Adding upstream version 2.6.
Signed-off-by: Daniel Baumann <daniel@debian.org>
This commit is contained in:
parent
acf5b2ec4c
commit
83f51a6dde
262 changed files with 7434 additions and 3024 deletions
|
@ -1,49 +0,0 @@
|
|||
#include "config.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
/**
|
||||
* build_assert - routines for build-time assertions
|
||||
*
|
||||
* This code provides routines which will cause compilation to fail should some
|
||||
* assertion be untrue: such failures are preferable to run-time assertions,
|
||||
* but much more limited since they can only depends on compile-time constants.
|
||||
*
|
||||
* These assertions are most useful when two parts of the code must be kept in
|
||||
* sync: it is better to avoid such cases if possible, but seconds best is to
|
||||
* detect invalid changes at build time.
|
||||
*
|
||||
* For example, a tricky piece of code might rely on a certain element being at
|
||||
* the start of the structure. To ensure that future changes don't break it,
|
||||
* you would catch such changes in your code like so:
|
||||
*
|
||||
* Example:
|
||||
* #include <stddef.h>
|
||||
* #include <ccan/build_assert/build_assert.h>
|
||||
*
|
||||
* struct foo {
|
||||
* char string[5];
|
||||
* int x;
|
||||
* };
|
||||
*
|
||||
* static char *foo_string(struct foo *foo)
|
||||
* {
|
||||
* // This trick requires that the string be first in the structure
|
||||
* BUILD_ASSERT(offsetof(struct foo, string) == 0);
|
||||
* return (char *)foo;
|
||||
* }
|
||||
*
|
||||
* License: CC0 (Public domain)
|
||||
* Author: Rusty Russell <rusty@rustcorp.com.au>
|
||||
*/
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
if (argc != 2)
|
||||
return 1;
|
||||
|
||||
if (strcmp(argv[1], "depends") == 0)
|
||||
/* Nothing. */
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
|
@ -1,33 +0,0 @@
|
|||
#include "config.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
/**
|
||||
* check_type - routines for compile time type checking
|
||||
*
|
||||
* C has fairly weak typing: ints get automatically converted to longs, signed
|
||||
* to unsigned, etc. There are some cases where this is best avoided, and
|
||||
* these macros provide methods for evoking warnings (or build errors) when
|
||||
* a precise type isn't used.
|
||||
*
|
||||
* On compilers which don't support typeof() these routines are less effective,
|
||||
* since they have to use sizeof() which can only distiguish between types of
|
||||
* different size.
|
||||
*
|
||||
* License: CC0 (Public domain)
|
||||
* Author: Rusty Russell <rusty@rustcorp.com.au>
|
||||
*/
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
if (argc != 2)
|
||||
return 1;
|
||||
|
||||
if (strcmp(argv[1], "depends") == 0) {
|
||||
#if !HAVE_TYPEOF
|
||||
printf("ccan/build_assert\n");
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
1
ccan/ccan/compiler/LICENSE
Symbolic link
1
ccan/ccan/compiler/LICENSE
Symbolic link
|
@ -0,0 +1 @@
|
|||
../../licenses/CC0
|
317
ccan/ccan/compiler/compiler.h
Normal file
317
ccan/ccan/compiler/compiler.h
Normal file
|
@ -0,0 +1,317 @@
|
|||
/* CC0 (Public domain) - see LICENSE file for details */
|
||||
#ifndef CCAN_COMPILER_H
|
||||
#define CCAN_COMPILER_H
|
||||
#include "config.h"
|
||||
|
||||
#ifndef COLD
|
||||
#if HAVE_ATTRIBUTE_COLD
|
||||
/**
|
||||
* COLD - a function is unlikely to be called.
|
||||
*
|
||||
* Used to mark an unlikely code path and optimize appropriately.
|
||||
* It is usually used on logging or error routines.
|
||||
*
|
||||
* Example:
|
||||
* static void COLD moan(const char *reason)
|
||||
* {
|
||||
* fprintf(stderr, "Error: %s (%s)\n", reason, strerror(errno));
|
||||
* }
|
||||
*/
|
||||
#define COLD __attribute__((__cold__))
|
||||
#else
|
||||
#define COLD
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef NORETURN
|
||||
#if HAVE_ATTRIBUTE_NORETURN
|
||||
/**
|
||||
* NORETURN - a function does not return
|
||||
*
|
||||
* Used to mark a function which exits; useful for suppressing warnings.
|
||||
*
|
||||
* Example:
|
||||
* static void NORETURN fail(const char *reason)
|
||||
* {
|
||||
* fprintf(stderr, "Error: %s (%s)\n", reason, strerror(errno));
|
||||
* exit(1);
|
||||
* }
|
||||
*/
|
||||
#define NORETURN __attribute__((__noreturn__))
|
||||
#else
|
||||
#define NORETURN
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef PRINTF_FMT
|
||||
#if HAVE_ATTRIBUTE_PRINTF
|
||||
/**
|
||||
* PRINTF_FMT - a function takes printf-style arguments
|
||||
* @nfmt: the 1-based number of the function's format argument.
|
||||
* @narg: the 1-based number of the function's first variable argument.
|
||||
*
|
||||
* This allows the compiler to check your parameters as it does for printf().
|
||||
*
|
||||
* Example:
|
||||
* void PRINTF_FMT(2,3) my_printf(const char *prefix, const char *fmt, ...);
|
||||
*/
|
||||
#define PRINTF_FMT(nfmt, narg) \
|
||||
__attribute__((format(__printf__, nfmt, narg)))
|
||||
#else
|
||||
#define PRINTF_FMT(nfmt, narg)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef CONST_FUNCTION
|
||||
#if HAVE_ATTRIBUTE_CONST
|
||||
/**
|
||||
* CONST_FUNCTION - a function's return depends only on its argument
|
||||
*
|
||||
* This allows the compiler to assume that the function will return the exact
|
||||
* same value for the exact same arguments. This implies that the function
|
||||
* must not use global variables, or dereference pointer arguments.
|
||||
*/
|
||||
#define CONST_FUNCTION __attribute__((__const__))
|
||||
#else
|
||||
#define CONST_FUNCTION
|
||||
#endif
|
||||
|
||||
#ifndef PURE_FUNCTION
|
||||
#if HAVE_ATTRIBUTE_PURE
|
||||
/**
|
||||
* PURE_FUNCTION - a function is pure
|
||||
*
|
||||
* A pure function is one that has no side effects other than it's return value
|
||||
* and uses no inputs other than it's arguments and global variables.
|
||||
*/
|
||||
#define PURE_FUNCTION __attribute__((__pure__))
|
||||
#else
|
||||
#define PURE_FUNCTION
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAVE_ATTRIBUTE_UNUSED
|
||||
#ifndef UNNEEDED
|
||||
/**
|
||||
* UNNEEDED - a variable/function may not be needed
|
||||
*
|
||||
* This suppresses warnings about unused variables or functions, but tells
|
||||
* the compiler that if it is unused it need not emit it into the source code.
|
||||
*
|
||||
* Example:
|
||||
* // With some preprocessor options, this is unnecessary.
|
||||
* static UNNEEDED int counter;
|
||||
*
|
||||
* // With some preprocessor options, this is unnecessary.
|
||||
* static UNNEEDED void add_to_counter(int add)
|
||||
* {
|
||||
* counter += add;
|
||||
* }
|
||||
*/
|
||||
#define UNNEEDED __attribute__((__unused__))
|
||||
#endif
|
||||
|
||||
#ifndef NEEDED
|
||||
#if HAVE_ATTRIBUTE_USED
|
||||
/**
|
||||
* NEEDED - a variable/function is needed
|
||||
*
|
||||
* This suppresses warnings about unused variables or functions, but tells
|
||||
* the compiler that it must exist even if it (seems) unused.
|
||||
*
|
||||
* Example:
|
||||
* // Even if this is unused, these are vital for debugging.
|
||||
* static NEEDED int counter;
|
||||
* static NEEDED void dump_counter(void)
|
||||
* {
|
||||
* printf("Counter is %i\n", counter);
|
||||
* }
|
||||
*/
|
||||
#define NEEDED __attribute__((__used__))
|
||||
#else
|
||||
/* Before used, unused functions and vars were always emitted. */
|
||||
#define NEEDED __attribute__((__unused__))
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef UNUSED
|
||||
/**
|
||||
* UNUSED - a parameter is unused
|
||||
*
|
||||
* Some compilers (eg. gcc with -W or -Wunused) warn about unused
|
||||
* function parameters. This suppresses such warnings and indicates
|
||||
* to the reader that it's deliberate.
|
||||
*
|
||||
* Example:
|
||||
* // This is used as a callback, so needs to have this prototype.
|
||||
* static int some_callback(void *unused UNUSED)
|
||||
* {
|
||||
* return 0;
|
||||
* }
|
||||
*/
|
||||
#define UNUSED __attribute__((__unused__))
|
||||
#endif
|
||||
#else
|
||||
#ifndef UNNEEDED
|
||||
#define UNNEEDED
|
||||
#endif
|
||||
#ifndef NEEDED
|
||||
#define NEEDED
|
||||
#endif
|
||||
#ifndef UNUSED
|
||||
#define UNUSED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef IS_COMPILE_CONSTANT
|
||||
#if HAVE_BUILTIN_CONSTANT_P
|
||||
/**
|
||||
* IS_COMPILE_CONSTANT - does the compiler know the value of this expression?
|
||||
* @expr: the expression to evaluate
|
||||
*
|
||||
* When an expression manipulation is complicated, it is usually better to
|
||||
* implement it in a function. However, if the expression being manipulated is
|
||||
* known at compile time, it is better to have the compiler see the entire
|
||||
* expression so it can simply substitute the result.
|
||||
*
|
||||
* This can be done using the IS_COMPILE_CONSTANT() macro.
|
||||
*
|
||||
* Example:
|
||||
* enum greek { ALPHA, BETA, GAMMA, DELTA, EPSILON };
|
||||
*
|
||||
* // Out-of-line version.
|
||||
* const char *greek_name(enum greek greek);
|
||||
*
|
||||
* // Inline version.
|
||||
* static inline const char *_greek_name(enum greek greek)
|
||||
* {
|
||||
* switch (greek) {
|
||||
* case ALPHA: return "alpha";
|
||||
* case BETA: return "beta";
|
||||
* case GAMMA: return "gamma";
|
||||
* case DELTA: return "delta";
|
||||
* case EPSILON: return "epsilon";
|
||||
* default: return "**INVALID**";
|
||||
* }
|
||||
* }
|
||||
*
|
||||
* // Use inline if compiler knows answer. Otherwise call function
|
||||
* // to avoid copies of the same code everywhere.
|
||||
* #define greek_name(g) \
|
||||
* (IS_COMPILE_CONSTANT(greek) ? _greek_name(g) : greek_name(g))
|
||||
*/
|
||||
#define IS_COMPILE_CONSTANT(expr) __builtin_constant_p(expr)
|
||||
#else
|
||||
/* If we don't know, assume it's not. */
|
||||
#define IS_COMPILE_CONSTANT(expr) 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef WARN_UNUSED_RESULT
|
||||
#if HAVE_WARN_UNUSED_RESULT
|
||||
/**
|
||||
* WARN_UNUSED_RESULT - warn if a function return value is unused.
|
||||
*
|
||||
* Used to mark a function where it is extremely unlikely that the caller
|
||||
* can ignore the result, eg realloc().
|
||||
*
|
||||
* Example:
|
||||
* // buf param may be freed by this; need return value!
|
||||
* static char *WARN_UNUSED_RESULT enlarge(char *buf, unsigned *size)
|
||||
* {
|
||||
* return realloc(buf, (*size) *= 2);
|
||||
* }
|
||||
*/
|
||||
#define WARN_UNUSED_RESULT __attribute__((__warn_unused_result__))
|
||||
#else
|
||||
#define WARN_UNUSED_RESULT
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#if HAVE_ATTRIBUTE_DEPRECATED
|
||||
/**
|
||||
* WARN_DEPRECATED - warn that a function/type/variable is deprecated when used.
|
||||
*
|
||||
* Used to mark a function, type or variable should not be used.
|
||||
*
|
||||
* Example:
|
||||
* WARN_DEPRECATED char *oldfunc(char *buf);
|
||||
*/
|
||||
#define WARN_DEPRECATED __attribute__((__deprecated__))
|
||||
#else
|
||||
#define WARN_DEPRECATED
|
||||
#endif
|
||||
|
||||
|
||||
#if HAVE_ATTRIBUTE_NONNULL
|
||||
/**
|
||||
* NO_NULL_ARGS - specify that no arguments to this function can be NULL.
|
||||
*
|
||||
* The compiler will warn if any pointer args are NULL.
|
||||
*
|
||||
* Example:
|
||||
* NO_NULL_ARGS char *my_copy(char *buf);
|
||||
*/
|
||||
#define NO_NULL_ARGS __attribute__((__nonnull__))
|
||||
|
||||
/**
|
||||
* NON_NULL_ARGS - specify that some arguments to this function can't be NULL.
|
||||
* @...: 1-based argument numbers for which args can't be NULL.
|
||||
*
|
||||
* The compiler will warn if any of the specified pointer args are NULL.
|
||||
*
|
||||
* Example:
|
||||
* char *my_copy2(char *buf, char *maybenull) NON_NULL_ARGS(1);
|
||||
*/
|
||||
#define NON_NULL_ARGS(...) __attribute__((__nonnull__(__VA_ARGS__)))
|
||||
#else
|
||||
#define NO_NULL_ARGS
|
||||
#define NON_NULL_ARGS(...)
|
||||
#endif
|
||||
|
||||
#if HAVE_ATTRIBUTE_RETURNS_NONNULL
|
||||
/**
|
||||
* RETURNS_NONNULL - specify that this function cannot return NULL.
|
||||
*
|
||||
* Mainly an optimization opportunity, but can also suppress warnings.
|
||||
*
|
||||
* Example:
|
||||
* RETURNS_NONNULL char *my_copy(char *buf);
|
||||
*/
|
||||
#define RETURNS_NONNULL __attribute__((__returns_nonnull__))
|
||||
#else
|
||||
#define RETURNS_NONNULL
|
||||
#endif
|
||||
|
||||
#if HAVE_ATTRIBUTE_SENTINEL
|
||||
/**
|
||||
* LAST_ARG_NULL - specify the last argument of a variadic function must be NULL.
|
||||
*
|
||||
* The compiler will warn if the last argument isn't NULL.
|
||||
*
|
||||
* Example:
|
||||
* char *join_string(char *buf, ...) LAST_ARG_NULL;
|
||||
*/
|
||||
#define LAST_ARG_NULL __attribute__((__sentinel__))
|
||||
#else
|
||||
#define LAST_ARG_NULL
|
||||
#endif
|
||||
|
||||
#if HAVE_BUILTIN_CPU_SUPPORTS
|
||||
/**
|
||||
* cpu_supports - test if current CPU supports the named feature.
|
||||
*
|
||||
* This takes a literal string, and currently only works on glibc platforms.
|
||||
*
|
||||
* Example:
|
||||
* if (cpu_supports("mmx"))
|
||||
* printf("MMX support engaged!\n");
|
||||
*/
|
||||
#define cpu_supports(x) __builtin_cpu_supports(x)
|
||||
#else
|
||||
#define cpu_supports(x) 0
|
||||
#endif /* HAVE_BUILTIN_CPU_SUPPORTS */
|
||||
|
||||
#endif /* CCAN_COMPILER_H */
|
|
@ -1,65 +0,0 @@
|
|||
#include "config.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
/**
|
||||
* container_of - routine for upcasting
|
||||
*
|
||||
* It is often convenient to create code where the caller registers a pointer
|
||||
* to a generic structure and a callback. The callback might know that the
|
||||
* pointer points to within a larger structure, and container_of gives a
|
||||
* convenient and fairly type-safe way of returning to the enclosing structure.
|
||||
*
|
||||
* This idiom is an alternative to providing a void * pointer for every
|
||||
* callback.
|
||||
*
|
||||
* Example:
|
||||
* #include <stdio.h>
|
||||
* #include <ccan/container_of/container_of.h>
|
||||
*
|
||||
* struct timer {
|
||||
* void *members;
|
||||
* };
|
||||
*
|
||||
* struct info {
|
||||
* int my_stuff;
|
||||
* struct timer timer;
|
||||
* };
|
||||
*
|
||||
* static void my_timer_callback(struct timer *timer)
|
||||
* {
|
||||
* struct info *info = container_of(timer, struct info, timer);
|
||||
* printf("my_stuff is %u\n", info->my_stuff);
|
||||
* }
|
||||
*
|
||||
* static void register_timer(struct timer *timer)
|
||||
* {
|
||||
* (void)timer;
|
||||
* (void)my_timer_callback;
|
||||
* //...
|
||||
* }
|
||||
*
|
||||
* int main(void)
|
||||
* {
|
||||
* struct info info = { .my_stuff = 1 };
|
||||
*
|
||||
* register_timer(&info.timer);
|
||||
* // ...
|
||||
* return 0;
|
||||
* }
|
||||
*
|
||||
* License: CC0 (Public domain)
|
||||
* Author: Rusty Russell <rusty@rustcorp.com.au>
|
||||
*/
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
if (argc != 2)
|
||||
return 1;
|
||||
|
||||
if (strcmp(argv[1], "depends") == 0) {
|
||||
printf("ccan/check_type\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
|
@ -1,55 +0,0 @@
|
|||
#include "config.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
/**
|
||||
* endian - endian conversion macros for simple types
|
||||
*
|
||||
* Portable protocols (such as on-disk formats, or network protocols)
|
||||
* are often defined to be a particular endian: little-endian (least
|
||||
* significant bytes first) or big-endian (most significant bytes
|
||||
* first).
|
||||
*
|
||||
* Similarly, some CPUs lay out values in memory in little-endian
|
||||
* order (most commonly, Intel's 8086 and derivatives), or big-endian
|
||||
* order (almost everyone else).
|
||||
*
|
||||
* This module provides conversion routines, inspired by the linux kernel.
|
||||
* It also provides leint32_t, beint32_t etc typedefs, which are annotated for
|
||||
* the sparse checker.
|
||||
*
|
||||
* Example:
|
||||
* #include <stdio.h>
|
||||
* #include <err.h>
|
||||
* #include <ccan/endian/endian.h>
|
||||
*
|
||||
* //
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* uint32_t value;
|
||||
*
|
||||
* if (argc != 2)
|
||||
* errx(1, "Usage: %s <value>", argv[0]);
|
||||
*
|
||||
* value = atoi(argv[1]);
|
||||
* printf("native: %08x\n", value);
|
||||
* printf("little-endian: %08x\n", cpu_to_le32(value));
|
||||
* printf("big-endian: %08x\n", cpu_to_be32(value));
|
||||
* printf("byte-reversed: %08x\n", bswap_32(value));
|
||||
* exit(0);
|
||||
* }
|
||||
*
|
||||
* License: License: CC0 (Public domain)
|
||||
* Author: Rusty Russell <rusty@rustcorp.com.au>
|
||||
*/
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
if (argc != 2)
|
||||
return 1;
|
||||
|
||||
if (strcmp(argv[1], "depends") == 0)
|
||||
/* Nothing */
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
1
ccan/ccan/hash/LICENSE
Symbolic link
1
ccan/ccan/hash/LICENSE
Symbolic link
|
@ -0,0 +1 @@
|
|||
../../licenses/CC0
|
926
ccan/ccan/hash/hash.c
Normal file
926
ccan/ccan/hash/hash.c
Normal file
|
@ -0,0 +1,926 @@
|
|||
/* CC0 (Public domain) - see LICENSE file for details */
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
||||
|
||||
These are functions for producing 32-bit hashes for hash table lookup.
|
||||
hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
|
||||
are externally useful functions. Routines to test the hash are included
|
||||
if SELF_TEST is defined. You can use this free for any purpose. It's in
|
||||
the public domain. It has no warranty.
|
||||
|
||||
You probably want to use hashlittle(). hashlittle() and hashbig()
|
||||
hash byte arrays. hashlittle() is is faster than hashbig() on
|
||||
little-endian machines. Intel and AMD are little-endian machines.
|
||||
On second thought, you probably want hashlittle2(), which is identical to
|
||||
hashlittle() except it returns two 32-bit hashes for the price of one.
|
||||
You could implement hashbig2() if you wanted but I haven't bothered here.
|
||||
|
||||
If you want to find a hash of, say, exactly 7 integers, do
|
||||
a = i1; b = i2; c = i3;
|
||||
mix(a,b,c);
|
||||
a += i4; b += i5; c += i6;
|
||||
mix(a,b,c);
|
||||
a += i7;
|
||||
final(a,b,c);
|
||||
then use c as the hash value. If you have a variable length array of
|
||||
4-byte integers to hash, use hash_word(). If you have a byte array (like
|
||||
a character string), use hashlittle(). If you have several byte arrays, or
|
||||
a mix of things, see the comments above hashlittle().
|
||||
|
||||
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
|
||||
then mix those integers. This is fast (you can do a lot more thorough
|
||||
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
|
||||
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
//#define SELF_TEST 1
|
||||
|
||||
#if 0
|
||||
#include <stdio.h> /* defines printf for tests */
|
||||
#include <time.h> /* defines time_t for timings in the test */
|
||||
#include <stdint.h> /* defines uint32_t etc */
|
||||
#include <sys/param.h> /* attempt to define endianness */
|
||||
|
||||
#ifdef linux
|
||||
# include <endian.h> /* attempt to define endianness */
|
||||
#endif
|
||||
|
||||
/*
|
||||
* My best guess at if you are big-endian or little-endian. This may
|
||||
* need adjustment.
|
||||
*/
|
||||
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
|
||||
__BYTE_ORDER == __LITTLE_ENDIAN) || \
|
||||
(defined(i386) || defined(__i386__) || defined(__i486__) || \
|
||||
defined(__i586__) || defined(__i686__) || defined(__x86_64) || \
|
||||
defined(vax) || defined(MIPSEL))
|
||||
# define HASH_LITTLE_ENDIAN 1
|
||||
# define HASH_BIG_ENDIAN 0
|
||||
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
|
||||
__BYTE_ORDER == __BIG_ENDIAN) || \
|
||||
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
|
||||
# define HASH_LITTLE_ENDIAN 0
|
||||
# define HASH_BIG_ENDIAN 1
|
||||
#else
|
||||
# error Unknown endian
|
||||
#endif
|
||||
#endif /* old hash.c headers. */
|
||||
|
||||
#include "hash.h"
|
||||
|
||||
#if HAVE_LITTLE_ENDIAN
|
||||
#define HASH_LITTLE_ENDIAN 1
|
||||
#define HASH_BIG_ENDIAN 0
|
||||
#elif HAVE_BIG_ENDIAN
|
||||
#define HASH_LITTLE_ENDIAN 0
|
||||
#define HASH_BIG_ENDIAN 1
|
||||
#else
|
||||
#error Unknown endian
|
||||
#endif
|
||||
|
||||
#define hashsize(n) ((uint32_t)1<<(n))
|
||||
#define hashmask(n) (hashsize(n)-1)
|
||||
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
mix -- mix 3 32-bit values reversibly.
|
||||
|
||||
This is reversible, so any information in (a,b,c) before mix() is
|
||||
still in (a,b,c) after mix().
|
||||
|
||||
If four pairs of (a,b,c) inputs are run through mix(), or through
|
||||
mix() in reverse, there are at least 32 bits of the output that
|
||||
are sometimes the same for one pair and different for another pair.
|
||||
This was tested for:
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
||||
satisfy this are
|
||||
4 6 8 16 19 4
|
||||
9 15 3 18 27 15
|
||||
14 9 3 7 17 3
|
||||
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
||||
for "differ" defined as + with a one-bit base and a two-bit delta. I
|
||||
used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
||||
the operations, constants, and arrangements of the variables.
|
||||
|
||||
This does not achieve avalanche. There are input bits of (a,b,c)
|
||||
that fail to affect some output bits of (a,b,c), especially of a. The
|
||||
most thoroughly mixed value is c, but it doesn't really even achieve
|
||||
avalanche in c.
|
||||
|
||||
This allows some parallelism. Read-after-writes are good at doubling
|
||||
the number of bits affected, so the goal of mixing pulls in the opposite
|
||||
direction as the goal of parallelism. I did what I could. Rotates
|
||||
seem to cost as much as shifts on every machine I could lay my hands
|
||||
on, and rotates are much kinder to the top and bottom bits, so I used
|
||||
rotates.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define mix(a,b,c) \
|
||||
{ \
|
||||
a -= c; a ^= rot(c, 4); c += b; \
|
||||
b -= a; b ^= rot(a, 6); a += c; \
|
||||
c -= b; c ^= rot(b, 8); b += a; \
|
||||
a -= c; a ^= rot(c,16); c += b; \
|
||||
b -= a; b ^= rot(a,19); a += c; \
|
||||
c -= b; c ^= rot(b, 4); b += a; \
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
final -- final mixing of 3 32-bit values (a,b,c) into c
|
||||
|
||||
Pairs of (a,b,c) values differing in only a few bits will usually
|
||||
produce values of c that look totally different. This was tested for
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
These constants passed:
|
||||
14 11 25 16 4 14 24
|
||||
12 14 25 16 4 14 24
|
||||
and these came close:
|
||||
4 8 15 26 3 22 24
|
||||
10 8 15 26 3 22 24
|
||||
11 8 15 26 3 22 24
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define final(a,b,c) \
|
||||
{ \
|
||||
c ^= b; c -= rot(b,14); \
|
||||
a ^= c; a -= rot(c,11); \
|
||||
b ^= a; b -= rot(a,25); \
|
||||
c ^= b; c -= rot(b,16); \
|
||||
a ^= c; a -= rot(c,4); \
|
||||
b ^= a; b -= rot(a,14); \
|
||||
c ^= b; c -= rot(b,24); \
|
||||
}
|
||||
|
||||
/*
|
||||
--------------------------------------------------------------------
|
||||
This works on all machines. To be useful, it requires
|
||||
-- that the key be an array of uint32_t's, and
|
||||
-- that the length be the number of uint32_t's in the key
|
||||
|
||||
The function hash_word() is identical to hashlittle() on little-endian
|
||||
machines, and identical to hashbig() on big-endian machines,
|
||||
except that the length has to be measured in uint32_ts rather than in
|
||||
bytes. hashlittle() is more complicated than hash_word() only because
|
||||
hashlittle() has to dance around fitting the key bytes into registers.
|
||||
--------------------------------------------------------------------
|
||||
*/
|
||||
uint32_t hash_u32(
|
||||
const uint32_t *k, /* the key, an array of uint32_t values */
|
||||
size_t length, /* the length of the key, in uint32_ts */
|
||||
uint32_t initval) /* the previous hash, or an arbitrary value */
|
||||
{
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
|
||||
|
||||
/*------------------------------------------------- handle most of the key */
|
||||
while (length > 3)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 3;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*------------------------------------------- handle the last 3 uint32_t's */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 3 : c+=k[2];
|
||||
case 2 : b+=k[1];
|
||||
case 1 : a+=k[0];
|
||||
final(a,b,c);
|
||||
case 0: /* case 0: nothing left to add */
|
||||
break;
|
||||
}
|
||||
/*------------------------------------------------------ report the result */
|
||||
return c;
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
hashlittle() -- hash a variable-length key into a 32-bit value
|
||||
k : the key (the unaligned variable-length array of bytes)
|
||||
length : the length of the key, counting by bytes
|
||||
val2 : IN: can be any 4-byte value OUT: second 32 bit hash.
|
||||
Returns a 32-bit value. Every bit of the key affects every bit of
|
||||
the return value. Two keys differing by one or two bits will have
|
||||
totally different hash values. Note that the return value is better
|
||||
mixed than val2, so use that first.
|
||||
|
||||
The best hash table sizes are powers of 2. There is no need to do
|
||||
mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
||||
use a bitmask. For example, if you need only 10 bits, do
|
||||
h = (h & hashmask(10));
|
||||
In which case, the hash table should have hashsize(10) elements.
|
||||
|
||||
If you are hashing n strings (uint8_t **)k, do it like this:
|
||||
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
|
||||
|
||||
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
|
||||
code any way you wish, private, educational, or commercial. It's free.
|
||||
|
||||
Use for hash table lookup, or anything where one collision in 2^^32 is
|
||||
acceptable. Do NOT use for cryptographic purposes.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
static uint32_t hashlittle( const void *key, size_t length, uint32_t *val2 )
|
||||
{
|
||||
uint32_t a,b,c; /* internal state */
|
||||
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
|
||||
|
||||
u.ptr = key;
|
||||
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
||||
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
||||
const uint8_t *k8;
|
||||
|
||||
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
/*
|
||||
* "k[2]&0xffffff" actually reads beyond the end of the string, but
|
||||
* then masks off the part it's not allowed to read. Because the
|
||||
* string is aligned, the masked-off tail is in the same word as the
|
||||
* rest of the string. Every machine with memory protection I've seen
|
||||
* does it on word boundaries, so is OK with this. But VALGRIND will
|
||||
* still catch it and complain. The masking trick does make the hash
|
||||
* noticeably faster for short strings (like English words).
|
||||
*
|
||||
* Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
|
||||
*/
|
||||
#if 0
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
||||
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
||||
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
||||
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
||||
case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=k[0]&0xffffff; break;
|
||||
case 2 : a+=k[0]&0xffff; break;
|
||||
case 1 : a+=k[0]&0xff; break;
|
||||
case 0 : return c; /* zero length strings require no mixing */
|
||||
}
|
||||
|
||||
#else /* make valgrind happy */
|
||||
|
||||
k8 = (const uint8_t *)k;
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
||||
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
|
||||
case 9 : c+=k8[8]; /* fall through */
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
||||
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
|
||||
case 5 : b+=k8[4]; /* fall through */
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
||||
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
|
||||
case 1 : a+=k8[0]; break;
|
||||
case 0 : return c;
|
||||
}
|
||||
|
||||
#endif /* !valgrind */
|
||||
|
||||
} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
|
||||
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
|
||||
const uint8_t *k8;
|
||||
|
||||
/*--------------- all but last block: aligned reads and different mixing */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0] + (((uint32_t)k[1])<<16);
|
||||
b += k[2] + (((uint32_t)k[3])<<16);
|
||||
c += k[4] + (((uint32_t)k[5])<<16);
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 6;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
k8 = (const uint8_t *)k;
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[4]+(((uint32_t)k[5])<<16);
|
||||
b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
||||
case 10: c+=k[4];
|
||||
b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 9 : c+=k8[8]; /* fall through */
|
||||
case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
||||
case 6 : b+=k[2];
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 5 : b+=k8[4]; /* fall through */
|
||||
case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
||||
case 2 : a+=k[0];
|
||||
break;
|
||||
case 1 : a+=k8[0];
|
||||
break;
|
||||
case 0 : return c; /* zero length requires no mixing */
|
||||
}
|
||||
|
||||
} else { /* need to read the key one byte at a time */
|
||||
const uint8_t *k = (const uint8_t *)key;
|
||||
|
||||
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
a += ((uint32_t)k[1])<<8;
|
||||
a += ((uint32_t)k[2])<<16;
|
||||
a += ((uint32_t)k[3])<<24;
|
||||
b += k[4];
|
||||
b += ((uint32_t)k[5])<<8;
|
||||
b += ((uint32_t)k[6])<<16;
|
||||
b += ((uint32_t)k[7])<<24;
|
||||
c += k[8];
|
||||
c += ((uint32_t)k[9])<<8;
|
||||
c += ((uint32_t)k[10])<<16;
|
||||
c += ((uint32_t)k[11])<<24;
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 12;
|
||||
}
|
||||
|
||||
/*-------------------------------- last block: affect all 32 bits of (c) */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 12: c+=((uint32_t)k[11])<<24;
|
||||
case 11: c+=((uint32_t)k[10])<<16;
|
||||
case 10: c+=((uint32_t)k[9])<<8;
|
||||
case 9 : c+=k[8];
|
||||
case 8 : b+=((uint32_t)k[7])<<24;
|
||||
case 7 : b+=((uint32_t)k[6])<<16;
|
||||
case 6 : b+=((uint32_t)k[5])<<8;
|
||||
case 5 : b+=k[4];
|
||||
case 4 : a+=((uint32_t)k[3])<<24;
|
||||
case 3 : a+=((uint32_t)k[2])<<16;
|
||||
case 2 : a+=((uint32_t)k[1])<<8;
|
||||
case 1 : a+=k[0];
|
||||
break;
|
||||
case 0 : return c;
|
||||
}
|
||||
}
|
||||
|
||||
final(a,b,c);
|
||||
*val2 = b;
|
||||
return c;
|
||||
}
|
||||
|
||||
/*
|
||||
* hashbig():
|
||||
* This is the same as hash_word() on big-endian machines. It is different
|
||||
* from hashlittle() on all machines. hashbig() takes advantage of
|
||||
* big-endian byte ordering.
|
||||
*/
|
||||
static uint32_t hashbig( const void *key, size_t length, uint32_t *val2)
|
||||
{
|
||||
uint32_t a,b,c;
|
||||
union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
|
||||
|
||||
u.ptr = key;
|
||||
if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
|
||||
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
||||
const uint8_t *k8;
|
||||
|
||||
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
/*
|
||||
* "k[2]<<8" actually reads beyond the end of the string, but
|
||||
* then shifts out the part it's not allowed to read. Because the
|
||||
* string is aligned, the illegal read is in the same word as the
|
||||
* rest of the string. Every machine with memory protection I've seen
|
||||
* does it on word boundaries, so is OK with this. But VALGRIND will
|
||||
* still catch it and complain. The masking trick does make the hash
|
||||
* noticeably faster for short strings (like English words).
|
||||
*
|
||||
* Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
|
||||
*/
|
||||
#if 0
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
|
||||
case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
|
||||
case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
|
||||
case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
|
||||
case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=k[0]&0xffffff00; break;
|
||||
case 2 : a+=k[0]&0xffff0000; break;
|
||||
case 1 : a+=k[0]&0xff000000; break;
|
||||
case 0 : return c; /* zero length strings require no mixing */
|
||||
}
|
||||
|
||||
#else /* make valgrind happy */
|
||||
|
||||
k8 = (const uint8_t *)k;
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
|
||||
case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
|
||||
case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
|
||||
case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
|
||||
case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
|
||||
case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
|
||||
case 1 : a+=((uint32_t)k8[0])<<24; break;
|
||||
case 0 : return c;
|
||||
}
|
||||
|
||||
#endif /* !VALGRIND */
|
||||
|
||||
} else { /* need to read the key one byte at a time */
|
||||
const uint8_t *k = (const uint8_t *)key;
|
||||
|
||||
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += ((uint32_t)k[0])<<24;
|
||||
a += ((uint32_t)k[1])<<16;
|
||||
a += ((uint32_t)k[2])<<8;
|
||||
a += ((uint32_t)k[3]);
|
||||
b += ((uint32_t)k[4])<<24;
|
||||
b += ((uint32_t)k[5])<<16;
|
||||
b += ((uint32_t)k[6])<<8;
|
||||
b += ((uint32_t)k[7]);
|
||||
c += ((uint32_t)k[8])<<24;
|
||||
c += ((uint32_t)k[9])<<16;
|
||||
c += ((uint32_t)k[10])<<8;
|
||||
c += ((uint32_t)k[11]);
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 12;
|
||||
}
|
||||
|
||||
/*-------------------------------- last block: affect all 32 bits of (c) */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 12: c+=k[11];
|
||||
case 11: c+=((uint32_t)k[10])<<8;
|
||||
case 10: c+=((uint32_t)k[9])<<16;
|
||||
case 9 : c+=((uint32_t)k[8])<<24;
|
||||
case 8 : b+=k[7];
|
||||
case 7 : b+=((uint32_t)k[6])<<8;
|
||||
case 6 : b+=((uint32_t)k[5])<<16;
|
||||
case 5 : b+=((uint32_t)k[4])<<24;
|
||||
case 4 : a+=k[3];
|
||||
case 3 : a+=((uint32_t)k[2])<<8;
|
||||
case 2 : a+=((uint32_t)k[1])<<16;
|
||||
case 1 : a+=((uint32_t)k[0])<<24;
|
||||
break;
|
||||
case 0 : return c;
|
||||
}
|
||||
}
|
||||
|
||||
final(a,b,c);
|
||||
*val2 = b;
|
||||
return c;
|
||||
}
|
||||
|
||||
/* I basically use hashlittle here, but use native endian within each
|
||||
* element. This delivers least-surprise: hash such as "int arr[] = {
|
||||
* 1, 2 }; hash_stable(arr, 2, 0);" will be the same on big and little
|
||||
* endian machines, even though a bytewise hash wouldn't be. */
|
||||
uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base)
|
||||
{
|
||||
const uint64_t *k = key;
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)n*8) + (base >> 32) + base;
|
||||
|
||||
while (n > 3) {
|
||||
a += (uint32_t)k[0];
|
||||
b += (uint32_t)(k[0] >> 32);
|
||||
c += (uint32_t)k[1];
|
||||
mix(a,b,c);
|
||||
a += (uint32_t)(k[1] >> 32);
|
||||
b += (uint32_t)k[2];
|
||||
c += (uint32_t)(k[2] >> 32);
|
||||
mix(a,b,c);
|
||||
n -= 3;
|
||||
k += 3;
|
||||
}
|
||||
switch (n) {
|
||||
case 2:
|
||||
a += (uint32_t)k[0];
|
||||
b += (uint32_t)(k[0] >> 32);
|
||||
c += (uint32_t)k[1];
|
||||
mix(a,b,c);
|
||||
a += (uint32_t)(k[1] >> 32);
|
||||
break;
|
||||
case 1:
|
||||
a += (uint32_t)k[0];
|
||||
b += (uint32_t)(k[0] >> 32);
|
||||
break;
|
||||
case 0:
|
||||
return c;
|
||||
}
|
||||
final(a,b,c);
|
||||
return ((uint64_t)b << 32) | c;
|
||||
}
|
||||
|
||||
uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base)
|
||||
{
|
||||
const uint32_t *k = key;
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)n*4) + (base >> 32) + base;
|
||||
|
||||
while (n > 3) {
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
|
||||
n -= 3;
|
||||
k += 3;
|
||||
}
|
||||
switch (n) {
|
||||
case 2:
|
||||
b += (uint32_t)k[1];
|
||||
case 1:
|
||||
a += (uint32_t)k[0];
|
||||
break;
|
||||
case 0:
|
||||
return c;
|
||||
}
|
||||
final(a,b,c);
|
||||
return ((uint64_t)b << 32) | c;
|
||||
}
|
||||
|
||||
uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base)
|
||||
{
|
||||
const uint16_t *k = key;
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)n*2) + (base >> 32) + base;
|
||||
|
||||
while (n > 6) {
|
||||
a += (uint32_t)k[0] + ((uint32_t)k[1] << 16);
|
||||
b += (uint32_t)k[2] + ((uint32_t)k[3] << 16);
|
||||
c += (uint32_t)k[4] + ((uint32_t)k[5] << 16);
|
||||
mix(a,b,c);
|
||||
|
||||
n -= 6;
|
||||
k += 6;
|
||||
}
|
||||
|
||||
switch (n) {
|
||||
case 5:
|
||||
c += (uint32_t)k[4];
|
||||
case 4:
|
||||
b += ((uint32_t)k[3] << 16);
|
||||
case 3:
|
||||
b += (uint32_t)k[2];
|
||||
case 2:
|
||||
a += ((uint32_t)k[1] << 16);
|
||||
case 1:
|
||||
a += (uint32_t)k[0];
|
||||
break;
|
||||
case 0:
|
||||
return c;
|
||||
}
|
||||
final(a,b,c);
|
||||
return ((uint64_t)b << 32) | c;
|
||||
}
|
||||
|
||||
uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base)
|
||||
{
|
||||
uint32_t b32 = base + (base >> 32);
|
||||
uint32_t lower = hashlittle(key, n, &b32);
|
||||
|
||||
return ((uint64_t)b32 << 32) | lower;
|
||||
}
|
||||
|
||||
uint32_t hash_any(const void *key, size_t length, uint32_t base)
|
||||
{
|
||||
if (HASH_BIG_ENDIAN)
|
||||
return hashbig(key, length, &base);
|
||||
else
|
||||
return hashlittle(key, length, &base);
|
||||
}
|
||||
|
||||
uint32_t hash_stable_64(const void *key, size_t n, uint32_t base)
|
||||
{
|
||||
return hash64_stable_64(key, n, base);
|
||||
}
|
||||
|
||||
uint32_t hash_stable_32(const void *key, size_t n, uint32_t base)
|
||||
{
|
||||
return hash64_stable_32(key, n, base);
|
||||
}
|
||||
|
||||
uint32_t hash_stable_16(const void *key, size_t n, uint32_t base)
|
||||
{
|
||||
return hash64_stable_16(key, n, base);
|
||||
}
|
||||
|
||||
uint32_t hash_stable_8(const void *key, size_t n, uint32_t base)
|
||||
{
|
||||
return hashlittle(key, n, &base);
|
||||
}
|
||||
|
||||
/* Jenkins' lookup8 is a 64 bit hash, but he says it's obsolete. Use
|
||||
* the plain one and recombine into 64 bits. */
|
||||
uint64_t hash64_any(const void *key, size_t length, uint64_t base)
|
||||
{
|
||||
uint32_t b32 = base + (base >> 32);
|
||||
uint32_t lower;
|
||||
|
||||
if (HASH_BIG_ENDIAN)
|
||||
lower = hashbig(key, length, &b32);
|
||||
else
|
||||
lower = hashlittle(key, length, &b32);
|
||||
|
||||
return ((uint64_t)b32 << 32) | lower;
|
||||
}
|
||||
|
||||
#ifdef SELF_TEST
|
||||
|
||||
/* used for timings */
|
||||
void driver1()
|
||||
{
|
||||
uint8_t buf[256];
|
||||
uint32_t i;
|
||||
uint32_t h=0;
|
||||
time_t a,z;
|
||||
|
||||
time(&a);
|
||||
for (i=0; i<256; ++i) buf[i] = 'x';
|
||||
for (i=0; i<1; ++i)
|
||||
{
|
||||
h = hashlittle(&buf[0],1,h);
|
||||
}
|
||||
time(&z);
|
||||
if (z-a > 0) printf("time %d %.8x\n", z-a, h);
|
||||
}
|
||||
|
||||
/* check that every input bit changes every output bit half the time */
|
||||
#define HASHSTATE 1
|
||||
#define HASHLEN 1
|
||||
#define MAXPAIR 60
|
||||
#define MAXLEN 70
|
||||
void driver2()
|
||||
{
|
||||
uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
|
||||
uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
|
||||
uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
|
||||
uint32_t x[HASHSTATE],y[HASHSTATE];
|
||||
uint32_t hlen;
|
||||
|
||||
printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
|
||||
for (hlen=0; hlen < MAXLEN; ++hlen)
|
||||
{
|
||||
z=0;
|
||||
for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
|
||||
{
|
||||
for (j=0; j<8; ++j) /*------------------------ for each input bit, */
|
||||
{
|
||||
for (m=1; m<8; ++m) /*------------ for several possible initvals, */
|
||||
{
|
||||
for (l=0; l<HASHSTATE; ++l)
|
||||
e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
|
||||
|
||||
/*---- check that every output bit is affected by that input bit */
|
||||
for (k=0; k<MAXPAIR; k+=2)
|
||||
{
|
||||
uint32_t finished=1;
|
||||
/* keys have one bit different */
|
||||
for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
|
||||
/* have a and b be two keys differing in only one bit */
|
||||
a[i] ^= (k<<j);
|
||||
a[i] ^= (k>>(8-j));
|
||||
c[0] = hashlittle(a, hlen, m);
|
||||
b[i] ^= ((k+1)<<j);
|
||||
b[i] ^= ((k+1)>>(8-j));
|
||||
d[0] = hashlittle(b, hlen, m);
|
||||
/* check every bit is 1, 0, set, and not set at least once */
|
||||
for (l=0; l<HASHSTATE; ++l)
|
||||
{
|
||||
e[l] &= (c[l]^d[l]);
|
||||
f[l] &= ~(c[l]^d[l]);
|
||||
g[l] &= c[l];
|
||||
h[l] &= ~c[l];
|
||||
x[l] &= d[l];
|
||||
y[l] &= ~d[l];
|
||||
if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
|
||||
}
|
||||
if (finished) break;
|
||||
}
|
||||
if (k>z) z=k;
|
||||
if (k==MAXPAIR)
|
||||
{
|
||||
printf("Some bit didn't change: ");
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
|
||||
e[0],f[0],g[0],h[0],x[0],y[0]);
|
||||
printf("i %d j %d m %d len %d\n", i, j, m, hlen);
|
||||
}
|
||||
if (z==MAXPAIR) goto done;
|
||||
}
|
||||
}
|
||||
}
|
||||
done:
|
||||
if (z < MAXPAIR)
|
||||
{
|
||||
printf("Mix success %2d bytes %2d initvals ",i,m);
|
||||
printf("required %d trials\n", z/2);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
/* Check for reading beyond the end of the buffer and alignment problems */
|
||||
void driver3()
|
||||
{
|
||||
uint8_t buf[MAXLEN+20], *b;
|
||||
uint32_t len;
|
||||
uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
|
||||
uint32_t h;
|
||||
uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
|
||||
uint32_t i;
|
||||
uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
|
||||
uint32_t j;
|
||||
uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
|
||||
uint32_t ref,x,y;
|
||||
uint8_t *p;
|
||||
|
||||
printf("Endianness. These lines should all be the same (for values filled in):\n");
|
||||
printf("%.8x %.8x %.8x\n",
|
||||
hash_word((const uint32_t *)q, (sizeof(q)-1)/4, 13),
|
||||
hash_word((const uint32_t *)q, (sizeof(q)-5)/4, 13),
|
||||
hash_word((const uint32_t *)q, (sizeof(q)-9)/4, 13));
|
||||
p = q;
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
||||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
||||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
||||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
||||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
||||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
||||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
||||
p = &qq[1];
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
||||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
||||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
||||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
||||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
||||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
||||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
||||
p = &qqq[2];
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
||||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
||||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
||||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
||||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
||||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
||||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
||||
p = &qqqq[3];
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
||||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
||||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
||||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
||||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
||||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
||||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
||||
printf("\n");
|
||||
|
||||
/* check that hashlittle2 and hashlittle produce the same results */
|
||||
i=47; j=0;
|
||||
hashlittle2(q, sizeof(q), &i, &j);
|
||||
if (hashlittle(q, sizeof(q), 47) != i)
|
||||
printf("hashlittle2 and hashlittle mismatch\n");
|
||||
|
||||
/* check that hash_word2 and hash_word produce the same results */
|
||||
len = 0xdeadbeef;
|
||||
i=47, j=0;
|
||||
hash_word2(&len, 1, &i, &j);
|
||||
if (hash_word(&len, 1, 47) != i)
|
||||
printf("hash_word2 and hash_word mismatch %x %x\n",
|
||||
i, hash_word(&len, 1, 47));
|
||||
|
||||
/* check hashlittle doesn't read before or after the ends of the string */
|
||||
for (h=0, b=buf+1; h<8; ++h, ++b)
|
||||
{
|
||||
for (i=0; i<MAXLEN; ++i)
|
||||
{
|
||||
len = i;
|
||||
for (j=0; j<i; ++j) *(b+j)=0;
|
||||
|
||||
/* these should all be equal */
|
||||
ref = hashlittle(b, len, (uint32_t)1);
|
||||
*(b+i)=(uint8_t)~0;
|
||||
*(b-1)=(uint8_t)~0;
|
||||
x = hashlittle(b, len, (uint32_t)1);
|
||||
y = hashlittle(b, len, (uint32_t)1);
|
||||
if ((ref != x) || (ref != y))
|
||||
{
|
||||
printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
|
||||
h, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check for problems with nulls */
|
||||
void driver4()
|
||||
{
|
||||
uint8_t buf[1];
|
||||
uint32_t h,i,state[HASHSTATE];
|
||||
|
||||
|
||||
buf[0] = ~0;
|
||||
for (i=0; i<HASHSTATE; ++i) state[i] = 1;
|
||||
printf("These should all be different\n");
|
||||
for (i=0, h=0; i<8; ++i)
|
||||
{
|
||||
h = hashlittle(buf, 0, h);
|
||||
printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
driver1(); /* test that the key is hashed: used for timings */
|
||||
driver2(); /* test that whole key is hashed thoroughly */
|
||||
driver3(); /* test that nothing but the key is hashed */
|
||||
driver4(); /* test hashing multiple buffers (all buffers are null) */
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endif /* SELF_TEST */
|
313
ccan/ccan/hash/hash.h
Normal file
313
ccan/ccan/hash/hash.h
Normal file
|
@ -0,0 +1,313 @@
|
|||
/* CC0 (Public domain) - see LICENSE file for details */
|
||||
#ifndef CCAN_HASH_H
|
||||
#define CCAN_HASH_H
|
||||
#include "config.h"
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <ccan/build_assert/build_assert.h>
|
||||
|
||||
/* Stolen mostly from: lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
||||
*
|
||||
* http://burtleburtle.net/bob/c/lookup3.c
|
||||
*/
|
||||
|
||||
/**
|
||||
* hash - fast hash of an array for internal use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The memory region pointed to by p is combined with the base to form
|
||||
* a 32-bit hash.
|
||||
*
|
||||
* This hash will have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk).
|
||||
*
|
||||
* It may also change with future versions: it could even detect at runtime
|
||||
* what the fastest hash to use is.
|
||||
*
|
||||
* See also: hash64, hash_stable.
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
* #include <err.h>
|
||||
* #include <stdio.h>
|
||||
* #include <string.h>
|
||||
*
|
||||
* // Simple demonstration: idential strings will have the same hash, but
|
||||
* // two different strings will probably not.
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* uint32_t hash1, hash2;
|
||||
*
|
||||
* if (argc != 3)
|
||||
* err(1, "Usage: %s <string1> <string2>", argv[0]);
|
||||
*
|
||||
* hash1 = hash(argv[1], strlen(argv[1]), 0);
|
||||
* hash2 = hash(argv[2], strlen(argv[2]), 0);
|
||||
* printf("Hash is %s\n", hash1 == hash2 ? "same" : "different");
|
||||
* return 0;
|
||||
* }
|
||||
*/
|
||||
#define hash(p, num, base) hash_any((p), (num)*sizeof(*(p)), (base))
|
||||
|
||||
/**
|
||||
* hash_stable - hash of an array for external use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The array of simple integer types pointed to by p is combined with
|
||||
* the base to form a 32-bit hash.
|
||||
*
|
||||
* This hash will have the same results on different machines, so can
|
||||
* be used for external hashes (ie. hashes sent across the network or
|
||||
* saved to disk). The results will not change in future versions of
|
||||
* this module.
|
||||
*
|
||||
* Note that it is only legal to hand an array of simple integer types
|
||||
* to this hash (ie. char, uint16_t, int64_t, etc). In these cases,
|
||||
* the same values will have the same hash result, even though the
|
||||
* memory representations of integers depend on the machine
|
||||
* endianness.
|
||||
*
|
||||
* See also:
|
||||
* hash64_stable
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
* #include <err.h>
|
||||
* #include <stdio.h>
|
||||
* #include <string.h>
|
||||
*
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* if (argc != 2)
|
||||
* err(1, "Usage: %s <string-to-hash>", argv[0]);
|
||||
*
|
||||
* printf("Hash stable result is %u\n",
|
||||
* hash_stable(argv[1], strlen(argv[1]), 0));
|
||||
* return 0;
|
||||
* }
|
||||
*/
|
||||
#define hash_stable(p, num, base) \
|
||||
(BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \
|
||||
|| sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \
|
||||
sizeof(*(p)) == 8 ? hash_stable_64((p), (num), (base)) \
|
||||
: sizeof(*(p)) == 4 ? hash_stable_32((p), (num), (base)) \
|
||||
: sizeof(*(p)) == 2 ? hash_stable_16((p), (num), (base)) \
|
||||
: hash_stable_8((p), (num), (base)))
|
||||
|
||||
/**
|
||||
* hash_u32 - fast hash an array of 32-bit values for internal use
|
||||
* @key: the array of uint32_t
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The array of uint32_t pointed to by @key is combined with the base
|
||||
* to form a 32-bit hash. This is 2-3 times faster than hash() on small
|
||||
* arrays, but the advantage vanishes over large hashes.
|
||||
*
|
||||
* This hash will have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk).
|
||||
*/
|
||||
uint32_t hash_u32(const uint32_t *key, size_t num, uint32_t base);
|
||||
|
||||
/**
|
||||
* hash_string - very fast hash of an ascii string
|
||||
* @str: the nul-terminated string
|
||||
*
|
||||
* The string is hashed, using a hash function optimized for ASCII and
|
||||
* similar strings. It's weaker than the other hash functions.
|
||||
*
|
||||
* This hash may have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk). The results will be different from the
|
||||
* other hash functions in this module, too.
|
||||
*/
|
||||
static inline uint32_t hash_string(const char *string)
|
||||
{
|
||||
/* This is Karl Nelson <kenelson@ece.ucdavis.edu>'s X31 hash.
|
||||
* It's a little faster than the (much better) lookup3 hash(): 56ns vs
|
||||
* 84ns on my 2GHz Intel Core Duo 2 laptop for a 10 char string. */
|
||||
uint32_t ret;
|
||||
|
||||
for (ret = 0; *string; string++)
|
||||
ret = (ret << 5) - ret + *string;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* hash64 - fast 64-bit hash of an array for internal use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the 64-bit base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The memory region pointed to by p is combined with the base to form
|
||||
* a 64-bit hash.
|
||||
*
|
||||
* This hash will have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk).
|
||||
*
|
||||
* It may also change with future versions: it could even detect at runtime
|
||||
* what the fastest hash to use is.
|
||||
*
|
||||
* See also: hash.
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
* #include <err.h>
|
||||
* #include <stdio.h>
|
||||
* #include <string.h>
|
||||
*
|
||||
* // Simple demonstration: idential strings will have the same hash, but
|
||||
* // two different strings will probably not.
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* uint64_t hash1, hash2;
|
||||
*
|
||||
* if (argc != 3)
|
||||
* err(1, "Usage: %s <string1> <string2>", argv[0]);
|
||||
*
|
||||
* hash1 = hash64(argv[1], strlen(argv[1]), 0);
|
||||
* hash2 = hash64(argv[2], strlen(argv[2]), 0);
|
||||
* printf("Hash is %s\n", hash1 == hash2 ? "same" : "different");
|
||||
* return 0;
|
||||
* }
|
||||
*/
|
||||
#define hash64(p, num, base) hash64_any((p), (num)*sizeof(*(p)), (base))
|
||||
|
||||
/**
|
||||
* hash64_stable - 64 bit hash of an array for external use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The array of simple integer types pointed to by p is combined with
|
||||
* the base to form a 64-bit hash.
|
||||
*
|
||||
* This hash will have the same results on different machines, so can
|
||||
* be used for external hashes (ie. hashes sent across the network or
|
||||
* saved to disk). The results will not change in future versions of
|
||||
* this module.
|
||||
*
|
||||
* Note that it is only legal to hand an array of simple integer types
|
||||
* to this hash (ie. char, uint16_t, int64_t, etc). In these cases,
|
||||
* the same values will have the same hash result, even though the
|
||||
* memory representations of integers depend on the machine
|
||||
* endianness.
|
||||
*
|
||||
* See also:
|
||||
* hash_stable
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
* #include <err.h>
|
||||
* #include <stdio.h>
|
||||
* #include <string.h>
|
||||
*
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* if (argc != 2)
|
||||
* err(1, "Usage: %s <string-to-hash>", argv[0]);
|
||||
*
|
||||
* printf("Hash stable result is %llu\n",
|
||||
* (long long)hash64_stable(argv[1], strlen(argv[1]), 0));
|
||||
* return 0;
|
||||
* }
|
||||
*/
|
||||
#define hash64_stable(p, num, base) \
|
||||
(BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \
|
||||
|| sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \
|
||||
sizeof(*(p)) == 8 ? hash64_stable_64((p), (num), (base)) \
|
||||
: sizeof(*(p)) == 4 ? hash64_stable_32((p), (num), (base)) \
|
||||
: sizeof(*(p)) == 2 ? hash64_stable_16((p), (num), (base)) \
|
||||
: hash64_stable_8((p), (num), (base)))
|
||||
|
||||
|
||||
/**
|
||||
* hashl - fast 32/64-bit hash of an array for internal use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* This is either hash() or hash64(), on 32/64 bit long machines.
|
||||
*/
|
||||
#define hashl(p, num, base) \
|
||||
(BUILD_ASSERT_OR_ZERO(sizeof(long) == sizeof(uint32_t) \
|
||||
|| sizeof(long) == sizeof(uint64_t)) + \
|
||||
(sizeof(long) == sizeof(uint64_t) \
|
||||
? hash64((p), (num), (base)) : hash((p), (num), (base))))
|
||||
|
||||
/* Our underlying operations. */
|
||||
uint32_t hash_any(const void *key, size_t length, uint32_t base);
|
||||
uint32_t hash_stable_64(const void *key, size_t n, uint32_t base);
|
||||
uint32_t hash_stable_32(const void *key, size_t n, uint32_t base);
|
||||
uint32_t hash_stable_16(const void *key, size_t n, uint32_t base);
|
||||
uint32_t hash_stable_8(const void *key, size_t n, uint32_t base);
|
||||
uint64_t hash64_any(const void *key, size_t length, uint64_t base);
|
||||
uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base);
|
||||
uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base);
|
||||
uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base);
|
||||
uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base);
|
||||
|
||||
/**
|
||||
* hash_pointer - hash a pointer for internal use
|
||||
* @p: the pointer value to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The pointer p (not what p points to!) is combined with the base to form
|
||||
* a 32-bit hash.
|
||||
*
|
||||
* This hash will have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk).
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
*
|
||||
* // Code to keep track of memory regions.
|
||||
* struct region {
|
||||
* struct region *chain;
|
||||
* void *start;
|
||||
* unsigned int size;
|
||||
* };
|
||||
* // We keep a simple hash table.
|
||||
* static struct region *region_hash[128];
|
||||
*
|
||||
* static void add_region(struct region *r)
|
||||
* {
|
||||
* unsigned int h = hash_pointer(r->start, 0);
|
||||
*
|
||||
* r->chain = region_hash[h];
|
||||
* region_hash[h] = r->chain;
|
||||
* }
|
||||
*
|
||||
* static struct region *find_region(const void *start)
|
||||
* {
|
||||
* struct region *r;
|
||||
*
|
||||
* for (r = region_hash[hash_pointer(start, 0)]; r; r = r->chain)
|
||||
* if (r->start == start)
|
||||
* return r;
|
||||
* return NULL;
|
||||
* }
|
||||
*/
|
||||
static inline uint32_t hash_pointer(const void *p, uint32_t base)
|
||||
{
|
||||
if (sizeof(p) % sizeof(uint32_t) == 0) {
|
||||
/* This convoluted union is the right way of aliasing. */
|
||||
union {
|
||||
uint32_t a[sizeof(p) / sizeof(uint32_t)];
|
||||
const void *p;
|
||||
} u;
|
||||
u.p = p;
|
||||
return hash_u32(u.a, sizeof(p) / sizeof(uint32_t), base);
|
||||
} else
|
||||
return hash(&p, 1, base);
|
||||
}
|
||||
#endif /* HASH_H */
|
1
ccan/ccan/htable/LICENSE
Symbolic link
1
ccan/ccan/htable/LICENSE
Symbolic link
|
@ -0,0 +1 @@
|
|||
../../licenses/LGPL-2.1
|
491
ccan/ccan/htable/htable.c
Normal file
491
ccan/ccan/htable/htable.c
Normal file
|
@ -0,0 +1,491 @@
|
|||
/* Licensed under LGPLv2+ - see LICENSE file for details */
|
||||
#include <ccan/htable/htable.h>
|
||||
#include <ccan/compiler/compiler.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <limits.h>
|
||||
#include <stdbool.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
/* We use 0x1 as deleted marker. */
|
||||
#define HTABLE_DELETED (0x1)
|
||||
|
||||
/* perfect_bitnum 63 means there's no perfect bitnum */
|
||||
#define NO_PERFECT_BIT (sizeof(uintptr_t) * CHAR_BIT - 1)
|
||||
|
||||
static void *htable_default_alloc(struct htable *ht, size_t len)
|
||||
{
|
||||
return calloc(len, 1);
|
||||
}
|
||||
|
||||
static void htable_default_free(struct htable *ht, void *p)
|
||||
{
|
||||
free(p);
|
||||
}
|
||||
|
||||
static void *(*htable_alloc)(struct htable *, size_t) = htable_default_alloc;
|
||||
static void (*htable_free)(struct htable *, void *) = htable_default_free;
|
||||
|
||||
void htable_set_allocator(void *(*alloc)(struct htable *, size_t len),
|
||||
void (*free)(struct htable *, void *p))
|
||||
{
|
||||
if (!alloc)
|
||||
alloc = htable_default_alloc;
|
||||
if (!free)
|
||||
free = htable_default_free;
|
||||
htable_alloc = alloc;
|
||||
htable_free = free;
|
||||
}
|
||||
|
||||
/* We clear out the bits which are always the same, and put metadata there. */
|
||||
static inline uintptr_t get_extra_ptr_bits(const struct htable *ht,
|
||||
uintptr_t e)
|
||||
{
|
||||
return e & ht->common_mask;
|
||||
}
|
||||
|
||||
static inline void *get_raw_ptr(const struct htable *ht, uintptr_t e)
|
||||
{
|
||||
return (void *)((e & ~ht->common_mask) | ht->common_bits);
|
||||
}
|
||||
|
||||
static inline uintptr_t make_hval(const struct htable *ht,
|
||||
const void *p, uintptr_t bits)
|
||||
{
|
||||
return ((uintptr_t)p & ~ht->common_mask) | bits;
|
||||
}
|
||||
|
||||
static inline bool entry_is_valid(uintptr_t e)
|
||||
{
|
||||
return e > HTABLE_DELETED;
|
||||
}
|
||||
|
||||
static inline uintptr_t ht_perfect_mask(const struct htable *ht)
|
||||
{
|
||||
return (uintptr_t)2 << ht->perfect_bitnum;
|
||||
}
|
||||
|
||||
static inline uintptr_t get_hash_ptr_bits(const struct htable *ht,
|
||||
size_t hash)
|
||||
{
|
||||
/* Shuffling the extra bits (as specified in mask) down the
|
||||
* end is quite expensive. But the lower bits are redundant, so
|
||||
* we fold the value first. */
|
||||
return (hash ^ (hash >> ht->bits))
|
||||
& ht->common_mask & ~ht_perfect_mask(ht);
|
||||
}
|
||||
|
||||
void htable_init(struct htable *ht,
|
||||
size_t (*rehash)(const void *elem, void *priv), void *priv)
|
||||
{
|
||||
struct htable empty = HTABLE_INITIALIZER(empty, NULL, NULL);
|
||||
*ht = empty;
|
||||
ht->rehash = rehash;
|
||||
ht->priv = priv;
|
||||
ht->table = &ht->common_bits;
|
||||
}
|
||||
|
||||
/* Fill to 87.5% */
|
||||
static inline size_t ht_max(const struct htable *ht)
|
||||
{
|
||||
return ((size_t)7 << ht->bits) / 8;
|
||||
}
|
||||
|
||||
/* Clean deleted if we're full, and more than 12.5% deleted */
|
||||
static inline size_t ht_max_deleted(const struct htable *ht)
|
||||
{
|
||||
return ((size_t)1 << ht->bits) / 8;
|
||||
}
|
||||
|
||||
bool htable_init_sized(struct htable *ht,
|
||||
size_t (*rehash)(const void *, void *),
|
||||
void *priv, size_t expect)
|
||||
{
|
||||
htable_init(ht, rehash, priv);
|
||||
|
||||
/* Don't go insane with sizing. */
|
||||
for (ht->bits = 1; ht_max(ht) < expect; ht->bits++) {
|
||||
if (ht->bits == 30)
|
||||
break;
|
||||
}
|
||||
|
||||
ht->table = htable_alloc(ht, sizeof(size_t) << ht->bits);
|
||||
if (!ht->table) {
|
||||
ht->table = &ht->common_bits;
|
||||
return false;
|
||||
}
|
||||
(void)htable_debug(ht, HTABLE_LOC);
|
||||
return true;
|
||||
}
|
||||
|
||||
void htable_clear(struct htable *ht)
|
||||
{
|
||||
if (ht->table != &ht->common_bits)
|
||||
htable_free(ht, (void *)ht->table);
|
||||
htable_init(ht, ht->rehash, ht->priv);
|
||||
}
|
||||
|
||||
bool htable_copy_(struct htable *dst, const struct htable *src)
|
||||
{
|
||||
uintptr_t *htable = htable_alloc(dst, sizeof(size_t) << src->bits);
|
||||
|
||||
if (!htable)
|
||||
return false;
|
||||
|
||||
*dst = *src;
|
||||
dst->table = htable;
|
||||
memcpy(dst->table, src->table, sizeof(size_t) << src->bits);
|
||||
return true;
|
||||
}
|
||||
|
||||
static size_t hash_bucket(const struct htable *ht, size_t h)
|
||||
{
|
||||
return h & ((1 << ht->bits)-1);
|
||||
}
|
||||
|
||||
static void *htable_val(const struct htable *ht,
|
||||
struct htable_iter *i, size_t hash, uintptr_t perfect)
|
||||
{
|
||||
uintptr_t h2 = get_hash_ptr_bits(ht, hash) | perfect;
|
||||
|
||||
while (ht->table[i->off]) {
|
||||
if (ht->table[i->off] != HTABLE_DELETED) {
|
||||
if (get_extra_ptr_bits(ht, ht->table[i->off]) == h2)
|
||||
return get_raw_ptr(ht, ht->table[i->off]);
|
||||
}
|
||||
i->off = (i->off + 1) & ((1 << ht->bits)-1);
|
||||
h2 &= ~perfect;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void *htable_firstval_(const struct htable *ht,
|
||||
struct htable_iter *i, size_t hash)
|
||||
{
|
||||
i->off = hash_bucket(ht, hash);
|
||||
return htable_val(ht, i, hash, ht_perfect_mask(ht));
|
||||
}
|
||||
|
||||
void *htable_nextval_(const struct htable *ht,
|
||||
struct htable_iter *i, size_t hash)
|
||||
{
|
||||
i->off = (i->off + 1) & ((1 << ht->bits)-1);
|
||||
return htable_val(ht, i, hash, 0);
|
||||
}
|
||||
|
||||
void *htable_first_(const struct htable *ht, struct htable_iter *i)
|
||||
{
|
||||
for (i->off = 0; i->off < (size_t)1 << ht->bits; i->off++) {
|
||||
if (entry_is_valid(ht->table[i->off]))
|
||||
return get_raw_ptr(ht, ht->table[i->off]);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void *htable_next_(const struct htable *ht, struct htable_iter *i)
|
||||
{
|
||||
for (i->off++; i->off < (size_t)1 << ht->bits; i->off++) {
|
||||
if (entry_is_valid(ht->table[i->off]))
|
||||
return get_raw_ptr(ht, ht->table[i->off]);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void *htable_prev_(const struct htable *ht, struct htable_iter *i)
|
||||
{
|
||||
for (;;) {
|
||||
if (!i->off)
|
||||
return NULL;
|
||||
i->off--;
|
||||
if (entry_is_valid(ht->table[i->off]))
|
||||
return get_raw_ptr(ht, ht->table[i->off]);
|
||||
}
|
||||
}
|
||||
|
||||
/* Another bit currently in mask needs to be exposed, so that a bucket with p in
|
||||
* it won't appear invalid */
|
||||
static COLD void unset_another_common_bit(struct htable *ht,
|
||||
uintptr_t *maskdiff,
|
||||
const void *p)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = sizeof(uintptr_t) * CHAR_BIT - 1; i > 0; i--) {
|
||||
if (((uintptr_t)p & ((uintptr_t)1 << i))
|
||||
&& ht->common_mask & ~*maskdiff & ((uintptr_t)1 << i))
|
||||
break;
|
||||
}
|
||||
/* There must have been one, right? */
|
||||
assert(i > 0);
|
||||
|
||||
*maskdiff |= ((uintptr_t)1 << i);
|
||||
}
|
||||
|
||||
/* We want to change the common mask: this fixes up the table */
|
||||
static COLD void fixup_table_common(struct htable *ht, uintptr_t maskdiff)
|
||||
{
|
||||
size_t i;
|
||||
uintptr_t bitsdiff;
|
||||
|
||||
again:
|
||||
bitsdiff = ht->common_bits & maskdiff;
|
||||
|
||||
for (i = 0; i < (size_t)1 << ht->bits; i++) {
|
||||
uintptr_t e;
|
||||
if (!entry_is_valid(e = ht->table[i]))
|
||||
continue;
|
||||
|
||||
/* Clear the bits no longer in the mask, set them as
|
||||
* expected. */
|
||||
e &= ~maskdiff;
|
||||
e |= bitsdiff;
|
||||
/* If this made it invalid, restart with more exposed */
|
||||
if (!entry_is_valid(e)) {
|
||||
unset_another_common_bit(ht, &maskdiff, get_raw_ptr(ht, e));
|
||||
goto again;
|
||||
}
|
||||
ht->table[i] = e;
|
||||
}
|
||||
|
||||
/* Take away those bits from our mask, bits and perfect bit. */
|
||||
ht->common_mask &= ~maskdiff;
|
||||
ht->common_bits &= ~maskdiff;
|
||||
if (ht_perfect_mask(ht) & maskdiff)
|
||||
ht->perfect_bitnum = NO_PERFECT_BIT;
|
||||
}
|
||||
|
||||
/* Limited recursion */
|
||||
static void ht_add(struct htable *ht, const void *new, size_t h);
|
||||
|
||||
/* We tried to add this entry, but it looked invalid! We need to
|
||||
* let another pointer bit through mask */
|
||||
static COLD void update_common_fix_invalid(struct htable *ht, const void *p, size_t h)
|
||||
{
|
||||
uintptr_t maskdiff;
|
||||
|
||||
assert(ht->elems != 0);
|
||||
|
||||
maskdiff = 0;
|
||||
unset_another_common_bit(ht, &maskdiff, p);
|
||||
fixup_table_common(ht, maskdiff);
|
||||
|
||||
/* Now won't recurse */
|
||||
ht_add(ht, p, h);
|
||||
}
|
||||
|
||||
/* This does not expand the hash table, that's up to caller. */
|
||||
static void ht_add(struct htable *ht, const void *new, size_t h)
|
||||
{
|
||||
size_t i;
|
||||
uintptr_t perfect = ht_perfect_mask(ht);
|
||||
|
||||
i = hash_bucket(ht, h);
|
||||
|
||||
while (entry_is_valid(ht->table[i])) {
|
||||
perfect = 0;
|
||||
i = (i + 1) & ((1 << ht->bits)-1);
|
||||
}
|
||||
ht->table[i] = make_hval(ht, new, get_hash_ptr_bits(ht, h)|perfect);
|
||||
if (!entry_is_valid(ht->table[i]))
|
||||
update_common_fix_invalid(ht, new, h);
|
||||
}
|
||||
|
||||
static COLD bool double_table(struct htable *ht)
|
||||
{
|
||||
unsigned int i;
|
||||
size_t oldnum = (size_t)1 << ht->bits;
|
||||
uintptr_t *oldtable, e;
|
||||
|
||||
oldtable = ht->table;
|
||||
ht->table = htable_alloc(ht, sizeof(size_t) << (ht->bits+1));
|
||||
if (!ht->table) {
|
||||
ht->table = oldtable;
|
||||
return false;
|
||||
}
|
||||
ht->bits++;
|
||||
|
||||
/* If we lost our "perfect bit", get it back now. */
|
||||
if (ht->perfect_bitnum == NO_PERFECT_BIT && ht->common_mask) {
|
||||
for (i = 0; i < sizeof(ht->common_mask) * CHAR_BIT; i++) {
|
||||
if (ht->common_mask & ((size_t)2 << i)) {
|
||||
ht->perfect_bitnum = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (oldtable != &ht->common_bits) {
|
||||
for (i = 0; i < oldnum; i++) {
|
||||
if (entry_is_valid(e = oldtable[i])) {
|
||||
void *p = get_raw_ptr(ht, e);
|
||||
ht_add(ht, p, ht->rehash(p, ht->priv));
|
||||
}
|
||||
}
|
||||
htable_free(ht, oldtable);
|
||||
}
|
||||
ht->deleted = 0;
|
||||
|
||||
(void)htable_debug(ht, HTABLE_LOC);
|
||||
return true;
|
||||
}
|
||||
|
||||
static COLD void rehash_table(struct htable *ht)
|
||||
{
|
||||
size_t start, i;
|
||||
uintptr_t e, perfect = ht_perfect_mask(ht);
|
||||
|
||||
/* Beware wrap cases: we need to start from first empty bucket. */
|
||||
for (start = 0; ht->table[start]; start++);
|
||||
|
||||
for (i = 0; i < (size_t)1 << ht->bits; i++) {
|
||||
size_t h = (i + start) & ((1 << ht->bits)-1);
|
||||
e = ht->table[h];
|
||||
if (!e)
|
||||
continue;
|
||||
if (e == HTABLE_DELETED)
|
||||
ht->table[h] = 0;
|
||||
else if (!(e & perfect)) {
|
||||
void *p = get_raw_ptr(ht, e);
|
||||
ht->table[h] = 0;
|
||||
ht_add(ht, p, ht->rehash(p, ht->priv));
|
||||
}
|
||||
}
|
||||
ht->deleted = 0;
|
||||
(void)htable_debug(ht, HTABLE_LOC);
|
||||
}
|
||||
|
||||
/* We stole some bits, now we need to put them back... */
|
||||
static COLD void update_common(struct htable *ht, const void *p)
|
||||
{
|
||||
uintptr_t maskdiff;
|
||||
|
||||
if (ht->elems == 0) {
|
||||
ht->common_mask = -1;
|
||||
ht->common_bits = ((uintptr_t)p & ht->common_mask);
|
||||
ht->perfect_bitnum = 0;
|
||||
(void)htable_debug(ht, HTABLE_LOC);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Find bits which are unequal to old common set. */
|
||||
maskdiff = ht->common_bits ^ ((uintptr_t)p & ht->common_mask);
|
||||
|
||||
fixup_table_common(ht, maskdiff);
|
||||
(void)htable_debug(ht, HTABLE_LOC);
|
||||
}
|
||||
|
||||
bool htable_add_(struct htable *ht, size_t hash, const void *p)
|
||||
{
|
||||
/* Cannot insert NULL, or (void *)1. */
|
||||
assert(p);
|
||||
assert(entry_is_valid((uintptr_t)p));
|
||||
|
||||
/* Getting too full? */
|
||||
if (ht->elems+1 + ht->deleted > ht_max(ht)) {
|
||||
/* If we're more than 1/8 deleted, clean those,
|
||||
* otherwise double table size. */
|
||||
if (ht->deleted > ht_max_deleted(ht))
|
||||
rehash_table(ht);
|
||||
else if (!double_table(ht))
|
||||
return false;
|
||||
}
|
||||
if (((uintptr_t)p & ht->common_mask) != ht->common_bits)
|
||||
update_common(ht, p);
|
||||
|
||||
ht_add(ht, p, hash);
|
||||
ht->elems++;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool htable_del_(struct htable *ht, size_t h, const void *p)
|
||||
{
|
||||
struct htable_iter i;
|
||||
void *c;
|
||||
|
||||
for (c = htable_firstval(ht,&i,h); c; c = htable_nextval(ht,&i,h)) {
|
||||
if (c == p) {
|
||||
htable_delval(ht, &i);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void htable_delval_(struct htable *ht, struct htable_iter *i)
|
||||
{
|
||||
assert(i->off < (size_t)1 << ht->bits);
|
||||
assert(entry_is_valid(ht->table[i->off]));
|
||||
|
||||
ht->elems--;
|
||||
/* Cheap test: if the next bucket is empty, don't need delete marker */
|
||||
if (ht->table[hash_bucket(ht, i->off+1)] != 0) {
|
||||
ht->table[i->off] = HTABLE_DELETED;
|
||||
ht->deleted++;
|
||||
} else
|
||||
ht->table[i->off] = 0;
|
||||
}
|
||||
|
||||
void *htable_pick_(const struct htable *ht, size_t seed, struct htable_iter *i)
|
||||
{
|
||||
void *e;
|
||||
struct htable_iter unwanted;
|
||||
|
||||
if (!i)
|
||||
i = &unwanted;
|
||||
i->off = seed % ((size_t)1 << ht->bits);
|
||||
e = htable_next(ht, i);
|
||||
if (!e)
|
||||
e = htable_first(ht, i);
|
||||
return e;
|
||||
}
|
||||
|
||||
struct htable *htable_check(const struct htable *ht, const char *abortstr)
|
||||
{
|
||||
void *p;
|
||||
struct htable_iter i;
|
||||
size_t n = 0;
|
||||
|
||||
/* Use non-DEBUG versions here, to avoid infinite recursion with
|
||||
* CCAN_HTABLE_DEBUG! */
|
||||
for (p = htable_first_(ht, &i); p; p = htable_next_(ht, &i)) {
|
||||
struct htable_iter i2;
|
||||
void *c;
|
||||
size_t h = ht->rehash(p, ht->priv);
|
||||
bool found = false;
|
||||
|
||||
n++;
|
||||
|
||||
/* Open-code htable_get to avoid CCAN_HTABLE_DEBUG */
|
||||
for (c = htable_firstval_(ht, &i2, h);
|
||||
c;
|
||||
c = htable_nextval_(ht, &i2, h)) {
|
||||
if (c == p) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!found) {
|
||||
if (abortstr) {
|
||||
fprintf(stderr,
|
||||
"%s: element %p in position %zu"
|
||||
" cannot find itself\n",
|
||||
abortstr, p, i.off);
|
||||
abort();
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
if (n != ht->elems) {
|
||||
if (abortstr) {
|
||||
fprintf(stderr,
|
||||
"%s: found %zu elems, expected %zu\n",
|
||||
abortstr, n, ht->elems);
|
||||
abort();
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return (struct htable *)ht;
|
||||
}
|
290
ccan/ccan/htable/htable.h
Normal file
290
ccan/ccan/htable/htable.h
Normal file
|
@ -0,0 +1,290 @@
|
|||
/* Licensed under LGPLv2+ - see LICENSE file for details */
|
||||
#ifndef CCAN_HTABLE_H
|
||||
#define CCAN_HTABLE_H
|
||||
#include "config.h"
|
||||
#include <ccan/str/str.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Define CCAN_HTABLE_DEBUG for expensive debugging checks on each call. */
|
||||
#define HTABLE_LOC __FILE__ ":" stringify(__LINE__)
|
||||
#ifdef CCAN_HTABLE_DEBUG
|
||||
#define htable_debug(h, loc) htable_check((h), loc)
|
||||
#else
|
||||
#define htable_debug(h, loc) ((void)loc, h)
|
||||
#endif
|
||||
|
||||
/**
|
||||
* struct htable - private definition of a htable.
|
||||
*
|
||||
* It's exposed here so you can put it in your structures and so we can
|
||||
* supply inline functions.
|
||||
*/
|
||||
struct htable {
|
||||
size_t (*rehash)(const void *elem, void *priv);
|
||||
void *priv;
|
||||
unsigned int bits, perfect_bitnum;
|
||||
size_t elems, deleted;
|
||||
/* These are the bits which are the same in all pointers. */
|
||||
uintptr_t common_mask, common_bits;
|
||||
uintptr_t *table;
|
||||
};
|
||||
|
||||
/**
|
||||
* HTABLE_INITIALIZER - static initialization for a hash table.
|
||||
* @name: name of this htable.
|
||||
* @rehash: hash function to use for rehashing.
|
||||
* @priv: private argument to @rehash function.
|
||||
*
|
||||
* This is useful for setting up static and global hash tables.
|
||||
*
|
||||
* Example:
|
||||
* // For simplicity's sake, say hash value is contents of elem.
|
||||
* static size_t rehash(const void *elem, void *unused)
|
||||
* {
|
||||
* (void)unused;
|
||||
* return *(size_t *)elem;
|
||||
* }
|
||||
* static struct htable ht = HTABLE_INITIALIZER(ht, rehash, NULL);
|
||||
*/
|
||||
#define HTABLE_INITIALIZER(name, rehash, priv) \
|
||||
{ rehash, priv, 0, 0, 0, 0, -1, 0, &name.common_bits }
|
||||
|
||||
/**
|
||||
* htable_init - initialize an empty hash table.
|
||||
* @ht: the hash table to initialize
|
||||
* @rehash: hash function to use for rehashing.
|
||||
* @priv: private argument to @rehash function.
|
||||
*/
|
||||
void htable_init(struct htable *ht,
|
||||
size_t (*rehash)(const void *elem, void *priv), void *priv);
|
||||
|
||||
/**
|
||||
* htable_init_sized - initialize an empty hash table of given size.
|
||||
* @ht: the hash table to initialize
|
||||
* @rehash: hash function to use for rehashing.
|
||||
* @priv: private argument to @rehash function.
|
||||
* @size: the number of element.
|
||||
*
|
||||
* If this returns false, @ht is still usable, but may need to do reallocation
|
||||
* upon an add. If this returns true, it will not need to reallocate within
|
||||
* @size htable_adds.
|
||||
*/
|
||||
bool htable_init_sized(struct htable *ht,
|
||||
size_t (*rehash)(const void *elem, void *priv),
|
||||
void *priv, size_t size);
|
||||
|
||||
/**
|
||||
* htable_count - count number of entries in a hash table.
|
||||
* @ht: the hash table
|
||||
*/
|
||||
static inline size_t htable_count(const struct htable *ht)
|
||||
{
|
||||
return ht->elems;
|
||||
}
|
||||
|
||||
/**
|
||||
* htable_clear - empty a hash table.
|
||||
* @ht: the hash table to clear
|
||||
*
|
||||
* This doesn't do anything to any pointers left in it.
|
||||
*/
|
||||
void htable_clear(struct htable *ht);
|
||||
|
||||
|
||||
/**
|
||||
* htable_check - check hash table for consistency
|
||||
* @ht: the htable
|
||||
* @abortstr: the location to print on aborting, or NULL.
|
||||
*
|
||||
* Because hash tables have redundant information, consistency checking that
|
||||
* each element is in the correct location can be done. This is useful as a
|
||||
* debugging check. If @abortstr is non-NULL, that will be printed in a
|
||||
* diagnostic if the htable is inconsistent, and the function will abort.
|
||||
*
|
||||
* Returns the htable if it is consistent, NULL if not (it can never return
|
||||
* NULL if @abortstr is set).
|
||||
*/
|
||||
struct htable *htable_check(const struct htable *ht, const char *abortstr);
|
||||
|
||||
/**
|
||||
* htable_copy - duplicate a hash table.
|
||||
* @dst: the hash table to overwrite
|
||||
* @src: the hash table to copy
|
||||
*
|
||||
* Only fails on out-of-memory.
|
||||
*
|
||||
* Equivalent to (but faster than):
|
||||
* if (!htable_init_sized(dst, src->rehash, src->priv, 1U << src->bits))
|
||||
* return false;
|
||||
* v = htable_first(src, &i);
|
||||
* while (v) {
|
||||
* htable_add(dst, v);
|
||||
* v = htable_next(src, i);
|
||||
* }
|
||||
* return true;
|
||||
*/
|
||||
#define htable_copy(dst, src) htable_copy_(dst, htable_debug(src, HTABLE_LOC))
|
||||
bool htable_copy_(struct htable *dst, const struct htable *src);
|
||||
|
||||
/**
|
||||
* htable_add - add a pointer into a hash table.
|
||||
* @ht: the htable
|
||||
* @hash: the hash value of the object
|
||||
* @p: the non-NULL pointer (also cannot be (void *)1).
|
||||
*
|
||||
* Also note that this can only fail due to allocation failure. Otherwise, it
|
||||
* returns true.
|
||||
*/
|
||||
#define htable_add(ht, hash, p) \
|
||||
htable_add_(htable_debug(ht, HTABLE_LOC), hash, p)
|
||||
bool htable_add_(struct htable *ht, size_t hash, const void *p);
|
||||
|
||||
/**
|
||||
* htable_del - remove a pointer from a hash table
|
||||
* @ht: the htable
|
||||
* @hash: the hash value of the object
|
||||
* @p: the pointer
|
||||
*
|
||||
* Returns true if the pointer was found (and deleted).
|
||||
*/
|
||||
#define htable_del(ht, hash, p) \
|
||||
htable_del_(htable_debug(ht, HTABLE_LOC), hash, p)
|
||||
bool htable_del_(struct htable *ht, size_t hash, const void *p);
|
||||
|
||||
/**
|
||||
* struct htable_iter - iterator or htable_first or htable_firstval etc.
|
||||
*
|
||||
* This refers to a location inside the hashtable.
|
||||
*/
|
||||
struct htable_iter {
|
||||
size_t off;
|
||||
};
|
||||
|
||||
/**
|
||||
* htable_firstval - find a candidate for a given hash value
|
||||
* @htable: the hashtable
|
||||
* @i: the struct htable_iter to initialize
|
||||
* @hash: the hash value
|
||||
*
|
||||
* You'll need to check the value is what you want; returns NULL if none.
|
||||
* See Also:
|
||||
* htable_delval()
|
||||
*/
|
||||
#define htable_firstval(htable, i, hash) \
|
||||
htable_firstval_(htable_debug(htable, HTABLE_LOC), i, hash)
|
||||
|
||||
void *htable_firstval_(const struct htable *htable,
|
||||
struct htable_iter *i, size_t hash);
|
||||
|
||||
/**
|
||||
* htable_nextval - find another candidate for a given hash value
|
||||
* @htable: the hashtable
|
||||
* @i: the struct htable_iter to initialize
|
||||
* @hash: the hash value
|
||||
*
|
||||
* You'll need to check the value is what you want; returns NULL if no more.
|
||||
*/
|
||||
#define htable_nextval(htable, i, hash) \
|
||||
htable_nextval_(htable_debug(htable, HTABLE_LOC), i, hash)
|
||||
void *htable_nextval_(const struct htable *htable,
|
||||
struct htable_iter *i, size_t hash);
|
||||
|
||||
/**
|
||||
* htable_get - find an entry in the hash table
|
||||
* @ht: the hashtable
|
||||
* @h: the hash value of the entry
|
||||
* @cmp: the comparison function
|
||||
* @ptr: the pointer to hand to the comparison function.
|
||||
*
|
||||
* Convenient inline wrapper for htable_firstval/htable_nextval loop.
|
||||
*/
|
||||
static inline void *htable_get(const struct htable *ht,
|
||||
size_t h,
|
||||
bool (*cmp)(const void *candidate, void *ptr),
|
||||
const void *ptr)
|
||||
{
|
||||
struct htable_iter i;
|
||||
void *c;
|
||||
|
||||
for (c = htable_firstval(ht,&i,h); c; c = htable_nextval(ht,&i,h)) {
|
||||
if (cmp(c, (void *)ptr))
|
||||
return c;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* htable_first - find an entry in the hash table
|
||||
* @ht: the hashtable
|
||||
* @i: the struct htable_iter to initialize
|
||||
*
|
||||
* Get an entry in the hashtable; NULL if empty.
|
||||
*/
|
||||
#define htable_first(htable, i) \
|
||||
htable_first_(htable_debug(htable, HTABLE_LOC), i)
|
||||
void *htable_first_(const struct htable *htable, struct htable_iter *i);
|
||||
|
||||
/**
|
||||
* htable_next - find another entry in the hash table
|
||||
* @ht: the hashtable
|
||||
* @i: the struct htable_iter to use
|
||||
*
|
||||
* Get another entry in the hashtable; NULL if all done.
|
||||
* This is usually used after htable_first or prior non-NULL htable_next.
|
||||
*/
|
||||
#define htable_next(htable, i) \
|
||||
htable_next_(htable_debug(htable, HTABLE_LOC), i)
|
||||
void *htable_next_(const struct htable *htable, struct htable_iter *i);
|
||||
|
||||
/**
|
||||
* htable_prev - find the previous entry in the hash table
|
||||
* @ht: the hashtable
|
||||
* @i: the struct htable_iter to use
|
||||
*
|
||||
* Get previous entry in the hashtable; NULL if all done.
|
||||
*
|
||||
* "previous" here only means the item that would have been returned by
|
||||
* htable_next() before the item it returned most recently.
|
||||
*
|
||||
* This is usually used in the middle of (or after) a htable_next iteration and
|
||||
* to "unwind" actions taken.
|
||||
*/
|
||||
#define htable_prev(htable, i) \
|
||||
htable_prev_(htable_debug(htable, HTABLE_LOC), i)
|
||||
void *htable_prev_(const struct htable *htable, struct htable_iter *i);
|
||||
|
||||
/**
|
||||
* htable_delval - remove an iterated pointer from a hash table
|
||||
* @ht: the htable
|
||||
* @i: the htable_iter
|
||||
*
|
||||
* Usually used to delete a hash entry after it has been found with
|
||||
* htable_firstval etc.
|
||||
*/
|
||||
#define htable_delval(htable, i) \
|
||||
htable_delval_(htable_debug(htable, HTABLE_LOC), i)
|
||||
void htable_delval_(struct htable *ht, struct htable_iter *i);
|
||||
|
||||
/**
|
||||
* htable_pick - set iterator to a random valid entry.
|
||||
* @ht: the htable
|
||||
* @seed: a random number to use.
|
||||
* @i: the htable_iter which is output (or NULL).
|
||||
*
|
||||
* Usually used with htable_delval to delete a random entry. Returns
|
||||
* NULL iff the table is empty, otherwise a random entry.
|
||||
*/
|
||||
#define htable_pick(htable, seed, i) \
|
||||
htable_pick_(htable_debug(htable, HTABLE_LOC), seed, i)
|
||||
void *htable_pick_(const struct htable *ht, size_t seed, struct htable_iter *i);
|
||||
|
||||
/**
|
||||
* htable_set_allocator - set calloc/free functions.
|
||||
* @alloc: allocator to use, must zero memory!
|
||||
* @free: unallocator to use (@p is NULL or a return from @alloc)
|
||||
*/
|
||||
void htable_set_allocator(void *(*alloc)(struct htable *, size_t len),
|
||||
void (*free)(struct htable *, void *p));
|
||||
#endif /* CCAN_HTABLE_H */
|
188
ccan/ccan/htable/htable_type.h
Normal file
188
ccan/ccan/htable/htable_type.h
Normal file
|
@ -0,0 +1,188 @@
|
|||
/* Licensed under LGPLv2+ - see LICENSE file for details */
|
||||
#ifndef CCAN_HTABLE_TYPE_H
|
||||
#define CCAN_HTABLE_TYPE_H
|
||||
#include <ccan/htable/htable.h>
|
||||
#include <ccan/compiler/compiler.h>
|
||||
#include "config.h"
|
||||
|
||||
/**
|
||||
* HTABLE_DEFINE_TYPE - create a set of htable ops for a type
|
||||
* @type: a type whose pointers will be values in the hash.
|
||||
* @keyof: a function/macro to extract a key: <keytype> @keyof(const type *elem)
|
||||
* @hashfn: a hash function for a @key: size_t @hashfn(const <keytype> *)
|
||||
* @eqfn: an equality function keys: bool @eqfn(const type *, const <keytype> *)
|
||||
* @prefix: a prefix for all the functions to define (of form <name>_*)
|
||||
*
|
||||
* NULL values may not be placed into the hash table.
|
||||
*
|
||||
* This defines the type hashtable type and an iterator type:
|
||||
* struct <name>;
|
||||
* struct <name>_iter;
|
||||
*
|
||||
* It also defines initialization and freeing functions:
|
||||
* void <name>_init(struct <name> *);
|
||||
* bool <name>_init_sized(struct <name> *, size_t);
|
||||
* void <name>_clear(struct <name> *);
|
||||
* bool <name>_copy(struct <name> *dst, const struct <name> *src);
|
||||
*
|
||||
* Count entries:
|
||||
* size_t <name>_count(const struct <name> *ht);
|
||||
*
|
||||
* Add function only fails if we run out of memory:
|
||||
* bool <name>_add(struct <name> *ht, const <type> *e);
|
||||
*
|
||||
* Delete and delete-by key return true if it was in the set:
|
||||
* bool <name>_del(struct <name> *ht, const <type> *e);
|
||||
* bool <name>_delkey(struct <name> *ht, const <keytype> *k);
|
||||
*
|
||||
* Delete by iterator:
|
||||
* bool <name>_delval(struct <name> *ht, struct <name>_iter *i);
|
||||
*
|
||||
* Find and return the (first) matching element, or NULL:
|
||||
* type *<name>_get(const struct @name *ht, const <keytype> *k);
|
||||
*
|
||||
* Find and return all matching elements, or NULL:
|
||||
* type *<name>_getfirst(const struct @name *ht, const <keytype> *k,
|
||||
* struct <name>_iter *i);
|
||||
* type *<name>_getnext(const struct @name *ht, const <keytype> *k,
|
||||
* struct <name>_iter *i);
|
||||
*
|
||||
* Iteration over hashtable is also supported:
|
||||
* type *<name>_first(const struct <name> *ht, struct <name>_iter *i);
|
||||
* type *<name>_next(const struct <name> *ht, struct <name>_iter *i);
|
||||
* type *<name>_prev(const struct <name> *ht, struct <name>_iter *i);
|
||||
* type *<name>_pick(const struct <name> *ht, size_t seed,
|
||||
* struct <name>_iter *i);
|
||||
* It's currently safe to iterate over a changing hashtable, but you might
|
||||
* miss an element. Iteration isn't very efficient, either.
|
||||
*
|
||||
* You can use HTABLE_INITIALIZER like so:
|
||||
* struct <name> ht = { HTABLE_INITIALIZER(ht.raw, <name>_hash, NULL) };
|
||||
*/
|
||||
#define HTABLE_DEFINE_TYPE(type, keyof, hashfn, eqfn, name) \
|
||||
struct name { struct htable raw; }; \
|
||||
struct name##_iter { struct htable_iter i; }; \
|
||||
static inline size_t name##_hash(const void *elem, void *priv) \
|
||||
{ \
|
||||
(void)priv; \
|
||||
return hashfn(keyof((const type *)elem)); \
|
||||
} \
|
||||
static inline UNNEEDED void name##_init(struct name *ht) \
|
||||
{ \
|
||||
htable_init(&ht->raw, name##_hash, NULL); \
|
||||
} \
|
||||
static inline UNNEEDED bool name##_init_sized(struct name *ht, \
|
||||
size_t s) \
|
||||
{ \
|
||||
return htable_init_sized(&ht->raw, name##_hash, NULL, s); \
|
||||
} \
|
||||
static inline UNNEEDED size_t name##_count(const struct name *ht) \
|
||||
{ \
|
||||
return htable_count(&ht->raw); \
|
||||
} \
|
||||
static inline UNNEEDED void name##_clear(struct name *ht) \
|
||||
{ \
|
||||
htable_clear(&ht->raw); \
|
||||
} \
|
||||
static inline UNNEEDED bool name##_copy(struct name *dst, \
|
||||
const struct name *src) \
|
||||
{ \
|
||||
return htable_copy(&dst->raw, &src->raw); \
|
||||
} \
|
||||
static inline bool name##_add(struct name *ht, const type *elem) \
|
||||
{ \
|
||||
return htable_add(&ht->raw, hashfn(keyof(elem)), elem); \
|
||||
} \
|
||||
static inline UNNEEDED bool name##_del(struct name *ht, \
|
||||
const type *elem) \
|
||||
{ \
|
||||
return htable_del(&ht->raw, hashfn(keyof(elem)), elem); \
|
||||
} \
|
||||
static inline UNNEEDED type *name##_get(const struct name *ht, \
|
||||
const HTABLE_KTYPE(keyof, type) k) \
|
||||
{ \
|
||||
struct htable_iter i; \
|
||||
size_t h = hashfn(k); \
|
||||
void *c; \
|
||||
\
|
||||
for (c = htable_firstval(&ht->raw,&i,h); \
|
||||
c; \
|
||||
c = htable_nextval(&ht->raw,&i,h)) { \
|
||||
if (eqfn(c, k)) \
|
||||
return c; \
|
||||
} \
|
||||
return NULL; \
|
||||
} \
|
||||
static inline UNNEEDED type *name##_getmatch_(const struct name *ht, \
|
||||
const HTABLE_KTYPE(keyof, type) k, \
|
||||
size_t h, \
|
||||
type *v, \
|
||||
struct name##_iter *iter) \
|
||||
{ \
|
||||
while (v) { \
|
||||
if (eqfn(v, k)) \
|
||||
break; \
|
||||
v = htable_nextval(&ht->raw, &iter->i, h); \
|
||||
} \
|
||||
return v; \
|
||||
} \
|
||||
static inline UNNEEDED type *name##_getfirst(const struct name *ht, \
|
||||
const HTABLE_KTYPE(keyof, type) k, \
|
||||
struct name##_iter *iter) \
|
||||
{ \
|
||||
size_t h = hashfn(k); \
|
||||
type *v = htable_firstval(&ht->raw, &iter->i, h); \
|
||||
return name##_getmatch_(ht, k, h, v, iter); \
|
||||
} \
|
||||
static inline UNNEEDED type *name##_getnext(const struct name *ht, \
|
||||
const HTABLE_KTYPE(keyof, type) k, \
|
||||
struct name##_iter *iter) \
|
||||
{ \
|
||||
size_t h = hashfn(k); \
|
||||
type *v = htable_nextval(&ht->raw, &iter->i, h); \
|
||||
return name##_getmatch_(ht, k, h, v, iter); \
|
||||
} \
|
||||
static inline UNNEEDED bool name##_delkey(struct name *ht, \
|
||||
const HTABLE_KTYPE(keyof, type) k) \
|
||||
{ \
|
||||
type *elem = name##_get(ht, k); \
|
||||
if (elem) \
|
||||
return name##_del(ht, elem); \
|
||||
return false; \
|
||||
} \
|
||||
static inline UNNEEDED void name##_delval(struct name *ht, \
|
||||
struct name##_iter *iter) \
|
||||
{ \
|
||||
htable_delval(&ht->raw, &iter->i); \
|
||||
} \
|
||||
static inline UNNEEDED type *name##_pick(const struct name *ht, \
|
||||
size_t seed, \
|
||||
struct name##_iter *iter) \
|
||||
{ \
|
||||
return htable_pick(&ht->raw, seed, iter ? &iter->i : NULL); \
|
||||
} \
|
||||
static inline UNNEEDED type *name##_first(const struct name *ht, \
|
||||
struct name##_iter *iter) \
|
||||
{ \
|
||||
return htable_first(&ht->raw, &iter->i); \
|
||||
} \
|
||||
static inline UNNEEDED type *name##_next(const struct name *ht, \
|
||||
struct name##_iter *iter) \
|
||||
{ \
|
||||
return htable_next(&ht->raw, &iter->i); \
|
||||
} \
|
||||
static inline UNNEEDED type *name##_prev(const struct name *ht, \
|
||||
struct name##_iter *iter) \
|
||||
{ \
|
||||
return htable_prev(&ht->raw, &iter->i); \
|
||||
}
|
||||
|
||||
#if HAVE_TYPEOF
|
||||
#define HTABLE_KTYPE(keyof, type) typeof(keyof((const type *)NULL))
|
||||
#else
|
||||
/* Assumes keys are a pointer: if not, override. */
|
||||
#ifndef HTABLE_KTYPE
|
||||
#define HTABLE_KTYPE(keyof, type) void *
|
||||
#endif
|
||||
#endif
|
||||
#endif /* CCAN_HTABLE_TYPE_H */
|
1
ccan/ccan/ilog/LICENSE
Symbolic link
1
ccan/ccan/ilog/LICENSE
Symbolic link
|
@ -0,0 +1 @@
|
|||
../../licenses/CC0
|
141
ccan/ccan/ilog/ilog.c
Normal file
141
ccan/ccan/ilog/ilog.c
Normal file
|
@ -0,0 +1,141 @@
|
|||
/*(C) Timothy B. Terriberry (tterribe@xiph.org) 2001-2009 CC0 (Public domain).
|
||||
* See LICENSE file for details. */
|
||||
#include "ilog.h"
|
||||
#include <limits.h>
|
||||
|
||||
/*The fastest fallback strategy for platforms with fast multiplication appears
|
||||
to be based on de Bruijn sequences~\cite{LP98}.
|
||||
Tests confirmed this to be true even on an ARM11, where it is actually faster
|
||||
than using the native clz instruction.
|
||||
Define ILOG_NODEBRUIJN to use a simpler fallback on platforms where
|
||||
multiplication or table lookups are too expensive.
|
||||
|
||||
@UNPUBLISHED{LP98,
|
||||
author="Charles E. Leiserson and Harald Prokop",
|
||||
title="Using de {Bruijn} Sequences to Index a 1 in a Computer Word",
|
||||
month=Jun,
|
||||
year=1998,
|
||||
note="\url{http://supertech.csail.mit.edu/papers/debruijn.pdf}"
|
||||
}*/
|
||||
static UNNEEDED const unsigned char DEBRUIJN_IDX32[32]={
|
||||
0, 1,28, 2,29,14,24, 3,30,22,20,15,25,17, 4, 8,
|
||||
31,27,13,23,21,19,16, 7,26,12,18, 6,11, 5,10, 9
|
||||
};
|
||||
|
||||
/* We always compile these in, in case someone takes address of function. */
|
||||
#undef ilog32_nz
|
||||
#undef ilog32
|
||||
#undef ilog64_nz
|
||||
#undef ilog64
|
||||
|
||||
int ilog32(uint32_t _v){
|
||||
/*On a Pentium M, this branchless version tested as the fastest version without
|
||||
multiplications on 1,000,000,000 random 32-bit integers, edging out a
|
||||
similar version with branches, and a 256-entry LUT version.*/
|
||||
# if defined(ILOG_NODEBRUIJN)
|
||||
int ret;
|
||||
int m;
|
||||
ret=_v>0;
|
||||
m=(_v>0xFFFFU)<<4;
|
||||
_v>>=m;
|
||||
ret|=m;
|
||||
m=(_v>0xFFU)<<3;
|
||||
_v>>=m;
|
||||
ret|=m;
|
||||
m=(_v>0xFU)<<2;
|
||||
_v>>=m;
|
||||
ret|=m;
|
||||
m=(_v>3)<<1;
|
||||
_v>>=m;
|
||||
ret|=m;
|
||||
ret+=_v>1;
|
||||
return ret;
|
||||
/*This de Bruijn sequence version is faster if you have a fast multiplier.*/
|
||||
# else
|
||||
int ret;
|
||||
ret=_v>0;
|
||||
_v|=_v>>1;
|
||||
_v|=_v>>2;
|
||||
_v|=_v>>4;
|
||||
_v|=_v>>8;
|
||||
_v|=_v>>16;
|
||||
_v=(_v>>1)+1;
|
||||
ret+=DEBRUIJN_IDX32[_v*0x77CB531U>>27&0x1F];
|
||||
return ret;
|
||||
# endif
|
||||
}
|
||||
|
||||
int ilog32_nz(uint32_t _v)
|
||||
{
|
||||
return ilog32(_v);
|
||||
}
|
||||
|
||||
int ilog64(uint64_t _v){
|
||||
# if defined(ILOG_NODEBRUIJN)
|
||||
uint32_t v;
|
||||
int ret;
|
||||
int m;
|
||||
ret=_v>0;
|
||||
m=(_v>0xFFFFFFFFU)<<5;
|
||||
v=(uint32_t)(_v>>m);
|
||||
ret|=m;
|
||||
m=(v>0xFFFFU)<<4;
|
||||
v>>=m;
|
||||
ret|=m;
|
||||
m=(v>0xFFU)<<3;
|
||||
v>>=m;
|
||||
ret|=m;
|
||||
m=(v>0xFU)<<2;
|
||||
v>>=m;
|
||||
ret|=m;
|
||||
m=(v>3)<<1;
|
||||
v>>=m;
|
||||
ret|=m;
|
||||
ret+=v>1;
|
||||
return ret;
|
||||
# else
|
||||
/*If we don't have a 64-bit word, split it into two 32-bit halves.*/
|
||||
# if LONG_MAX<9223372036854775807LL
|
||||
uint32_t v;
|
||||
int ret;
|
||||
int m;
|
||||
ret=_v>0;
|
||||
m=(_v>0xFFFFFFFFU)<<5;
|
||||
v=(uint32_t)(_v>>m);
|
||||
ret|=m;
|
||||
v|=v>>1;
|
||||
v|=v>>2;
|
||||
v|=v>>4;
|
||||
v|=v>>8;
|
||||
v|=v>>16;
|
||||
v=(v>>1)+1;
|
||||
ret+=DEBRUIJN_IDX32[v*0x77CB531U>>27&0x1F];
|
||||
return ret;
|
||||
/*Otherwise do it in one 64-bit operation.*/
|
||||
# else
|
||||
static const unsigned char DEBRUIJN_IDX64[64]={
|
||||
0, 1, 2, 7, 3,13, 8,19, 4,25,14,28, 9,34,20,40,
|
||||
5,17,26,38,15,46,29,48,10,31,35,54,21,50,41,57,
|
||||
63, 6,12,18,24,27,33,39,16,37,45,47,30,53,49,56,
|
||||
62,11,23,32,36,44,52,55,61,22,43,51,60,42,59,58
|
||||
};
|
||||
int ret;
|
||||
ret=_v>0;
|
||||
_v|=_v>>1;
|
||||
_v|=_v>>2;
|
||||
_v|=_v>>4;
|
||||
_v|=_v>>8;
|
||||
_v|=_v>>16;
|
||||
_v|=_v>>32;
|
||||
_v=(_v>>1)+1;
|
||||
ret+=DEBRUIJN_IDX64[_v*0x218A392CD3D5DBF>>58&0x3F];
|
||||
return ret;
|
||||
# endif
|
||||
# endif
|
||||
}
|
||||
|
||||
int ilog64_nz(uint64_t _v)
|
||||
{
|
||||
return ilog64(_v);
|
||||
}
|
||||
|
154
ccan/ccan/ilog/ilog.h
Normal file
154
ccan/ccan/ilog/ilog.h
Normal file
|
@ -0,0 +1,154 @@
|
|||
/* CC0 (Public domain) - see LICENSE file for details */
|
||||
#if !defined(_ilog_H)
|
||||
# define _ilog_H (1)
|
||||
# include "config.h"
|
||||
# include <stdint.h>
|
||||
# include <limits.h>
|
||||
# include <ccan/compiler/compiler.h>
|
||||
|
||||
/**
|
||||
* ilog32 - Integer binary logarithm of a 32-bit value.
|
||||
* @_v: A 32-bit value.
|
||||
* Returns floor(log2(_v))+1, or 0 if _v==0.
|
||||
* This is the number of bits that would be required to represent _v in two's
|
||||
* complement notation with all of the leading zeros stripped.
|
||||
* Note that many uses will resolve to the fast macro version instead.
|
||||
*
|
||||
* See Also:
|
||||
* ilog32_nz(), ilog64()
|
||||
*
|
||||
* Example:
|
||||
* // Rounds up to next power of 2 (if not a power of 2).
|
||||
* static uint32_t round_up32(uint32_t i)
|
||||
* {
|
||||
* assert(i != 0);
|
||||
* return 1U << ilog32(i-1);
|
||||
* }
|
||||
*/
|
||||
int ilog32(uint32_t _v) CONST_FUNCTION;
|
||||
|
||||
/**
|
||||
* ilog32_nz - Integer binary logarithm of a non-zero 32-bit value.
|
||||
* @_v: A 32-bit value.
|
||||
* Returns floor(log2(_v))+1, or undefined if _v==0.
|
||||
* This is the number of bits that would be required to represent _v in two's
|
||||
* complement notation with all of the leading zeros stripped.
|
||||
* Note that many uses will resolve to the fast macro version instead.
|
||||
* See Also:
|
||||
* ilog32(), ilog64_nz()
|
||||
* Example:
|
||||
* // Find Last Set (ie. highest bit set, 0 to 31).
|
||||
* static uint32_t fls32(uint32_t i)
|
||||
* {
|
||||
* assert(i != 0);
|
||||
* return ilog32_nz(i) - 1;
|
||||
* }
|
||||
*/
|
||||
int ilog32_nz(uint32_t _v) CONST_FUNCTION;
|
||||
|
||||
/**
|
||||
* ilog64 - Integer binary logarithm of a 64-bit value.
|
||||
* @_v: A 64-bit value.
|
||||
* Returns floor(log2(_v))+1, or 0 if _v==0.
|
||||
* This is the number of bits that would be required to represent _v in two's
|
||||
* complement notation with all of the leading zeros stripped.
|
||||
* Note that many uses will resolve to the fast macro version instead.
|
||||
* See Also:
|
||||
* ilog64_nz(), ilog32()
|
||||
*/
|
||||
int ilog64(uint64_t _v) CONST_FUNCTION;
|
||||
|
||||
/**
|
||||
* ilog64_nz - Integer binary logarithm of a non-zero 64-bit value.
|
||||
* @_v: A 64-bit value.
|
||||
* Returns floor(log2(_v))+1, or undefined if _v==0.
|
||||
* This is the number of bits that would be required to represent _v in two's
|
||||
* complement notation with all of the leading zeros stripped.
|
||||
* Note that many uses will resolve to the fast macro version instead.
|
||||
* See Also:
|
||||
* ilog64(), ilog32_nz()
|
||||
*/
|
||||
int ilog64_nz(uint64_t _v) CONST_FUNCTION;
|
||||
|
||||
/**
|
||||
* STATIC_ILOG_32 - The integer logarithm of an (unsigned, 32-bit) constant.
|
||||
* @_v: A non-negative 32-bit constant.
|
||||
* Returns floor(log2(_v))+1, or 0 if _v==0.
|
||||
* This is the number of bits that would be required to represent _v in two's
|
||||
* complement notation with all of the leading zeros stripped.
|
||||
* This macro should only be used when you need a compile-time constant,
|
||||
* otherwise ilog32 or ilog32_nz are just as fast and more flexible.
|
||||
*
|
||||
* Example:
|
||||
* #define MY_PAGE_SIZE 4096
|
||||
* #define MY_PAGE_BITS (STATIC_ILOG_32(PAGE_SIZE) - 1)
|
||||
*/
|
||||
#define STATIC_ILOG_32(_v) (STATIC_ILOG5((uint32_t)(_v)))
|
||||
|
||||
/**
|
||||
* STATIC_ILOG_64 - The integer logarithm of an (unsigned, 64-bit) constant.
|
||||
* @_v: A non-negative 64-bit constant.
|
||||
* Returns floor(log2(_v))+1, or 0 if _v==0.
|
||||
* This is the number of bits that would be required to represent _v in two's
|
||||
* complement notation with all of the leading zeros stripped.
|
||||
* This macro should only be used when you need a compile-time constant,
|
||||
* otherwise ilog64 or ilog64_nz are just as fast and more flexible.
|
||||
*/
|
||||
#define STATIC_ILOG_64(_v) (STATIC_ILOG6((uint64_t)(_v)))
|
||||
|
||||
/* Private implementation details */
|
||||
|
||||
/*Note the casts to (int) below: this prevents "upgrading"
|
||||
the type of an entire expression to an (unsigned) size_t.*/
|
||||
#if INT_MAX>=2147483647 && HAVE_BUILTIN_CLZ
|
||||
#define builtin_ilog32_nz(v) \
|
||||
(((int)sizeof(unsigned)*CHAR_BIT) - __builtin_clz(v))
|
||||
#elif LONG_MAX>=2147483647L && HAVE_BUILTIN_CLZL
|
||||
#define builtin_ilog32_nz(v) \
|
||||
(((int)sizeof(unsigned)*CHAR_BIT) - __builtin_clzl(v))
|
||||
#endif
|
||||
|
||||
#if INT_MAX>=9223372036854775807LL && HAVE_BUILTIN_CLZ
|
||||
#define builtin_ilog64_nz(v) \
|
||||
(((int)sizeof(unsigned)*CHAR_BIT) - __builtin_clz(v))
|
||||
#elif LONG_MAX>=9223372036854775807LL && HAVE_BUILTIN_CLZL
|
||||
#define builtin_ilog64_nz(v) \
|
||||
(((int)sizeof(unsigned long)*CHAR_BIT) - __builtin_clzl(v))
|
||||
#elif HAVE_BUILTIN_CLZLL
|
||||
#define builtin_ilog64_nz(v) \
|
||||
(((int)sizeof(unsigned long long)*CHAR_BIT) - __builtin_clzll(v))
|
||||
#endif
|
||||
|
||||
#ifdef builtin_ilog32_nz
|
||||
/* This used to be builtin_ilog32_nz(_v)&-!!(_v), which means it zeroes out
|
||||
* the undefined builtin_ilog32_nz(0) return. But clang UndefinedBehaviorSantizer
|
||||
* complains, so do the branch: */
|
||||
#define ilog32(_v) ((_v) ? builtin_ilog32_nz(_v) : 0)
|
||||
#define ilog32_nz(_v) builtin_ilog32_nz(_v)
|
||||
#else
|
||||
#define ilog32_nz(_v) ilog32(_v)
|
||||
#define ilog32(_v) (IS_COMPILE_CONSTANT(_v) ? STATIC_ILOG_32(_v) : ilog32(_v))
|
||||
#endif /* builtin_ilog32_nz */
|
||||
|
||||
#ifdef builtin_ilog64_nz
|
||||
#define ilog32(_v) ((_v) ? builtin_ilog32_nz(_v) : 0)
|
||||
#define ilog64_nz(_v) builtin_ilog64_nz(_v)
|
||||
#else
|
||||
#define ilog64_nz(_v) ilog64(_v)
|
||||
#define ilog64(_v) (IS_COMPILE_CONSTANT(_v) ? STATIC_ILOG_64(_v) : ilog64(_v))
|
||||
#endif /* builtin_ilog64_nz */
|
||||
|
||||
/* Macros for evaluating compile-time constant ilog. */
|
||||
# define STATIC_ILOG0(_v) (!!(_v))
|
||||
# define STATIC_ILOG1(_v) (((_v)&0x2)?2:STATIC_ILOG0(_v))
|
||||
# define STATIC_ILOG2(_v) (((_v)&0xC)?2+STATIC_ILOG1((_v)>>2):STATIC_ILOG1(_v))
|
||||
# define STATIC_ILOG3(_v) \
|
||||
(((_v)&0xF0)?4+STATIC_ILOG2((_v)>>4):STATIC_ILOG2(_v))
|
||||
# define STATIC_ILOG4(_v) \
|
||||
(((_v)&0xFF00)?8+STATIC_ILOG3((_v)>>8):STATIC_ILOG3(_v))
|
||||
# define STATIC_ILOG5(_v) \
|
||||
(((_v)&0xFFFF0000)?16+STATIC_ILOG4((_v)>>16):STATIC_ILOG4(_v))
|
||||
# define STATIC_ILOG6(_v) \
|
||||
(((_v)&0xFFFFFFFF00000000ULL)?32+STATIC_ILOG5((_v)>>32):STATIC_ILOG5(_v))
|
||||
|
||||
#endif /* _ilog_H */
|
1
ccan/ccan/likely/LICENSE
Symbolic link
1
ccan/ccan/likely/LICENSE
Symbolic link
|
@ -0,0 +1 @@
|
|||
../../licenses/CC0
|
136
ccan/ccan/likely/likely.c
Normal file
136
ccan/ccan/likely/likely.c
Normal file
|
@ -0,0 +1,136 @@
|
|||
/* CC0 (Public domain) - see LICENSE file for details. */
|
||||
#ifdef CCAN_LIKELY_DEBUG
|
||||
#include <ccan/likely/likely.h>
|
||||
#include <ccan/hash/hash.h>
|
||||
#include <ccan/htable/htable_type.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
struct trace {
|
||||
const char *condstr;
|
||||
const char *file;
|
||||
unsigned int line;
|
||||
bool expect;
|
||||
unsigned long count, right;
|
||||
};
|
||||
|
||||
static size_t hash_trace(const struct trace *trace)
|
||||
{
|
||||
return hash(trace->condstr, strlen(trace->condstr),
|
||||
hash(trace->file, strlen(trace->file),
|
||||
trace->line + trace->expect));
|
||||
}
|
||||
|
||||
static bool trace_eq(const struct trace *t1, const struct trace *t2)
|
||||
{
|
||||
return t1->condstr == t2->condstr
|
||||
&& t1->file == t2->file
|
||||
&& t1->line == t2->line
|
||||
&& t1->expect == t2->expect;
|
||||
}
|
||||
|
||||
/* struct thash */
|
||||
HTABLE_DEFINE_TYPE(struct trace, (const struct trace *), hash_trace, trace_eq,
|
||||
thash);
|
||||
|
||||
static struct thash htable
|
||||
= { HTABLE_INITIALIZER(htable.raw, thash_hash, NULL) };
|
||||
|
||||
static void init_trace(struct trace *trace,
|
||||
const char *condstr, const char *file, unsigned int line,
|
||||
bool expect)
|
||||
{
|
||||
trace->condstr = condstr;
|
||||
trace->file = file;
|
||||
trace->line = line;
|
||||
trace->expect = expect;
|
||||
trace->count = trace->right = 0;
|
||||
}
|
||||
|
||||
static struct trace *add_trace(const struct trace *t)
|
||||
{
|
||||
struct trace *trace = malloc(sizeof(*trace));
|
||||
*trace = *t;
|
||||
thash_add(&htable, trace);
|
||||
return trace;
|
||||
}
|
||||
|
||||
long _likely_trace(bool cond, bool expect,
|
||||
const char *condstr,
|
||||
const char *file, unsigned int line)
|
||||
{
|
||||
struct trace *p, trace;
|
||||
|
||||
init_trace(&trace, condstr, file, line, expect);
|
||||
p = thash_get(&htable, &trace);
|
||||
if (!p)
|
||||
p = add_trace(&trace);
|
||||
|
||||
p->count++;
|
||||
if (cond == expect)
|
||||
p->right++;
|
||||
|
||||
return cond;
|
||||
}
|
||||
|
||||
static double right_ratio(const struct trace *t)
|
||||
{
|
||||
return (double)t->right / t->count;
|
||||
}
|
||||
|
||||
char *likely_stats(unsigned int min_hits, unsigned int percent)
|
||||
{
|
||||
struct trace *worst;
|
||||
double worst_ratio;
|
||||
struct thash_iter i;
|
||||
char *ret;
|
||||
struct trace *t;
|
||||
|
||||
worst = NULL;
|
||||
worst_ratio = 2;
|
||||
|
||||
/* This is O(n), but it's not likely called that often. */
|
||||
for (t = thash_first(&htable, &i); t; t = thash_next(&htable, &i)) {
|
||||
if (t->count >= min_hits) {
|
||||
if (right_ratio(t) < worst_ratio) {
|
||||
worst = t;
|
||||
worst_ratio = right_ratio(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (worst_ratio * 100 > percent)
|
||||
return NULL;
|
||||
|
||||
ret = malloc(strlen(worst->condstr) +
|
||||
strlen(worst->file) +
|
||||
sizeof(long int) * 8 +
|
||||
sizeof("%s:%u:%slikely(%s) correct %u%% (%lu/%lu)"));
|
||||
sprintf(ret, "%s:%u:%slikely(%s) correct %u%% (%lu/%lu)",
|
||||
worst->file, worst->line,
|
||||
worst->expect ? "" : "un", worst->condstr,
|
||||
(unsigned)(worst_ratio * 100),
|
||||
worst->right, worst->count);
|
||||
|
||||
thash_del(&htable, worst);
|
||||
free(worst);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void likely_stats_reset(void)
|
||||
{
|
||||
struct thash_iter i;
|
||||
struct trace *t;
|
||||
|
||||
/* This is a bit better than O(n^2), but we have to loop since
|
||||
* first/next during delete is unreliable. */
|
||||
while ((t = thash_first(&htable, &i)) != NULL) {
|
||||
for (; t; t = thash_next(&htable, &i)) {
|
||||
thash_del(&htable, t);
|
||||
free(t);
|
||||
}
|
||||
}
|
||||
|
||||
thash_clear(&htable);
|
||||
}
|
||||
#endif /*CCAN_LIKELY_DEBUG*/
|
111
ccan/ccan/likely/likely.h
Normal file
111
ccan/ccan/likely/likely.h
Normal file
|
@ -0,0 +1,111 @@
|
|||
/* CC0 (Public domain) - see LICENSE file for details */
|
||||
#ifndef CCAN_LIKELY_H
|
||||
#define CCAN_LIKELY_H
|
||||
#include "config.h"
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifndef CCAN_LIKELY_DEBUG
|
||||
#if HAVE_BUILTIN_EXPECT
|
||||
/**
|
||||
* likely - indicate that a condition is likely to be true.
|
||||
* @cond: the condition
|
||||
*
|
||||
* This uses a compiler extension where available to indicate a likely
|
||||
* code path and optimize appropriately; it's also useful for readers
|
||||
* to quickly identify exceptional paths through functions. The
|
||||
* threshold for "likely" is usually considered to be between 90 and
|
||||
* 99%; marginal cases should not be marked either way.
|
||||
*
|
||||
* See Also:
|
||||
* unlikely(), likely_stats()
|
||||
*
|
||||
* Example:
|
||||
* // Returns false if we overflow.
|
||||
* static inline bool inc_int(unsigned int *val)
|
||||
* {
|
||||
* (*val)++;
|
||||
* if (likely(*val))
|
||||
* return true;
|
||||
* return false;
|
||||
* }
|
||||
*/
|
||||
#define likely(cond) __builtin_expect(!!(cond), 1)
|
||||
|
||||
/**
|
||||
* unlikely - indicate that a condition is unlikely to be true.
|
||||
* @cond: the condition
|
||||
*
|
||||
* This uses a compiler extension where available to indicate an unlikely
|
||||
* code path and optimize appropriately; see likely() above.
|
||||
*
|
||||
* See Also:
|
||||
* likely(), likely_stats(), COLD (compiler.h)
|
||||
*
|
||||
* Example:
|
||||
* // Prints a warning if we overflow.
|
||||
* static inline void inc_int(unsigned int *val)
|
||||
* {
|
||||
* (*val)++;
|
||||
* if (unlikely(*val == 0))
|
||||
* fprintf(stderr, "Overflow!");
|
||||
* }
|
||||
*/
|
||||
#define unlikely(cond) __builtin_expect(!!(cond), 0)
|
||||
#else
|
||||
#define likely(cond) (!!(cond))
|
||||
#define unlikely(cond) (!!(cond))
|
||||
#endif
|
||||
#else /* CCAN_LIKELY_DEBUG versions */
|
||||
#include <ccan/str/str.h>
|
||||
|
||||
#define likely(cond) \
|
||||
(_likely_trace(!!(cond), 1, stringify(cond), __FILE__, __LINE__))
|
||||
#define unlikely(cond) \
|
||||
(_likely_trace(!!(cond), 0, stringify(cond), __FILE__, __LINE__))
|
||||
|
||||
long _likely_trace(bool cond, bool expect,
|
||||
const char *condstr,
|
||||
const char *file, unsigned int line);
|
||||
/**
|
||||
* likely_stats - return description of abused likely()/unlikely()
|
||||
* @min_hits: minimum number of hits
|
||||
* @percent: maximum percentage correct
|
||||
*
|
||||
* When CCAN_LIKELY_DEBUG is defined, likely() and unlikely() trace their
|
||||
* results: this causes a significant slowdown, but allows analysis of
|
||||
* whether the branches are labelled correctly.
|
||||
*
|
||||
* This function returns a malloc'ed description of the least-correct
|
||||
* usage of likely() or unlikely(). It ignores places which have been
|
||||
* called less than @min_hits times, and those which were predicted
|
||||
* correctly more than @percent of the time. It returns NULL when
|
||||
* nothing meets those criteria.
|
||||
*
|
||||
* Note that this call is destructive; the returned offender is
|
||||
* removed from the trace so that the next call to likely_stats() will
|
||||
* return the next-worst likely()/unlikely() usage.
|
||||
*
|
||||
* Example:
|
||||
* // Print every place hit more than twice which was wrong > 5%.
|
||||
* static void report_stats(void)
|
||||
* {
|
||||
* #ifdef CCAN_LIKELY_DEBUG
|
||||
* const char *bad;
|
||||
*
|
||||
* while ((bad = likely_stats(2, 95)) != NULL) {
|
||||
* printf("Suspicious likely: %s", bad);
|
||||
* free(bad);
|
||||
* }
|
||||
* #endif
|
||||
* }
|
||||
*/
|
||||
char *likely_stats(unsigned int min_hits, unsigned int percent);
|
||||
|
||||
/**
|
||||
* likely_stats_reset - free up memory of likely()/unlikely() branches.
|
||||
*
|
||||
* This can also plug memory leaks.
|
||||
*/
|
||||
void likely_stats_reset(void);
|
||||
#endif /* CCAN_LIKELY_DEBUG */
|
||||
#endif /* CCAN_LIKELY_H */
|
|
@ -1,72 +0,0 @@
|
|||
#include "config.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
/**
|
||||
* list - double linked list routines
|
||||
*
|
||||
* The list header contains routines for manipulating double linked lists.
|
||||
* It defines two types: struct list_head used for anchoring lists, and
|
||||
* struct list_node which is usually embedded in the structure which is placed
|
||||
* in the list.
|
||||
*
|
||||
* Example:
|
||||
* #include <err.h>
|
||||
* #include <stdio.h>
|
||||
* #include <stdlib.h>
|
||||
* #include <ccan/list/list.h>
|
||||
*
|
||||
* struct parent {
|
||||
* const char *name;
|
||||
* struct list_head children;
|
||||
* unsigned int num_children;
|
||||
* };
|
||||
*
|
||||
* struct child {
|
||||
* const char *name;
|
||||
* struct list_node list;
|
||||
* };
|
||||
*
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* struct parent p;
|
||||
* struct child *c;
|
||||
* int i;
|
||||
*
|
||||
* if (argc < 2)
|
||||
* errx(1, "Usage: %s parent children...", argv[0]);
|
||||
*
|
||||
* p.name = argv[1];
|
||||
* list_head_init(&p.children);
|
||||
* p.num_children = 0;
|
||||
* for (i = 2; i < argc; i++) {
|
||||
* c = malloc(sizeof(*c));
|
||||
* c->name = argv[i];
|
||||
* list_add(&p.children, &c->list);
|
||||
* p.num_children++;
|
||||
* }
|
||||
*
|
||||
* printf("%s has %u children:", p.name, p.num_children);
|
||||
* list_for_each(&p.children, c, list)
|
||||
* printf("%s ", c->name);
|
||||
* printf("\n");
|
||||
* return 0;
|
||||
* }
|
||||
*
|
||||
* License: BSD-MIT
|
||||
* Author: Rusty Russell <rusty@rustcorp.com.au>
|
||||
*/
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
if (argc != 2)
|
||||
return 1;
|
||||
|
||||
if (strcmp(argv[1], "depends") == 0) {
|
||||
printf("ccan/str\n");
|
||||
printf("ccan/container_of\n");
|
||||
printf("ccan/check_type\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
1
ccan/ccan/short_types/LICENSE
Symbolic link
1
ccan/ccan/short_types/LICENSE
Symbolic link
|
@ -0,0 +1 @@
|
|||
../../licenses/CC0
|
35
ccan/ccan/short_types/short_types.h
Normal file
35
ccan/ccan/short_types/short_types.h
Normal file
|
@ -0,0 +1,35 @@
|
|||
/* CC0 (Public domain) - see LICENSE file for details */
|
||||
#ifndef CCAN_SHORT_TYPES_H
|
||||
#define CCAN_SHORT_TYPES_H
|
||||
#include <stdint.h>
|
||||
|
||||
/**
|
||||
* u64/s64/u32/s32/u16/s16/u8/s8 - short names for explicitly-sized types.
|
||||
*/
|
||||
typedef uint64_t u64;
|
||||
typedef int64_t s64;
|
||||
typedef uint32_t u32;
|
||||
typedef int32_t s32;
|
||||
typedef uint16_t u16;
|
||||
typedef int16_t s16;
|
||||
typedef uint8_t u8;
|
||||
typedef int8_t s8;
|
||||
|
||||
/* Whichever they include first, they get these definitions. */
|
||||
#ifdef CCAN_ENDIAN_H
|
||||
/**
|
||||
* be64/be32/be16 - 64/32/16 bit big-endian representation.
|
||||
*/
|
||||
typedef beint64_t be64;
|
||||
typedef beint32_t be32;
|
||||
typedef beint16_t be16;
|
||||
|
||||
/**
|
||||
* le64/le32/le16 - 64/32/16 bit little-endian representation.
|
||||
*/
|
||||
typedef leint64_t le64;
|
||||
typedef leint32_t le32;
|
||||
typedef leint16_t le16;
|
||||
#endif
|
||||
|
||||
#endif /* CCAN_SHORT_TYPES_H */
|
|
@ -1,52 +0,0 @@
|
|||
#include "config.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
/**
|
||||
* str - string helper routines
|
||||
*
|
||||
* This is a grab bag of functions for string operations, designed to enhance
|
||||
* the standard string.h.
|
||||
*
|
||||
* Note that if you define CCAN_STR_DEBUG, you will get extra compile
|
||||
* checks on common misuses of the following functions (they will now
|
||||
* be out-of-line, so there is a runtime penalty!).
|
||||
*
|
||||
* strstr, strchr, strrchr:
|
||||
* Return const char * if first argument is const (gcc only).
|
||||
*
|
||||
* isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph,
|
||||
* islower, isprint, ispunct, isspace, isupper, isxdigit:
|
||||
* Static and runtime check that input is EOF or an *unsigned*
|
||||
* char, as per C standard (really!).
|
||||
*
|
||||
* Example:
|
||||
* #include <stdio.h>
|
||||
* #include <ccan/str/str.h>
|
||||
*
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* if (argc > 1 && streq(argv[1], "--verbose"))
|
||||
* printf("verbose set\n");
|
||||
* if (argc > 1 && strstarts(argv[1], "--"))
|
||||
* printf("Some option set\n");
|
||||
* if (argc > 1 && strends(argv[1], "cow-powers"))
|
||||
* printf("Magic option set\n");
|
||||
* return 0;
|
||||
* }
|
||||
*
|
||||
* License: CC0 (Public domain)
|
||||
* Author: Rusty Russell <rusty@rustcorp.com.au>
|
||||
*/
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
if (argc != 2)
|
||||
return 1;
|
||||
|
||||
if (strcmp(argv[1], "depends") == 0) {
|
||||
printf("ccan/build_assert\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
309
ccan/ccan/strset/strset.c
Normal file
309
ccan/ccan/strset/strset.c
Normal file
|
@ -0,0 +1,309 @@
|
|||
/* This code is based on the public domain code at
|
||||
* http://github.com/agl/critbit writtem by Adam Langley
|
||||
* <agl@imperialviolet.org>.
|
||||
*
|
||||
* Here are the main implementation differences:
|
||||
* (1) We don't strdup the string on insert; we use the pointer we're given.
|
||||
* (2) We use a straight bit number rather than a mask; it's simpler.
|
||||
* (3) We don't use the bottom bit of the pointer, but instead use a leading
|
||||
* zero to distinguish nodes from strings.
|
||||
* (4) The empty string (which would look like a node) is handled
|
||||
* using a special "empty node".
|
||||
* (5) Delete returns the string, so you can free it if you want to.
|
||||
* (6) Unions instead of void *, bool instead of int.
|
||||
*/
|
||||
#include <ccan/strset/strset.h>
|
||||
#include <ccan/short_types/short_types.h>
|
||||
#include <ccan/likely/likely.h>
|
||||
#include <ccan/str/str.h>
|
||||
#include <ccan/ilog/ilog.h>
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <errno.h>
|
||||
|
||||
struct node {
|
||||
/* To differentiate us from strings. */
|
||||
char nul_byte;
|
||||
/* The bit where these children differ. */
|
||||
u8 bit_num;
|
||||
/* The byte number where first bit differs (-1 == empty string node). */
|
||||
size_t byte_num;
|
||||
/* These point to strings or nodes. */
|
||||
struct strset child[2];
|
||||
};
|
||||
|
||||
/* Closest member to this in a non-empty set. */
|
||||
static const char *closest(struct strset n, const char *member)
|
||||
{
|
||||
size_t len = strlen(member);
|
||||
const u8 *bytes = (const u8 *)member;
|
||||
|
||||
/* Anything with first byte 0 is a node. */
|
||||
while (!n.u.s[0]) {
|
||||
u8 direction = 0;
|
||||
|
||||
/* Special node which represents the empty string. */
|
||||
if (unlikely(n.u.n->byte_num == (size_t)-1)) {
|
||||
n = n.u.n->child[0];
|
||||
break;
|
||||
}
|
||||
|
||||
if (n.u.n->byte_num < len) {
|
||||
u8 c = bytes[n.u.n->byte_num];
|
||||
direction = (c >> n.u.n->bit_num) & 1;
|
||||
}
|
||||
n = n.u.n->child[direction];
|
||||
}
|
||||
return n.u.s;
|
||||
}
|
||||
|
||||
char *strset_get(const struct strset *set, const char *member)
|
||||
{
|
||||
const char *str;
|
||||
|
||||
/* Non-empty set? */
|
||||
if (set->u.n) {
|
||||
str = closest(*set, member);
|
||||
if (streq(member, str))
|
||||
return (char *)str;
|
||||
}
|
||||
errno = ENOENT;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static bool set_string(struct strset *set,
|
||||
struct strset *n, const char *member)
|
||||
{
|
||||
/* Substitute magic empty node if this is the empty string */
|
||||
if (unlikely(!member[0])) {
|
||||
n->u.n = malloc(sizeof(*n->u.n));
|
||||
if (unlikely(!n->u.n)) {
|
||||
errno = ENOMEM;
|
||||
return false;
|
||||
}
|
||||
n->u.n->nul_byte = '\0';
|
||||
n->u.n->byte_num = (size_t)-1;
|
||||
/* Attach the string to child[0] */
|
||||
n = &n->u.n->child[0];
|
||||
}
|
||||
n->u.s = member;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool strset_add(struct strset *set, const char *member)
|
||||
{
|
||||
size_t len = strlen(member);
|
||||
const u8 *bytes = (const u8 *)member;
|
||||
struct strset *np;
|
||||
const char *str;
|
||||
struct node *newn;
|
||||
size_t byte_num;
|
||||
u8 bit_num, new_dir;
|
||||
|
||||
/* Empty set? */
|
||||
if (!set->u.n) {
|
||||
return set_string(set, set, member);
|
||||
}
|
||||
|
||||
/* Find closest existing member. */
|
||||
str = closest(*set, member);
|
||||
|
||||
/* Find where they differ. */
|
||||
for (byte_num = 0; str[byte_num] == member[byte_num]; byte_num++) {
|
||||
if (member[byte_num] == '\0') {
|
||||
/* All identical! */
|
||||
errno = EEXIST;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/* Find which bit differs (if we had ilog8, we'd use it) */
|
||||
bit_num = ilog32_nz((u8)str[byte_num] ^ bytes[byte_num]) - 1;
|
||||
assert(bit_num < CHAR_BIT);
|
||||
|
||||
/* Which direction do we go at this bit? */
|
||||
new_dir = ((bytes[byte_num]) >> bit_num) & 1;
|
||||
|
||||
/* Allocate new node. */
|
||||
newn = malloc(sizeof(*newn));
|
||||
if (!newn) {
|
||||
errno = ENOMEM;
|
||||
return false;
|
||||
}
|
||||
newn->nul_byte = '\0';
|
||||
newn->byte_num = byte_num;
|
||||
newn->bit_num = bit_num;
|
||||
if (unlikely(!set_string(set, &newn->child[new_dir], member))) {
|
||||
free(newn);
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Find where to insert: not closest, but first which differs! */
|
||||
np = set;
|
||||
while (!np->u.s[0]) {
|
||||
u8 direction = 0;
|
||||
|
||||
/* Special node which represents the empty string will
|
||||
* break here too! */
|
||||
if (np->u.n->byte_num > byte_num)
|
||||
break;
|
||||
/* Subtle: bit numbers are "backwards" for comparison */
|
||||
if (np->u.n->byte_num == byte_num && np->u.n->bit_num < bit_num)
|
||||
break;
|
||||
|
||||
if (np->u.n->byte_num < len) {
|
||||
u8 c = bytes[np->u.n->byte_num];
|
||||
direction = (c >> np->u.n->bit_num) & 1;
|
||||
}
|
||||
np = &np->u.n->child[direction];
|
||||
}
|
||||
|
||||
newn->child[!new_dir]= *np;
|
||||
np->u.n = newn;
|
||||
return true;
|
||||
}
|
||||
|
||||
char *strset_del(struct strset *set, const char *member)
|
||||
{
|
||||
size_t len = strlen(member);
|
||||
const u8 *bytes = (const u8 *)member;
|
||||
struct strset *parent = NULL, *n;
|
||||
const char *ret = NULL;
|
||||
u8 direction = 0; /* prevent bogus gcc warning. */
|
||||
|
||||
/* Empty set? */
|
||||
if (!set->u.n) {
|
||||
errno = ENOENT;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Find closest, but keep track of parent. */
|
||||
n = set;
|
||||
/* Anything with first byte 0 is a node. */
|
||||
while (!n->u.s[0]) {
|
||||
u8 c = 0;
|
||||
|
||||
/* Special node which represents the empty string. */
|
||||
if (unlikely(n->u.n->byte_num == (size_t)-1)) {
|
||||
const char *empty_str = n->u.n->child[0].u.s;
|
||||
|
||||
if (member[0]) {
|
||||
errno = ENOENT;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Sew empty string back so remaining logic works */
|
||||
free(n->u.n);
|
||||
n->u.s = empty_str;
|
||||
break;
|
||||
}
|
||||
|
||||
parent = n;
|
||||
if (n->u.n->byte_num < len) {
|
||||
c = bytes[n->u.n->byte_num];
|
||||
direction = (c >> n->u.n->bit_num) & 1;
|
||||
} else
|
||||
direction = 0;
|
||||
n = &n->u.n->child[direction];
|
||||
}
|
||||
|
||||
/* Did we find it? */
|
||||
if (!streq(member, n->u.s)) {
|
||||
errno = ENOENT;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ret = n->u.s;
|
||||
|
||||
if (!parent) {
|
||||
/* We deleted last node. */
|
||||
set->u.n = NULL;
|
||||
} else {
|
||||
struct node *old = parent->u.n;
|
||||
/* Raise other node to parent. */
|
||||
*parent = old->child[!direction];
|
||||
free(old);
|
||||
}
|
||||
|
||||
return (char *)ret;
|
||||
}
|
||||
|
||||
static bool iterate(struct strset n,
|
||||
bool (*handle)(const char *, void *), const void *data)
|
||||
{
|
||||
if (n.u.s[0])
|
||||
return handle(n.u.s, (void *)data);
|
||||
if (unlikely(n.u.n->byte_num == (size_t)-1))
|
||||
return handle(n.u.n->child[0].u.s, (void *)data);
|
||||
|
||||
return iterate(n.u.n->child[0], handle, data)
|
||||
&& iterate(n.u.n->child[1], handle, data);
|
||||
}
|
||||
|
||||
void strset_iterate_(const struct strset *set,
|
||||
bool (*handle)(const char *, void *), const void *data)
|
||||
{
|
||||
/* Empty set? */
|
||||
if (!set->u.n)
|
||||
return;
|
||||
|
||||
iterate(*set, handle, data);
|
||||
}
|
||||
|
||||
const struct strset *strset_prefix(const struct strset *set, const char *prefix)
|
||||
{
|
||||
const struct strset *n, *top;
|
||||
size_t len = strlen(prefix);
|
||||
const u8 *bytes = (const u8 *)prefix;
|
||||
|
||||
/* Empty set -> return empty set. */
|
||||
if (!set->u.n)
|
||||
return set;
|
||||
|
||||
top = n = set;
|
||||
|
||||
/* We walk to find the top, but keep going to check prefix matches. */
|
||||
while (!n->u.s[0]) {
|
||||
u8 c = 0, direction;
|
||||
|
||||
/* Special node which represents the empty string. */
|
||||
if (unlikely(n->u.n->byte_num == (size_t)-1)) {
|
||||
n = &n->u.n->child[0];
|
||||
break;
|
||||
}
|
||||
|
||||
if (n->u.n->byte_num < len)
|
||||
c = bytes[n->u.n->byte_num];
|
||||
|
||||
direction = (c >> n->u.n->bit_num) & 1;
|
||||
n = &n->u.n->child[direction];
|
||||
if (c)
|
||||
top = n;
|
||||
}
|
||||
|
||||
if (!strstarts(n->u.s, prefix)) {
|
||||
/* Convenient return for prefixes which do not appear in set. */
|
||||
static const struct strset empty_set;
|
||||
return &empty_set;
|
||||
}
|
||||
|
||||
return top;
|
||||
}
|
||||
|
||||
static void clear(struct strset n)
|
||||
{
|
||||
if (!n.u.s[0]) {
|
||||
if (likely(n.u.n->byte_num != (size_t)-1)) {
|
||||
clear(n.u.n->child[0]);
|
||||
clear(n.u.n->child[1]);
|
||||
}
|
||||
free(n.u.n);
|
||||
}
|
||||
}
|
||||
|
||||
void strset_clear(struct strset *set)
|
||||
{
|
||||
if (set->u.n)
|
||||
clear(*set);
|
||||
set->u.n = NULL;
|
||||
}
|
167
ccan/ccan/strset/strset.h
Normal file
167
ccan/ccan/strset/strset.h
Normal file
|
@ -0,0 +1,167 @@
|
|||
#ifndef CCAN_STRSET_H
|
||||
#define CCAN_STRSET_H
|
||||
#include "config.h"
|
||||
#include <ccan/typesafe_cb/typesafe_cb.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
/**
|
||||
* struct strset - representation of a string set
|
||||
*
|
||||
* It's exposed here to allow you to embed it and so we can inline the
|
||||
* trivial functions.
|
||||
*/
|
||||
struct strset {
|
||||
union {
|
||||
struct node *n;
|
||||
const char *s;
|
||||
} u;
|
||||
};
|
||||
|
||||
/**
|
||||
* strset_init - initialize a string set (empty)
|
||||
*
|
||||
* For completeness; if you've arranged for it to be NULL already you don't
|
||||
* need this.
|
||||
*
|
||||
* Example:
|
||||
* struct strset set;
|
||||
*
|
||||
* strset_init(&set);
|
||||
*/
|
||||
static inline void strset_init(struct strset *set)
|
||||
{
|
||||
set->u.n = NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* strset_empty - is this string set empty?
|
||||
* @set: the set.
|
||||
*
|
||||
* Example:
|
||||
* if (!strset_empty(&set))
|
||||
* abort();
|
||||
*/
|
||||
static inline bool strset_empty(const struct strset *set)
|
||||
{
|
||||
return set->u.n == NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* strset_get - is this a member of this string set?
|
||||
* @set: the set.
|
||||
* @member: the string to search for.
|
||||
*
|
||||
* Returns the member, or NULL if it isn't in the set (and sets errno
|
||||
* = ENOENT).
|
||||
*
|
||||
* Example:
|
||||
* if (strset_get(&set, "hello"))
|
||||
* printf("hello is in the set\n");
|
||||
*/
|
||||
char *strset_get(const struct strset *set, const char *member);
|
||||
|
||||
/**
|
||||
* strset_add - place a member in the string set.
|
||||
* @set: the set.
|
||||
* @member: the string to place in the set.
|
||||
*
|
||||
* This returns false if we run out of memory (errno = ENOMEM), or
|
||||
* (more normally) if that string already appears in the set (EEXIST).
|
||||
*
|
||||
* Note that the pointer is placed in the set, the string is not copied. If
|
||||
* you want a copy in the set, use strdup().
|
||||
*
|
||||
* Example:
|
||||
* if (!strset_add(&set, "goodbye"))
|
||||
* printf("goodbye was already in the set\n");
|
||||
*/
|
||||
bool strset_add(struct strset *set, const char *member);
|
||||
|
||||
/**
|
||||
* strset_del - remove a member from the string set.
|
||||
* @set: the set.
|
||||
* @member: the string to remove from the set.
|
||||
*
|
||||
* This returns the string which was passed to strset_add(), or NULL if
|
||||
* the string was not in the map (in which case it sets errno = ENOENT).
|
||||
*
|
||||
* This means that if you allocated a string (eg. using strdup()), you can
|
||||
* free it here.
|
||||
*
|
||||
* Example:
|
||||
* if (!strset_del(&set, "goodbye"))
|
||||
* printf("goodbye was not in the set?\n");
|
||||
*/
|
||||
char *strset_del(struct strset *set, const char *member);
|
||||
|
||||
/**
|
||||
* strset_clear - remove every member from the set.
|
||||
* @set: the set.
|
||||
*
|
||||
* The set will be empty after this.
|
||||
*
|
||||
* Example:
|
||||
* strset_clear(&set);
|
||||
*/
|
||||
void strset_clear(struct strset *set);
|
||||
|
||||
/**
|
||||
* strset_iterate - ordered iteration over a set
|
||||
* @set: the set.
|
||||
* @handle: the function to call.
|
||||
* @arg: the argument for the function (types should match).
|
||||
*
|
||||
* You should not alter the set within the @handle function! If it returns
|
||||
* false, the iteration will stop.
|
||||
*
|
||||
* Example:
|
||||
* static bool dump_some(const char *member, int *num)
|
||||
* {
|
||||
* // Only dump out num nodes.
|
||||
* if (*(num--) == 0)
|
||||
* return false;
|
||||
* printf("%s\n", member);
|
||||
* return true;
|
||||
* }
|
||||
*
|
||||
* static void dump_set(const struct strset *set)
|
||||
* {
|
||||
* int max = 100;
|
||||
* strset_iterate(set, dump_some, &max);
|
||||
* if (max < 0)
|
||||
* printf("... (truncated to 100 entries)\n");
|
||||
* }
|
||||
*/
|
||||
#define strset_iterate(set, handle, arg) \
|
||||
strset_iterate_((set), typesafe_cb_preargs(bool, void *, \
|
||||
(handle), (arg), \
|
||||
const char *), \
|
||||
(arg))
|
||||
void strset_iterate_(const struct strset *set,
|
||||
bool (*handle)(const char *, void *), const void *data);
|
||||
|
||||
|
||||
/**
|
||||
* strset_prefix - return a subset matching a prefix
|
||||
* @set: the set.
|
||||
* @prefix: the prefix.
|
||||
*
|
||||
* This returns a pointer into @set, so don't alter @set while using
|
||||
* the return value. You can use strset_iterate(), strset_test() or
|
||||
* strset_empty() on the returned pointer.
|
||||
*
|
||||
* Example:
|
||||
* static void dump_prefix(const struct strset *set, const char *prefix)
|
||||
* {
|
||||
* int max = 100;
|
||||
* printf("Nodes with prefix %s:\n", prefix);
|
||||
* strset_iterate(strset_prefix(set, prefix), dump_some, &max);
|
||||
* if (max < 0)
|
||||
* printf("... (truncated to 100 entries)\n");
|
||||
* }
|
||||
*/
|
||||
const struct strset *strset_prefix(const struct strset *set,
|
||||
const char *prefix);
|
||||
|
||||
#endif /* CCAN_STRSET_H */
|
1
ccan/ccan/typesafe_cb/LICENSE
Symbolic link
1
ccan/ccan/typesafe_cb/LICENSE
Symbolic link
|
@ -0,0 +1 @@
|
|||
../../licenses/CC0
|
134
ccan/ccan/typesafe_cb/typesafe_cb.h
Normal file
134
ccan/ccan/typesafe_cb/typesafe_cb.h
Normal file
|
@ -0,0 +1,134 @@
|
|||
/* CC0 (Public domain) - see LICENSE file for details */
|
||||
#ifndef CCAN_TYPESAFE_CB_H
|
||||
#define CCAN_TYPESAFE_CB_H
|
||||
#include "config.h"
|
||||
|
||||
#if HAVE_TYPEOF && HAVE_BUILTIN_CHOOSE_EXPR && HAVE_BUILTIN_TYPES_COMPATIBLE_P
|
||||
/**
|
||||
* typesafe_cb_cast - only cast an expression if it matches a given type
|
||||
* @desttype: the type to cast to
|
||||
* @oktype: the type we allow
|
||||
* @expr: the expression to cast
|
||||
*
|
||||
* This macro is used to create functions which allow multiple types.
|
||||
* The result of this macro is used somewhere that a @desttype type is
|
||||
* expected: if @expr is exactly of type @oktype, then it will be
|
||||
* cast to @desttype type, otherwise left alone.
|
||||
*
|
||||
* This macro can be used in static initializers.
|
||||
*
|
||||
* This is merely useful for warnings: if the compiler does not
|
||||
* support the primitives required for typesafe_cb_cast(), it becomes an
|
||||
* unconditional cast, and the @oktype argument is not used. In
|
||||
* particular, this means that @oktype can be a type which uses the
|
||||
* "typeof": it will not be evaluated if typeof is not supported.
|
||||
*
|
||||
* Example:
|
||||
* // We can take either an unsigned long or a void *.
|
||||
* void _set_some_value(void *val);
|
||||
* #define set_some_value(e) \
|
||||
* _set_some_value(typesafe_cb_cast(void *, unsigned long, (e)))
|
||||
*/
|
||||
#define typesafe_cb_cast(desttype, oktype, expr) \
|
||||
__builtin_choose_expr( \
|
||||
__builtin_types_compatible_p(__typeof__(0?(expr):(expr)), \
|
||||
oktype), \
|
||||
(desttype)(expr), (expr))
|
||||
#else
|
||||
#define typesafe_cb_cast(desttype, oktype, expr) ((desttype)(expr))
|
||||
#endif
|
||||
|
||||
/**
|
||||
* typesafe_cb_cast3 - only cast an expression if it matches given types
|
||||
* @desttype: the type to cast to
|
||||
* @ok1: the first type we allow
|
||||
* @ok2: the second type we allow
|
||||
* @ok3: the third type we allow
|
||||
* @expr: the expression to cast
|
||||
*
|
||||
* This is a convenient wrapper for multiple typesafe_cb_cast() calls.
|
||||
* You can chain them inside each other (ie. use typesafe_cb_cast()
|
||||
* for expr) if you need more than 3 arguments.
|
||||
*
|
||||
* Example:
|
||||
* // We can take either a long, unsigned long, void * or a const void *.
|
||||
* void _set_some_value(void *val);
|
||||
* #define set_some_value(expr) \
|
||||
* _set_some_value(typesafe_cb_cast3(void *,, \
|
||||
* long, unsigned long, const void *,\
|
||||
* (expr)))
|
||||
*/
|
||||
#define typesafe_cb_cast3(desttype, ok1, ok2, ok3, expr) \
|
||||
typesafe_cb_cast(desttype, ok1, \
|
||||
typesafe_cb_cast(desttype, ok2, \
|
||||
typesafe_cb_cast(desttype, ok3, \
|
||||
(expr))))
|
||||
|
||||
/**
|
||||
* typesafe_cb - cast a callback function if it matches the arg
|
||||
* @rtype: the return type of the callback function
|
||||
* @atype: the (pointer) type which the callback function expects.
|
||||
* @fn: the callback function to cast
|
||||
* @arg: the (pointer) argument to hand to the callback function.
|
||||
*
|
||||
* If a callback function takes a single argument, this macro does
|
||||
* appropriate casts to a function which takes a single atype argument if the
|
||||
* callback provided matches the @arg.
|
||||
*
|
||||
* It is assumed that @arg is of pointer type: usually @arg is passed
|
||||
* or assigned to a void * elsewhere anyway.
|
||||
*
|
||||
* Example:
|
||||
* void _register_callback(void (*fn)(void *arg), void *arg);
|
||||
* #define register_callback(fn, arg) \
|
||||
* _register_callback(typesafe_cb(void, (fn), void*, (arg)), (arg))
|
||||
*/
|
||||
#define typesafe_cb(rtype, atype, fn, arg) \
|
||||
typesafe_cb_cast(rtype (*)(atype), \
|
||||
rtype (*)(__typeof__(arg)), \
|
||||
(fn))
|
||||
|
||||
/**
|
||||
* typesafe_cb_preargs - cast a callback function if it matches the arg
|
||||
* @rtype: the return type of the callback function
|
||||
* @atype: the (pointer) type which the callback function expects.
|
||||
* @fn: the callback function to cast
|
||||
* @arg: the (pointer) argument to hand to the callback function.
|
||||
*
|
||||
* This is a version of typesafe_cb() for callbacks that take other arguments
|
||||
* before the @arg.
|
||||
*
|
||||
* Example:
|
||||
* void _register_callback(void (*fn)(int, void *arg), void *arg);
|
||||
* #define register_callback(fn, arg) \
|
||||
* _register_callback(typesafe_cb_preargs(void, void *, \
|
||||
* (fn), (arg), int), \
|
||||
* (arg))
|
||||
*/
|
||||
#define typesafe_cb_preargs(rtype, atype, fn, arg, ...) \
|
||||
typesafe_cb_cast(rtype (*)(__VA_ARGS__, atype), \
|
||||
rtype (*)(__VA_ARGS__, __typeof__(arg)), \
|
||||
(fn))
|
||||
|
||||
/**
|
||||
* typesafe_cb_postargs - cast a callback function if it matches the arg
|
||||
* @rtype: the return type of the callback function
|
||||
* @atype: the (pointer) type which the callback function expects.
|
||||
* @fn: the callback function to cast
|
||||
* @arg: the (pointer) argument to hand to the callback function.
|
||||
*
|
||||
* This is a version of typesafe_cb() for callbacks that take other arguments
|
||||
* after the @arg.
|
||||
*
|
||||
* Example:
|
||||
* void _register_callback(void (*fn)(void *arg, int), void *arg);
|
||||
* #define register_callback(fn, arg) \
|
||||
* _register_callback(typesafe_cb_postargs(void, (fn), void *, \
|
||||
* (arg), int), \
|
||||
* (arg))
|
||||
*/
|
||||
#define typesafe_cb_postargs(rtype, atype, fn, arg, ...) \
|
||||
typesafe_cb_cast(rtype (*)(atype, __VA_ARGS__), \
|
||||
rtype (*)(__typeof__(arg), __VA_ARGS__), \
|
||||
(fn))
|
||||
#endif /* CCAN_CAST_IF_TYPE_H */
|
510
ccan/licenses/LGPL-2.1
Normal file
510
ccan/licenses/LGPL-2.1
Normal file
|
@ -0,0 +1,510 @@
|
|||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
Version 2.1, February 1999
|
||||
|
||||
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
|
||||
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
[This is the first released version of the Lesser GPL. It also counts
|
||||
as the successor of the GNU Library Public License, version 2, hence
|
||||
the version number 2.1.]
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
Licenses are intended to guarantee your freedom to share and change
|
||||
free software--to make sure the software is free for all its users.
|
||||
|
||||
This license, the Lesser General Public License, applies to some
|
||||
specially designated software packages--typically libraries--of the
|
||||
Free Software Foundation and other authors who decide to use it. You
|
||||
can use it too, but we suggest you first think carefully about whether
|
||||
this license or the ordinary General Public License is the better
|
||||
strategy to use in any particular case, based on the explanations
|
||||
below.
|
||||
|
||||
When we speak of free software, we are referring to freedom of use,
|
||||
not price. Our General Public Licenses are designed to make sure that
|
||||
you have the freedom to distribute copies of free software (and charge
|
||||
for this service if you wish); that you receive source code or can get
|
||||
it if you want it; that you can change the software and use pieces of
|
||||
it in new free programs; and that you are informed that you can do
|
||||
these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
distributors to deny you these rights or to ask you to surrender these
|
||||
rights. These restrictions translate to certain responsibilities for
|
||||
you if you distribute copies of the library or if you modify it.
|
||||
|
||||
For example, if you distribute copies of the library, whether gratis
|
||||
or for a fee, you must give the recipients all the rights that we gave
|
||||
you. You must make sure that they, too, receive or can get the source
|
||||
code. If you link other code with the library, you must provide
|
||||
complete object files to the recipients, so that they can relink them
|
||||
with the library after making changes to the library and recompiling
|
||||
it. And you must show them these terms so they know their rights.
|
||||
|
||||
We protect your rights with a two-step method: (1) we copyright the
|
||||
library, and (2) we offer you this license, which gives you legal
|
||||
permission to copy, distribute and/or modify the library.
|
||||
|
||||
To protect each distributor, we want to make it very clear that
|
||||
there is no warranty for the free library. Also, if the library is
|
||||
modified by someone else and passed on, the recipients should know
|
||||
that what they have is not the original version, so that the original
|
||||
author's reputation will not be affected by problems that might be
|
||||
introduced by others.
|
||||
|
||||
Finally, software patents pose a constant threat to the existence of
|
||||
any free program. We wish to make sure that a company cannot
|
||||
effectively restrict the users of a free program by obtaining a
|
||||
restrictive license from a patent holder. Therefore, we insist that
|
||||
any patent license obtained for a version of the library must be
|
||||
consistent with the full freedom of use specified in this license.
|
||||
|
||||
Most GNU software, including some libraries, is covered by the
|
||||
ordinary GNU General Public License. This license, the GNU Lesser
|
||||
General Public License, applies to certain designated libraries, and
|
||||
is quite different from the ordinary General Public License. We use
|
||||
this license for certain libraries in order to permit linking those
|
||||
libraries into non-free programs.
|
||||
|
||||
When a program is linked with a library, whether statically or using
|
||||
a shared library, the combination of the two is legally speaking a
|
||||
combined work, a derivative of the original library. The ordinary
|
||||
General Public License therefore permits such linking only if the
|
||||
entire combination fits its criteria of freedom. The Lesser General
|
||||
Public License permits more lax criteria for linking other code with
|
||||
the library.
|
||||
|
||||
We call this license the "Lesser" General Public License because it
|
||||
does Less to protect the user's freedom than the ordinary General
|
||||
Public License. It also provides other free software developers Less
|
||||
of an advantage over competing non-free programs. These disadvantages
|
||||
are the reason we use the ordinary General Public License for many
|
||||
libraries. However, the Lesser license provides advantages in certain
|
||||
special circumstances.
|
||||
|
||||
For example, on rare occasions, there may be a special need to
|
||||
encourage the widest possible use of a certain library, so that it
|
||||
becomes a de-facto standard. To achieve this, non-free programs must
|
||||
be allowed to use the library. A more frequent case is that a free
|
||||
library does the same job as widely used non-free libraries. In this
|
||||
case, there is little to gain by limiting the free library to free
|
||||
software only, so we use the Lesser General Public License.
|
||||
|
||||
In other cases, permission to use a particular library in non-free
|
||||
programs enables a greater number of people to use a large body of
|
||||
free software. For example, permission to use the GNU C Library in
|
||||
non-free programs enables many more people to use the whole GNU
|
||||
operating system, as well as its variant, the GNU/Linux operating
|
||||
system.
|
||||
|
||||
Although the Lesser General Public License is Less protective of the
|
||||
users' freedom, it does ensure that the user of a program that is
|
||||
linked with the Library has the freedom and the wherewithal to run
|
||||
that program using a modified version of the Library.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow. Pay close attention to the difference between a
|
||||
"work based on the library" and a "work that uses the library". The
|
||||
former contains code derived from the library, whereas the latter must
|
||||
be combined with the library in order to run.
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License Agreement applies to any software library or other
|
||||
program which contains a notice placed by the copyright holder or
|
||||
other authorized party saying it may be distributed under the terms of
|
||||
this Lesser General Public License (also called "this License").
|
||||
Each licensee is addressed as "you".
|
||||
|
||||
A "library" means a collection of software functions and/or data
|
||||
prepared so as to be conveniently linked with application programs
|
||||
(which use some of those functions and data) to form executables.
|
||||
|
||||
The "Library", below, refers to any such software library or work
|
||||
which has been distributed under these terms. A "work based on the
|
||||
Library" means either the Library or any derivative work under
|
||||
copyright law: that is to say, a work containing the Library or a
|
||||
portion of it, either verbatim or with modifications and/or translated
|
||||
straightforwardly into another language. (Hereinafter, translation is
|
||||
included without limitation in the term "modification".)
|
||||
|
||||
"Source code" for a work means the preferred form of the work for
|
||||
making modifications to it. For a library, complete source code means
|
||||
all the source code for all modules it contains, plus any associated
|
||||
interface definition files, plus the scripts used to control
|
||||
compilation and installation of the library.
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running a program using the Library is not restricted, and output from
|
||||
such a program is covered only if its contents constitute a work based
|
||||
on the Library (independent of the use of the Library in a tool for
|
||||
writing it). Whether that is true depends on what the Library does
|
||||
and what the program that uses the Library does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Library's
|
||||
complete source code as you receive it, in any medium, provided that
|
||||
you conspicuously and appropriately publish on each copy an
|
||||
appropriate copyright notice and disclaimer of warranty; keep intact
|
||||
all the notices that refer to this License and to the absence of any
|
||||
warranty; and distribute a copy of this License along with the
|
||||
Library.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy,
|
||||
and you may at your option offer warranty protection in exchange for a
|
||||
fee.
|
||||
|
||||
2. You may modify your copy or copies of the Library or any portion
|
||||
of it, thus forming a work based on the Library, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) The modified work must itself be a software library.
|
||||
|
||||
b) You must cause the files modified to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
c) You must cause the whole of the work to be licensed at no
|
||||
charge to all third parties under the terms of this License.
|
||||
|
||||
d) If a facility in the modified Library refers to a function or a
|
||||
table of data to be supplied by an application program that uses
|
||||
the facility, other than as an argument passed when the facility
|
||||
is invoked, then you must make a good faith effort to ensure that,
|
||||
in the event an application does not supply such function or
|
||||
table, the facility still operates, and performs whatever part of
|
||||
its purpose remains meaningful.
|
||||
|
||||
(For example, a function in a library to compute square roots has
|
||||
a purpose that is entirely well-defined independent of the
|
||||
application. Therefore, Subsection 2d requires that any
|
||||
application-supplied function or table used by this function must
|
||||
be optional: if the application does not supply it, the square
|
||||
root function must still compute square roots.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Library,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Library, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote
|
||||
it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Library.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Library
|
||||
with the Library (or with a work based on the Library) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may opt to apply the terms of the ordinary GNU General Public
|
||||
License instead of this License to a given copy of the Library. To do
|
||||
this, you must alter all the notices that refer to this License, so
|
||||
that they refer to the ordinary GNU General Public License, version 2,
|
||||
instead of to this License. (If a newer version than version 2 of the
|
||||
ordinary GNU General Public License has appeared, then you can specify
|
||||
that version instead if you wish.) Do not make any other change in
|
||||
these notices.
|
||||
|
||||
Once this change is made in a given copy, it is irreversible for
|
||||
that copy, so the ordinary GNU General Public License applies to all
|
||||
subsequent copies and derivative works made from that copy.
|
||||
|
||||
This option is useful when you wish to copy part of the code of
|
||||
the Library into a program that is not a library.
|
||||
|
||||
4. You may copy and distribute the Library (or a portion or
|
||||
derivative of it, under Section 2) in object code or executable form
|
||||
under the terms of Sections 1 and 2 above provided that you accompany
|
||||
it with the complete corresponding machine-readable source code, which
|
||||
must be distributed under the terms of Sections 1 and 2 above on a
|
||||
medium customarily used for software interchange.
|
||||
|
||||
If distribution of object code is made by offering access to copy
|
||||
from a designated place, then offering equivalent access to copy the
|
||||
source code from the same place satisfies the requirement to
|
||||
distribute the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
5. A program that contains no derivative of any portion of the
|
||||
Library, but is designed to work with the Library by being compiled or
|
||||
linked with it, is called a "work that uses the Library". Such a
|
||||
work, in isolation, is not a derivative work of the Library, and
|
||||
therefore falls outside the scope of this License.
|
||||
|
||||
However, linking a "work that uses the Library" with the Library
|
||||
creates an executable that is a derivative of the Library (because it
|
||||
contains portions of the Library), rather than a "work that uses the
|
||||
library". The executable is therefore covered by this License.
|
||||
Section 6 states terms for distribution of such executables.
|
||||
|
||||
When a "work that uses the Library" uses material from a header file
|
||||
that is part of the Library, the object code for the work may be a
|
||||
derivative work of the Library even though the source code is not.
|
||||
Whether this is true is especially significant if the work can be
|
||||
linked without the Library, or if the work is itself a library. The
|
||||
threshold for this to be true is not precisely defined by law.
|
||||
|
||||
If such an object file uses only numerical parameters, data
|
||||
structure layouts and accessors, and small macros and small inline
|
||||
functions (ten lines or less in length), then the use of the object
|
||||
file is unrestricted, regardless of whether it is legally a derivative
|
||||
work. (Executables containing this object code plus portions of the
|
||||
Library will still fall under Section 6.)
|
||||
|
||||
Otherwise, if the work is a derivative of the Library, you may
|
||||
distribute the object code for the work under the terms of Section 6.
|
||||
Any executables containing that work also fall under Section 6,
|
||||
whether or not they are linked directly with the Library itself.
|
||||
|
||||
6. As an exception to the Sections above, you may also combine or
|
||||
link a "work that uses the Library" with the Library to produce a
|
||||
work containing portions of the Library, and distribute that work
|
||||
under terms of your choice, provided that the terms permit
|
||||
modification of the work for the customer's own use and reverse
|
||||
engineering for debugging such modifications.
|
||||
|
||||
You must give prominent notice with each copy of the work that the
|
||||
Library is used in it and that the Library and its use are covered by
|
||||
this License. You must supply a copy of this License. If the work
|
||||
during execution displays copyright notices, you must include the
|
||||
copyright notice for the Library among them, as well as a reference
|
||||
directing the user to the copy of this License. Also, you must do one
|
||||
of these things:
|
||||
|
||||
a) Accompany the work with the complete corresponding
|
||||
machine-readable source code for the Library including whatever
|
||||
changes were used in the work (which must be distributed under
|
||||
Sections 1 and 2 above); and, if the work is an executable linked
|
||||
with the Library, with the complete machine-readable "work that
|
||||
uses the Library", as object code and/or source code, so that the
|
||||
user can modify the Library and then relink to produce a modified
|
||||
executable containing the modified Library. (It is understood
|
||||
that the user who changes the contents of definitions files in the
|
||||
Library will not necessarily be able to recompile the application
|
||||
to use the modified definitions.)
|
||||
|
||||
b) Use a suitable shared library mechanism for linking with the
|
||||
Library. A suitable mechanism is one that (1) uses at run time a
|
||||
copy of the library already present on the user's computer system,
|
||||
rather than copying library functions into the executable, and (2)
|
||||
will operate properly with a modified version of the library, if
|
||||
the user installs one, as long as the modified version is
|
||||
interface-compatible with the version that the work was made with.
|
||||
|
||||
c) Accompany the work with a written offer, valid for at least
|
||||
three years, to give the same user the materials specified in
|
||||
Subsection 6a, above, for a charge no more than the cost of
|
||||
performing this distribution.
|
||||
|
||||
d) If distribution of the work is made by offering access to copy
|
||||
from a designated place, offer equivalent access to copy the above
|
||||
specified materials from the same place.
|
||||
|
||||
e) Verify that the user has already received a copy of these
|
||||
materials or that you have already sent this user a copy.
|
||||
|
||||
For an executable, the required form of the "work that uses the
|
||||
Library" must include any data and utility programs needed for
|
||||
reproducing the executable from it. However, as a special exception,
|
||||
the materials to be distributed need not include anything that is
|
||||
normally distributed (in either source or binary form) with the major
|
||||
components (compiler, kernel, and so on) of the operating system on
|
||||
which the executable runs, unless that component itself accompanies
|
||||
the executable.
|
||||
|
||||
It may happen that this requirement contradicts the license
|
||||
restrictions of other proprietary libraries that do not normally
|
||||
accompany the operating system. Such a contradiction means you cannot
|
||||
use both them and the Library together in an executable that you
|
||||
distribute.
|
||||
|
||||
7. You may place library facilities that are a work based on the
|
||||
Library side-by-side in a single library together with other library
|
||||
facilities not covered by this License, and distribute such a combined
|
||||
library, provided that the separate distribution of the work based on
|
||||
the Library and of the other library facilities is otherwise
|
||||
permitted, and provided that you do these two things:
|
||||
|
||||
a) Accompany the combined library with a copy of the same work
|
||||
based on the Library, uncombined with any other library
|
||||
facilities. This must be distributed under the terms of the
|
||||
Sections above.
|
||||
|
||||
b) Give prominent notice with the combined library of the fact
|
||||
that part of it is a work based on the Library, and explaining
|
||||
where to find the accompanying uncombined form of the same work.
|
||||
|
||||
8. You may not copy, modify, sublicense, link with, or distribute
|
||||
the Library except as expressly provided under this License. Any
|
||||
attempt otherwise to copy, modify, sublicense, link with, or
|
||||
distribute the Library is void, and will automatically terminate your
|
||||
rights under this License. However, parties who have received copies,
|
||||
or rights, from you under this License will not have their licenses
|
||||
terminated so long as such parties remain in full compliance.
|
||||
|
||||
9. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Library or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Library (or any work based on the
|
||||
Library), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Library or works based on it.
|
||||
|
||||
10. Each time you redistribute the Library (or any work based on the
|
||||
Library), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute, link with or modify the Library
|
||||
subject to these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties with
|
||||
this License.
|
||||
|
||||
11. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Library at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Library by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Library.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under
|
||||
any particular circumstance, the balance of the section is intended to
|
||||
apply, and the section as a whole is intended to apply in other
|
||||
circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
12. If the distribution and/or use of the Library is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Library under this License
|
||||
may add an explicit geographical distribution limitation excluding those
|
||||
countries, so that distribution is permitted only in or among
|
||||
countries not thus excluded. In such case, this License incorporates
|
||||
the limitation as if written in the body of this License.
|
||||
|
||||
13. The Free Software Foundation may publish revised and/or new
|
||||
versions of the Lesser General Public License from time to time.
|
||||
Such new versions will be similar in spirit to the present version,
|
||||
but may differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Library
|
||||
specifies a version number of this License which applies to it and
|
||||
"any later version", you have the option of following the terms and
|
||||
conditions either of that version or of any later version published by
|
||||
the Free Software Foundation. If the Library does not specify a
|
||||
license version number, you may choose any version ever published by
|
||||
the Free Software Foundation.
|
||||
|
||||
14. If you wish to incorporate parts of the Library into other free
|
||||
programs whose distribution conditions are incompatible with these,
|
||||
write to the author to ask for permission. For software which is
|
||||
copyrighted by the Free Software Foundation, write to the Free
|
||||
Software Foundation; we sometimes make exceptions for this. Our
|
||||
decision will be guided by the two goals of preserving the free status
|
||||
of all derivatives of our free software and of promoting the sharing
|
||||
and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
|
||||
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
|
||||
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
|
||||
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
|
||||
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
|
||||
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
|
||||
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
|
||||
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
|
||||
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
|
||||
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
|
||||
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
|
||||
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
|
||||
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
|
||||
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
|
||||
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
||||
DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Libraries
|
||||
|
||||
If you develop a new library, and you want it to be of the greatest
|
||||
possible use to the public, we recommend making it free software that
|
||||
everyone can redistribute and change. You can do so by permitting
|
||||
redistribution under these terms (or, alternatively, under the terms
|
||||
of the ordinary General Public License).
|
||||
|
||||
To apply these terms, attach the following notices to the library.
|
||||
It is safest to attach them to the start of each source file to most
|
||||
effectively convey the exclusion of warranty; and each file should
|
||||
have at least the "copyright" line and a pointer to where the full
|
||||
notice is found.
|
||||
|
||||
|
||||
<one line to give the library's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or
|
||||
your school, if any, to sign a "copyright disclaimer" for the library,
|
||||
if necessary. Here is a sample; alter the names:
|
||||
|
||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the
|
||||
library `Frob' (a library for tweaking knobs) written by James
|
||||
Random Hacker.
|
||||
|
||||
<signature of Ty Coon>, 1 April 1990
|
||||
Ty Coon, President of Vice
|
||||
|
||||
That's all there is to it!
|
||||
|
||||
|
|
@ -1,9 +1,14 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
sources += files([
|
||||
'ccan/hash/hash.c',
|
||||
'ccan/htable/htable.c',
|
||||
'ccan/ilog/ilog.c',
|
||||
'ccan/likely/likely.c',
|
||||
'ccan/list/list.c',
|
||||
'ccan/str/debug.c',
|
||||
'ccan/str/str.c',
|
||||
'ccan/strset/strset.c',
|
||||
])
|
||||
|
||||
if get_option('buildtype') == 'debug'
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue