* Get the Smart C0 log page */
			if ((capabilities & WDC_DRIVE_CAP_CLOUD_LOG_PAGE) == 0) {
				fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
				ret = -1;
				goto out;
			}

			ret = nvme_get_ext_smart_cloud_log(fd, &data, 0, NVME_NSID_ALL);

			if (ret == 0) {
				ext_smart_log_ptr = (wdc_nvme_ext_smart_log *)data;

				/* Set the FTL Unit size */
				ftl_unit_size = le32_to_cpu(ext_smart_log_ptr->ext_smart_ftlus);

				/* Set the Boot Spec Version */
				boot_spec_major = le16_to_cpu(ext_smart_log_ptr->ext_smart_maj);
				boot_spec_minor = le16_to_cpu(ext_smart_log_ptr->ext_smart_min);

				/* Set the Drive Ownership Status */
				tcg_dev_ownership = le32_to_cpu(ext_smart_log_ptr->ext_smart_tcgos);
				free(data);
			} else {
				fprintf(stderr, "ERROR : WDC: %s: failure to get extended smart cloud log\n", __func__);
				ret = -1;
				goto out;
			}

			if (fmt == NORMAL) {
				printf("Drive HW Revision:                    %2d\n", major_rev);
				printf("FTL Unit Size:                        %d\n", ftl_unit_size);
				printf("HyperScale Boot Version Spec:        %d.%d\n", boot_spec_major, boot_spec_minor);
				printf("TCG Device Ownership Status:          %2d\n", tcg_dev_ownership);

			}
			else if (fmt == JSON) {
		   		root = json_create_object();

				json_object_add_value_int(root, "Drive HW Revison", major_rev);
				json_object_add_value_int(root, "FTL Unit Size", ftl_unit_size);
		   		sprintf(rev_str, "%d.%d", boot_spec_major, boot_spec_minor);
				json_object_add_value_string(root, "HyperScale Boot Version Spec", rev_str);
				json_object_add_value_int(root, "TCG Device Ownership Status", tcg_dev_ownership);

				json_print_object(root, NULL);
				printf("\n");

				json_free_object(root);
			}

			break;
		default:
			fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
			ret = -1;
			break;
		}
	} else {
		fprintf(stderr, "ERROR : WDC: capability not supported by this device\n");
		ret = -1;
	}

out:
	nvme_show_status(ret);
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_vs_temperature_stats(int argc, char **argv,
		struct command *command, struct plugin *plugin)
{
	const char *desc = "Send a vs-temperature-stats command.";
	struct nvme_smart_log smart_log;
	struct nvme_id_ctrl id_ctrl;
	nvme_root_t r;
	uint64_t capabilities = 0;
    	__u32 hctm_tmt;
	int fd, ret;
	int temperature, temp_tmt1, temp_tmt2;
	int fmt = -1;

	struct config {
		char *output_format;
	};

	struct config cfg = {
		.output_format = "normal",
	};

	OPT_ARGS(opts) = {
		OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	r = nvme_scan(NULL);
	fmt = validate_output_format(cfg.output_format);
	if (fmt < 0) {
		fprintf(stderr, "ERROR : WDC : invalid output format\n");
		ret = fmt;
		goto out;
	}

	/* check if command is supported */
	wdc_check_device(r, fd);
	capabilities = wdc_get_drive_capabilities(r, fd);
	if ((capabilities & WDC_DRIVE_CAP_TEMP_STATS) != WDC_DRIVE_CAP_TEMP_STATS) {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
		ret = -1;
		goto out;
	} 

    	/* get the temperature stats or report errors */
	ret = nvme_identify_ctrl(fd, &id_ctrl);
   	if (ret != 0)
		goto out;
	ret = nvme_get_log_smart(fd, NVME_NSID_ALL, false, &smart_log);
	if (ret != 0)
		goto out;

   	/* convert from Kelvin to degrees Celsius */
	temperature = ((smart_log.temperature[1] << 8) | smart_log.temperature[0]) - 273;

	/* retrieve HCTM Thermal Management Temperatures */
	nvme_get_features_simple(fd, 0x10, 0, &hctm_tmt);
   	temp_tmt1 = ((hctm_tmt >> 16) & 0xffff) ? ((hctm_tmt >> 16) & 0xffff) - 273 : 0;
   	temp_tmt2 = (hctm_tmt & 0xffff) ? (hctm_tmt & 0xffff) - 273 : 0;

   	if (fmt == NORMAL) {
		/* print the temperature stats */
		printf("Temperature Stats for NVME device:%s namespace-id:%x\n",
					devicename, WDC_DE_GLOBAL_NSID);

		printf("Current Composite Temperature           : %d °C\n", temperature);
		printf("WCTEMP                                  : %"PRIu16" °C\n", id_ctrl.wctemp - 273);
		printf("CCTEMP                                  : %"PRIu16" °C\n", id_ctrl.cctemp - 273);
		printf("DITT support                            : 0\n");
		printf("HCTM support                            : %"PRIu16"\n", id_ctrl.hctma);

		printf("HCTM Light (TMT1)                       : %"PRIu16" °C\n", temp_tmt1);
		printf("TMT1 Transition Counter                 : %"PRIu32"\n", smart_log.thm_temp1_trans_count);
		printf("TMT1 Total Time                         : %"PRIu32"\n", smart_log.thm_temp1_total_time);

		printf("HCTM Heavy (TMT2)                       : %"PRIu16" °C\n", temp_tmt2);
		printf("TMT2 Transition Counter                 : %"PRIu32"\n", smart_log.thm_temp2_trans_count);
		printf("TMT2 Total Time                         : %"PRIu32"\n", smart_log.thm_temp2_total_time);
		printf("Thermal Shutdown Threshold              : 95 °C\n");
   	}
   	else if (fmt == JSON) {
   		struct json_object *root;
   		root = json_create_object();

		json_object_add_value_int(root, "Current Composite Temperature", le32_to_cpu(temperature));
		json_object_add_value_int(root, "WCTEMP", le16_to_cpu(id_ctrl.wctemp - 273));
		json_object_add_value_int(root, "CCTEMP", le16_to_cpu(id_ctrl.cctemp - 273));
		json_object_add_value_int(root, "DITT support", 0);
		json_object_add_value_int(root, "HCTM support", le16_to_cpu(id_ctrl.hctma));

		json_object_add_value_int(root, "HCTM Light (TMT1)", le16_to_cpu(temp_tmt1));
		json_object_add_value_int(root, "TMT1 Transition Counter", le32_to_cpu(smart_log.thm_temp1_trans_count));
		json_object_add_value_int(root, "TMT1 Total Time", le32_to_cpu(smart_log.thm_temp1_total_time));

		json_object_add_value_int(root, "HCTM Light (TMT2)", le16_to_cpu(temp_tmt2));
		json_object_add_value_int(root, "TMT2 Transition Counter", le32_to_cpu(smart_log.thm_temp2_trans_count));
		json_object_add_value_int(root, "TMT2 Total Time", le32_to_cpu(smart_log.thm_temp2_total_time));
		json_object_add_value_int(root, "Thermal Shutdown Threshold", 95);

		json_print_object(root, NULL);
		printf("\n");

		json_free_object(root);
   	}
   	else
   	   	printf("%s: Invalid format\n", __func__);

out:
	nvme_show_status(ret);
	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_capabilities(int argc, char **argv, 
        struct command *command, struct plugin *plugin) 
{
    const char *desc = "Send a capabilities command.";
    nvme_root_t r;
    uint64_t capabilities = 0;
    int fd;

    OPT_ARGS(opts) = 
    {
        OPT_END()
    };

    fd = parse_and_open(argc, argv, desc, opts);
    if (fd < 0)
        return fd;

    /* get capabilities */
    r = nvme_scan(NULL);
    wdc_check_device(r, fd);
    capabilities = wdc_get_drive_capabilities(r, fd);

    /* print command and supported status */
    printf("WDC Plugin Capabilities for NVME device:%s\n", devicename);
    printf("cap-diag                      : %s\n", 
            capabilities & WDC_DRIVE_CAP_CAP_DIAG ? "Supported" : "Not Supported");
    printf("drive-log                     : %s\n", 
            capabilities & WDC_DRIVE_CAP_DRIVE_LOG ? "Supported" : "Not Supported");
    printf("get-crash-dump                : %s\n", 
            capabilities & WDC_DRIVE_CAP_CRASH_DUMP ? "Supported" : "Not Supported");
    printf("get-pfail-dump                : %s\n", 
            capabilities & WDC_DRIVE_CAP_PFAIL_DUMP ? "Supported" : "Not Supported");
    printf("id-ctrl                       : Supported\n");
    printf("purge                         : %s\n",
            capabilities & WDC_DRIVE_CAP_PURGE ? "Supported" : "Not Supported");
    printf("purge-monitor                 : %s\n",
            capabilities & WDC_DRIVE_CAP_PURGE ? "Supported" : "Not Supported");
    printf("vs-internal-log               : %s\n", 
            capabilities & WDC_DRIVE_CAP_INTERNAL_LOG_MASK ? "Supported" : "Not Supported");
    printf("vs-nand-stats                 : %s\n", 
            capabilities & WDC_DRIVE_CAP_NAND_STATS ? "Supported" : "Not Supported");
    printf("vs-smart-add-log              : %s\n", 
            capabilities & WDC_DRIVE_CAP_SMART_LOG_MASK ? "Supported" : "Not Supported");
    printf("--C0 Log Page                 : %s\n",
            capabilities & WDC_DRIVE_CAP_C0_LOG_PAGE ? "Supported" : "Not Supported");
    printf("--C1 Log Page                 : %s\n",
            capabilities & WDC_DRIVE_CAP_C1_LOG_PAGE ? "Supported" : "Not Supported");
    printf("--C3 Log Page                 : %s\n",
            capabilities & WDC_DRIVE_CAP_C3_LOG_PAGE ? "Supported" : "Not Supported");
    printf("--CA Log Page                 : %s\n",
            capabilities & WDC_DRIVE_CAP_CA_LOG_PAGE ? "Supported" : "Not Supported");
    printf("--D0 Log Page                 : %s\n",
            capabilities & WDC_DRIVE_CAP_D0_LOG_PAGE ? "Supported" : "Not Supported");
    printf("clear-pcie-correctable-errors : %s\n", 
            capabilities & WDC_DRIVE_CAP_CLEAR_PCIE_MASK ? "Supported" : "Not Supported");
    printf("drive-essentials              : %s\n", 
            capabilities & WDC_DRIVE_CAP_DRIVE_ESSENTIALS ? "Supported" : "Not Supported");
    printf("get-drive-status              : %s\n", 
            capabilities & WDC_DRIVE_CAP_DRIVE_STATUS ? "Supported" : "Not Supported");
    printf("clear-assert-dump             : %s\n", 
            capabilities & WDC_DRIVE_CAP_CLEAR_ASSERT ? "Supported" : "Not Supported");
    printf("drive-resize                  : %s\n", 
            capabilities & WDC_DRIVE_CAP_RESIZE ? "Supported" : "Not Supported");
    printf("vs-fw-activate-history        : %s\n", 
            capabilities & WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY_MASK ? "Supported" : "Not Supported");
    printf("clear-fw-activate-history     : %s\n", 
            capabilities & WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY_MASK ? "Supported" : "Not Supported");
    printf("vs-telemetry-controller-option: %s\n", 
            capabilities & WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG ? "Supported" : "Not Supported");
    printf("vs-error-reason-identifier    : %s\n", 
            capabilities & WDC_DRIVE_CAP_REASON_ID ? "Supported" : "Not Supported");
    printf("log-page-directory            : %s\n", 
            capabilities & WDC_DRIVE_CAP_LOG_PAGE_DIR ? "Supported" : "Not Supported");
    printf("namespace-resize              : %s\n", 
            capabilities & WDC_DRIVE_CAP_NS_RESIZE ? "Supported" : "Not Supported");
    printf("vs-drive-info                 : %s\n", 
            capabilities & WDC_DRIVE_CAP_INFO ? "Supported" : "Not Supported");
    printf("vs-temperature-stats          : %s\n", 
            capabilities & WDC_DRIVE_CAP_TEMP_STATS ? "Supported" : "Not Supported");
    printf("cloud-SSD-plugin-version      : %s\n",
            capabilities & WDC_DRIVE_CAP_CLOUD_SSD_VERSION ? "Supported" : "Not Supported");
    printf("vs-pcie-stats                 : %s\n",
            capabilities & WDC_DRIVE_CAP_PCIE_STATS ? "Supported" : "Not Supported");
    printf("get-error-recovery-log        : %s\n",
            capabilities & WDC_DRIVE_CAP_OCP_C1_LOG_PAGE ? "Supported" : "Not Supported");
    printf("get-dev-capabilities-log      : %s\n",
            capabilities & WDC_DRIVE_CAP_OCP_C4_LOG_PAGE ? "Supported" : "Not Supported");
    printf("get-unsupported-reqs-log      : %s\n",
            capabilities & WDC_DRIVE_CAP_OCP_C5_LOG_PAGE ? "Supported" : "Not Supported");
    printf("get-latency-monitor-log       : %s\n",
            capabilities & WDC_DRIVE_CAP_C3_LOG_PAGE ? "Supported" : "Not Supported");
    printf("cloud-boot-SSD-version        : %s\n",
            capabilities & WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION ? "Supported" : "Not Supported");
    printf("vs-cloud-log                  : %s\n",
            capabilities & WDC_DRIVE_CAP_CLOUD_LOG_PAGE ? "Supported" : "Not Supported");
    printf("vs-hw-rev-log                 : %s\n",
            capabilities & WDC_DRIVE_CAP_HW_REV_LOG_PAGE ? "Supported" : "Not Supported");
    printf("vs-device_waf                 : %s\n",
			capabilities & WDC_DRIVE_CAP_DEVICE_WAF ? "Supported" : "Not Supported");
   printf("capabilities                  : Supported\n");
    nvme_free_tree(r);
    close(fd);
    return 0;
}

static int wdc_cloud_ssd_plugin_version(int argc, char **argv,
        struct command *command, struct plugin *plugin)
{
	const char *desc = "Get Cloud SSD Plugin Version command.";
	nvme_root_t r;
	uint64_t capabilities = 0;
	int fd;

	OPT_ARGS(opts) = {
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	/* get capabilities */
	r = nvme_scan(NULL);
	wdc_check_device(r, fd);
	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_CLOUD_SSD_VERSION) == WDC_DRIVE_CAP_CLOUD_SSD_VERSION) {
	    /* print command and supported status */
	    printf("WDC Cloud SSD Plugin Version: 1.0\n");
	} else {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
	}

	nvme_free_tree(r);
	close(fd);
	return 0;
}

static int wdc_cloud_boot_SSD_version(int argc, char **argv,
        struct command *command, struct plugin *plugin)
{
	const char *desc = "Get Cloud Boot SSD Version command.";
	const char *namespace_id = "desired namespace id";
	nvme_root_t r;
	uint64_t capabilities = 0;
	int fd, ret = -1;
	int major = 0, minor = 0;
	__u8 *data = NULL;
	wdc_nvme_ext_smart_log *ext_smart_log_ptr = NULL;

	struct config {
		__u32 namespace_id;
	};

	struct config cfg = {
		.namespace_id = NVME_NSID_ALL,
	};

	OPT_ARGS(opts) = {
		OPT_UINT("namespace-id",      'n', &cfg.namespace_id,     namespace_id),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0)
		return fd;

	/* get capabilities */
	r = nvme_scan(NULL);
	wdc_check_device(r, fd);
	capabilities = wdc_get_drive_capabilities(r, fd);

	if ((capabilities & WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION) == WDC_DRIVE_CAP_CLOUD_BOOT_SSD_VERSION) {
		/* Get the 0xC0 Smart Cloud Attribute V1 log data */
		ret = nvme_get_ext_smart_cloud_log(fd, &data, 0, cfg.namespace_id);

		ext_smart_log_ptr = (wdc_nvme_ext_smart_log *)data;
		if (ret == 0) {
			major = le16_to_cpu(ext_smart_log_ptr->ext_smart_maj);
			minor = le16_to_cpu(ext_smart_log_ptr->ext_smart_min);

		    /* print the version returned from the log page */
		    printf("HyperScale Boot Version: %d.%d\n", major, minor);

		} else {
			fprintf(stderr, "ERROR : WDC : Unable to read Extended Smart/C0 Log Page data\n");
			ret = -1;
		}

		if (data)
			free(data);
	} else {
		fprintf(stderr, "ERROR : WDC: unsupported device for this command\n");
	}

	nvme_free_tree(r);
	close(fd);
	return ret;
}

static int wdc_enc_get_log(int argc, char **argv, struct command *command,
        struct plugin *plugin)
{
	char *desc = "Get Enclosure Log.";
	char *file = "Output file pathname.";
	char *size = "Data retrieval transfer size.";
	char *log = "Enclosure Log Page ID.";
	FILE *output_fd;
	int xfer_size = 0;
	int fd;
	int len;
	int err = 0;

	struct config {
		char  *file;
		__u32 xfer_size;
		__u32 log_id;
	};

	struct config cfg = {
		.file = NULL,
		.xfer_size = 0,
		.log_id = 0xffffffff,
	};

	OPT_ARGS(opts) = {
		OPT_FILE("output-file",   'o', &cfg.file,  file),
		OPT_UINT("transfer-size", 's', &cfg.xfer_size, size),
		OPT_UINT("log-id",        'l', &cfg.log_id, log),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0) {
		goto ret;
	}

	if (!wdc_enc_check_model(fd)) {
		err = -EINVAL;
		goto closed_fd;
	}

	if (cfg.log_id > 0xff) {
		fprintf(stderr, "Invalid log identifier: %d. Valid 0xd1, 0xd2, 0xd3, 0xd4, 0xe2, 0xe4\n", cfg.log_id);
		goto closed_fd;
	}

	if (cfg.xfer_size != 0) {
		xfer_size = cfg.xfer_size;
			if (!wdc_check_power_of_2(cfg.xfer_size)) {
				fprintf(stderr, "%s: ERROR : xfer-size (%d) must be a power of 2\n", __func__, cfg.xfer_size);
				err = -EINVAL;
				goto closed_fd;
			}
	}

	/* Log IDs are only for specific enclosures */
	if (cfg.log_id) {
		xfer_size = (xfer_size) ? xfer_size : WDC_NVME_ENC_LOG_SIZE_CHUNK;
		len = cfg.file==NULL?0:strlen(cfg.file);
		if (len > 0) {
			output_fd = fopen(cfg.file,"wb");
			if (output_fd == 0) {
				fprintf(stderr, "%s: ERROR : opening:%s : %s\n", __func__,cfg.file, strerror(errno));
				err = -EINVAL;
				goto closed_fd;
			}
		} else {
			output_fd = stdout;
		}
		if (cfg.log_id == WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_1 || cfg.log_id == WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_2
				|| cfg.log_id == WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_3 || cfg.log_id == WDC_ENC_NIC_CRASH_DUMP_ID_SLOT_4) {
			fprintf(stderr, "args - sz:%x logid:%x of:%s\n",xfer_size,cfg.log_id,cfg.file);
			err = wdc_enc_get_nic_log(fd, cfg.log_id, xfer_size, WDC_NVME_ENC_NIC_LOG_SIZE, output_fd);
		} else {
			fprintf(stderr, "args - sz:%x logid:%x of:%s\n",xfer_size,cfg.log_id,cfg.file);
			err = wdc_enc_submit_move_data(fd, NULL, 0, xfer_size, output_fd, cfg.log_id, 0, 0);
		}

		if (err == WDC_RESULT_NOT_AVAILABLE) {
			fprintf(stderr, "No Log/Crashdump available\n");
			err = 0;
		} else if (err) {
			fprintf(stderr, "ERROR:0x%x Failed to collect log-id:%x \n",err, cfg.log_id);
		}
	}
closed_fd:
	close(fd);
ret:
	return err;
}

static int wdc_enc_submit_move_data(int fd, char *cmd, int len, int xfer_size, FILE *out, int log_id, int cdw14, int cdw15)
{
	struct timespec time;
	uint32_t response_size, more;
	int err;
	int handle;
	uint32_t offset = 0;
	char *buf;

	buf = (char *)malloc(sizeof(__u8) * xfer_size);
	if (buf == NULL) {
		fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno));
		return -1;
	}
	/* send something no matter what */
	cmd = (len) ? cmd : buf;
	len = (len) ? len : 0x20;

	struct nvme_passthru_cmd nvme_cmd = {
		.opcode     = WDC_NVME_ADMIN_ENC_MGMT_SND,
		.nsid       = 0,
		.addr       = (__u64)(uintptr_t) cmd,
		.data_len   = ((len + sizeof(uint32_t) - 1)/sizeof(uint32_t)) * sizeof(uint32_t),
		.cdw10      = len,
		.cdw12      = log_id,
		.cdw13      = 0,
		.cdw14      = cdw14,
		.cdw15      = cdw15,
	};

	clock_gettime(CLOCK_REALTIME, &time);
	srand(time.tv_nsec);
	handle = random();  /* Handle to associate send request with receive request */
	nvme_cmd.cdw11 = handle;

#ifdef WDC_NVME_CLI_DEBUG
	unsigned char *d = (unsigned char*) nvme_cmd.addr;
	unsigned char *md = (unsigned char*) nvme_cmd.metadata;
	printf("NVME_ADMIN_COMMAND:\n" \
		"opcode: 0x%02x, flags: 0x%02x, rsvd: 0x%04x, nsid: 0x%08x, cdw2: 0x%08x, cdw3: 0x%08x, " \
		"metadata_len: 0x%08x, data_len: 0x%08x, cdw10: 0x%08x, cdw11: 0x%08x, cdw12: 0x%08x, " \
		"cdw13: 0x%08x, cdw14: 0x%08x, cdw15: 0x%08x, timeout_ms: 0x%08x, result: 0x%08x, " \
		"metadata: %s, " \
		"data: %s\n", \
		nvme_cmd.opcode, nvme_cmd.flags, nvme_cmd.rsvd1, nvme_cmd.nsid, nvme_cmd.cdw2, nvme_cmd.cdw3, \
		nvme_cmd.metadata_len, nvme_cmd.data_len, nvme_cmd.cdw10, nvme_cmd.cdw11, nvme_cmd.cdw12, \
		nvme_cmd.cdw13, nvme_cmd.cdw14, nvme_cmd.cdw15, nvme_cmd.timeout_ms, nvme_cmd.result,
		md, \
		d);
#endif
	nvme_cmd.result = 0;
	err = nvme_submit_admin_passthru(fd, &nvme_cmd, NULL);
	if (err == NVME_SC_INTERNAL) {
		fprintf(stderr, "%s: WARNING : WDC : No log ID:x%x available\n",
			__func__, log_id);
	}
	else if (err != 0) {
		fprintf(stderr, "%s: ERROR : WDC : NVMe Snd Mgmt\n", __func__);
		nvme_show_status(err);
	} else {
		if (nvme_cmd.result == WDC_RESULT_NOT_AVAILABLE)
		{
			free(buf);
			return WDC_RESULT_NOT_AVAILABLE;
		}

		do {
			/* Sent request, now go retrieve response */
			nvme_cmd.flags = 0;
			nvme_cmd.opcode = WDC_NVME_ADMIN_ENC_MGMT_RCV;
			nvme_cmd.addr = (__u64)(uintptr_t) buf;
			nvme_cmd.data_len = xfer_size;
			nvme_cmd.cdw10 = xfer_size / sizeof(uint32_t);
			nvme_cmd.cdw11 = handle;
			nvme_cmd.cdw12 = log_id;
			nvme_cmd.cdw13 = offset / sizeof(uint32_t);
			nvme_cmd.cdw14 = cdw14;
			nvme_cmd.cdw15 = cdw15;
			nvme_cmd.result = 0;  /* returned result !=0 indicates more data available */
			err = nvme_submit_admin_passthru(fd, &nvme_cmd, NULL);
			if (err != 0) {
				more = 0;
				fprintf(stderr, "%s: ERROR : WDC : NVMe Rcv Mgmt ", __func__);
				nvme_show_status(err);
			} else {
				more = nvme_cmd.result & WDC_RESULT_MORE_DATA;
				response_size = nvme_cmd.result & ~WDC_RESULT_MORE_DATA;
				fwrite(buf, response_size, 1, out);
				offset += response_size;
				if (more && (response_size & (sizeof(uint32_t)-1))) {
					fprintf(stderr, "%s: ERROR : WDC : NVMe Rcv Mgmt response size:x%x not LW aligned\n",
						__func__, response_size);
				}
			}
		} while (more);
	}

	free(buf);
	return err;
}

static int wdc_enc_get_nic_log(int fd, __u8 log_id, __u32 xfer_size, __u32 data_len, FILE *out)
{
	__u8 *dump_data;
	__u32 curr_data_offset, curr_data_len;
	int i, ret = -1;
	struct nvme_passthru_cmd admin_cmd;
	__u32 dump_length = data_len;
	__u32 numd;
	__u16 numdu, numdl;

	dump_data = (__u8 *) malloc(sizeof (__u8) * dump_length);
	if (dump_data == NULL) {
		fprintf(stderr, "%s: ERROR : malloc : %s\n",__func__, strerror(errno));
		return -1;
	}
	memset(dump_data, 0, sizeof (__u8) * dump_length);
	memset(&admin_cmd, 0, sizeof (struct nvme_passthru_cmd));
	curr_data_offset = 0;
	curr_data_len = xfer_size;
	i = 0;

	numd = (curr_data_len >> 2) - 1;
	numdu = numd >> 16;
	numdl = numd & 0xffff;
	admin_cmd.opcode = nvme_admin_get_log_page;
	admin_cmd.nsid = curr_data_offset;
	admin_cmd.addr = (__u64)(uintptr_t) dump_data;
	admin_cmd.data_len = curr_data_len;
	admin_cmd.cdw10 = log_id | (numdl << 16);
	admin_cmd.cdw11 = numdu;

	while (curr_data_offset < data_len) {
#ifdef WDC_NVME_CLI_DEBUG
		fprintf(stderr, "nsid 0x%08x addr 0x%08llx, data_len 0x%08x, cdw10 0x%08x, cdw11 0x%08x, cdw12 0x%08x, cdw13 0x%08x, cdw14 0x%08x \n", admin_cmd.nsid, admin_cmd.addr, admin_cmd.data_len, admin_cmd.cdw10, admin_cmd.cdw11, admin_cmd.cdw12, admin_cmd.cdw13, admin_cmd.cdw14);
#endif
		ret = nvme_submit_admin_passthru(fd, &admin_cmd, NULL);
		if (ret != 0) {
			nvme_show_status(ret);
			fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n",
				 __func__, i, admin_cmd.data_len, curr_data_offset, (long unsigned int)admin_cmd.addr);
			break;
		}

		if ((curr_data_offset + xfer_size) <= data_len)
			curr_data_len = xfer_size;
		else
			curr_data_len = data_len - curr_data_offset;   /* last transfer */

		curr_data_offset += curr_data_len;
		numd = (curr_data_len >> 2) - 1;
		numdu = numd >> 16;
		numdl = numd & 0xffff;
		admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset;
		admin_cmd.nsid = curr_data_offset;
		admin_cmd.data_len = curr_data_len;
		admin_cmd.cdw10 = log_id | (numdl << 16);
		admin_cmd.cdw11 = numdu;
		i++;
	}
	fwrite(dump_data, data_len, 1, out);
	free(dump_data);
	return ret;
}